

This work is partially funded by the European

Commission under
FP7-ICT-2009.8.1, GA no. 248465

S(o)OS Newsletter
Issue N°1 – January 2011

Dear reader,

welcome to the first issue of the S(o)OS Newsletter. The Service-oriented Operating Systems (S(o)OS)

European Project addresses the needs of future massively-parallel and distributed systems by draw-

ing from the principles and lessons learned in the domains of service-oriented architectures (SOA),

Grid and distributed computing. This first newsletter has the purpose of spreading the word about

the research issues that are being investigated in the project and the approach we are following for

addressing them.

INTRODUCTION

Processor and network architectures are making rapid progress with more and more cores being in-

tegrated into single processors and more and more machines getting connected with increasing

bandwidth. Processors become heterogeneous and reconfigurable, thus allowing for dynamic adap-

tation to specialised needs. In the future, thousands of billions of devices may be connected to form

a single computing system.

Current programming models are unable to cope with these developments, as they are too tightly

coupled with the underlying device structure. Furthermore, complex, non-aligned middleware and

operating systems make the programming model unnecessarily inef-

ficient. In order to realise efficient programmability of large scale

(terascale) devices by experts and average developers equally, a

complete new approach to handling these types of devices across

all layers is required.

The S(o)OS project is addressing future distributed systems on the

level of a holistic operating system architecture by drawing from

Service Oriented Architectures and the strength of Grids. This de-

couples the OS from the underlying resource infrastructure, thus

making execution across an almost unlimited number of varying de-

vices possible, independent from the actual hardware.

S(o)OS will allow for automatic distribution of code parts across

such a resource fabric by investigating means to execute processes, threads and parallel applications

across the resources in a way that addresses both code requirements and resource availability, thus

improving overall performance.

mapping code to infrastructure

http://www.soos-project.eu/
http://www.soos-project.eu/

S(o)OS intends to enable even average developers to cope with large, widely distributed infrastruc-

tures. The project therefore examines means for run-time code analysis, segmentation and distribu-

tion across the infrastructure. This will range from automated analysis of the code parallelism to

powerful extensions for experienced developers that will allow to specify, for example, communica-

tion and dependency requirements across threads or segments.

THE PROBLEM

The challenging goal aimed to by the S(o)OS project is the one of designing a software stack that is

suitable for future and emerging massively parallel, distributed and heterogeneous systems. The at-

tention is strongly focused on the architecture of the Operating System and its kernel(s), and the in-

teractions with the applications through suitable novel pro-

gramming paradigms.

In the nowadays computing era, we have still a clear distinc-

tion between the general-purpose computing (GPC) and the

high-performance computing (HPC) worlds. In GPC, pro-

grammers use traditional development techniques based

mainly on sequential programming, and use traditional Op-

erating System services managing to achieve a quite good

usage of the underlying computing power, as available on

traditional hardware with one or a few processors/cores. In

HPC, particularly skilled developers use dedicated middle-

ware, OS services, special parallel programming paradigms

and hardware-specific optimisation techniques, in order to achieve very high saturation levels of the

underlying massively parallel and vectorial machines. Such exploitation levels would be nearly im-

possible to achieve on these platforms recurring to the traditional and widely used development

techniques of the GPC world.

[source: Dell Computers]

development of parallel architectures

However, the future and emerging trend in hardware development is going towards massively paral-

lel architectures which are going to be more and more used for general-purpose computing as well.

For example, in the Cloud Computing domain, there is an increasing interest by Infrastructure-as-a-

Service providers in using big machines with many cores for the provisioning of virtualised infrastruc-

tures to customers. We need also to mention the promising trend in multi-core computing for em-

bedded systems due to the foreseen savings in power consumption. Therefore, the worlds of GPC

and HPC are going to get closer and closer into the future, thus we need software development

techniques that allow the majority of the programmers to take advantage of the computing power

available on the new generation hardware. This involves new redesigns at all levels of the software

stack, starting from the Operating System itself. This has to play a better job in mediating the interac-

Amdahl’s law of scalability

tion between applications and the hardware by providing a set of abstractions which need to ac-

count for the novel massively parallel availability of computing power and resources. Furthermore,

the OS and particularly its kernel needs to get rid of scalability problems that arise when a traditional

OS tries to manage too many resources.

Indeed, one widely recognized issue is that the Operating Systems mainly used for general-purpose

computing nowadays have serious bottlenecks when trying to scale to platforms with a high number

of cores. This is already evident with servers readily available today with up to 16, 32 and 48 cores.

New kernels for the future machines need to be highly modular, heterogeneous, and they need to

provide non-centralised, heavily distributed services to applications. To this purpose, their own in-

ternal architecture cannot exhibit centralised elements at risk of becoming serious bottlenecks when

trying to scale to thousands of cores, but it needs to be heavily distributed as well.

[source: HEXUS]

Intel's Sandy Bridge already integrates vector cores with general purpose cores

One more problem is the heterogeneity of the hardware platforms. These cannot be easily exploited

by the upper layer software stack, unless a big effort is put in place for rewriting major parts of the

OS, middleware and applications.

THE SOLUTION: S(O)OS

In order to cope with the complex and challenging problem of designing a suitable software stack for

easing the task of programming complex massively parallel systems of tomorrow, the approach fol-

lowed in the S(o)OS project comprises a set of elements which can be summarised as follows:

● Hardware description and simulation: in S(o)OS, proper hardware description languages and

simulation tools are being developed in order to build a concrete framework over which to experi-

ment the effectiveness of the solutions that will be proposed.

● Communication models: one of the key factors that are being investigated in S(o)OS is the type

of communication models and protocols that may effectively be used for the data distribution and

communications among the unprecedented number of computing elements foreseen inside a single

chip and composing a distributed system.

● Distribution of the execution: a particularly crucial role is played by the work and data distribu-

tion logic and the scheduler(s) that act inside the Operating System, so as to achieve maximum per-

formance and/or meet application requirements. This becomes even more critical when the de-

ployed applications need to comply with precise and possibly strict timing, latency and Quality of

Service requirements.

● Programming paradigms: the type of programming paradigm that may be used by developers on

future parallel platforms is crucial to the degree of concurrency, saturation of the computing power

achievable on such platforms and the scalability of software. Moreover, it novel programming para-

digms are needed to ease the task of developing efficient and scalable applications on heterogene-

ous future platforms.

The investigations in the above elements will allow for the design of an architecture of Operating

System and its kernel(s) that will be suitable for playing the needed mediation role in future massive-

ly parallel architectures. The OS will expose interfaces with the essential level of abstraction from the

specifics of the hardware which will allow application developers to achieve more easily a good ex-

ploitation of the underlying computing power and concurrency level.

MORE INFORMATION

More information on the S(o)OS project can be found on the official website:

http://www.soos-project.eu/.

S(o)OS belongs to the TERACOMP initiative which includes other projects investigating on future and

emerging terascale computing platforms.

http://cordis.europa.eu/fp7/ict/programme/fet_en.html

http://www.soos-project.eu/
http://cordis.europa.eu/fp7/ict/fet-proactive/teracomp_en.html
http://cordis.europa.eu/fp7/ict/programme/fet_en.html

