
Definition of Future
Requirements
Project Deliverable D5.2

Tommaso Cucinotta, Giuseppe Lipari [SSSA];
Rui Aguiar, João Paulo Barraca, Bruno Santos [IT]; ;
Jan Kuper, Christian Baaij [UT];
Lutz Schubert, Hans-Martin Kreuz [USTUTT-HLRS]

Due date: 31/07/2010

Delivery date: 28/07/2010

This work is partially funded by the European

Commission under

FP7-ICT-2009.8.1, GA no. 248465

(c) 2010-2012 by the S(o)OS consortium

This work is licensed under the Creative Commons Attribution 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or

send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Version History

Version Date Change Author

1.0 28/07/10 Delivered to the reviewers

EXECUTIVE SUMMARY

This document assesses the expected development in the area of (large scale) computing infrastructures expected

in the future from different standpoints, with a particular focus on the main IT tiers, namely hardware (across all

layers), communication (including protocols), middleware (with a main focus on Operating Systems), and

applications (including their programmability). We shall thereby distinguish between their structure and their

usage, i.e. between the goals pursued by the manufacturers and the requirements posed by the users. This

document therefore investigates the problem from three major perspectives:

(1) the short-term developments to be expected in the major tiers. As it can be expected, these are based on

current production attempts, official roadmaps etc.. In facts, most of the short-term developments are quite

clearly laid out, though it should be noted that this does not imply that all these roadmaps will actually be pursued

in full detail. In the corresponding sections (II. 1. , III. 1. , IV. 1. and V. 1.) a strong tendency towards increasing

scale and parallelisation of systems will be noted. As is the general (unwritten) manufacturing rule and with

manycore technologies etc. still being in a “prototyping” stage, progress is comparatively slow as most commercial

organisations only make careful attempts first. This is mostly due to the fact that little expertise about multicore

systems exist as yet and has to base mostly on knowledge gained from HPC so far.

(2) More interestingly, however, is the long term development to be expected in these domains. The nature of

such an assessment must be highly speculative due to the fast changes this area is subject to and due to the lack of

expertise as noted above. Accordingly, many statements here are essential assumptions basing on the knowledge

and expertise of the participants in the project. In order to maximise the degree of certainty, we needed to extract

relatively generic assessments that, whilst being generic, still provided enough details to be meaningful for

estimating future requirements. In general, we can note that the long term trends in general computing systems

will be oriented along the line of current high performance computing (HPC) architectures, whilst HPC itself will

introduce additional levels of hierarchy and different means to communicate across and along these levels.

(3) A major influence in development trends comes from usage of the system and therefore from the demands of

the end-user. Even though industry will try to lead such development in certain directions fitting their own

manufacturing plans, they nonetheless are subject to sales figures. In the final section we accordingly examine the

usage trends to be expected in the long term future and their impact on computing infrastructures in the sense of

which systems best suit the respective needs. In this context, we must obviously distinguish between such

contrasting domains such as high performance computing and desktop computing, even though a general trend

towards convergence of the two domains can already be noted. The main problems thereby consist less in usage

though (interactivity in HPC is a nice, but often unnecessary feature; similarly, fast complex calculations in

spreadsheet manipulation is not a mandatory feature), but in particular in programming focus and implicit

complexity – with one of the main issues being parallelisation.

It must be noted in this context that the document is far from being a complete assessment of all developments

related to computing systems, application requirements etc. - this is not only due to a lack of time and available

effort, but in particular due to the fact that providing more detail would only be of limited additional benefit to the

project: as S(o)OS does not aim at addressing an individual aspect optimally, but tries to identify the common

issues across all these aspects, it is of primary concern how they interrelate and thus which requirements need to

be addressed on a higher level. Along the same line, S(o)OS is less affected by the degree of uncertainty involved

in assessing the long term developments.

iv | P a g e D5.1 State of the Art S (o) O S

TABLE OF CONTENTS

EXECUTIVE SUMMARY...

TABLE OF CONTENTS...

1. LIST OF FIGURES..VII

2. LIST OF TABLES...VII

3. ABBREVIATIONS..VIII

I. INTRODUCTION..

II. HARDWARE AND PROCESSORS..

1. SHORT TERM DEVELOPMENTS ...11

2. LONG TERM TRENDS..15

A) CHALLENGES..15

B) DEVELOPMENT & RESEARCH TRENDS...16

III. COMMUNICATIONS..

1. SHORT TERM DEVELOPMENTS..19

A) NETWORK...19

B) WIRELESS TRANSACTIONS...24

2. LONG-TERM DEVELOPMENTS...25

IV. PROGRAMMING MODELS...

1. SHORT-TERM DEVELOPMENTS..27

A) COMPILER DEVELOPMENT..27

B) PROGRAMMING MODELS...28

2. LONG TERM TRENDS..30

V. OPERATING SYSTEMS..

1. SHORT-TERM DEVELOPMENTS..33

2. LONG-TERM DEVELOPMENTS..35

VI. APPLICATION TYPES AND AREAS...

1. HIGH PERFORMANCE COMPUTING...38

A) SPECIFIC APPLICATION TYPES...39

2. PERSONAL EMBEDDED DEVICES..45

A) HISTORICAL EVOLUTION OF PERSONAL COMMUNICATION..45

B) REQUIREMENTS OF EMBEDDED PERSONAL DEVICES...46

C) REQUIREMENTS FOR MOBILITY..47

v | P a g e D5.1 State of the Art S (o) O S

D) REAL-TIME REQUIREMENTS AND QUALITY OF SERVICE ..48

3. SOCIAL NETWORK APPLICATIONS...49

A) REQUIREMENTS OF SOCIAL NETWORKS...50

SUMMARY..52

4. OFFICE AND HOME USAGE...52

A) SPECIFIC APPLICATION TYPES...52

B) SUMMARY..55

5. MULTIMEDIA & STREAM-PROCESSING..55

SPECIFIC APPLICATION TYPES..56

SUMMARY..57

6. GAMING...57

A) SPECIFIC APPLICATION TYPES...58

B) ONLINE GAMING..59

C) SUMMARY..60

7. HARD REAL-TIME CONTROL APPLICATIONS...60

VII. CONCLUSIONS: REQUIREMENTS & RELEVANCE...

1. A GLIMPSE OF THE FUTURE..62

2. REQUIREMENTS FOR REALISING THE FUTURE...62

A) COLLABORATIVE..65

B) INTERACTIVE ...65

C) REAL-TIME...65

D) STREAMING ..66

E) DATA-INTENSIVE ..67

F) COMPUTATION-INTENSIVE...67

G) COUPLING LEVEL ..68

H) BANDWIDTH ...69

I) LATENCY ..69

J) SCALABILITY ..69

K) OFF-LOADING..70

L) MOBILITY ..71

M) SPECIALIZED HARDWARE..72

3. CONCLUSIONS..72

REFERENCES..

vi | P a g e D5.1 State of the Art S (o) O S

1. LIST OF FIGURES

FIGURE 1: SPEEDUP ACCORDING TO AMDAHL'S LAW OF A PROCESS THAT IS 90% PARALLEL (LEFT) AND ONE THAT IS 30% PARALLEL (RIGHT). THE LINES

DENOTE A CONFIGURATION CONSISTING OF ONLY SMALL CORES (SOLID-LINE), OF SMALL CORES AND ONE FAT CORE SIZE 10 AND 2X THE SPEED (DASHED),

OF SMALL CORES AND ONE FAT CORE SIZE 20 AND 3X THE SPEED (DOTTED)...12

FIGURE 2: THE RELATIVE SPEEDUP FROM INTEGRATING A FAT CORE SIZE 20, 3 TIMES SPEED (UPPER LINES) AND ONE SIZE 10, 2 TIMES SPEED (LOWER LINE).

FROM LEFT TO RIGHT THE APPLICATION IS 20%, 70% AND 95% PARALLEL...13

FIGURE 3: THE INTEL LARRABEE ARCHITECTURE SHOWING THE L2 CACHE RING ACROSS CORES (ADAPTED FROM [110]) – NOTE THAT INTEL DOES NOT

OFFICIALLY REFER TO THE ARCHITECTURE BY NAME “LARRABEE” ANYMORE...14

FIGURE 4: A POTENTIAL HETEROGENEOUS MIXED-CORE MULTI-TILE ARCHITECTURE..17

FIGURE 5: MEMORY HIERARCHY ..18

FIGURE 6: HIERARCHY OF COMMON NETWORK TYPES BY LATENCY AND BANDWIDTH...20

FIGURE 7: EVOLUTION OF THE INTERNET BACKBONE BANDWIDTH OVER THE LAST 40 YEARS [41] ..20

FIGURE 8: EVOLUTION OF NUMBER OF CELL PHONE USERS ACCORDING TO ITU ICT EYE...46

FIGURE 9: HANDOFF LATENCIES OF 802.11 WITH DIFFERENT PHASES IDENTIFIED [6]..48

FIGURE 10: COMMUNITY BUILDING POLICIES IN DIFFERENT SOCIAL NETWORKS [87] ...51

2. LIST OF TABLES

TABLE 1: THE 13 DWARFS (VERTICAL) AND THEIR RELEVANCE FOR A SET OF APPLICATION AREAS (HORIZONTAL). RED (“+”) DENOTES HIGHLY RELEVANT; GREEN

(“~”) SLIGHTLY AND AN EMPTY BLOCK DENOTES NO RELEVANCE..42

vii | P a g e D5.1 State of the Art S (o) O S

3. ABBREVIATIONS

Abbreviation Description

AVX Advanced Vector Extension

BIOS Basic Input/Output System

CISC Complex Instruction Set Computer

CDMA Code division multiple access

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FSM Finite State Machine

GFX Graphics Accelerator

GPP General-purpose Processor

GPGPU General-purpose Graphical Processor Unit

GSM Global System for Mobile Communications

HD High Definition

HDTV High Definition Television

HPC High-performance Computing

HSPA High Speed Packet Access

IB Infiniband

ISA Industry Standard Architecture

IT Information Technology

MESIF Modified (M), Exclusive (E), Shared (S), Invalid (I) and Forward (F)

MIMD Multiple Instructions Multiple Data

MIMO Multiple-Input and Multiple-Output

MMO Massive Multiplayer Online

MTU Maximum Transmission Unit

MPI Message Passing Interface

NoC Network-on-a-chip

NUMA Non-Uniform Memory Access

OS Operating System

p2p Peer to peer

PDA Personal Digital Assistant

PGAS Partitioned Global Address Space

QPI Intel Quick Path Interconnect

QoS Quality of Service

RAM Random Access Memory

RCU Read-copy-update

RDMA Remote Direct Memory Access

RISC Reduced Instruction Set Computer

SIMD Single Instruction Multiple Data

S(o)OS Service-oriented Operating System(s)

SSL Secure Sockets Layer

TDMA Time division multiple access

UMA Uniform Memory Access

viii | P a g e D5.1 State of the Art S (o) O S

I. INTRODUCTION

A quick overview over the document’s background and structure

The IT sector is a very dynamic and versatile industrial domain in which no single specific line of

development is pursued. Substantial changes occur every so often which have to be catered for by

the respective environment. For example, new cache and interconnect models require new

processor architectures; new processor architectures directly affect compilers, but also the

Operating System; new Operating Systems may imply new programming models, etc.

The most visible change of this type occurred during recent years with the introduction of multi-core

processors and now with the movement from cores to tiles. However, even here the actual

implications on OS architectures, interconnect specifications, cache coherency etc. only slowly begin

to emerge and become visible for developers and designers.

So far, it is not possible to identify the best approach for dealing with the future concurrent

environments, where not only cores but also pipelines, cache and RAM modules, I/O etc. are

accessed in a (massively) parallel way. Processor manufacturers such as Intel are still examining

different architectures and protocols, whilst Microsoft and others examine new Operating System

models for dealing with such environments. Industry is primarily driven by (short-term) goal-

orientation, i.e., even though all manufacturers will try to look ahead beyond the next 10 years to

elaborate appropriate strategies, they will have to execute steps limited by such factors as

feasibility, evaluation results etc., always trying to remain cutting-edge. Accordingly, long-term

development typically deviates strongly from the short-term based predictions.

S(o)OS, like other initiatives (see e.g. [1]), takes a disruptive approach towards such development,

addressing the issue from the perspective of long-term requirements and environments first, rather

than trying to advance existing distributed execution support in a step-by-step fashion. Only this way

can the appropriate merge and alignment of the individual developments be ensured and the

necessary performance and efficiency, and thus long-term validity be achieved.

Accordingly, a long-term prediction of IT development needs to form the basis of the necessary

assessment and research work. As noted, such predictions bear the strong risk of maladjustment

due to the high dynamics of IT development.

This document tries to lay the foundation for such work by estimating the IT environment in 10-15

years time from now. Given this time-scope, such an estimation can almost only be highly

speculative in nature. To reduce the risk of wrong predictions, the project builds on three major

information sources:

1. expertise in all related technological areas through consortium members being actively

involved in the related research and development;

2. development trends in the IT landscape, basing on current technologies and plans, as well

as lessons learned from recent developments;

3. the fact that all development is essentially driven by usage needs and hence by the typical

application landscape and their expected development.

This deliverable can therefore be regarded as a follow-up to the D5.1 State of the Art document [2].

It builds on current cutting-edge R&D and the short-term trends inherent to these developments.

Basing on the short-term trends and the development over recent years, as well as the research

agendas and industrial strategies, long-term trends can be identified that mostly reflect essential

 | P a g e D5.1 State of the Art S (o) O S

tendencies, such as exponential increment in core numbers. By nature, these trends are much more

generic than short-term ones, simply because future development is more unpredictable.

Obviously, these trends have significant impact on future ways of dealing with the infrastructure, as

e.g., just the number of cores expresses the degree of scalability that needs to be supported etc. As

noted, an essential driver for all development is uptake, i.e., usage of the system – notably, even if

different application areas need to be distinguished, producers in all areas have to weigh costs

versus benefits, thus tending towards covering multiple areas at the same time.

As already discussed in the context of the state of the art document [2], current development is

mostly dictated by the impact of multi-core processors on individual domains, but also strongly

influenced by the developments with respect to the future Internet, i.e., towards a more

heterogeneous, dynamic and widely distributed infrastructure.

It may indeed be the case that no single system will be able to fulfill all these requirements equally

well and that we have to distinguish between general purpose systems that cover the majority of

areas and specialized systems that support specific working areas. Bearing in mind that S(o)OS does

not intend to realize a full-fledged, fully integrated Operating System, but in particular aims at a

comparative approach to identify the best architectural basis for future systems and to make

justified recommendations towards future developments in all related areas, one of the major

questions to address is the degree of (architectural and algorithmic) overlap between the respective

application areas. Building on fundamental modularity concepts, it will be possible that appropriate

modules may provide the needed functionality for adaptation to specialized areas. However, this will

be addressed in future deliverables.

The document is organized as follows: in the first part (Chapters II-V) we address short-term

developments and long-term trends from the point of view of the areas of hardware architectures,

communication and networking, programming model and operating systems, which we address in

this project. These chapters go beyond the state of the art analysis in so far as they summarize

current experimental investigations of companies and research bodies with respect to near future

developments. In other words they relate to non-established approaches of which results and actual

usage are still dubious.

In the second part (Chapters VI and VII), we analyze future applications requirements, investigating

both the area of general purpose computing, high performance computing, mobile and distributed

system, multimedia and gaming, embedded and real-time systems. Gathering applications

requirements will help the consortium to lay down the long term goals of the project.

Since the information provided in this document is based on the expertise and involvement of

consortium members in the respective areas, including in particular industrial development areas

potentially under non-disclosure agreements, this document is treated as confidential to exploit this

expertise to the maximum extent without compromising this work.

1 | P a g e D5.1 State of the Art S (o) O S

II. HARDWARE AND PROCESSORS

Multi-core and large scale systems are still in an experimental stage – many companies and

researchers try to identify best ways to improve performance and efficiency of these systems. Current

research is therefore very experimental and divergent.

1. SHORT TERM DEVELOPMENTS

Almost all processor manufacturers follow the so-called Tic-Toc model in their development process

– this means that they intermittently employ new manufacturing processes to decrease size (Tic) to

then focus on development of a new microarchitecture (Toc) on basis of this new process. As

opposed to the classical attempt to increase clock rate whilst decreasing the manufacturing process,

the current goal clearly rests on decreasing size to allow for integrating more cores. Not only will

clock rate no longer increase, but, as we will also show below (Section II. 2. a)), it will actually

constantly decrease in order to counterbalance energy consumption and heat dissipation problems:

even though there are 3 GHz processors available, the frequency of up-to-date high-end multi-core

processors tends towards 2 GHz.

Accordingly, the primary development trend goes clearly towards integrating more cores in a single

processor. It will even be noted that a distinction between multi- and many-core processors arose

recently, which reflects the lessons learned from Amdahl's law [4]: whilst multi-core processors

incorporate in particular so-called “fat” cores that have large, coherent cache and are specialised in

executing complex serial tasks, many-core processors generally consist of thin (or small) cores that

are specialised in parallel execution, i.e. have stronger interconnects than fat cores, but less cache

and a simpler instruction set. Besides improving performance in accordance with Amdahl's law (and

hence depending on the type of application, see below), the many-core approach also supports the

manufacturing process with respect to fault “tolerance”:

Since the probability of manufacturing-induced faults increases proportionally to the number of

cores on the chip (e.g. the Intel Core Solo means that (at least) one of the cores is disabled – mostly

because tests showed that they are faulty), many-core processors are in the long run more

economically feasible: due to the high number of (small) cores – more than one hundred per

processor are to be expected1 – failure of individual cores have only minimal impact due to

redundancy, if the according interconnect loss can be compensated.

The type of architecture (many- vs. multi-core) hence impacts on the system's performance

regarding serial or parallel applications – however, even parallelised processes are not purely

parallel but contain serial elements. According to Amdahl's law [4], the actual speed-up thus

depends on the relationship of serial to parallel segments and the according capabilities of the

processor:

where rs and rp is the ratio of the sequential and parallel portion in one program, respectively –

accordingly rs + rp = 1. In other words, the speed-up of a program is limited by its sequential portion.

In Figure 1 the solid line depicts the effective speed-up of an application that is 90% (left),

respectively 70% (right) parallelisable. As one can see, the curve saturates quickly at around 32-64

1 Nvidia has already 256 cores in a CUDA processor architecture, but they have a restricted interconnect model due to

the specific GPU requirements

2 | P a g e D5.1 State of the Art S (o) O S

cores – obviously this cut-off point diminishes further as the sequential portion increases. This

means however, that as opposed to the constant gain through increased frequency (“frequency

race”), the realistic gain through increased scale will degrade with the number of cores integrated

into the processor. Note that the calculation is purely academic as it disrespects communication

overhead and the fact that all parallel processes typically contain a sequential part again, so that the

actual gain is even below the one indicated here.

Once saturation is reached, speed-up depends solely on the execution speed of the sequential

application part (cf. dashed and dotted lines in Figure 1). Thus, in order to reach higher performance

many manufacturers investigate into speeding up sequential and parallel application portions

individually by employing a mixed (many-multi-core) architecture. This will integrate cores

dedicated to the execution of the sequential portion of applications (“fat” cores) and to the parallel

portion (“small” cores) – see also [2]. It should be noted in this context though that processing units

are not “sequential” or “parallel” as such – in particular since all processors incorporate some means

of parallelism (see e.g. [109]). The ideas to realise fat cores therefore include higher clock rates

(maintaining an overall low energy profile), application specific accelerators etc. whereas small cores

concentrate on simple execution pipelines with potentially lower clock rates and stronger

interconnectivity etc.

Figure 1 illustrates the theoretical gain through mixing fat and small cores in a system: the effective

speed-up through employing a fat core that would take up the space of 10 small cores but has 2

(dashed line), respectively 3 times (dotted line) the execution power of a small core would implicitly

lead to a (saturated) execution speed of 2, respectively 3 times the one without such a fat core. Note

that in the figure we start calculating the speed up with 16+ cores, as a fat core size 10 would

accordingly reduce the possible maximum amount of units in the system. What can also be seen is

that in the area before the sequential part of the process dominates the performance, a fat core

actually decreases the performance.

Figure 2 illustrates this better by displaying the relative speed-up of the fat cores, where anything

below 1.0 is actually a performance loss.

3 | P a g e D5.1 State of the Art S (o) O S

Figure 1: speedup according to Amdahl's law of a process that is 90% parallel (left) and one

that is 30% parallel (right). The lines denote a configuration consisting of only small cores

(solid-line), of small cores and one fat core size 10 and 2x the speed (dashed), of small cores

and one fat core size 20 and 3x the speed (dotted)

As tempting as it may be, adding further fat cores does not further improve the performance as the

primary assumption is that the sequential part can be subdivided no further.

The relationship is further complicated when it is observed that in desktop environments multiple

applications with different degrees of parallelism are executed concurrently. Accordingly, multiple

fat cores may take over individual applications, but their actual structure may change according to

the respective application's requirements and capabilities. It is also not clear how much parallelism

can be expected in future applications (cf. Chapter IV, Programming Models).

So far most manufacturers are building on a mostly fat core oriented multi-core architecture, where

essentially all cores have the same computational “power”. It can furthermore be noted in this

context that the number of cores in processors is not growing strongly exponentially, as was initially

expected. Intel for example is building up from the Nehalem (4 cores) to Westmere (2010, 6 cores),

Sandy Bridge (2011, 8 cores) and Ivy Bridge (2012, maybe 10-12 cores). At the same time, there is

the more experimental 48 core system that is essentially a many-core architecture but not (yet)

planned to be made available for the consumer market, though its application in HPC is to be

expected soon. Similarly, AMD plans to release a 16 cores processor called Interlagos in 2011.

In order to further improve performance and to meet specific usage areas' requirements, a

growing tendency to incorporate specialised cores can be noted: as opposed to general purpose

cores, these units are dedicated to a specific tasks and have an architecture that is almost solely

capable of executing according commands (such as graphics accelerators, encryptors etc.) These

cores will extend the command set of the respective chip, implicitly leading to portability issues that

have to be addressed either on programming, compiler or OS level. It should be noted that in a first

iteration development (and integration) will focus more on micro architectures already known

(vector processing units, Gfx accelerators etc.) and which have proven useful, as knowledge about

general application support in scalable environments is still mostly missing (see also section II. 2.)

Whilst in particular in the embedded domain, specialised cores for e.g. communication and

encryption related tasks can already be found and will appear more and more in the near future,

more general-purpose areas, including in this case desktop and HPC, will remain more conservative

regarding this development. As can be seen below, a long term trend towards dedicated

“application accelerators” can be expected, but it first requires more information about the type of

scaling applications to be expected in the future (see also Chapter VI on Applications). The more

short-term development instead focuses on areas where “specialisation” in the widest sense has

already shown successful and relevant – this includes in particular graphics accelerators and vector

4 | P a g e D5.1 State of the Art S (o) O S

Figure 2: the relative speedup from integrating a fat core size 20, 3

times speed (upper lines) and one size 10, 2 times speed (lower

line). From left to right the application is 20%, 70% and 95%

parallel

processing units – visible for example in Intel's AVX (Advanced Vector Extension) development which

is expected to be part of the Sandy Bridge architecture (see above) with increasing SIMD length over

future development. Similarly, full monolithic media / Gfx (graphics acceleration) integration seems

to be planned from 2011 onwards.

With the advent of plenty (fat, small and mixed) cores in processors, new issues arise: current multi-

core processors are “fully” connected in the sense of each core being connected to all cores (via the

cache). Some of these processors even share higher-level caches, respectively employ hardware

based cache coherency protocols such as MESIF over QPI. However, with the increasing scale of

multi-core processors, these approaches are no longer feasible, due to lack of space and the implicit

overhead for cache coherency related broadcasts (see challenges, below). On the one hand, this will

lead to network like interconnects between cores, i.e. meshes and tori in order to maintain low

latency and a maximum degree of connectivity – nonetheless, not all cores and caches will be

reachable directly, meaning that more effort has to be vested into mapping the code onto the

system structure. On the other hand, incoherent cache will be employed, cache-coherency will no

longer be supported by the hardware, meaning that the software will have to cater for it.

Similar issues apply to memory: as the consumption speed of the processors increase, external

memory and data sources will not be able to provide data as fast as it is consumed, so that the

processor hits the so-called “memory wall”. Generally, 8 cores are considered the maximum that

current memory architecture can serve for average usage [19] – however, the effect of lacking

memory bandwidth is already noticeable at smaller levels, so that memory intensive processes

already run into problems with more than 3 cores. Whilst this problem is related to the efficiency

problem in HPC, namely to reduce access to external resources, it nonetheless will lead to new

memory access methods and structures. A current research approach to solving this issue consists in

stacking memory directly on to the CPU (see e.g. [111][112]), thus increasing access speed and

multiplying connectivity – at least Intel and Sandia already have first conceptual products of this type

available. However, this approach leads to multiple issues: not only does production become more

problematic and with the increased source of potential problems significantly decreases the yield,

but also heat dissipation become more problematic due to the additional layers on top of the

processing unit. Furthermore, this approach implies serious scalability issues, as stacked memory

cannot scale infinitely even theoretically – whilst cache per core can reach up to 2 GB already, 3D

stacked memory will always require additional “external” memory to compensate lack of space (see

also long term trends below).

The shorter term approach to address this issue relies on network like interconnects on the cache

hierarchy. For example, the architecture of Intel's Knight's Ferry builds on Larrabee's architecture

and integrates a level 2 cache ring across cores. Individual cores can thus access neighbouring L2

cache with increasing latency over “distance” (see also below, section II. 2. a)). Access to main

5 | P a g e D5.1 State of the Art S (o) O S

Figure 3: the Intel Larrabee architecture showing the L2 Cache ring

across cores (adapted from [110]) – note that Intel does not officially

refer to the architecture by name “Larrabee” anymore.

(“external”) memory must thus not only be routed via local, but also via neighbouring L2 caches,

thus leading to increasing delays to central data, thus requiring a higher degree of parallelism from

the running processes in the first instance (cf. Figure 3). This implies that access to remote L3 cache

through specialised interconnects may be faster than main RAM access for an individual core.

Summary:

• increasing scale of mostly fat cores

• specialised cores focusing on specific task types (SIMD, Gfx)

• network like interconnect between cores

• no hardware supported cache coherency

• lacking knowledge about future application structure and behaviour

2. LONG TERM TRENDS

Hardware and in particular processor development trends are primarily dictated by the market, as

manufacturers have to ensure revenue for their production costs. With the change from single- to

multi-core processors, it is however no longer clear what the market actually wants / needs. This is

mostly due to the fact that no clear approach has been identified yet that tackles all the implications

from parallel on chip processing . Accordingly, chip development is currently in a very experimental

stage where manufacturers such as Intel still investigate different architectures and their benefits /

drawbacks.

A) CHALLENGES

The major challenge of hardware development, in particular on processor-level consists in the

energy consumption and heat production of the chips – which was actually one of the reasons to

initiate the change from single- to many-core architectures in the first instance. Power consumption

grows increasingly with CPU clock speed (by the power of 2 or 3), and obviously also many-core

systems are affected by this: in order to maintain power consumption at the same overall level,

frequency would have to be reduced by 15% with every doubling of the amount of cores [89]. As

such it is for example interesting that Intel's latest processor (Knight's Ferry) has a 2 GHz operating

frequency.

Proportional to energy consumption, heat increases not only with the amount of transistors on the

chip, but also with decreasing size in semiconductor technologies. In order to cope with the heat,

new cooling methods are needed that again consume energy and, more importantly, space. Notably,

decreasing the clock rate helps reducing this effect accordingly (cf. above).

Space is a critical aspect in semiconductor manufacturing, not only so as to merge more transistors,

but in particular in order to maintain short(est) communication paths, and thus to reduce latency.

As the number of cores (or tiles – see section II. 2. b)) on a single chip increases, the interconnect

moves towards network like topologies (see also short term development above), the distance

between cores increases accordingly, in the sense of increased latency to access remote cores. This

is due to the fact that routers on the path take at least 1 cycle to react, thus increasing the amount

of cycles required to connect over that path. It should be noted here that such network topologies

on the chip (see also [2]) comes at the cost of space and power consumption. Shared memory design

and implicitly tight coupling between caches is the general pursued programming model so far (even

modern programming models such as PGAS rely on the principle of shared memory from the

programming perspective, even though they act on distributed memory architectures – see Chapter

IV. for more details) – this implies that cache coherency needs to be maintained across all cores.

With the growing “distance” between cores, respectively between their caches, maintaining

coherency leads to significant cycle loss (for example the MESIF protocol over Intel's QPI requires 3-4

hops for coherency check [90]). An even stronger performance impact, however, originates from the

6 | P a g e D5.1 State of the Art S (o) O S

broadcasting like protocol involved in cache-coherency protocols: in order to reach all caches (for

updates and queries) each cache has to be reached at least once – this impacts on the overall

communication bandwidth with a factor of at least 2 (i.e. reducing it to less than 50%).

In summary, major challenges of future chip architectures are:

• Manufacturing cost

• Energy consumption and heat dissipation

• Communication latency & bandwidth

• Distance, number of hops

• Cache coherency

B) DEVELOPMENT & RESEARCH TRENDS

Even though many-core development is still very experimental, there are nonetheless a number of

trends notable which will most likely dictate the developments over the next 10-15 years.

There is a general, obvious trend towards constantly increasing the numbers of cores in future

system architectures, as this allows for more manufacturing progress than trying to further improve

the clock rate. It is furthermore to be expected that programming support (and future applications)

will make better use of the parallel environment by exploiting threading and concurrency. As has

been noted above, the number of cores is thereby limited by the memory wall related issues and by

the type(s) of application(s) executed – following Amdahl's law leading to mixed many-multi-core

processors (see also Section II. 1. above) take over the “sequential” (non-parallelisable) portion of

an application and small cores focus in particular on parallel execution. With the architecture (and

hence the relationship between parallel and sequential code segments) being as yet unknown, so is

the architecture of the processor (and hence the number of fat and small cores to be expected).

Even though the future architecture is unclear as yet, it is obvious that the trend towards specialised

cores will be pursued further, leading to very heterogeneous systems where specialised cores (or

tiles) share the system space with general purpose ones. As already noted above most of these cores

will support different computation approaches, such as with a vector architecture. Just like with the

Gfx accelerators, however, it can be expected that even very application specific cores,or at least

application specific instruction sets in hybrid-multicore systems, so-called application accelerators

will arise which will be developed or adapted for the specific logical tasks of relevant applications

(see e.g. [91][92])2. To this end, core requirements of these applications have to be identified first,

which implies however that more information about the nature and structure of these applications

is available first (cf. above), respectively that application behaviour is pushed into a specific direction

from the hardware side, which requires tight collaboration between application- and hardware-

developers.

Besides for very application- and usage-dedicated cores that focus just on a specific set of tasks,

reconfigurable compute units will support more dynamism in task support, and thus enabling the

program to dynamically select the capabilities that would benefit from according hardware support.

Through combination of different specialised units with clusters of general-purpose cores, one can

effectively achieve a higher system parallelisation level, where sets of cores together form a tightly

coupled compute unit on its own very much like a node in a current cluster machine. These units are

referred to as “tiles” (multi-tile architecture) that again are connected with each other on a higher

level, i.e. with potentially higher latency and in particular not using a full connection between all

cores. Assuming that future applications will only make limited use of parallelism, given the natural

2 Note that the “application accelerators” referred to here belong to the area of hardware accelerators (like Gfx, FPGA

etc.). During the turn of the century, software “application accelerators” (e.g. compiler extensions) were not

uncommon – similar to hardware accelerators these accelerators focused on application behaviour, yet typically

were restricted to specific application implementations and not generally applicable

7 | P a g e D5.1 State of the Art S (o) O S

restrictions of the system and the algorithms, tiles can be adapted and exploited as a whole for

specific applications, rather than to threads or process parts of one application. Similarly, they may

process different scales (and in most case different computations) in simulations across different

levels of scale. This can be exploited in particular for concurrent execution of coupled and uncoupled

applications. The structure is essentially similar to a heterogeneous cluster with specialised

connected units.

It will be noticed that introducing a multi-tile architecture has effective similarity to a hierarchical

organisation of the system where individual units incorporate multiple subsystems – in these cases

not all units are connected equally and do not fulfil the same purpose. What is more, individual units

can effectively take control over or act on a higher level than other units, e.g. for scheduling and

management purposes. Higher-level units can thus be specialised to the respective task, typically at

the same time reducing its manufacturing costs – e.g. cache is already hierarchically organised

(typically L0 to L3) where the lowest (closest) cache is the fastest (but typically smallest) and

accessing higher levels implies according delays in communication.

Figure 4 depicts a potential structure of a multi-tile architecture with hierarchically organised cache

and a networking interconnect on different layers, where an individual segment can take over

control over the Gfx unit which is not exposed directly, i.e. always acts on a lower hierarchical level,

and horizontal connected units can for example make use of HD Video processing powers. A

potential use case for such a structure consists in a a set of video analysis tasks that use a small

portion of physical simulation to assess e.g. the movement of an object in a video from different

perspectives. Whilst this may seem very specific, the principle can be used in multiple related

contexts.

As energy consumption becomes more important with the “green awareness”, but the amount of

required energy increases to feed all cores, more dynamic control and management mechanisms

will arise, such as dynamic clock rate and on / off switch-able cores. The Intel Atom PC already

makes use of this principle to reduce power consumption, which is not simply applicable to large-

scale mixed-core models, in particular when timed synchronisation is embedded in the program in

some form. Due to this strong dependency with the actual program requirements, energy related

control will have to be implemented on both soft- and hardware level.

8 | P a g e D5.1 State of the Art S (o) O S

Figure 4: a potential heterogeneous mixed-core multi-tile architecture

Figure 5: memory hierarchy

Similar development and structural approaches will be noted on the cache and memory level, too:

not only will cache size increase, but due to the increase of cost and the hierarchical structure of the

computation units, cache hierarchy and even memory hierarchy will increase too (cf. Figure 5). This

will imply new structures of memory architectures, such as 3d stacked memory on the CPU with new

means for heat dissipation (cf. short-term developments).

Summary:

• increasing scale and heterogeneity, including specialised accelerators

• hierarchical organisation of the system

• architectural structure of the systems as yet unknown (lack of knowledge)

9 | P a g e D5.1 State of the Art S (o) O S

III. COMMUNICATIONS

1. SHORT TERM DEVELOPMENTS

A) NETWORK

Networking makes part of our daily life. Following this same trend of increasing importance of the

communication flows, actual networks are expected to become richer and more powerful [42], while

providing ubiquitous connectivity over heterogeneous networks [43]. We currently observe the

trend where all devices are becoming network enabled, and wireless technologies become dominant

in that aspect. All laptops are now Wifi enabled, most cell phones support multiple communication

interfaces, and even more established equipments such as TVs and gaming consoles are being sold

network interfaces, and some other devices are connected to large online communities [44]. With

these devices, the network is now reaching us everywhere, and if we consider the example of IPTV

and VoIP, we see that even traditional services are being migrated to the “new” network paradigms.

Also in line with this convergence, large amounts of the wireless spectrums is being reused to digital

communications and digital television [45][46]. Because in the future all devices are expected to be

connected by some interconnect, this inter-host interconnection can be exploited in order to make

devices cooperate and share more resources, providing an aggregated service, in line with the SOA

paradigm. Network connectivity is becoming so natural to our life, and to our systems, that even

execution environments are becoming network aware. The first form are Cloud infrastructures

which can provide massive elastic execution environment for users and businesses to deploy their

services [47]. Then, by incorporating networking concepts into the inner functional aspects of

kernels, by the creation of forks which aim at distributed operating systems under a single system

image [48][49][50].

In order to cope with different requirements, isolate complexity, and maximise component reuse,

communication systems are organized in layers. This well tested paradigm allows for greater

flexibility, as well as an increase in bandwidth. At the top of the network stack (see Figure 6) we have

the Internet as a communication medium for Internet applications, and near the bottom we have

physical interconnects such as Infiniband and Ethernet. As complexity increases, and systems

become more distributed, concepts from packet based networks are being generalised to most

interconnects. In this aspects, networks are coming closer to processors and cores, and we now find

NoC providing interconnectivity between cores in multicore processors.

Transport and Wide area networks, while relevant in the area of communication networks, may

have little impact in a distributed operating systems, as these networks are mostly used for bulk

transfer of data. The utmost impact of these networks will be in making Internet system more tightly

coupled.

10 | P a g e D5.1 State of the Art S (o) O S

Internet

The Internet, while a combination of multiple technologies, provides a communication medium

between applications sparsely located across the globe. Its transmission characteristics are highly

dependent on the underlying technologies and present high variability in the time domain. Especially

because end-to-end communications require crossing multiple administrative domains, as well as

different technologies.

While we will see bandwidth increasing on the internet during the next years (see Figure 7), as well

as all other networks, the same will not be true for latency, which is bounded by physical and

processing limitations.

The most important limitations are the speed of light, and the processing capabilities of the routing

devices. Speed of light imposes hard latency boundaries on pulse propagation across systems, which

are much aggravated by the fact that light slowed down on fibre (about 2/3 of vacuum speed),

11 | P a g e D5.1 State of the Art S (o) O S

Figure 7: Evolution of the Internet Backbone Bandwidth over the

last 40 years [41]

Figure 6: Hierarchy of common network types by latency and

bandwidth

imposing a 5ms delay per 1000km, which restricts optical transport networks. Other aspect is that

while bandwidth is increasing, electronic equipments have a hard time dealing with the throughput

required, which affects all types of communication networks. Processing latency will be increasingly

higher in relation to the transmit latency, as it did in the past, which will surely pose a bottleneck if

development on parallel systems does not accelerate. Even today it is not difficult to find that end-

to-end delay between hosts exceeds 500ms. Unless reliability, bandwidth and latency improves, a

distributed operating system over the Internet seems unfeasible in the following years. However,

because internet is an important driver for innovation of systems, services, and underlying

communication technologies, its development will have an impact in future operating systems.

Local Area Networks

Local area networking, as been since a long time dominated by Ethernet, and more recently by

802.11. Capacity of these networks has being increasing steadily, as both the underlying

technologies also improved. Interconnects with 100Mbits are now well established and most

equipments already support 1G Ethernet. It is expected for these networks to keep improving

capabilities, as well as moving from wire based solutions to wireless solutions. The 802.11 family of

protocols now reaches 300Mbits, supporting rich media contents as well as multimedia contents

with QoS guarantees. In the short term, more equipments will start to be equipped with 10G

Ethernet interfaces, and high speed LANs will be commonly available. This trend will make Local

Area Networks more and more suited as a scenario for distributed operation.

HPC and Tightly Coupled Systems

Due to its nature, High Performance Computing requires fast interconnects in order to reduce

execution delays (and hence performance reductions) through high latency. Typically, latency is the

more critical factor than bandwidth and, as opposed to loosely coupled systems, bandwidth can

rarely compensate low latency in these cases (see also sections IV. 1. b) , II. 2. b) and [2]). The most

widely used technologies in this context are InfiniBand and Gigabit Ethernet, as can be seen from the

Top 500 list3:

Gigabit Ethernet is the general term for all technologies that allow the transmission of a Gigabit of

data per second. Current Gigabit Ethernet technologies can reach up to 100 Gigabit per second

(100GbE). We can distinguish between (1) optical fibres (1000BASE-X), (2) twisted pair cables

(1000BASE-T), and (3) balanced copper cables (1000BASE-CX) as physical medium for transportation.

The choice impacts on the maximum length of the connection, as well as on its latency, with

minimum latency being around 70 µs [113] and one can roughly estimate 1 µs added latency per

100m cable. Single mode optical fibre can thereby be extended to up to 70km – however, in HPC

environments, the distance is typically much shorter (generally up to 10 meters). The main strength

of Gigabit Ethernet consists on its ubiquity, it basing on IEEE standards, thus making it also

comparatively cheap, yet slow to adapt to necessary changes. For example, the development of the

40GbE/100GbE took almost 4 years.

As opposed to this, the community behind InfiniBand (originating from Compaq, IBM, HP, Intel,

Microsoft and Sun) is much more agile and thus allows quicker adaptation to new requirements and

environments. The fastest Infiniband configuration can reach up to 300 Gigabit per second and has a

latency of roughly 1-3 µs. InfiniBand even supports RDMA capabilities, in which case the latency is

even less than 1 µs. These specifications make InfiniBand the preferable technology for tightly

coupled parallel processes that have to communicate across nodes and potentially across connected

units – however, the lack of a clear standard and according programming API makes InfiniBand

slightly more complex to use. As opposed to Ethernet's hierachical switched network topology,

3 http://www.top500.org/stats/list/35/conn

12 | P a g e D5.1 State of the Art S (o) O S

InfiniBand employs a switched fabric topology where nodes area typically connected in a Fat-Tree

(CLOS), mesh or 3D-Torus topology via crossbar switches.

Networks-on-Chip

When dealing with multi-core (and more specifically with many-core) systems-on-a-chip, the

interconnect fabric is increasingly viewed as the key limiter for effective system integration, and thus

is becoming one of the major design challenges. Network-on-Chip (NoC) is an emerging paradigm for

communications within large scale integrated systems: In a NoC system, modules such as processor

cores, memories and specialized IP blocks exchange data using a network as a "public

transportation" sub-system for the information traffic. An NoC is constructed from multiple point-to-

point data links interconnected by switches (a.k.a. routers), such that messages can be relayed from

any source module to any destination module over several links, by making routing decisions at the

switches.

In Deliverable 5.1, Section II.3 [2], we did a recognition of current interconnect topologies for on-

chip communication, most of them can be classified as Network-on-Chip. The communication

protocols mimic similar techniques used in LANs, apart from some specific issues that need to be

addressed. In particular, routers/switches are usually simpler than their LANs equivalent, as they

only provide small buffers. Therefore, techniques derived from circuit switching (rather than from

packet switching) networks are sometimes employed, like Virtual Circuits/Channels; in other cases,

specific techniques to minimize buffering are employed, like Wormhole switching.

Network-on-Chip are still in an intensive research stage, as testified by a number of EU research

projects. For example, the NaNoC4 project addresses issues related to composability of IPs in a NoC

architecture by providing a design platform constituting a toolkit for the construction of NoC-based

multi-core systems in nanoscale technologies. The MOSART project5 aims to design a multi-core

architecture with distributed memory organisation, a Network-on-Chip (NoC) communication

backbone and configurable processing cores that are scaled, optimised and customised together to

achieve diverse energy, performance, cost and size requirements of different classes of applications.

The GnoC6 project explores various possible set of traffic patterns in different NoC architectures.

Then a Gaussian-based NoC model is introduced to provide statistical guarantees on delays and

throughputs.

It is still an open problem how an Operating System should deal with NoC architectures. An attempt

to provide a standard API has been made by the Multicore Association7. The MCAPI is based on a

classical message passing paradigm, but has been tailored for the specific issues of multi-core

technology, addressing in particular the need for fast communication between heterogeneous cores

on a chip and QoS support. However, such standard is not yet widely employed in products.

Quality of Service

Networks don't always transport data transparently. Packets may be reordered, delayed, and even

filtered based on dynamic or previously defined rules. Particularly important to this project is the

shaping applied to packet or flows, as a mean of differentiating end-to-end (E2E) Quality of Service

(QoS). An operating system operating over a communication infrastructure, should take in

consideration existing differentiation mechanisms, so that process execution priority is respected, or

at least, system consistency is maintained (vital communications of the kernel will need to have

priority over all other communications). Research in this topic is increasing as more distributed

systems are developed.

4 http://www.nanoc-project.eu

5 http://www.mosart-project.eu

6 http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=290

7 http://www.multicore-association.org/home.php

13 | P a g e D5.1 State of the Art S (o) O S

Quality of Service mechanisms are not present in all technologies, nor at all layers of the

communication stack, which makes the increased use of QoS as a short term trend upwards (in

opposition to the long history of over-provision, wich is now being abandoned). Every

communication above IP can be differentiated from the others using two well established

mechanisms: Integrated Services(IntServ) and Differentiated Services (DiffServ). Current trends

evolved the standard DiffServ model so that traffic can be intelligently identified [52] and then

shaped accordingly. Short term developments will increase the accuracy of traffic identification

methods. At the same time, we are observing the application of QoS to most technologies and its

wide spread use in the control data plane [53].

A relevant amount of work has already being developed in differentiating communications by

creating physical or virtual paths, and this has indeed became a standard procedure for high capacity

networks supporting the GMPLS [54] family of protocols. Because GMPLS was initially designed for

optical transport networks (where it proved to be much successful), the concept of Multi Protocol

Label Switching is now generalized to other communication technologies such as Infiniband [55].

Infiniband is designed to have basic QoS mechanisms, built around the Flow Control mechanisms,

which are also found in Ethernet (yet in a simpler form). Infiniband supports the concept of virtual

lane (channel) which can be arbitrarily deployed, while Ethernet supports only on demand flow

control (it is argued that VLANs can be used as Virtual Lanes). The use of Virtual Lanes in fact

provides multiple channels between hosts, all with different buffering, and flow control resources.

Also, lanes can be built in an hierarchical manner, thus allowing highly customised differentiation

scenarios. Current trends propose datacenter consolidation using Infiniband, where virtualization

techniques, allied to the congestion control and QoS capabilities of Infiniband are vital pieces [51], in

order to provide isolation (and SLA conformance) between virtual network instances.

In Networks-on-Chip, there is also the need for QoS. Messages between cores are multiplexed into

links and resources are shared. The result is high bandwidth at the cost of unpredictable delay,

which may pose serious penalties if high priority messages are delayed. As well as with other

technologies, research in NoC architectures tried to put hard boundaries in delay and throughput.

Short term trends will focus in improving QoS support for NoCs so that the impact of distributed

execution can be alleviated. One expected development is the support for explicit packet ordering,

which would benefit the implementation of cache coherent systems [56]. Other is the creation of

more QoS aware NoC architectures with different impact [57], thus allowing the NoC architecture to

be deployed in low power devices, or with highly limited area.

Indirection Mechanisms

An important aspect being pursued is the creation of indirection mechanisms for communication

between hosts and applications. This new layer sits bellow applications or just after IP and decouples

location from endpoint identifiers Currently, users communicate directly, either personally or by

sending information to others email addresses. Users are able to receive information independently

of their location, because of the indirection service provided by the email system. In common

networks that is not possible, and the research community already developed many solutions

capable of making location transparent to actual communication. The result of this effort is in the

form of the Mobile IP protocol [58] (and its many variants such as [59]), the i3 infrastructure [60] or

the SIP [61] and HIP [62] protocols. All these solutions, which are all under active refinement, specify

that either transport nodes or dedicated nodes can track the location of a given host, and redirect

traffic to it in real time. Tunnels and additional overhead is implied, while providing almost free

mobility over heterogeneous technologies (or even equipments). In the nearest term SIP will be the

first protocol to actually be used due to the deployment of IMS platforms and the upcoming 3GPP

LTE standard. Later, with the wide spread use of IPv6, Mobile IP, or one of its variants, is a serious

candidate for the future indirection platform. A multi-core distributed system must tackles this

14 | P a g e D5.1 State of the Art S (o) O S

aspect in two ways: first by supporting the indirection solutions being developed, and second by

incorporating indirection mechanisms in its operation.

B) WIRELESS TRANSACTIONS

Now that networking became part of our life, the next step is to improve ubiquity. Wireless

technologies allow users to access a multitude of services with much freedom. Network providers

believed that wireless technologies would provide a convergence of services between fixed and

mobile (Fixed Mobile Convergence [63]). However, it was recently observed that wireless

technologies are in fact replacing fixed technologies, and the actual trend is of Fixed Mobile

Substitution [64]. Most technologies now are being replaced by their wireless counterpart such as

ADSL [67] for LTE [68], WiMAX [69] and UMTS [70], Ethernet [71] for 802.11abg [72], or CableTV [73]

for DVB-T/S/H [45] or IP based services. Simply put: for many services, and use cases, wireless

technologies provide a service level similar to fixed technologies, with improved deployment

flexibility and easy of use. This fact show the importance of wireless technologies, both in the near

and long term. Surely communications are going wireless.

Wireless technologies can be divided in three areas of networking: Personal, Local Area, Wide Area.

For the sake of brevity, we will ignore transport networks (typically using Ultra Wide Band), as well

as satellite networks. The first comprises communications limited to a few meters around and

individual. These networks adopt concepts where communication is centralized, or with great focus

to a single, powerful device, connected to many, less power devices (Master/Slave). Bandwidth is

low to moderate, with Bluetooth 3.0 HS [65] providing up to 24Mbits/s. Still, typical devices are

currently much constrained, and the specification was only recently ratified, so most most devices

are unable to sustain such transfer rate. In the short term we expect all devices to support this

bandwidth as Bluetooth 3.0 HS becomes widespread. Also of interest are the protocols arising from

802.15.4 [66] which provide low range communication to sensors, home alarms, and other low

power devices. 802.15.4 is one of the protocols leading the creation of the term “Internet of Things”

as, due to its low complexity, allows very simple devices to be available to the Internet (frequently

by means of a proxy). Since simple devices cannot carry on complex computation, in some case they

can off-load part of their computation to other, , more powerful, devices. It should be noted,

however, that the reduced bandwidth does not allow complex coordination schemes among remote

devices, as it is needed, for intance, in distributed operating systems (see Chapter V.).

For more than two decades, Local Area Network was identified with Ethernet. Now a Local Area

Network most certainly uses 802.11 at some point in its infrastructure. The exponential growth

observed for this family of standards proved the value of mobility. 802.11 is now commonly

available at many enterprises, university campus and homes, providing an attachment point to

users. The standard evolved from its original bandwidth of 2Mbits/s to 300Mbits/s now provided by

802.11n [76]. At the core of such improvement are greater efficiency of the wireless medium and

incorporation of concepts such as Multiple Input Multiple Output (MIMO) . 802.11n was ratified in

October 2009, with pre-n devices available since over 2 years. In the near future we will observe the

adoption of concepts such as Beam Forming [75], Sectorized Antennas [74], or alternative

frequencies (3.650Ghz, 60Ghz) [77], with the respective increase in bandwidth, interoperability and

reliability. From the point of view of an Distributed Operating System, the great bandwidth provided,

as well as the active development around 802.11, makes it possible and very desirable to extend the

distributed execution environment over devices communicating by means of the 802.11 family of

protocols.

Providing connectivity over larger areas is not typically suited for 802.11, where range is limited to a

few tens or hundreds of meters. In these scenarios, 3G as been the technology of choice to provide

broadband connectivity to roaming users. This technology is the most responsible for the migration

of users from DSL to wireless as it provides a reasonably compared service, but over a wide area.

15 | P a g e D5.1 State of the Art S (o) O S

Current deployments using the HSPA+ standard provide up to 56Mbits/s download bandwidth. Still,

as with all cellular technologies, latency is an issue as it averages to a few hundreds of milliseconds

[78], which may pose some constrains to distributed execution. In the near future, the 3GPP will

release further improvements over the existing technologies, in the form of the Long-Term-Evolution

standard [79]. This new standard will evolve cellular networks by providing more efficiency spectrum

usage, as well as higher flexibility and support of packet based communications. Peak bandwidth is

currently at more than 300Mbits/s and latency is much improved over existing UMTS networks,

reaching values as low as 5ms [80]. Such high bandwidth and low latency (close to the latency of

802.11 and Ethernet) presents good expectations towards distributed operation over cellular

networks.

Also relevant to the near future is WiMAX (802.16) [69]. In comparison with LTE it currently provides

lower bandwidth, however there are many expectations on the upcoming 802.16m standard, which

aims at 1Gbp/s over a wireless link. Still adoption of WiMAX has been rather slow and LTE, which is a

natural evolution to existing network providers, may undermine its future use.

2. LONG-TERM DEVELOPMENTS

On the long term, we will see an even greater increase of bandwidth as the efficiency reaches the

maximum values allowed by the theoretical information limits. Surely, the world will be driven by

networking technologies, pervasive communication will become a natural component of everyday

life according to the Internet of Things paradigm. In particular, wireless technologies will dominate

by connecting most devices to other devices connected to the high speed wired back-haul. Also,

direct communication between devices, in a Peer-to-Peer fashion, may be an important technology.

Not in the traditional sense of today P2P overlay networks over the Internet, but directly between

devices in the neighbourhood. One example is the development around the UWB and 60Ghz

frequency band to replace all wired interconnects over short distance, while providing over 1Gb/s.

Optical interconnects will play an important role in the long future. The potential for optical

technology is great, and we are very far from its physical limits. Nowadays the standard choice for

long distance fixed communications, it will also be used as an interconnect between cores in future

systems. The impact will be lower total dissipated power and reduced latency. If optical memories

prove to be possible and commercially viable, optical CPUs will be created, much boosting

computation power.

For future operating systems, it seems natural to assume that interconnectivity between devices will

become less than a bottleneck, allowing for more distributed operation models. Computation power

will increase continuously due to the advances in optical technology. More importantly, most

devices will have high capacity wireless links with other devices in the surrounding environment,

making possible the creation of distributed, on-demand processing environments. Communication

trends will evolve in the direction of indirect addressing, where data is exchanged between entities

independently of their location. Other important aspect is that the volume of data exchanged

between devices will also increase, continuing to put pressure the available bandwidth.

Summarising, we see the following challenges and opportunities:

• Increasing connectivity and increasing bandwidth

• Physical limits to the minimum achievable latency

• Wide diffusion of wireless communication

• Increased location independent distributed computation

• Use of networking techniques in system-level software

• Internet of things

• Optical interconnects also on chip

16 | P a g e D5.1 State of the Art S (o) O S

IV. PROGRAMMING MODELS

Programming models for parallel environments develop slowly. Simplicity and efficiency are crucial

for any changes in this domain

Programmability of distributed and in particular large scale environments is crucial for the success of

any system. Unfortunately, there are enough high-tech machines out there that would provide

powerful capabilities if developers would only be able to make efficient use of them – e.g. IBM's Cell

processor is comparatively difficult to program given current programming models and compilers

(for example the software must be designed to request a transfer between main memory and local

memory [93]), and also with other new architectures the necessary hardware support (OS image,

libraries etc.) is lacking in the beginning.

In the near (and longer term) future, scalability and heterogeneity of systems will increase rapidly

(see also Chapter II on Hardware and Processors), so that multiple challenges arise on the

programming level: not only should it be easy to program distributed, scalable environments, it

should also be efficient and match the specific capabilities / restrictions of the system so as to offer

maximum efficiency. With the increasing heterogeneity this means that the model needs to be

highly portable and that the underlying compiler systems can adapt quickly.

In this section we will investigate some of the expected development in programming languages and

models as indicated by current trends, as well as the expected long term changes along that line.

1. SHORT-TERM DEVELOPMENTS

As noted in D5.1 “State of the Art” [2], we need to distinguish between the aspects and

developments in programming models on the one hand and the ones in the underlying compiler

technologies on the other: whilst programming models evolve comparatively slow and try to

maintain a maximum degree of downward compatibility, compilers have to evolve quickly to adjust

to the changes in the hardware and thus maintain efficiency of the language on top. Still,

programming languages evolve faster than compilers due to the simple fact that they do not have to

accommodate for system changes so much.

A) COMPILER DEVELOPMENT

Most compiler suites consist of (at least) a front-end, dedicated to a specific source language (such

as C extended with OpenMP) that is converted (in any number of steps) into an ideally platform-

independent intermediary code, which is then compiled by the back-end into the actual hardware-

specific optimised code. Accordingly, most adaptations have to be performed on the compiler's

back-end in order to meet the specific hardware-capabilities and most language changes affect the

front-end.

With the increasing diversity and heterogeneity in system architectures, the complexity of the back-

end will increase accordingly. Since a wide range of quickly changing architectures are to be

expected (cf. Chapter II on Hardware and Processors), this means that not so much time can be

vested into fine-tuning the compiler any more, as was typically the case in particular for High

Performance Computing (see D5.1 on HPC [2]). What is more, processor developers such as Intel

plan to extend the instruction set of the processor to exploit the capabilities of the specialised cores,

meaning that not only platform-independence will be more difficult to achieve, but also that the

compilers will have to become even more processor-specific than before (at least in the wide

consumer market).

17 | P a g e D5.1 State of the Art S (o) O S

At least in the common end-user sector compiler developers therefore will go a similar way than

modern programming languages (cf. D5.1 [2] and below), namely to make use of parallelisable

patterns to ensure scalability to the increasing amount of cores and to essentially leave all platform

specific adaptations up to the compiler's decision. Whilst this simplifies development, at the same

time it reduces efficiency and programmer control, as the developer will have no information

available on why and which transformations have occurred.

A slightly different trend consists in extended “just-in-time” (JiT) compilation where the code is only

pre-compiled into a platform-independent form that the JiT compiler will adapt to the respective

environment at execution time. In principle, JiT compilers take up a lot of the performance, as they

effectively are nothing else but virtual machines or code interpreters (cf. D5.1 [2]). In the area of

High Performance Computing, however, where efficiency is more important than simplicity, it is

unlikely to expect compilers to take over all code-adaptation and optimisation, even though the

principle trend is clearly visible. Current compilers have a tendency to look for transformable

patterns in the code, but do not respect any higher-order information about the code behaviour, so

that e.g. nested loops and double-linked lists can cause optimization problems and performance loss

[101]. Next generation compilers (and implicitly programming languages, cf. below) will therefore

have to respect additional information provided by the developer about the code behaviour, its

restrictions and limitations – StarSS (see programming models below) is a step in this direction. This

means, however, that even in the HPC sector, compilers have to become more intelligent to actually

interpret the code-behaviour information – in the long run, this will make code more hardware-

independent, too (cf. long term trends below).

Summary

• in common mass market, maintain simplicity of usage for developer

• in HPC, higher-order code behaviour needs to be respected

• more intelligent compilers that actually perform the scale and hardware-adaptation

• multi-pass and JiT compilers to increase platform-independence

B) PROGRAMMING MODELS

Development in programming models is basically following the same tendencies as the ones of the

compilers (cf. above) – we thereby need to distinguish in particular between common (end-user)

programming models and high performance computing related ones, even though there is a wide

range of end-user programming languages that partially overlap with HPC.

In the common mass market sector, programming languages in particular aim for simplicity of

usage, that means that they generally want to provide a powerful high-level language that

incorporates most of its functionalities in simple operations according to the typical requirements in

the according usage domain. Scripting languages for example provide a very explicit set of

commands that fulfil the specific purposes of controlling the respective application it belongs too. It

should be noted that functional programming models found little uptake - non-regarding their

benefits for parallelised developed (cf. [2]). Nonetheless, more and more modern programming

models take over concepts from functional programming, such as the Lambda operator for improved

function passing etc. to increase and even simplify the development tasks. The .NET framework was

specifically devised to provide functionalities that encapsulate most of the low-level tasks that a

developer typically has to perform, to e.g. open a communication channel across the web etc.

Next to increasing simplicity, this also makes the language more platform-independent and leaves

more tasks to the compiler which can take hardware-specific optimisation decisions. Effectively,

programming language development in all areas tends to add abstraction layers on top of existing

languages, thus hiding complex algorithms in more simple operations and leaving it up to the

compiler to transform the according pattern.

18 | P a g e D5.1 State of the Art S (o) O S

With the increasing necessity to achieve performance by exploiting the scale (and potentially the

heterogeneity, cf. below) of future processors, programming models need to come up with solutions

that allow for parallelising and scaling the code. Since automatic parallelisation is NP hard, some

information needs to be conveyed by the developer: a particular starting point for serialisation

thereby consists in particular in the so-called “unrollment” of loops, to which end some information

about the dependency of data between loop iterations needs to be known, though. The current

trend thereby goes towards extending the language with a set of additional commands that clearly

indicate their parallelisability (such as “parallel_for”), leaving it up to the compiler to do the most

efficient spread-out and manage the parallel threads. This is thereby generally restricted to a specific

set of loops (such as database queries) and without additional information the scale-out of the

compiler does not respect that overhead for communication may produce more delay than a

sequential execution. The set of extensions and the type of information that needs to be provided

with it will have to be elaborated further.

More responsibility will hence automatically be left to the developer, who is already encouraged to

explicit develop threads in the form of lambda operators. Thread management by the runtime

environment (compiler) will accordingly increase in a comparable fashion. It is therefore to be

expected that in a first iteration, in particular the concepts from distributed (as opposed to parallel)

computing will be elaborated in the direction of concurrent execution, such as e.g. decoupling of the

application interface from the code, which is essentially already possible, but not respected in code

distribution etc. As discussed in more detail below (on HPC programming languages), provisioning of

meta-information for scale-out will remain difficult within the near future, so that semi-automatic

scale out and hence parallelisation will focus on specific patterns, such as parallelisable loops.

At the same time, extended features of specialised cores will become visible in the programming

language, but uptake will be restricted to specific use cases (such as mobile devices) in order to

maintain a maximum degree of portability. It is to be expected that in the long run (cf. long term

trend below), the knowledge acquired from next generation HPC programming models will influence

the next developments in common programming languages by extrapolating patterns for dealing

with heterogeneity and increasing scale.

Programming languages in the area of High Performance Computing develop more slowly than in

the common end-user domain, as has already been noted. Rather than complete new programming

models, it is rather to be expected that current programming models that are basically still under

development will find more uptake, as their stability and performance in new environments

increases. To these languages we can count in particular:

• the Partitioned Global Address Space (PGAS) model which exposes a virtually shared

memory to the developer and takes care of messaging during synchronisation and memory

locks itself, thus relieving the developer from having to think about the specific memory

architecture (cf. D5.1 [2])

• As the long-term development will go into identification of more annotations (cf. below),

intermediary steps will investigate into means to define dependencies between code

segments and functions. To this exploration already count models such as the StarSS

extension by Barcelona Super Computing [94].

• At the same time, with a clear trend for using GPGPUs as part of HPC applications, in

particular for embarrassingly parallel tasks, more and more language models (and in

particular compilers) will extend to integrate these types of platforms, thus elaborating

heterogeneity of the languages more closely. NVidia is particularly interested in opening

GPGPU platforms for HPC as can be seen by their development of “graphic card clusters” in

recent years. Along that line, NVidia has published and does further develop the CUDA

19 | P a g e D5.1 State of the Art S (o) O S

toolkit8, which provides the means to develop vector-like calculations to GPGPUs, typically

using the C programming language. A similar line is visible by Apple's OpenCL (Open

Computing Language)9 which provides a similar environment to PGAS, but is devised to deal

with heterogeneous platforms, and in particular with GPGPUs in these environments. CUDA

already integrates OpenCL.

• As already noted in D5.1 [2], supercomputer clusters already incorporate multi-core

processors that are (currently) effectively shared memory machines (UMA), whereas the

nodes follow the NUMA concept, i.e. do not share memory, and there is generally no cache-

coherency protocol in place. Accordingly the communication and synchronisation principle

differs in clusters according to the hierarchical level, but there is no according programming

model to reflect both NUMA and UMA architecture. An approach growing in popularity

consists in a hybrid programming model, where OpenMP is employed on the processor

level and MPI for any communication across processors (or nodes, depending on the

system architecture). Obviously this implies more careful planning about code distribution.

It is however not expected that this model as such will pertain long (i.e. become a long term

trend), as cache-coherency in multi-core processors will probably disappear (see Chapter II),

so that some form of messaging / synchronisation will have to be specified at all levels,

though potentially in slightly varying forms.

It must be noted again here that even though most of these approaches already exist in the form of

experimental and under development programming languages, we nonetheless regard them as

short-term development trends, as uptake will only slowly increase and thus lead to better efficiency

and stability of these models.

Summary:

• Simplicity is a primary concern over efficiency to deal with scale and heterogeneity

• Principle approach by adding further layers (annotations) on top of existing models

• Examine means to convey additional (meta) code information

• Tendency towards improving the compiler, rather than the language

2. LONG TERM TRENDS

Talking about programming models, long term trends are very similar to short-term development,

simply due to the fact that the issues to be addressed within the near future will not be solved

quickly enough. Similarly, the development of programming languages so far did not so much result

in completely different concepts, i.e. declarative and imperative models did (and will) prevail. Even

aspect-orientation did not so much introduce a new concept, but took the next step along the

development of compiler directives.

In particular in the more common end-user domain programming models always aimed at

simplicity of usage, even at the cost of efficiency. This trend will continue but will have to cope with

the additional constraints and requirements derived from the heterogeneity and scale of future

architectures. This will particularly lead to more intelligent compilers that can identify a larger scope

of parallelisable patterns and match those to the characteristics of the infrastructure. In the long

run, this will also lead to changes in the language constructs that allow implicit parallelisation, such

as “for_each” as opposed to “for (int x=...”, since the prior does not proscribe an order of execution,

therefore stating the independence of the algorithm within the loop etc.

The common programming models will thereby lend concepts and lessons learned from the high

performance computing domain with respect to patterns, dependency declaration etc. - however,

8 http://developer.nvidia.com/object/gpucomputing.html

9 http://www.khronos.org/opencl/

20 | P a g e D5.1 State of the Art S (o) O S

with a primary goal to automate and integrate these features into the compiler, as much as possible.

As HPC and Desktop PC converge architecturally at least in principle, an important aspect for future

programming models (and the according support through hardware, OS and compiler) consists in

increased portability that retains a maximum degree of efficiency, which may require hardware

specific annotations though (see below). There are already first research projects being initiated (see

e.g. the call of the German Bundesministerium für Bildung und Forschung10) that aim in particular at

increased portability between desktop PCs and supercomputer clusters to leverage the parallelism

of future many-multi-core to test and pre-process also complex simulations before they are

deployed in a large-scale environment. This means particularly that programming languages have to

provide common features that can be equally exploited in different environments and hence that

the compiler can deal with. As opposed to the common “mass-market” development area the goal

consists not so much in automating parallelisation and adaptation, but to relieve the constraints on

the developer, so that he / she can concentrate on the code instead. This can take different forms

(which most likely will converge in the long run):

• Annotation of functions and / or code segments in a loop can provide information about

the relationship and hence dependency of operations. This cannot only be used for scale-

out (degree of information exchange), but also concurrency spread-out, i.e. which segments

can be executed in parallel, even if they do not belong to the same loop. StarSS is already

providing the basis for such behaviour [94].

• At the moment, the developer still has to respect the word length in vector processors for

efficient loop unrolling – however, with the compiler reading that information at execution

time and the developer providing dependency information on top of even nested loops,

unrolling can be done more efficiently by the compiler.

• The developer also knows which data is most likely to be used frequently, so that he / she

can give indications with respect to whether they should remain in cache if possible or not

• Hide the memory management details from the user regarding shared- or distributed

memory, so that he / she can assign preferences to data distribution that the compiler will

actually map to the hardware and converts synchronisation points into the necessary

actions (PGAS model)

• etc.

In effect, we will notice the following main development steps:

Foremost, memory management of the code has to (and will) improve so as to allow for the

differences in memory architecture in future processor and HPC architectures – this does not only

involve the PGAS like “virtual shared memory” structure, but also annotations that provide

information about the dependency and usage scope of data.

Due to the increasing heterogeneity and scale of the computing environments (desktop PCs as HPC

clusters) future models will include higher levels of abstraction that do not only affect the memory

architecture, but also specifics regarding communication, I/O etc. A great deal of system adaptation

must be taken over by the compiler and / or the operating system, to which end new constructs

need to be examined that give the compiler more options to optimise the code behaviour. At the

same time, in particular develops of highly efficient code (in the HPC domain), will want to exercise

enough control over the compiler so as to exploit specific hardware characteristics – ideally in an

aspect-oriented like fashion that increases the portability of the source code and performs hardware

specific decisions (branches) either at compile or run-time.

10 http://www.bmbf.de/foerderungen/14191.php

21 | P a g e D5.1 State of the Art S (o) O S

It is as yet unknown to what degree programming models, compilers and / or hardware are affected

by these developments, i.e. how much can (and should) be realised by e.g. the compiler, whether

some kind of adaptations are needed on hardware level etc.

Summary:

• Compilers will become more intelligent to match hardware specifics with annotated code

• More code annotations to specify the overall behaviour of the code

• Typical development patterns will move from the actual language into compiler and

annotation model

• Platform-independence will have to increase

• Full scope of impact from parallelism unknown as yet.

22 | P a g e D5.1 State of the Art S (o) O S

V. OPERATING SYSTEMS

The Operating System is the component that most of all is experiencing the pressure of change due

to the paradigm shift from single-core to multi-core and many-core technology. On one hand, the OS

has to provide appropriate hardware abstractions so that applications do not depend too much on

the underlying hardware platform; on the other hand, it must manage hardware resources in an

efficient way, to unleash the power of future parallel hardware architectures.

For this reasons, in the next future we will see Operating Systems go though a deep revision of their

internal architecture and of the way they provide services to applications.

1. SHORT-TERM DEVELOPMENTS

Monolithic Operating Systems (see [2]), which is now the architectural model of most commercial

OS, are going through a profound transformation due to the need to adapt themselves to the

upraise of multi-core technology.

Currently, monolithic OS are implemented by running identical copies of the same kernel image on

every core, all of them share the same global address space and the same data structures. To

prevent data inconsistency in kernel data structures, monolithic kernels make a large use of spin-

locks, reader-writer synchronizations, read-copy update (RCUs), etc. Unfortunately, performance of

kernel routines strongly depends on the lock implementation, which in turns may depend on the

underlying hardware architecture. When moving to multi-core systems, most of the important

shared data structures (for example the scheduling queues and process descriptors) become a

bottleneck, due to the high bus contention and the overhead of cache coherency protocols.

Therefore, the need to change the internal data structures and locking strategies from one

architecture to the other. Such modification take a long time and huge efforts to kernel

programmers, and cannot be considered definitive as we move toward different hardware

architectures.

As stated in [1]:

Even so, operating systems are forced to adopt increasingly complex optimizations [...] in order

to make efficient use of modern hardware. The recent scalability improvements to Windows7 to

remove the dispatcher lock touched 6000 lines of code in 58 files and have been described as

“heroic” [...]. The Linux readcopy update implementation required numerous iterations due to

feature interaction [...]. Backporting receive-side-scaling support to Windows Server 2003 caused

serious problems with multiple other network subsystems including firewalls, connection-sharing

and even Exchange servers.

Most of the problems cited above are due to the lack of modularity of existing monolithic kernels,

and the lack of clear, stable and well-defined interfaces between the different services. The lack of

modularity is a consequence of the race of OS vendors to optimize the performance for a specific

service by introducing short cuts to direct hardware access. However, this is also the reason for the

commercial success of monolithic kernels. With the advent of multi-core technologies, the deep

intertwining of the different kernel services and the complexity of the cross interaction between

kernel functions has been exacerbated by concurrency problems and race conditions introduced by

parallelism, making the design of next version of the kernel an overly complex problem.

It is clear that the situation has come to a point in which a complete rethinking of the kernel

structure is needed. In facts, several researchers and practitioners reports that the scalability of

23 | P a g e D5.1 State of the Art S (o) O S

current monolithic kernels is limited to 8-16 cores [1]. A different approach is urged as hardware

moves toward an increasing number of cores.

We expect the current monolithic kernel structure will not survive the next advancements in

hardware design. As discussed in D5.1 [2], there are different proposal to change the structure of

the kernel: the multi-kernel approach [1], in which a different instance of the kernel runs on each

core, each one with its own private data, and instances communicate by means of remote procedure

calls; GenerOS and FOS [29][30] in a number of cores are reserved for the OS; Corey [31] in which

the application has the responsibility to specify access modes and the level of contention of the

resources.

It is important to notice the analogy of this proposal with the micro-kernel architecture (see [2]).

Micro-kernels are a promising technology for massively parallel architectures, because of their

minimal footprint, their modularity and their strong focus on efficient message passing mechanisms.

As multi-core and many-core systems start to resemble distributed systems on a chip, and as shared

memory systems become less convenient due to the complexities of cache coherency protocols, we

believe that the micro-kernel modularity will be a better tool to tackle complexity and address

scalability.

However, recently researchers have focused on enhancing the security aspects of microkernels [23]

[24], and for using the microkernel as a hypervisor [25][26]. As a matter of fact, security and fault

tolerance are two distinctive features of microkernels that cannot be easily found in other systems.

However, we believe that microkernels can play an important role in future many-core

architectures. Unfortunately, only few researchers are investigating the use of classical microkernels

for multicore systems [27][28].

Lutz et al. [81] recently proposed a Service-Oriented Operating System (S(o)OS) model constituting

an enabling technology for future distributed collaboration scenarios called Future Workspaces. In

this work, it is suggested that the Operating System should possess a distributed and heterogeneous

nature. A “Main” OS instance is the one offering the most complex services to applications,

comprising process management, virtual memory management, I/O, networking, and a graphical

user interface, whilst other OS instances exhibit a limited set of functionality focused/specialized on

the capabilities locally available on the nodes they are running on. Specifically, it is envisioned that

an “Embedded Micro OS” instance should be used to directly control remote resources and devices,

while a “Standalone Micro OS” instance should be used to expose access to virtualised resources

made available through virtualisation technology by some further Operating System. This structure

will enable an unforeseen enhanced level of experience for mobility, where the actual resources

(computational power, storage, data) will be maintained remotely through dedicated corporate

server farms, thus greatly reducing administration efforts.

One advantage of such a structure is that the Operating System may easily embed the additional

features needed by GRID applications [82], which usually are made available today by means of

specialized extensions to the OS. S(o)OS introduces a novel resource provisioning concept [83] that

differs from existing approaches of Grids and Clouds, in that it aims for making applications and

computers more independent of the underlying hardware and increase mobility and performance.

One of the ideas that is stressed in the S(o)OS concept, is that the programs do not necessarily need

to be written in a parallel nor distributed way, like it happens in the MPI approach. Rather, it should

be possible in principle to take a sequential application and automatically identify those portions of

the program code that may be run remotely, then migrate them on a more powerful Embedded OS

instance for a faster execution. The additional latency due to the distribution of the functionality

would be largely compensated by the increased performance of the code when running remotely.

For example, this would be easily the case for a laptop designed for mobility running the main OS

24 | P a g e D5.1 State of the Art S (o) O S

instance, whose code is partially remotely executed on a high-performance remote machine. In

order to achieve this, sophisticated monitoring mechanisms will need to be built into the OS, such as

monitoring the memory access patterns, building statistics on the frequency of access to the various

pages, tracking dependencies and interactions among various code segments.

Also, in a cloud environment, a vast amount of computational resources will be at reach of each

process across the web or locally. Therefore, the S(o)OS concept calls for deep investigations into

dynamic and intelligent processes (re)distribution policies according to resource availability and

demand, and it proposes [84] a micro-kernel OS architecture model designed to compensate these

deficits. All these elements are under investigation in the context of the S(o)oS project.

Summarising,

• OS are subject to pressure

• Current monolithic structure to be changed, some microkernel concept will be used

• Need to use smaller kernels for efficient distribution of code

2. LONG-TERM DEVELOPMENTS

The OS has to mediate the hardware aspects with the programming model: keywords will be

modularity, scalability, distribution, dynamic configuration and reconfiguration. In order to

efficiently support future parallel hardware architectures and programming models, the following

areas and services will be revolutionized.

Synchronization

Parallel and distributed software need to be synchronized and coordinated in a more or less strict

way, depending on the application coupling level. However, the underlying hardware platform could

be highly parallel, and or distributed; the underlying interaction model could be based on shared

memory in on-chip parallel architectures; or on message passing on distributed systems. The

operating system will need to dynamically and adaptively support all possible models of interactions.

Also, the OS must support different application scenarios, from remote execution on a cloud, to local

execution of the same service with a reduced QoS. We envision a hierarchical approach, where an

application is recursively split in subsystems with different coupling levels at each layer of the

hierarchy; at the lowest level, there will be highly coupled parallel software that needs to execute on

many-core systems on chip, probably with some shared memory; at higher layers, subsystems will

interact less frequently and communicate via message passing. Therefore, the OS will need to

support a mixture of shared memory (whenever possible) and remote procedure call, and

automatically and transparently switch between the two models depending on the application

requirements and the underlying platform support.

We also envision a tighter interaction between OS and hardware features: many of the low level

mechanism that are today realized in software will be supported in hardware in future hardware

architectures. One example is transactional memory [103], which has been proposed as a way to

simplify the writing of lock-free data structures. Another example is support for message passing

features in hardware: rather than simply sending an interprocessor interrupts to realize

communication between cores, it may be possible to rely on NoC features to safely and efficiently

implement message passing and remote procedure calls, with support for priority based message

enqueueing and Quality of Service.

Concurrency

The dynamic and distributed nature of future hardware platforms (many-cores, but also clouds) will

require an high degree of adaptation to the application and to the OS. In particular, the OS must

allocate resources and distribute the load across a set of nodes that is potentially unknown (or

25 | P a g e D5.1 State of the Art S (o) O S

scarcely known) during the design of the application and its implementation, and may even be

scarcely known at execution time. In order to efficiently perform load balancing and optimization of

computational resources (with a energy saving impact), it wil be necessary to efficiently migrate

code across nodes, let them be cores in a multi-core architecture, or complex subsystems of a

distributed environment. This will have an impact on processors ISAs and on compiler technology,

but also on the Operating Systems. In fact, the OS will need to “split” and “merge” the application

code depending on the specific underlying platform that is actually available. As a consequence, the

concepts of process and thread as we know them may need to change in the future. One possibility

is to use lightweight active objects with a reduced state/context, that may be used as simple

functions in a sequential program (with a minimal overhead) or as threads in a parallel many-core

environment, or as processes in a distributed environments. The OS will be in charge of split and

merging those objects into threads or processes as needed.

In the same way, the kernel code needs to be designed and built in a component-based way, and the

kernel will dynamically change its code and profile depending on the needs of the application. While

such a trend is already present in modern OS (e.g. Linux kernel modules), in the future this approach

needs to be taken to an extreme level.

Distributed Control

Future OS will need to cooperate in a completely distributed manner. It is simply impossible to think

of a central Operating System that manages all local and remote resources and takes all decision in a

optimal way. To enhance scalability, instead, every processing unit will have its own copy of the OS.

By processing unit here we mean several different things, depending on the granularity at which we

consider the system: it could be a multi-core chip, or a tile in a many-core architecture, or an entire

subsystem of a distributed cluster. These OS will interact with each other in a distributed manner to

carry on their job. Not all OS will be the same, instead each one could provide a different set of

services. This means that an application that needs one specific service will ask the local OS to

“discover” other OS nearby that may provide the service. Service-oriented Architecture (SoA)

concepts and techniques will be essential to provide such mechanisms. Also, this will enable an

unprecedent level of fault-tolerance, as one service may be provided by different peers, and the

local requesting OS may request the service to more than one node in a replicated manner and then

choose the most appropriate results.

Scheduling

One important problem that needs to be addressed is how to properly schedule the different

activities in the system so that all timing constraints are respected. In order to keep performance

under control, especially for real-time applications, it is important to precisely control how

computation is distributed across nodes and when it is executed; and how and when messages are

enqueued in the network, be it a on-chip network interconnect, or on a classical inter-node network.

Some researchers state that the number of cores in future processor architectures will be so large

that there will be no need for multitasking on cores, thus making processor scheduling not relevant.

For example, Wentzlaff and Agarwal argue [86] that, in the near future, “the reliance on temporal

multiplexing of resources will be removed”.

It is our opinion that such a scenario will not actually happen, or at least not in all systems, and not

so drastically, for a variety of reasons. First, the various cores, caches and memory elements will

need to communicate and exchange messages, but they will hardly be fully and completely

connected, thus various parts of the physical links and interconnects will be time-shared among

multiple activities.

26 | P a g e D5.1 State of the Art S (o) O S

Second, while the tremendous take-off of parallelism at the hardware level could not be followed by

software at the same rate, we expect in the future to see much more parallel applications. This

means that applications will try to exploit to the maximum extent the underlying parallelism

available in the hardware, creating a number of small parallel tasks that is unforeseen in the current

programming culture. This will imply an increase in orders of magnitude in the number of parallel

threads created by each single application.

Third, in order to achieve good resources saturation levels, there will be anyway the need for

temporal scheduling of multiple tasks on the same core. In fact, while cores communicate,

synchronize, exchange data, among each other or with external I/O devices, a context-switch to

another ready task will promptly allow for a good exploitation of the core computational power.

Also, there will be anyway the need for inter-mixing, on the same system and core, application

workloads of heterogeneous types and with different timeliness requirements, e.g., batch and

interactive applications. A batch activity like a software compilation will likely try to occupy all the

available cores, in order to exploit available computing power to the full extent. Yet, in response to a

user action, some task will need to preempt the currently executing task on some core, in order to

execute something else. Waiting for some core to finish its current task before activating the

interactive task may simply lead to unacceptable response latencies for the application. On the other

hand, a static partitioning of resources (e.g., cores) among applications may be detrimental in that

some cores would likely remain greatly under-utilized.

Furthermore, considerations on efficient power management may shed a different light on the

problem of scheduling and allocation of tasks on cores. For example, it may be important to compact

all tasks on fewer processors and turn off the other cores, thus reducing energy consumption.

Similarly, in order to keep under control heating and temperature in some parts of the chip, cores

can be dynamically switched on and off according to some scheduling policy, and tasks be migrated

between cores so to make power dissipation easier.

Hence, in our opinion, temporal scheduling will still be an important topic in future many-core

systems.

Summarising:

• Synchronisation will remain a crucial aspect of kernel development, need to make it

adaptive

• Some of the kernel low level operations implemented in hardware

• Efficient migration of code

• distributed control, no centralized kernel

• temporal scheduling and load balancing still an important research aspect

27 | P a g e D5.1 State of the Art S (o) O S

VI. APPLICATION TYPES AND AREAS

Development is primarily driven by usage. As areas converge over time, future systems will have to

address a wide scope of application types.

Each company defines their next generation of products according to the needs of the respective

usage domain – e.g. over recent years, vector processing has had a huge demand in high

performance computing. This demand has led to many manufacturers providing vector based

computing systems, such as the NEC SX 8 in 2003 [95]. At that time, the end-user market was

interested in vector systems only in the sense of graphics cards, contributing to the success stories of

companies such as NVidia and ATI. IBM has taken a more courageous (albeit co-developed with

manufacturers for Gaming Consoles) approach back then by manufacturing the CELL processor

which shows an attempt of serving both domains' needs [96][97].

In other words, the individual companies are concentrated on the applications of the respective user

domains. With the advent of GPGPU to a broader audience, this focus and distribution across

domains has slightly changed though and graphics cards manufacturers now offer vector based

cluster systems for intermediate scoped high performance computing etc. But even in these cases,

companies such as NVidia clearly aim at vector computation use cases and not at say audio

processing. Intel on the other hand tries to serve different markets equally well and therefore

investigates into general purpose processors which can execute computational intensive, vector-

related, stream-centric etc. applications.

The corresponding application domains pose completely different demands on the system (the most

obvious ones being e.g. vector versus scalar systems) and this does not only circumscribe HPC and

desktop users, but also the full range from embedded systems, via mobile devices to distributed

data centres. By examining these application areas, it is possible to identify joint (respectively

divergent) requirements towards the underlying resources. On this basis, the degree of convergence

through future systems can be analysed, and the usability across (and within) domains of specific

solutions be assessed.

In the following, we give an assessment of some important application domains and their general

requirements for parallel computation.

1. HIGH PERFORMANCE COMPUTING

HPC applications have a high demand for

computational performance. Latency is a critical factor

High Performance Computing arose from the need to perform complex computational tasks faster

and with higher accuracy than current computers could / can achieve. HPC systems do not

necessarily consist of parallel cluster machines, but can in principle be realised using high-end

processors, even though multi-processor architectures proved to be the most successful approach

given the hardware limitations. Most modern clusters employ multiple specialised, high-end

processors high-speed connections such as Infiniband (IB) in order to combine the benefits of fast

processors with parallel execution.

Multi-core processors are obviously being employed in high performance computing, thus adding

another hierarchical layer to distributed machines where nodes do not only contain multiple

processors, but each processor also contains multiple computing units, so that we can identify the

following layers in modern day distributed settings:

28 | P a g e D5.1 State of the Art S (o) O S

1. Inter-processor (core-2-core using e.g. QPI)

2. Inter-node (processor-2-processor using e.g. e.g. IB, IXS)

3. Inter-node (node-2-node using typically infiniband)

4. Beyond clusters (e.g. user-2-cluster e.g. via Ethernet)

Standard applications obviously do not benefit from such a distributed setup as they typically cannot

use more than a single compute unit (i.e. core). Applications exploiting cluster machines need to

explicitly be programmed to execute parts of the algorithm concurrently across multiple compute

units (classically processors, now cores). Not all algorithms can actually be treated in this fashion and

some do actually show worse behaviour in parallel environments – as we will show below, there are

also different parallelisation strategies that will not only lead to different efficiency depending on

the algorithm type, but also to different infrastructure requirements.

What is more, though, the process(es) not only need to be parallelised, but also adapted to the

specific hardware: a great deal of performance of cluster machines is achieved through

specialisation to computational task types and implicitly to specific algorithms. For example, vector

processors are specialised to repeating the same mathematical / logical operation on multiple data

sets successively (SIMD).

A) SPECIFIC APPLICATION TYPES

Though the scope of applications that can efficiently run on high performance machines is vast, we

can actually make a few generic statements about the types of algorithms and their generic usage

areas that benefit most from HPC environments. With the high relationship between HPC and multi-

core systems, this distinction is of particular interest for exploiting the parallelism of multi-core

systems. In accordance with Amdahl's law, the performance gain through parallel systems depends

on the parallel versus serial portions of the application to run [4]. However, one must thereby

respect the degree of connectivity between the parallel threads, as this defines the synchronisation

and messaging overhead, which, in the worst case, can lead to performance lower than serial

execution – these are generally examples for algorithms that can not be parallelised in the first

instance.

General Classification

Degree of connectivity plays an important role in selection of the infrastructure, as this defines

connection speed and type, ranging from shared memory (maximum connectivity) to p2p computing

(completely loosely coupled). We can distinguish applications by the degree of scalability according

to the connectivity between data / threads:

Unrelated Instances

The most extreme case of scaling applications consists in multiple instances of the same

application / process being executed in parallel – neither result nor execution are related to each

other and hence no synchronisation or message exchange between the instances needs to take

place. Often enough the initial state and parameter set is identical for all instances so that no data

coherency needs to be maintained either.

Such applications show no real scaling behaviour, i.e. the execution performance is not affected by

the amount of compute units employed – neither in the sense of strong or weak scaling (cf. below).

In fact, “scaling” here means “replication” rather than distribution. These types of applications can

typically be found on server farms or data centres where the degree of replication defines the

availability of the according data / service, and are the ideal candidates for cloud environments.

29 | P a g e D5.1 State of the Art S (o) O S

Implicit requirements:

• Extended status information about the hardware

• Remote deployment and execution (potentially “live”)

• Dynamic scaling up and down as needed

Embarrassingly Parallel

Similar to unrelated instances, embarrassingly parallel applications can actually be executed in

parallel without requiring synchronisation or high messaging between instances. As opposed to

unrelated computation, the problem space and hence data sets and results do relate to each other,

in other words, each instance either computes an (independent) subset of the full data, or uses

different parameters on the same data set. The execution time per instance is independent of the

amount of processors employed, even though calculation of the full problem space proportionally

decreases with the number of instances. Examples of such algorithms are projections of 3d models

into 2d space, as the projection space can be segmented into sections that each can be calculated

independently and all p2p computing applications (such as Folding@HOME11) which effectively

execute completely independently and results are collected and integrated at random.

Along the same line, we can thereby distinguish between weak and strong scaling behaviour: in

weak scaling, the amount of required processors grows proportionally to the problem space (e.g.

size of the data set) whilst execution time remains constant, or in other words the problem size per

processor remains effectively constant. This typically applies to p2p computing like applications,

where the calculation is effectively serial and the problem (either data or algorithm) cannot be

segmented further. On the other hand, in strong scaling, the problem size is fixed and by increasing

the number of compute units, execution time can be reduced – with the amount of compute units

changes also the workload per processor. The 3d projection example shows strong scaling

behaviour, as is clearly demonstrated by modern day graphics cards that improve performance time

through employing multiple cores on small data sub sets.

Strong scaling applications typically show higher data dependencies, as the results need to be

synchronised more often to improve throughput. Nonetheless, the communication and

synchronisation need in embarrassingly parallel use cases is still much lower than the one in tightly

coupled applications (see below). In either case, scalability is limited by the overall problem space:

as soon as it cannot be segmented or distributed further, adding more instances does not make

sense any more.

Implicit requirements:

• Extended status information about the hardware

• Remote deployment and execution (potentially “live”)

• P2P like routing

• Fast & broad bandwidth

• Data & process structuring for workload balancing

Tightly Coupled

Most typical (and most demanding) HPC applications show strong coupling between the instances

on the individual compute units – this is simply due to the fact that most algorithms simply are not

embarrassingly parallel and results need to be constantly exchanged between calculations. For

example, when simulating particles in plasma, even weak interactions between remote areas have

to be considered for accuracy. Scaling can principally be achieved either by segmenting the problem

space (the data set), or by distributing parts of the logic that is typically executed multiple times. In

the first case, too small segments will lead to too high data dependencies along the boundaries and

too large segments will hardly improve performance. Similar issues apply to distributing the logic,

11 http://folding.stanford.edu/

30 | P a g e D5.1 State of the Art S (o) O S

where e.g. small loops lead to high data dependencies whilst too large loops will remain

comparatively slow if not segmented further.

A huge amount of time is hence wasted on synchronisation and data exchange. As opposed to

embarrassingly parallel applications, scalability of tightly coupled applications is more limited by the

messaging overhead than by the data set (even though this plays a role, too). Due to the high

information exchange, a primary requirement consists in fast and broad interconnects. Messaging

and implicitly resource access are major obstacles to be considered during coding – ideally all

relevant data and functionalities are fitted into the local cache, so as to minimise overhead. One

criteria during data preparation hence consists in adjusting the segment size to available memory

(cache) and structuring it so as to reduce dependencies between segments.

Typically, tightly coupled applications tend to fall into the category of strong scaling, as the general

goal behind distributing such algorithms consist in speed up rather than higher data throughput,

even though the long-term goal may consist in higher accuracy and hence larger data calculation.

Implicit requirements:

• standard communication and messaging

• typically some form of shared memory / cache-coherency

• large & fast cache

• extended resource status information

• code / process deployment (typically not “live”)

• fast & broad interconnect

• synchronisation (of communication and execution)

• concurrency management

• maximise cache usage, minimise communication and memory swaps

Computation Patterns: The “13 Dwarfs”

Most applications on High Performance Computing systems fall into either of the preceding

categories and pose the according requirements towards the system – as Colella notes, High

Performance Computing applications typically adhere to a base set of algorithmic patterns [98].

Asanovic et al. elaborate on these base patterns to identify a total of 13 so-called “dwarfs”, i.e.

application kernels that are at the mathematical and functional heart of a specific set of applications

[3]. Asanovic et al. try to deduce the general hardware requirements for these dwarfs and implicitly

for the set of applications behind it – similar to the goal of this document's section. Instead of

repeating the full paper, we will only provide the main highlights of the paper and recommend the

interested reader to check out the full document at Berkeley12. It should be noted in this context

though that while Asanovic et al. try to identify the base kernels that make up the core of a wide set

of applications, we try to go the other way round, i.e. try to identify the core hardware requirements

from a set of applications. Whilst the Berkeley approach is particularly good for benchmarking a

system environment with respect to its capabilities regarding a specific application suite (cf. D5.1 on

“benchmarking” [2]), the top-down approach seems more useful to predict further development and

to generate a more holistic view on the requirements in general, as has been noted in D5.1 too.

12 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

31 | P a g e D5.1 State of the Art S (o) O S

E
m

b
e

d
d

e
d

G
e

n
e

ra
l

D
a

ta
b

a
se

G
a

m
in

g

M
a

ch
.

Le
a

rn
in

g

C
A

D

H
e

a
lt

h

Im
a

g
e

Sp
e

e
ch

M
u

si
c

In
te

rn
e

t

H
P

C

Finite State Machines + + + ~ ~ +

Combinatorial + ~ ~ +

Graph Traversal + ~ ~ ~ + + + + ~ ~

Structured Grids + + ~ + +

Dense Linear Algebra + + ~ + + + + + + +

Sparse Linear Algebra ~ ~ + + + + + + +

Spectral Methods (FFT) ~ ~ ~ ~ + + +

Dynamic Programming ~ + + + ~ +

Particle Methods ~ ~ +

Branch & Bound ~ + + ~

Graphical Models ~ + +

Unstructured Grids ~ ~ ~ + + + +

Map reduce ~ + + + +

Table 1: the 13 dwarfs (vertical) and their relevance for a set of application areas (horizontal). Red

(“+”) denotes highly relevant; green (“~”) slightly and an empty block denotes no relevance

As the application domain of HPC is currently well defined, we will use the findings from the

Berkeley paper as a main reference in this area. Table 1 lists the 13 dwarfs and their relationship /

relevance to a given set of usage domains – for a detailed description of the individual dwarfs,

please refer to Berkeley's “Dwarf Mine”13.

It can be noted from Table 1 that in particular grids, linear algebras, spectral methods, n-body

calculations and map reduce form the main applications of the high performance computing domain

– this implicitly involves applications such as particle flow, plasma calculations, molecular tests etc.

This is not to say that the other application kernels are not parallelisable, but that they are

(currently) atypical for parallel computation environments (i.e. HPC).

For reason of completeness, we list in the following the specific hardware requirements per dwarf

though highlighting in this context again that the HPC related dwarfs are of major importance in this

context:

1. Classic vector and matrix operations belong to the class of Dense Linear Algebra – they are

naturally ideal for vector machines. The performance depends very much on the size of the

matrix in relation to the word length of the vector unit, where a mismatch can lead to

unnecessary memory swaps and hence communication overhead. Data hence needs to be

carefully distributed in order to achieve load balancing and thus optimal performance.

Cache hierarchies can lead to data feeding issues and hence to delays if the number of

calculations exceeds the size of cache (i.e. if data has to be loaded from the RAM).

Dense Linear Algebra calculations typically scale very well.

13 http://view.eecs.berkeley.edu/wiki/Dwarfs

32 | P a g e D5.1 State of the Art S (o) O S

2. If the vectors / matrices contain a large number of zeros, we speak of Sparse Linear

Algebra – in these cases, any zero calculation can be typically ignored, for which reason the

matrix is typically compressed. This is e.g. achieved by maintaining the index of the non-

zero values. This requires additional progressing steps for identifying and annotating the

non-zero entries. Due to the unpredictable dependencies between data (according to the

distribution of non-zero data), data distribution and hence efficient scalability is quite

difficult. Generally, the same issues as for Dense Linear Algebra apply, with the addition of

more complex workload and increased messaging overhead (due to non-optimal

distribution).

3. Spectral Methods (operations in the spectral domain) generally consist of computation of

complex numbers (i.e. 2 inputs and 2 outputs). As the same operations are executed on a

large data set, the algorithm is typically highly vectorisable. Each core / node typically only

needs to access local data reducing communication to transposing steps.

4. In N-Body Methods, the calculations relate to a number of n bodies which all interact with

each other in some form, so that in the simplest programming approach, complexity

reaches O(N^2) and thus typically touches the memory wall problem (see D5.1 [2]). Divide

& conquer approach accumulating the influence of remote particles increases performance

– however, for parallelisation, load balancing is the major problem, in particular since the

movement of bodies imply constant redistribution. Shared concurrent memory access (link

to all bodies) causes communication overhead. Notably there is specialised hardware for

astrophysics14 and molecular dynamics15 calculation.

5. Most simulations can be segmented into Structured Grids where each cell contains a subset

of the environment of the same size. This is optimal for regular “stationary” data

distribution (as opposed to moving particles), as e.g. in the case of heat distribution over an

area. As basically the same operations are performed again and again, the code is highly

vectorizable. For distribution, each core is typically assigned an individual cell. Since

neighbouring cells influence each other at the boundaries, some data needs to be shared

between cores – this does not necessitate shared memory though, as typically only a

fraction of the data is needed and shared accordingly (so-called “halos”). In most cases this

data needs to be exchanged after every calculation iteration across the whole grid.

In some cases, only specific areas are of main interest, in which case locally refined grids are

applied – these require a more adaptive and better aligned load and data distribution (see

also Unstructured Grids).

6. Most simulation and modelling problems actually act on irregular shapes (such as the

human body or a car) which cannot be segmented into regular cells (see Structured Grids),

but are instead segmented into a set of cells of different size and shape, i.e. an

Unstructured Grid. They basically behave like structured grids and have similar

requirements, with the difference that the size of the individual cells have to be adjusted

for best load distribution (in the worst case dynamically).

7. Some calculations effectively consist of a series of mostly independent function execution,

where all results are aggregated and processed in order to get the actual result of interest.

To these count Monte-Carlo algorithms, or more generally MapReduce. The function is

therefore effectively embarrassingly parallel, with communication only being performed at

the end of each individual function – which does not necessarily have to occur

synchronised, since no further processing is blocked by the delay (besides for the central

gathering). Load balancing, to reduce this delay, may potentially be difficult, as the

14 http://grape.astron.s.u-tokyo.ac.jp/grape/

15 http://www.research.ibm.com/grape/

33 | P a g e D5.1 State of the Art S (o) O S

functions may not always have the same execution time (e.g. with a precision breakout

criteria).

8. Searches through graphs and trees, as e.g. in data mining base on the principle of Graph

Traversal, i.e. traversing through a number of (linked) objects and executing (the same)

process on each object. If the function is essentially small, the main task consists in

(unpredictable) traversal across memory. If the graph / tree is balanced, than the traversal

can essentially be parallelised with good load balancing by segmenting the graph in sub-

graphs. Each according traversal is effectively embarrassingly parallel but segmentation

may be difficult due to the nature of the graph. In most cases the main overhead is caused

by random memory access latency. Memory requirement per core is proportional to its

search space.

9. Some problems can be solved by solving simpler subproblems and then comparing results,

as is typically the case in optimisation tasks – the according technique is called Dynamic

Programming. Whilst this increases the problem space, it decreases the computational

overhead – also, in an ideal case, the sub-problems can be distributed across individual

cores in an almost embarrassingly parallel fashion. More typically however, any degree of

data needs to be exchanged between the sub-problem calculations in which case the

performance increase is directly dependent on the relationship between communication

overhead and computation (i.e. high degree of communication and only little computation

leads to low efficiency).

10. Problems such as route finding are similar to graph traversal and dynamic programming,

where the function traverses the search space according to some optimisation criteria and

accordingly performs a Backtrack or Branch & Bound algorithm. Also problems such as

Linear Programming and Boolean Satisfiability etc. fall into this category. The problem

generally poses the same requirements as graph traversal, i.e. the graph can be segmented

and traversed in parallel, with the same problem of load balancing. Since most problems in

this area use some form of weighing for estimating the optimum, the according invariants

ideally need to be communicated between all processes – however, this does not

necessarily need to occur after every step, weighing the uncertainty against the

communication overhead.

11. Knowledge maps, Bayesian networks, neural networks etc. fall under the category of

Graphical Models, where nodes represent variables and edges conditional probabilities.

Typically a graphical model is traversed multiple times, e.g. for the purpose of sound

analysis or for applying a neural network to a data set. A simple approach towards

distribution consists in either segmenting the data space or the graph into subgraphs per

core. If the data space can be segmented ideally (i.e. without temporal dependency), the

problem becomes embarrassingly parallel – in all other cases, data needs to be transferred

after each iteration step, whereas typically the size of data is small compared to the

computation to be executed, making the problem scale very well.

12. Most programs can be represented in the form of Finite State Machine consisting of tuples

of in- and output values, and a state S. Finite state machines (FSM) can accordingly be

represented at graphs where nodes represent (active or passive) states and edges input,

respectively output values. Whilst the principle of executing a FSM is similar to graph

traversal, an FSM is signified by having an explicit state traverse the graph – even though

the state may branch out at designated transitions (and can hence be parallelised), the

graph can not be segmented and computed in parallel as in the graph traversal case. A FSM

34 | P a g e D5.1 State of the Art S (o) O S

therefore represents the sequential and parallel aspects of typical applications which

means that there is no generic parallelisation approach to it16.

13. Simple boolean operations on large data sets, such as computing checksums can typically

be represented in Combinational Logic. Most operations are on a bit-level, making them

difficult to develop due to lacking appropriate coding support. The algorithm can typically

be broken down into data pipelines that can be executed in parallel – individual cores can

take over steps in this pipeline and forward results to the next core(s). Quite generally, the

overhead for data transportation has to be weighed against the computation effort to

achieve a good workload. The memory wall (cf. Section II. 1. is thereby a critical factor (as

for most stream processing).

Quite generally it can be stated that most HPC applications are defined by the relationship between

computation and communication, where all communication (including data exchange as much as

memory swaps) is essentially a performance loss that should be avoided. Accordingly, cache tends to

be as large as possible, with hierarchical structures as a means to address manufacturing issues.

However, with high data throughput in a process, memory access latency becomes the major

efficiency throttle where performance is directly proportional to the slowest memory connection, as

it has to forward all data to the fastest cache level. In such cases, direct access to the data source is

preferable to any cache size and hierarchy, as these add fixed access delays that cannot be avoided.

2. PERSONAL EMBEDDED DEVICES

Smart phones and other personal embedded devices

include an ever increasing amount of features,

becoming more general-purpose, and require a

constant connection to internet

Personal Embedded Devices are one of the faster growing markets today. The necessity of having a

personal computation and communication device is a growing factor in modern day's lifestyle:

future users will handle more and more of their private and business life on the move as devices get

more and more powerful. Nowadays it is expected of most users to be online almost all the time.

Related to that and as a consequence of the growing web2.0 uptake, a noticeable shift from

personal to internet based social interactions has occurred and such electronic networks are an

essential part of many peoples' social life. It is to be expected that this tendency will grow even

further, as modern environments even support the elderly and disabled, and as the distance

between friends and family grows – amongst other due to the increased mobility of users.

A) HISTORICAL EVOLUTION OF PERSONAL COMMUNICATION

Increased mobility has been one of the trends driving progress for the last decades. In the start of

the Internet revolution (mid 80s), the availability of communication platforms such as the BBS, and

later email and the World Wide Web, triggered a rapid increase in the amount of information being

exchanged. The internet made possible to exchange information at a speed which abolished

frontiers and distance. It was now possible to place different parts of the same corporation in the

most suitable place, while maintaining information flows. One restriction at that time was that

connectivity was tied to copper (and later fibre) links. In order to support the increasing nomadic

way of life, cell phones were introduced to the mass market. These devices, which required no

physical wires, allowed individuals to move and still communicate with others. They existed since

the 50s but its use was not really widespread due to coverage and cost issues. The creation of Global

System for Mobile Communications (GSM), in 1991, and its dissemination into most of the world,

allowed to migrate the traditional analog communication networks to more flexible scenarios where

16 Note that it can be segmented though, having state traverse across different nodes or cores

35 | P a g e D5.1 State of the Art S (o) O S

information was already digital. GSM, already provided call continuity for users on the move by

means of rapid handover between base station cells. Due to the simple technology used, handovers

were quickly executed and mobile device operating systems were relatively simple.

Cell phones kept driving mobility but soon it was clear that ubiquitous connectivity was the next

step. This required porting the internet concepts to the small handheld devices, which became

extremely powerful and complex in relation to their ancestors. In particular, evolution made it clear

that the traditional technology, still incorporating many concepts from circuit switched networks,

needed to be upgraded to a full packet driven network. With IP protocol support on our cell phones,

now commonly called Smart-phones or PDA, we are able to move almost freely in any developed

country while maintaining our email, chat and even voice sessions active. The trend is to put more

power into these little devices and make them a portal to the representation of our digital life, which

will exist somewhere in the Internet cloud. 3GPP [68] is since a long time creating standards such as

Internet Multimedia Subsystem and Long Term Evolution, which make available more and more

bandwidth following the principle of more rich devices supporting more complex services, which are

integrated into the network operator. Future trends point to intelligent devices which, being

location aware (by means of GPS), and having access to our personal preferences and friends

recommendations, can make automatic suggestions, help in some decision processes or provide

contextualized services.

With the increase in capacity, the number of devices increased very dramatically [5] followed by the

number of users. It is now common to see users with more than 1 device: one for personal use, one

for professional use. Some devices already support multiple environments [8] where users are able

to switch environments. According to [7] in 2008, the number of mobile subscribers reached 4100

million, which represents more than half of world population. In comparison, this number is much

than the number of Internet users (1542 million), a technology which also radically changed our

world.

While the project does not directly address cell phones, it addresses embedded devices such as

PDAs. These devices, while popular, have never been massively adopted mainly due to the lack of

resources, and in particular due to the lack of communication technologies. Recently, it became

common for PDAs to incorporate a cellular communication technology such as GSM, so that most

PDAs currently are smart phones. The market is changing and the PDA is becoming our personal

communication hub. This trend is gaining momentum as phones become more powerful, and even

start to compete with small laptops, as the Apple iPad is an example.

36 | P a g e D5.1 State of the Art S (o) O S

Figure 8: Evolution of number of cell phone users according to

ITU ICT Eye

B) REQUIREMENTS OF EMBEDDED PERSONAL DEVICES

The transition from voice call based devices (cell phones) to smart phones was long anticipated and

seemed natural. These devices absorbed the market of PDAs and are becoming a single market. The

objective is to provide ubiquitous connectivity to the Internet, which continuously provide more

services, and with the advent of Social Networks, starts to replicate our social fabric. This trend

imposed major challenges to operating system development, underlying hardware and protocols.

Moving to a digital packet based network much increased complexity of the underlying

communication stack. As an example, in certain interfaces of the 3GPP UMTS specification, more

than 10 logical layers are required before an application can add its payload. The number of systems

required for a single handoff also increased, and a single location update can generate more than 20

messages and involve at least 4 different systems. Such numbers are normal for a traditional host

connected to the Internet, but the specificities of the applications used on mobile scenarios impose

heavy limitations.

Smart phones (as other embedded devices) are very constrained in terms of resources. A typical

system has a ARM CPU with a clock ranging from 200Mhz to 700Mhz, runs on batteries with capacity

for 2 or 3 days of operation (non-continuous), and has less than 128MB of RAM.

Operating systems designed for smart phones, and other embedded devices, usually have limited

multitask capabilities and are single user [9]. They must employ intelligent garbage collection

mechanism so that available memory is maximized, and reduce power consumption by keeping

complexity at a minimum and by disabling any unused hardware. According to ETSI regulation, cell

phones can transmit data up to 2W of EIRP (900Mhz band), which would deplete a 3.6V, 900mAh

battery in about one and an half hours if in continuous operation. An emerging trend (that will not

slow down) asks for bigger displays, higher CPU performance, more RAM and higher bandwidth

which further imposes higher efficiency.

On this platform users expect to have their email, chat with friends, surf the web, listen to music,

watch television (using 3G, 4G or DVB interfaces), watch movies, and more importantly make voice

and video calls (both using cellular and VoIP technologies). Web surfing, chatting or email imposes

that devices have multitasking capabilities, as well as enough CPU and memory for processing and

storing information.

C) REQUIREMENTS FOR MOBILITY

One important requirement created by mobility is that hand-off between attachment points, event

when considering intra-technology, requires many messages, and the entire process must be

completed very quickly. This requirement and its challenges applies both to embedded devices such

as smart phones or PDAs, and to laptops. GSM technology, being a TDMA technology, allows devices

to use their idle time to hand-off between attachment points. However, the communication stack

must be able to react with real time assurances, which imposes the need for hard scheduling

guaranties. In packet based networks using CDMA, such as the widely used 802.11 family of

standards, hand-off is more complicated. A typical hand-off, in optimized situations, can take

around 50ms (see Figure 9) [6], and 4ms is the minimum achieved internally by our consortium.

However, these measurements are obtained in situations where terminals are mostly idle and no

other traffic exists.

Streaming video or audio requires hard scheduling deadlines, where packets must be sent at a

monotonic rate (10ms when considering ITU G.729). At the same time, the stream must be displayed

(or captured), and sent through the codec. With too many processes requiring hard deadlines, and

competing with a complex communication stack which must handle several interrupts per handoff

(at least one per packet), it may be difficult to always have hard guaranties. The result is that video

37 | P a g e D5.1 State of the Art S (o) O S

will lag or handoff will take longer, introducing packet loss, and consequently degradation in the

user perceived quality. Moreover, as multimedia applications become richer, the interval between

packets will decrease, imposing higher requirements on QoS and scheduling. With the advent of

multi core devices, its important for real time scheduling to be supported so that applications can

benefit for heterogeneous and mobile environments.

D) REAL-TIME REQUIREMENTS AND QUALITY OF SERVICE

Personal embedded devices (and in general other embedded devices like TVs, set top boxes, etc,)

exhibit some real-time requirements, although not critical as in the case of hard real-time systems

(see Section VI. 7.). In particular, such systems must interact with the user providing a high level of

Quality of Service (QoS). Quality of service includes functional requirements (as quality of

video/audio, resolution, graphical effects, etc.) as well as non-functional requirements (as frame-

rate, or sampling rate of audio streams, video or audio jitter, end-to-end delay). Of course, QoS must

be as high as it is possible, to make the user experience in using the device more satisfactory. Given

such constraints, these systems are usually referred as soft real-time systems, as computation and

communication must typically be performed within certain time windows; nothing catastrophic

happens if a time constraint is not respected, however missing deadlines can negatively impact on

the QoS.

In addition, such systems are subject to many other constraints. One is power consumption and

heating: these devices are powered by batteries that must last as long as it is possible. Also, they are

subject to a high pressure on production costs, which are reflected in the final cost for the user and

in the net income for the company. Therefore, as always, the objective is to achieve more with less.

In most cases, such systems are already multi-core and multiprocessor. The hardware architecture is

heterogeneous, consisting of one general-purpose micro-controller with one or more specialised

DSPs for specific tasks (like implementation of the RF communication protocol, or decoders for

audio/video). Streaming applications, which present the hardest challenges in these systems, can be

modeled by Data Flow diagrams, consisting of directed acyclic graphs of computations blocks, each

performing one specific functionality. The graphs are then mapped on the heterogeneous hardware

architecture, and an analysis is performed to identify bottlenecks, calculate throughput and end-to-

end delay, dimensioning communication buffers, etc. Typically, the analysis is stochastic, as it is very

difficult to estimate a-priori the execution time of such computational blocks, especially for

compressed variable bit-rate streams.

Interaction with the user (human-machine interface) is executed as a normal application on the

general-purpose processor which features a reduced version of a general-purpose OS (e.g. Win CE,

38 | P a g e D5.1 State of the Art S (o) O S

Figure 9: Handoff latencies of 802.11 with different

phases identified [6]

Android), or an OS specifically developed for embedded devices (iPhone OS, Symbian, etc.). Usually,

the DSPs run with a simple BIOS or a minimal OS that do not support multi-tasking and concurrency,

and do not allow preemption.

One of the main problems in programming such systems is the lack of standard libraries and

programming tools. Every vendor provides its own set of tools specifically targeted at their

technology. Most of the programming is done ad-hoc, though low level C/C++ or even assembler

code that must interface with the libraries provided by the vendor. Code is statically mapped on the

cores. A more standard and coherent approach would greatly benefit the development of such

application, greatly reducing development costs.

In the future, we expect a convergence between portable personal devices and regular PCs. On one

end, such devices will become more and more general purpose, including a larger amount of

services and applications. On the other end, the classical desktop PC has been substituted in most

cases by laptops and netbooks, which will probably be substituted soon by tablet PCs, and other

personal devices. We do not expect the “one-size-fit-all” paradigm: there will always be a large

amount of different solutions to cover different markets. For example, in professional environments

the classical PC with a keyboard and a screen will survive for a very long time. However, there is a

clear trend for integrating applications that now are only available on PCs into “personal” mobile

devices. Also, these devices will be “always connected” with local networks or Internet.

From the software point of view, we will see an increasing pressure for integrating different

heterogeneous applications in portable devices without losing too much in performance.

One possibility will be to off-load part of the computation on remote servers, so to save on energy

[104][105]. When in close proximity to a cloud, capacity can be borrowed from the surrounding

environment and make embedded devices capable of more intensive tasks. Cloud computing could

thus be an important opportunity to bring complex applications on these devices which will just

support interaction with the user, demanding the bulk of the computation to the cloud. This is a

scenario where S(o)OS can much improve over existing and near future use cases.

Also, interaction with the user will be much more sophisticated and “natural”, featuring voice-

recognition and synthesis, gesture recognition, and artificial intelligence to make the device more

“human”. In our opinion, sophisticated user interaction will still be performed on the device to avoid

large response-time delays and unavailability in case of broken connection. Such services will

require a medium-large computational power with low energy consumption, which can only be

achieved by using multi-core technology. We still don't know if the most appropriate multi-core

technology for these devices will be a standard general purpose array of processor or a

heterogeneous network-on-a-chip architecture with dedicated processors for different tasks,

although the second one seems to be more promising.

3. SOCIAL NETWORK APPLICATIONS

Social applications act in particular over largely

distributed data.

Compared to other computer usage (such as High Performance Computing or Multimedia

applications), social network applications (from the client perspective) have very little demands

towards the processor power. Also, data throughput and storage is comparatively low. However, if

we consider completely distributed social networking applications (without centralized systems), or

we consider the back-end supporting a typical social application, many challenges arise. In particular

with the growing interest social networks, the major obstacle is not so much the individual data, but

the combination of all concurrent data requests and processes, as well as the need for fast petabyte

scale storage systems – for example LinkedIn counts more than 60 million users already, and Twitter

39 | P a g e D5.1 State of the Art S (o) O S

even more than 75 million, and the numbers are growing. According to [13], in Facebook, which

already surpassed the 400 million active users, each person is connected to an average of 130 other

users and 60 other pages and events (groups, fan pages). Also form the same sources, each month,

the 400 millions users (100 million using mobile devices), exchange 25000 million objects, which

gives an average of 62.5 million transactions per user per month. The result is an astounding 260000

million page views [13]. If we only consider photos, Facebook reports that its storage increases at a

rate of 25TB per week. That is about 250MB per user per month for photos, numbers will be much

higher if we consider the complete set of interactions. As an example, reports indicate that it

generates 25TB of log data per day [10]!

In order to handle that size and amount of data, the principles of cloud computing have been

employed by data centres for a long time now. This means in particular that data (and some

functionality) moves and grows with the user: the higher data of a specific source is in demand, the

more often it is replicated. For example the eBay platform recorded in 2003 to have 670 million page

views, 120 million searches and 4 billion database calls a day [88]: if all auctions would get the same

degree of availability through replication, high-demand auctions would either be hardly available or

the full data size would go beyond the currently available data space of any data centre.

In general it can therefore be noted that both mobile and social networks put forward specific

requirements towards data throughput and availability.

A) REQUIREMENTS OF SOCIAL NETWORKS

Obviously, social network applications focus primarily on communication, and message / status, and

object (photos) exchange between members of the respective community. However, this can take

various forms, depending on demographics of the users primarily addressed by the networking

platform. For example, professional networks, such as LinkedIn or Xing focus on business-oriented

relationships and thus aim mostly at professionals aged between 30 and 50 – in 2008 they recorded

7.5M unique visitors in a month17. As opposed to that, social networks such as MySpace, Facebook

and Twitter aim at a broad user scope and provide general communication, status and event

services, such as picture sharing etc. Even though these networks typically attract a more younger

user demographic, Facebook registered 484M unique visitors in 2010 in one month18.

17 According to http://www.web2innovations.com/most-popular-web-2.0-sites.php

18 According to http://techcrunch.com/2010/04/21/facebook-500-million-visitors-comscore/

40 | P a g e D5.1 State of the Art S (o) O S

Figure 10: community building policies in different social networks

[87]

General purpose networks can take on different flavours and shapes, though they generally aim at

combining fun and entertainment with the communication and messaging capabilities. Second Life

takes a strong game-like approach towards such networking which includes a full 3d virtual

environment, very closely related to massive multiplayer online (MMO) gaming. As opposed to such

games, however, Second Life does not prescribe game missions and hence restricts itself to specific

gamer types, but instead allows people to “build their own world”. Surprisingly though, Second Life

attracts less users than World of Warcraft (WoW), one of the most successful MMO games: whilst

WoW attracted 9M users in one month, Second Life peaks at 1M. Even though 3d platforms are

expected to become more and more relevant even in social networking, the underlying

requirements and application types with respect to the virtual environment are effectively identical

to gaming (see section VI. 6.).

What is more important for social networks is the sheer amount of data communication: as already

mentioned in the introduction, the data per connection is comparatively small, as not even in MMO

games the full environment is transferred, but primarily control data, or just communication and

status update messages. The main stress on the system originates from the number of users which

access (down- and upload) data concurrently: e.g. in 2008 there were already 2-3 TB of photos being

uploaded to Facebook every day and traffic peaked at 300k images per second; Twitter served 3M

messages per day and Last.FM 18M tracks per day19.

Other type of applications which is around the corner are fully distributed social applications. These

arose from the fact that traditional web applications such as Facebook, MySpace, LinkedIn and

Twitter, create much concerns regarding data privacy. In these systems, users are frequently lost

between tens of privacy settings, and companies can change their privacy policy at any time.

Moreover, all information added to a system is seen as an asset of the company, in the same

manner a car or a building are assets. When companies are sold, merge or declare bankruptcy these

assets are made available to new persons. Eventually we will all loose track of who owns our

information.

Following this trend, future environments (e.g. Get6D) promote close collaboration between users

but in a decentralized manner. In this case, there are no privacy policy to agree upon and users are

responsible for making available or delete all their personal information. While public pages, such as

blogs, may be available, actual data is not centralized on ones system.

From a technological point of view, these environments rely in the concepts first developed for P2P

file sharing networks, yet they extend the standard TCP/IP network stack. The result is a pervasive

communication environment which must keep track of tens or hundreds of other systems all over

the world, with the support for distributed object access and reliable transaction support.

SUMMARY

The major requirements put forward by social network origins from their high data driven

application: this does not so much relate to latency and bandwidth per connection / communication,

but in particular to the amount of concurrent data streams and messages that are forwarded to (and

possibly broadcasted from) the individual user machine. On the server side, data management

implies in particular (1) high availability given (2) large degrees of concurrent access, implying

according means of (3) storage; finally (4) data consistency given the large degree of concurrency

will play an increasing role, though not in the same scope as in Cloud applications or shared

workspaces.

19 All statistics have been taken from [14].

41 | P a g e D5.1 State of the Art S (o) O S

4. OFFICE AND HOME USAGE

The most common usage of computing systems consists

in work desk and home applications which require

comparatively high interactivity and response rate

Home and office usage still dominates computer usage and as such defines many of the

requirements for next generation computer development. Nowadays, most desktop systems can be

distinguished according to three categories (of use): gaming, multimedia and office – each of these

systems put a different stress on its hardware configuration so as to meet the respective domains

usage requirements best. Whilst a large degree of home usage is defined by gaming and multimedia

applications, as well as by internet and social networks, a substantial part is defined by the more

office-related applications, including document management but also personal calendars, contact

management etc.

Since almost all enterprises and companies make extensive use computing systems as part of their

daily work, such applications have a substantial share in the market and even though the average

requirement towards such applications is low compared to e.g. gaming, users not only demand

richer and easier features, but in particular high interactivity and reaction speed: a surprisingly high

number of users complains about start-up time of both computer and application, even if that is only

in the range of 1 or 2 minutes in total [99][100].

A) SPECIFIC APPLICATION TYPES

Work related usage of machines is not restricted to word and spreadsheet processing, but actually

consists of a – typically strongly integrated – set of applications, which base on similar underlying

technologies though. Investigating the whole range of applications, one may in particular note the

following applications:

• word processing

• spreadsheets

• slide generation & presentation

• emailing

• task managers

• calendar

• contact manager / address book

• shared workspaces (document managers etc)

• database management

• etc.

It will be noted that common to all (home) office applications is the capability of (1) editing data

through the user, as well as generally some means of (2) saving and retrieving data (database, file

system). Further to this, some applications have specific functionalities in common which will be

examined in more detail in the following:

3. data management

this involves not only storing and retrieving data from a database, but also selection,

querying and some (simple) combinatorial and logical functions on these. The demands of

such calculations and combinatorial tasks are however way lower than the ones of typical

HPC applications (see there) by the magnitude of a few orders.

4. calendar / timer

a simple functionality to keep track of date and time in a way that allows association with

events and initiate reminders.

42 | P a g e D5.1 State of the Art S (o) O S

5. communication (internet etc.)

data (including files, databases, simple texts etc.) is more and more frequently

communicated over the web – not only in the form of email, but also for the purpose of

sharing documents and tasks in a workspace etc.

Emailing for example essentially consists of the capabilities to edit text (1) and communicate it over

the network (5). Typically, one will also store the mails (2) and potentially execute searches over

them (3), and finally maintain the information about time of arrival, response etc. (4). A spreadsheet

consists of a mostly textual editor (1) that enables data management functions (2) on storable data

(3). We will not elaborate this for all applications, though, as the principle is quite apparent.

From these categories it can be noted that the general requirements of these applications types are

comparatively weak (regarding computational performance) as compared to the other application

domains. Main computational load rests in particular on potential data queries and combinational

tasks, as well as graphical displaying and editing, depending on the complexity of the graphics – note

that explicit graphic manipulation capabilities are treated under the subsection of Multimedia and

Gaming (see there).

Requirements

With the set of application kernels (cf. “13 dwarfs”, section on HPC), a set of functional capabilities

can be derived that are needed in order to realise the application's demands. For most of these, the

direct requirements are quite obvious:

1. editing data:

To support data editing, some form of visualising data is needed, as well as some means of

interactivity, such as keyboard input management. Whilst these requirements sound like

they can be taken for granted, graphics demands even in common desktop applications

increase constantly – be it for the (aesthetic) visualisation of (potentially dynamic) data or

for preparation of slides with diagrams and charts. As compared to more demanding,

specialised applications, the data set is typically much smaller, but similar visualisation

techniques are employed (see Multimedia and Gaming; HPC).

More critically though is the aspect of interactivity in this context: for direct interaction with

a machine (i.e. typing etc.) to not become cumbersome, interactivity delay must be lower

than 100 ms, and in order to not interrupt the user flow, displaying information should not

be delayed more than 1s, though the user will not have the feeling of acting directly on the

data any more [34]. Both these aspects imply that direct working on the internet without

additional precautions is not acceptable for the (home) office application types. This also

restricts the acceptable routing delay within a distributed system for acting on the data – in

other words: fast processing is secondary, if the data is not displayed fast enough.

2. saving & retrieving data:

Next to the availability of some storage element (typically some disk storage somewhere)

that is persistent enough for the purposes of the application, a similar delay time as for data

editing needs to be respected (less than 1 second to maintain user flow, less than 10

seconds to keep user's attention focused [34][35]). To this end, loading and saving of data is

typically executed in the background of the application, which means that an image of the

data at save time is needed to not create data conflicts or block the user interaction with

the data.

43 | P a g e D5.1 State of the Art S (o) O S

3. data management

In home office applications, data is not only created and stored, but typically processed too

(e.g. spreadsheets). Though mostly the required combinatorial functionality scope is

comparably low, most spreadsheet systems offer a mathematical capability scope that does

not yet fulfil the complexity or depth of MatLab or similar programs, but is getting closer.

Essentially, Excel formulas are small programs which can essentially be solved by a finite

state machine and thus have similar requirements towards the system – in worst cases,

linear algebra solvers etc. have to be executed though again typically on less data than in

more demanding applications (see section on HPC). Accordingly, workload distribution will

typically cause more delays due to segmentation and distribution than gained by the

parallelised execution.

4. calendar / timer

The capability to maintain date and time does not pose specific demands on the system,

unless real-time requirements have to be respected. In case of the given applications, this is

however not the case.

5. communication (in the sense of internet)

Even though the size of data in these kinds of applications is small compared to the data in

multimedia or HPC applications, data throughput of the network is a critical factor in these

cases due to their interactivity demands. In particular with the growing integration of

networked resources for application purposes (outsourced storage, collaborative

workspaces, cloud environment etc.), it is important that this does not cause unnecessary

delays or bad user experience. Unfortunately, not all tasks can be executed in the

background of the application, so that time constraints, and more critically coherency and

synchronisation constraints have to be respected across the systems involved. Reduced

latency and increased bandwidth alone are insufficient to address this issue as data need

will grow faster – instead new data distribution and data management approaches are

needed, as well as means for handling updating and coherency maintenance in the

background.

B) SUMMARY

The most critical aspect in (home) office applications consists in their demand for interactivity and

the implicit real time constraints with time windows of less than 0.1 seconds for direct

communication (mouse, keyboard) and less than 1 second for interactions that maintain usage flow.

In particular in shared workspace environments, where changes on one end would affect the data

on all other ends, time delays may lead to bad user experience.

On the other hand, most applications of these kind are strongly data editing (and hence interactivity)

centric, but produce comparatively little processor work load, so that the actual computational

requirements are mostly low and have only little parallelisation requirements.

44 | P a g e D5.1 State of the Art S (o) O S

5. MULTIMEDIA & STREAM-PROCESSING

Applications acting on (audio & video) streams require

high data throughput.

Speaking of multimedia we think of digital audio, video and still images. Presentations including

effects which require 3D support like the visual controlling enhancements when browsing through a

collection of images or a document can also be added to this section.

Encoding and decoding high resolution video including one or more audio channels is a very

processing intensive task when done by a multi-purpose processing unit without support of specific

functions in hardware. Equipping devices with such powerful processors is both expensive and not

very wise thinking of the power consumption and heat generation especially on mobile devices.

To enable HDTV decoding on netbooks NVIDIA recently came up with the ION chipset20 which

enables the Intel Atom, mostly built into small desktop systems and netbooks, to replay H.264 full

HD video content.

The recording and encoding of digital video with high resolution is a much more computation

intensive task than decoding and is therefore mostly done in hardware to meet the real-time

requirement, for example in camcorders or video telephony and conferencing systems. When

recording digital video, not only the processing power to compress the frames in real-time is a

limiting factor but also the access to data storage for video and audio data which also implies the

handling of large data sets. Most times this is a trade off between data size and processing power.

Keeping the same image quality can either be achieved by less processing intensive codecs and a

higher data bandwidth or more advanced computing intensive video compression at lower data

rates.

3D accelerated handheld devices like the iPod, iPhone etc. also use specialized hardware to display

3D effects. Unlike the modern graphics adapters from ATI and NVIDIA these controllers are also

optimized for low power consumption and support only a set of specific operations like resizing or

rotating still images in real time21.

Not only mobile equipment but also desktop machines can gain profit from application specific

hardware audio and video accelerators. Hardware for a specific purpose can be optimized for low

power consumption, handling high data rates from audio and video sensors and covering real time

requirements regardless of the power of the main processor.

Most graphic adapters of consumer home computers contain hardware accelerators for video

decoding of online content and DVD video to reduce the CPU processing load or even enable the

system to decode the streams in real time. This has been the usual setup since the late 1990s when

the MPEG-2 standard was used for digital video on the nowadays widely available DVDs. With the

rising core frequency and with that the additional processing power decoding an MPEG-2 stream

was no longer a killer task, but bandwidth to broadcast or stream video compressed in MPEG-2 was

an issue. The follower of MPEG-2 was MPEG-4 Part 2 more commonly known by the names of codec

implementations like Xvid or DivX which were capable of compressing video at much lower bitrates

but keeping the same image quality. Many consumer standalone DVD players nowadays are able to

playback not only MPEG-2 video stored on DVD discs but also MPEG-4 compressed material which

usually fits on a single CD-R at the same image quality22 .

In the last few years, when high resolution flat panels got more and more affordable by consumers,

two optical media standards emerged: the HD DVD and the Blu-ray Disc. The two formats stood in

competition to each other on the market which was won by the Blu-ray Disc when Toshiba dropped

20 More information is available at: http://en.wikipedia.org/wiki/Nvidia_Ion.

21 http://en.wikipedia.org/wiki/IPhone

22 http://arstechnica.com/gadgets/guides/2009/12/from-cinepak-to-h265-a-survey-of-video-compression.ars/

45 | P a g e D5.1 State of the Art S (o) O S

the development of HD DVD standalone players and Sony's PlayStation 3 was a widely available

game console capable of playing Blu-ray Discs23.

The video compression used for high definition material on Blu-ray Discs and for digital television

broadcasting over satellite or cable is MPEG-4 Part 10 or more commonly known as H.264 which

again outperforms MPEG-4 Part 2 in times of video quality and bandwidth usage at the cost of being

more processing intensive to decode. The follower of H.264, currently under development, will be

H.265 introducing a loss in picture quality when looking at the single frames of a video sequence. But

since video is about moving pictures the single frame quality of fast paced video sequences won't be

noticeable by the human eye.

Besides the development in video compression technology content creators keep looking for new

ways of improving their material by adding new visual experiences like 3D effects to movies like the

2007 production 'Beowulf' viewable in IMAX movie theatres and the 2009 production of 'Avatar'

which was also available for regular movie theatres equipped with a technology to synchronize

special shutter glasses worn by the audience.

Offering 3D material for the consumer market TV panel producers like Samsung, Panasonic and Sony

recently started selling kits of shutter glasses to be used with their products for watching 3D enabled

Blu-ray movies. Focusing the desktop PC market NVIDIA offers solutions to enable 3D experience for

computer games as well as digital video on home computers equipped with their recent graphics

adapters in combination with LC monitors capable of running at a display rate of 120 Hz and a pair of

shutter glasses24.

SPECIFIC APPLICATION TYPES

Large streaming applications include radar and radio astronomy. These application are now currently

implemented as phased-array receivers that use multiple antenna elements to pick up radio waves.

The antenna elements are positioned at a certain distance from each other, such that the wave front

arrives at slightly different times at the various elements. By combining the signals from all

elements, the original signal can be restored and the direction of the transmitter is obtained. This

process is called Beamforming. Multiple transmitters can be traced at the same time by applying

different delays to a copy of the input signals. State-of-the-art radar systems can for example form

10 beams, thus tracking 10 objects, at the same time.

A state-of-the-art radar has around 4096 antenna elements, that are sampled at 16 bits at 200

Mbps. The resulting stream is thus 13.1 Tbit/s at the input of the digital system. The required

processing is equally large, with around H*410 GMAC/s for the antenna processing (H-order FIR-

filter with H/2 non-zero elements), and around 8.2 complex TMAC/s for the beamforming (when

beamforming 10 beams). This also results in a large amount of internal communications, where the

communication between the antenna processing and the beamformer reaches 54.2 Tbit/s (assuming

32bit complex numbers) and 128 Gbit/s between the beamformer and the information processing

part. These figures should give some indication about the large amount of processing that is

required for these systems, and that even only buffering for a second already requires a large

amounts of low-latency (and most likely high bandwidth) storage.

Synthetic Aperture Radar (SAR) Satellites also use beamforming techniques, and although they do

not form as many beams as radar systems found on military ships, they are burdened with

compressing the information stream to fit the limited bandwidth of the communication link between

the satellite and the base-station. The resulting computational complexity (given by the number of

(complex) operations) is in the same order as the computational complexity of the radars found on

23 http://en.wikipedia.org/wiki/High_definition_optical_disc_format_war

24 (http://www.nvidia.com/object/3D_Vision_Main.html)

46 | P a g e D5.1 State of the Art S (o) O S

the military ships. The power envelope of SAR-Satellites is however many orders smaller than the

power envelope of ship-based radars (30 Watt vs many KiloWatt).

SUMMARY

• Stream processing (encoding and decoding) often performed by dedicated processors

in heterogeneous platforms

• Typically organized as Data-Flow graph applications

• Soft Real-Time requirements that impact on Quality of Service (QoS), require precise

QoS control over computational and communication resources

• Higher definition and 3D will require more bandwidth and higher computational

requirements

• In SAR, power requirements and large amount of data require

6. GAMING

3D worlds dominate the gaming industry which

demands high interactivity and fast graphics

processing.

Playing console or PC video games is listed amongst today's most common leisure activities in

Europe, where 40% of the European population spends about 6-14 hours a week on playing video

games [17],[18]. In the USA about 68% of the households play computer of video games, 42% of

homes in the USA have a video game console, and 37% of heads of households play games on a

wireless device such as a cell phone or PDA [15][16]. In Europe 44% of gamers also play on a wireless

device [17]. In the USA (2008), game console software sales totalled $8.9 billion with 189.0 million

units sold; computer games sales were $701.4 million with 29.1 million units sold; and, there is $2.1

billion in portable software sales with 79.5 million units sold. Although these figures do not include

the revenues made from the advertisements usually displayed in the (browser-based) free-to-play

games, it is clear that (portable) console games are dominant in the interactive entertainment

industry.

Examining the specifics related to these console software sales we see that the most popular game

genre is “Family Entertainment”, which accounted for 19.3% of all games sold in 2008. In addition, of

the games sold in 2008, 57% were rated “Everyone (E)” or “Everyone 10+ (E10+)”. Also the top 5

console games includes 4 games for Nintendo's Wii console, which are all “Family Entertainment”

games. Only 16% of the games sold holds the “Mature (M)” rating, which includes the 5th most sold

console game for 2008, Grand Theft Auto IV for Xbox 360. Of the top 20 (portable) console games,

there were 7 games for the Wii, 6 for the Microsoft's Xbox 360, 5 for Nintendo's portable DS

console, and 2 for Sony's PS3.

Examining the specifics related to computer software sales we see that the most popular game

genre is “Strategy”, which accounted for 34% of all games sold in 2008. Also Role-Playing is a popular

genre among computer game players, accounting for 19.6% of all games sold. This last figure

correspond with the top 5 computer games, which includes 3 games belonging to Activision-

Blizzard's popular World of Warcraft series.

62% of European computer and video gamers also play these games online [17]. 42% of gamers

between the age of 6 and 42 in the USA play games online for 1 or more hours a week [18]. Of these

games, the games that are played the most belong to the type “Puzzle/Board

Game/Show/Trivia/Card” which are usually (browser-based) free-to-play games. Followed by

“Action/Sports/Stragegy/Role-Play” with 21%, and “Persistent Multi-Player Universe” on 3rd place

with 16%.

47 | P a g e D5.1 State of the Art S (o) O S

A) SPECIFIC APPLICATION TYPES

Games will be subdivided into 3 main platforms: Non-portable consoles (such as Wii and PS3), PC

and Mobile (which includes portable consoles such as the Nintendo DS). As all three platforms can

connect to the internet, online games have been included in this section as well.

Console – Low-Performance

The main difference between console games and pc games, is that console games are usually the

only running program on the platform. Console games are also expected to be playable within

seconds the console is turned on. So this means that the demands on an operating system are few,

just that it initialises the system fast, and relinquishes control to the gaming application as soon as

possible.

PC – High-Performance

PC Games that are most demanding on their hardware, and are used to benchmark the latest GPUs

and CPUs are those that fall within the “First-Person Shooter” (FPS) genre. Familiar titles include Epic

Games' “Unreal” series and ID Software's “Quake” series. Crytek's “Crysis: Warhead” is considered

todays most demanding (and perhaps least efficient) game in the FPS-genre used to benchmark the

latest range of GPUs. Only the latest GPUs such as Nvidia's GeForce GTX480 (Fermi/GF100

architecture), in combination with high-end CPUs (Intel Core i7 920), can now can display the large

open worlds with a minimum of 30 frames-per-second25 (although the average case is higher), when

the game is set to its highest visual fidelity settings on a FullHD (1920x1200) screen.

Although the introduction of video cards that support DirectX 11 might make one of the newer

games, such as A4 Games' Metro 2033 (which uses specific DirectX 11 features) the “default” gaming

benchmark. A synthetic benchmark used to test how well graphics cards perform for these high-

performance games is the 3DMark benchmark suite, with 3DMark Vantage being the latest

instalment.

The reason that the FPS-genre, and especially games like Crysis, are so demanding on the hardware

is that they try to display interactive, realistic, open 3D worlds, with a lot of foliage, as a live stream.

Having 3D worlds approach reality does not only mean the realistic rendering of all its objects, but

also modelling the physical interactions between all its objects, such as trees moving in the wind and

the destruction and collapse of buildings.

Mobile

With the porting of Snake from TI's graphical calculators to Nokia's mobile phones in 1997, the first

game for a mobile phone was born. With the introduction of smart-phones, new games can be

downloaded and installed on a phone, increasing the market for mobile game developers. Games

cause a mobile phone to be in constant use, so although the battery-hungry antenna might not be

used, the backlight of the screen as well as the CPU of the mobile device are put to constant use.

This means that the OS should cater for several power-saving techniques that are “gaming-friendly”,

such as saving the state of the game and shutting it down after a certain time of inactivity.

B) ONLINE GAMING

The nature of the Internet poses several challenges for the real-time requirement of online games.

The Internet is a shared medium and packets can be lost or delivered out of order. Which means

that, there are no guarantees of network bandwidth, latency or reliability at all.

Most online games run on a client-server architecture, which enables large scale Internet gaming. In

this architecture the server is authoritative and, as such, it is responsible for all game play decisions

25 30 FPS is considered as the minimum frame-rate for high-pace games at which motion appears smooth

48 | P a g e D5.1 State of the Art S (o) O S

[20]. If the latency between the client and the server is large enough, the responsiveness of the

game to a player action decreases, and the player performance is likely to degrade. However, not all

games are equally tolerant to latency. In a “First Person Shooter” game, shooting at a moving

opponent is greatly impacted by latency, while in a “Strategy” game, selecting a set of troops and

moving them across a battlefield tends to be less sensitive to latency [22].

Game traffic behaves differently in different phases of online gaming. During a play session, the

traffic rate of an action game depends mostly on the players actions, while in a MMO game the

traffic rate is more consistent [36]. A player can join a game in the middle of a session and it may

need to download assets from the server if these are not cached locally. Downloading imposes a

high demand on bandwidth which as to be balanced with other clients already playing. But due to

lack of QoS, game servers have to use a hard limit on the download rate, resulting on less efficient

use of bandwidth.

Action games, like a “First Person Shooter”, are one the most demanding games for bandwidth,

reliability and latency. If network bandwidth was unlimited, at each game state update26 a server

would send an exact game state update to all clients. The reality is that, the limited bandwidth and

the low latency requirement makes this difficult27, and while bandwidth has been increasing so has

the complexity of action games (more complex game physics, wide open areas with player manned

vehicles and on foot). To overcome this issue, a game server transmits a reasonable approximation

of the game state to the client [20]. Client side prediction is used to compensate this approximation

and also packet loss, however its accuracy depends on available bandwidth and rate of packet loss.

The TCP transport protocol is widely used for the majority of reliable Internet traffic. In the early

days of online gaming, it was used by most game engines. TCP provides means for flow control,

congestion control, ordered delivery and reliability. Thus it was far more easier to write a game

engine using TCP, and at the time, very few had Internet access. However, for more demanding

game genres TCP provides a much more poor experience, because reliability comes at the price of

retransmissions that increases latency. While today most demanding games avoid reliable transport

protocols, games that are less sensitive to latency have successfully use it, which is the case of

games like World of Warcraft [20]. Nevertheless, TCP still has some undesirable features that impact

latency. One of these is the Nagle algorithm, which is supposed to improve efficiency by waiting for

small chunks of data to be gathered for sending within a threshold. This has the obvious side effect

of increasing the latency, thus it is usually disabled by the option known as TCP_NODELAY28.

To overcome the poor experience provided by TCP in more demanding games, many have

implemented middleware solutions on top of UDP. UDP is much like the underlying IP protocol, in

that there is no congestion control and mechanism for reliable or ordered delivery of packets. For

games with high sensitive to latency, its critical that clients receive frequent updates of the game

state, if a packet is lost there's no point in being retransmitted because only the most recent game

state matters. While receiving the position of opponents can be unreliable other actions, such as

firing a weapon, must be transmitted to the server reliably. Unfortunately, UDP does not provide

any support for reliability, congestion control, flow control and connection management. The

middleware solutions implemented by most games address some of these. But some issues, like

congestion and flow control, are not trivial.

One protocol that provides many of the requirements for online games is SCTP. Originally develop

for telephony, it provides reliable and unreliable packet based communication. However, because of

26 A game state update is the state of the game simulation at each iteration.

27 For low latency it is desirable to send a game update in one packet, thus avoiding the additional delay between

packets for the same game state update, but this is limited by the MTU. To overcome this, games prioritize

individual object state to be sent to clients based on their impact on game play [20].

28 In Berkeley like socket interfaces, see:

http://www.opengroup.org/onlinepubs/000095399/basedefs/netinet/tcp.h.html

49 | P a g e D5.1 State of the Art S (o) O S

its lack of support on major commercial operating systems, little is known on how it performs for

online games in a real world scenario.

C) SUMMARY

Figures [15][16][17][18] show that console gaming is the dominant form of gaming as far as

revenues are concerned. Within this domain, by total units sold, the casual “Family Entertainment”

genre prevails, and games for Nintendo's Wii hold the #1 to #4 spot in the top 5 console games. This

shows that cheap/low-performance hardware, combined with software for 'casual' gaming, is the

platform/game combination where most money is made. Games that are most demanding of their

hardware include games that fall within the “First-Person Shooter” genre, such as Crytek's Crysis,

and are usually rated “Mature (M)” which only account for 16% of the sales, for both video and

computer games.

So from an economic point of view, it seems wisest to focus on those aspects of an operating system

that are most beneficial for running 'casual' games on low cost / low performance hardware, and not

the hardcore/mature games that run on high-cost / high-performance hardware.

There also seems to be a move to duplicate parts of the game to an online platform, for example

Activision-Blizzard's World of Warcraft has an iPhone application with which you can access the in-

game marketplace. In some sense, World of Warcraft's in-game market has actually become a

service which you can not only access using the regular game-client, but also a mobile application or

even a web application.

In spite the best effort nature of the Internet, online games have been successfully in providing a

general good experience. Still, many improvements can be done as the complexity in games will

continue to increase. Requirements on future networks to support bigger MTUs will help keep low

latency, as more information can be transmitted on a single packet. More flexible transport

protocols with reliable and unreliable communication, packet and stream based flows for the game

communication needs. And QoS that can be adapted for different game traffic patterns during the

various game play phases.

7. HARD REAL-TIME CONTROL APPLICATIONS

Hard real-time systems require predictability of

response-time, and at the same time early performance

estimation through accurate hardware models

This class of applications includes plant control, robotic and industrial automation systems,

aerospace and automotive systems.

Typically, these applications have critical timing requirements, so they are called hard real-time

systems. They are implemented by a set a periodic concurrent threads, that must complete before

their deadlines, otherwise the system correctness could be compromised. Depending on the

criticality of the applications, missing a deadline could have catastrophic consequences. An example

is the software for controlling the brakes of a car: a bug can cause the malfunctioning of an essential

component of the car safety, which in turn can cause injuries to human beings.

The design of these systems is quite complex due to the strong requirements on software testing

and verification. The main programming language is plain C, mainly for efficiency reasons. However,

development is supported by design and analysis tools that guide the developers through all phases

of the life cycle:

• specification of the control algorithm in high level graphical block languages (e.g. Simulink

and Stateflow from Mathworks, or UML Statecharts and MARTE UML);

• to code-generation;

50 | P a g e D5.1 State of the Art S (o) O S

• mapping or code on threads, and of threads on computational nodes;

• configuration of threads parameters (e.g. priorities, periods, etc.)

• static analysis of the code for estimating execution time;

• scheduling analysis to identify potential deadline misses or bottlenecks;

• and finally, generation of test-cases.

In certain contexts (e.g aerospace applications) reducing the cost is a secondary objective, safety

being the first. In other areas, developers are subject to a high cost pressure: it is the case of

automotive software, where electronic boards and software are produced in large amount of pieces,

and reducing the cost of the hardware can bring significant cost reductions. Thus, from one side

there is pressure on safety and validation; on the other side there is pressure on reducing cost by

using the least powerful computational resources.

In the past, safety and fault tolerance were achieved by using a separate hardware board for each

different feature. Considering again the case of automotive software, brake control was running on a

physically separated board than e.g. power train and gear shift controllers. However, such approach

does not scale well with the ever increasing number of required features. Hence, the need to

integrate different features on the same physical board, possibly featuring a multi-core embedded

microcontroller.

Many chip vendors are proposing their own multi-core solution tailored to embedded systems, with

a significant reduction in power consumption, heating, etc. with respect to single core solution with

similar computational power. Examples are the ARM 11 [32], the PowerQuiCC Series from Freescale

[33].

Currently, penetration of such architectures is still slow in the domain because of the lack of proper

design and tools for multi-core, for the increased difficulty of synchronization, and for the lack of an

establish real-time scheduling methodology.

For the next future, we foresee a slow but steady increase in the adoption of multicore technologies

for such systems. However, it is clear that the adoption of multi-core and many-core platforms will

only be justified by a strong market case, as most of the developers are concerned with the

increased difficulty in designing, programming and analysing parallel software rather then single-

processor concurrent software. Therefore, as the availability of software design techniques and tools

for multi-core processors will be more widespread, the market will move to multi-core solutions as

well, most probably with a few years of delay with respect to non-real-time applications.

51 | P a g e D5.1 State of the Art S (o) O S

VII. CONCLUSIONS: REQUIREMENTS & RELEVANCE

Given the expected developments and the usage scope, an initial assessment of which features future

systems need to address can be provided

1. A GLIMPSE OF THE FUTURE

From the analysis on the expected future trends in common application domains made in the

previous chapter, we can now try to forecast the emergent future applications, and the

requirements they will pose on future generation computing systems. As already discussed, the user

requirements are the main forces driving development in the computing domain, the ones that will

select the most successful strategy out of the many tentative paths that will be tried by hardware

and software designers.

However, it is important to underline that future computing architectures, and the expected

increase in computing power, will enable new applications (or new services for existing applications)

that are simply impossible right now due to their high computational requirements that cannot be

fulfilled by current technologies. Therefore, it is not always clear who is the driver: is application

requirements that impose the development of certain technologies, or new technological advances

that make new applications possible?

This chicken-and-egg problem, however, should not refrain ourselves from reasoning about the

future of computing technology and application usage: while it is impossible to forecast the future,

the general directions that the computing technology will take are quite evident from the discussion

made in the previous chapters. In the following section, we will pin-point general characteristics of

current and future applications and the requirements they impose on the underlying technology.

2. REQUIREMENTS FOR REALISING THE FUTURE

In order to identify the requirements of future emerging application, we first classify applications

according to their general characteristics. Then, we will derive requirements from these general

characteristics. The following table provides a correspondence between applications described in

the previous chapter, and characteristics.

52 | P a g e D5.1 State of the Art S (o) O S

C
o

lla
b

o
ra

tiv
e

In
te

ra
ctiv

e

R
e

a
l-T

im
e

S
tre

a
m

in
g

D
a

ta
-In

te
n

siv
e

C
o

m
p

u
ta

tio
n

-

In
te

n
siv

e

B
a

n
d

w
id

th

re
q

u
ire

d
 (h

ig
h

 =

la
rg

e
)

La
te

n
cy re

q
u

ire
d

(lo
w

 =
 little

la
te

n
cy)

C
o

u
p

lin
g

 le
ve

l

(d
e

g
re

e
 o

f

syn
ch

ro
n

isa
tio

n
)

S
ca

la
b

ility

O
ff-lo

a
d

in
g

M
o

b
ile

Sp
e

cia
lize

d
 H

W

H

P

C

Embarrassingly parallel (P2P

computing)

No Generally

no

No Rarely Sometimes Often (e.g.

Folding@

Home)

Relatively

high

Relatively

high

low Essentially

horizontal

Yes No No

Embarrassingly parallel (like

visualisation)

Maybe Maybe Maybe Maybe Often Rarely average Relatively

low

Low

(rendering)

Horizontal /

Vertical

No No Yes (GPU)

Tightly coupled (e.g. structured

grids)

No No Rarely Rarely Often29 Often Relatively

low

Very low High Vertical No (latency

too high)

No Often

Cloud Computing (Grid and similar) Often Often rarely Rarely Rarely Rarely high due to

replication

Relatively

high30

Low Horizontal Yes Maybe No

Personal devices (client) Maybe Yes Rarely Maybe No No Relatively

low

Interactive

(<0.1s)

LOW - YES YES yes

Social Networks

(server)

YES Yes - Maybe YES - High due to

replication

Interactive

(<0.1s)

LOW horizontal - - -

Office/Home

(server)

YES Yes - - YES (server) - High due to

replication

Interactive

(<0.1s)

LOW horizontal YES - -

Office / Home (standalone PC) Rarely (but

increasing)

Yes No No Maybe Rarely - Interactive

(<0.1s)

None None no (cf

clouds)

Rarely No

G

a

m

i

n

g
31

standalone No Yes Soft often Yes

(rendering)

Increasing

(AI, PhysX)

n/a Interactive n/a None32 No some-times Yes

(consoles)

MMO (client) yes Yes soft No Yes High

(graphics)

average interactive low none Yes (see

MMO

server)

Sometimes Yes

(consoles)

MMO (server) Indirectly indirectly soft No No Low High

(server)

interactive average Horizontal33 Yes

(rendering)

No No (GPU)

Action (client) Yes Yes Soft Yes Yes High

(rendering)

Average Low Low Vertical Maybe - Yes

(GPU)

29 simulations

30 Depends on interactivity

31 See HPC: visualisation for rendering related aspects (part of most games)

32 Vertical for graphics cards

33 Also vertical for graphics

C
o

lla
b

o
ra

tiv
e

In
te

ra
ctiv

e

R
e

a
l-T

im
e

S
tre

a
m

in
g

D
a

ta
-In

te
n

siv
e

C
o

m
p

u
ta

tio
n

-

In
te

n
siv

e

B
a

n
d

w
id

th

re
q

u
ire

d
 (h

ig
h

 =

la
rg

e
)

La
te

n
cy re

q
u

ire
d

(lo
w

 =
 little

la
te

n
cy)

C
o

u
p

lin
g

 le
ve

l

(d
e

g
re

e
 o

f

syn
ch

ro
n

isa
tio

n
)

S
ca

la
b

ility

O
ff-lo

a
d

in
g

M
o

b
ile

Sp
e

cia
lize

d
 H

W

Action (server) Indirectly Indirectly Soft Yes No Medium-

High

(physics)

High Low High Horizontal Yes

(rendering)

- Maybe

(physics)

Remote Rendering (client) Yes Yes Soft Yes Yes Low Medium Low Low Vertical Yes - Maybe

(video

decoder)

Remote Rendering (server) Indirectly Indirectly Soft Yes Yes High High Low Low Horizontal

and Vertical

No - Yes

M

u

lt

i

m

e

d

i

a

Offline Video & Audio - - Soft

(frameskip)

Yes Yes rarely n/a n/a Low Vertical

(Vector)

n/a Maybe often

Online Video & Audio - - Soft

(frameskip)

Yes Yes rarely high low low Vertical &

Horizontal34

Implicit Maybe often

Video Chat Yes Yes Soft

(frameskip)

Yes Yes Rarely High Low Medium Vertical &

horizontal

Partially Maybe often

HRT Control applications - - YES Maybe - - HIGH YES - - -

Data retrieval (search engines) - - - - YES YES

(indexing)

LOW YES - - Maybe

On-line trading YES YES YES - YES - HIGH YES - - -

34 Vertical for vector processing, horizontal for handling multiple clients

In the following, we will analyse and discuss each one of the characteristics listed above and derive

requirements for the 4 research areas addresses in the project, namely hardware platforms,

communication, operating systems, programming models.

A) COLLABORATIVE

An application is collaborative when it consists of multiple clients/peers, relative to different users,

that can access and modify common shared data. All clients/peers share some state: however, the

different views of the global state may or may not be always synchronised and consistent (see

coupling level below). For example, in certain collaborative applications like document editing or

chatting, at some instant one user can see an old view of the state while the others may see a more

updated view. The different views of the state will eventually be consistent among each other. In

other applications (like on-line trading, or on-line gaming), instead, it is important that all peers

always have the same consistent view of the shared state.

Requirements:

• Collaborative applications are mostly distributed (client/server or p2p). The bandwidth and

latency requirements depends on the specific application type. Some collaborative

applications are interactive in nature (e.g. online chats).

• They are expected to deal with a large number of users, thus one important requirement is

scalability with respect to number of users (horizontal).

• The memory model (shared or distributed, global consistency and coherency) depends on

the type of application.

• Generally, consistency and coherency needs to be maintained.

B) INTERACTIVE

An application that interacts with one (or multiple) human user, which requires a response in a time

relative to typical human time-constants, depending on the type of interactivity desired: for hard

interactivity, less than 100ms reaction time are desired; for web like interactions (user flow), up to

1s delay is acceptable [108].

Requirements

• The typical requirement of interactive application is low-latency. To achieve low-latency it

is necessary to operate at different levels of the system:

◦ latency of computation (response time) requires proper scheduling/allocation of

resources;

◦ latency of communication (synchronisation) for distributed applications;

◦ latency of I/O devices for data-intensive applications.

• Notice that we make a distinction between interactivity and from real-time requirement, as

interactivity is a fuzzy concept that is mostly treated in a best-effort, heuristic way.

C) REAL-TIME

The application has real-time constraints, either hard real-time (i.e. missing a deadline may cause

some incorrect computation) or soft real-time (i.e. late computation degrades the quality of service

without causing incorrect behaviour). Again, real-time imposes a constraint on latency. As opposed

to interactive applications, however, in real-time applications latency needs to be estimated a-priori,

either at design time, or when launching the application. In both cases, an admission control test is

done to estimate the expected performance, and if the performance is not satisfactory, an

appropriate action is taken. This requires precise modelling and analysis of the system performance

off-line; and on-line monitoring of resource usage at run-time. Also, operating systems services

55 | P a g e D5.1 State of the Art S (o) O S

needs to have predictable behaviour and predictable response time, and this in turn may impose

constraints on the hardware (i.e. cache may be locked or even disabled because it introduces

unpredictability).

Requirements

• Predictable hardware; this implies precise control over (and knowledge about) hardware

features like cache, processor interconnects, so to minimize unpredictable execution time.

• Predictable OS; operating system services must be designed and implemented to have a

predictable execution time; heuristic algorithms will never be used in favour of predictable

algorithms. For example, the scheduler must be based on priorities; memory allocation

algorithms must have a predictable worst-case execution time; priority-based access to I/O

devices; etc.

• Predictable, QoS-aware communication protocols: it must be possible to allocate a virtual

channel with guaranteed minimum bandwidth and maximum latency over the network.

• On-line monitoring; both the hardware and the OS must allow for on-line monitoring of the

performance of the real-time tasks.

• Memory model can be based on shared memory or distributed message passing, as both

models allow for predictable algorithms as long as the previous requirements are met.

• Predictable application behaviour: in particular computation driven applications are difficult

to assess with respect to their execution time.

D) STREAMING

Applications that stream data from/to the user, in which data must be processed periodically at a

certain rate (e.g. audio/video encoders and decoders). The main characteristic here is the constant

(or periodic) arrival of data that can be of constant size (CBR) or variable size (VBR). In the case of

MPEG2 coding, data belonging to different frames

Streaming applications essentially require that the same logic / operations are executed on a series

(stream) of data and the behaviour is (only minimally) influenced by the data itself.

Requirements

• Network on Chip architectures may be used in this case, as streaming applications have a

data-flow-graph structure, where each block in the graph can be implemented on a

different processor, and data flowing between blocks can be supported by dedicated point-

to-point processor interconnections.

• Specialized hardware resources; SIMD processors perform best in these cases (for example,

vector processors or dedicated FPGAs for encoding and decoding).

• Cache for data: the typical data throughput is higher than the available cache size allows to

store – accordingly, streaming applications quickly reach the point where data has to be

gathered via external I/O (disk, network). Data throughput therefore primarily depends on

how fast data can be forwarded to the compute units. A simple cache hierarchy can thereby

lead to additional delays (as requests are routed to the higher levels) [107].

• Bandwidth may compensate latency by pre-fetching data – e.g. by employing stream load

cache extensions [106].

• The problem can be solved by a parallel algorithm, which can thus employ multiple data /

cache lines.

• The OS needs to support asynchronous I/O services, to pre-load successive data frames

while processing current frames.

• The OS needs to support some real-time mechanism, to allow synchronization and periodic

execution of the code. For example, audio and video must be synchronized to prevent bad

56 | P a g e D5.1 State of the Art S (o) O S

effects. However, in most cases streaming applications have soft real-time requirements,

thus it is not required that the OS be fully real-time.

• The programming model should take into account the fact that most of this applications are

modelled by DFG. MPI is already a good choice, and in general support for communication

and buffering at the programming/library level helps the programmer to write clean and

portable code. Streaming SIMD extensions may have to be explicitly invoked [106].

E) DATA-INTENSIVE

Applications that deal with large amount of data and comparatively little operations on this data,

such as is the case for most SIMD (“single instruction multiple data”) applications – this includes data

mining, and graph traversals, as well as operations on (audio and video) streams (see also

“streaming”, above). It must be noted that not all of these applications can be equally well

parallelised, as this depends in particular on their synchronisation and coherency requirements

(audio streams are for example more coupled that data mining algorithms and hence more difficult

to parallelise).

Requirements

• The general requirements are highly related to streaming applications.

• In most cases, bandwidth should be high, but throughput is automatically limited by the

lowest bandwidth in the interconnect chain.

• Bandwidth can compensate latency.

• Cache should either be large enough for all data to fit in, or should address the streaming

requirements above.

• Vector processors and similar SIMD units can support the repetitive actions on the data set.

• Parallelisability (in the sense of horizontal scale) depends on the specifics of the respective

algorithm (see also section 13 dwarfs above).

• If the application is parallelisable, the same issues as for compute intensive algorithms

apply (see below).

F) COMPUTATION-INTENSIVE

Applications that must perform a large amount of computation on comparatively low amount of

data (e.g. many iterations in simulated annealing, magnetic field calculations etc.). Note that some

simulations, in particular fluid dynamics applications etc. show behaviour similar to data-intensive

computation, as the particles flow through the computation grid – this has specific implications on

throughput which is generally higher and more dynamic than in e.g. simulated annealing cases.

However, as the behaviour is data-dependent (i.e. the operations may differ, depending on data)

and as each datum may have many computation iterations, we considered this a computation

intensive application case, too.

Compute intensive algorithms can belong to either of the three types: (1) not parallelisable due to

too many dependencies (simple example: many iterations on a single datum), (2) embarrassingly

parallel, where e.g. the same computation and data set are subject to different parameters, and (3)

tightly coupled parallel where the amount of compute resources define the overall execution time

(“strong scaling”).

Requirements

• In most computation-intensive algorithms, some form of data exchange is needed, so that

synchronicity, coherency etc. should be supported, e.g.

◦ Shared memory,

◦ hardware- or software-cache-coherency (e.g. ccNoRMA),

57 | P a g e D5.1 State of the Art S (o) O S

◦ UMA or NUMA architecture.

• The degree of communication, and hence the requirements on bandwidth and latency

differ, depending on the parallelisation case:

◦ not parallelisable: no communication needed (obviously),

◦ embarrassingly parallel: higher need on bandwidth than on latency,

◦ tightly coupled parallel: higher need on (low) latency than on bandwidth.

• The clock rate of the processor should be as high as possible (the higher, the faster the

execution).

• Cache should be large enough to host the respective data segments and minimize cache

misses.

• In parallel applications, there should be as little access to restricted resources (OS, I/O, disk

etc.) as possible, as these resources may become bottlenecks.

• The threads / processes should take up as much of the processor's capacity as possible

(exclusiveness, no time sharing).

• There should be no centralised control (such as OS), as this would lead to synchronisation

and communication delays.

• Either data or work needs to be segmented – in either case, the programming language

should allow for according segmentation and distribution, as well as implicit (and explicit)

communication.

G) COUPLING LEVEL

The amount of interaction between the different (parallel or concurrent) tasks of the application. For

example, embarrassing parallel algorithms are loosely coupled (i.e. rarely exchange data), whereas

fluid model simulation is typically tightly coupled (i.e. frequently exchange data) - see also the 13

dwarfs classification in the previous chapter for low, medium and high coupled algorithms. The

coupling level partially depends on the presence of shared state in the algorithm. For embarrassingly

parallel applications, it is possible to divide the (full) state space into separate and independent

subspaces, so that every parallel task acts independently on the assigned subspace without

influencing the others. In tightly coupled applications, instead, every modification to a state variable

may influence all the state space.

Requirements for low-coupling

• Applications with a low coupling level may be easily implemented on modern distributed

systems, like GRID systems, or cloud computing systems, because the low interactions

between parallel applications makes it possible to distribute the load over a wide-area

network of distributed systems, and the high latency in communication only minimally

influences overall performance;

• There is no requirement on communication latency; the bandwidth depends on the specific

application;

• GRID-aware distributed OS (like Xtreme OS) and Cloud Computing infrastructure support

well.

• Message passing programming models like MPI are already adequate for this kind of

applications.

Requirements for high-coupling

• Highly connected clusters or many-core systems with fast interconnection.

• On a single node they may require a large shared memory with cache coherency protocols,

so to make it easy to represent the shared state, and maintain its consistency.

• Programming models that provide a shared memory abstraction (like PGAS) are best suited

for this kind of applications.

58 | P a g e D5.1 State of the Art S (o) O S

H) BANDWIDTH

Related to the coupling level between instances / processes, the bandwidth requirements indicate

whether the respective system has a high demand on data size, i.e. whether a large bandwidth is

needed to transport the necessary information. In some cases, bandwidth can compensate lack of

latency, but only if the data is not dependent on application behaviour (e.g. through interactivity) in

which case latency would predominate the according requirements.

Most internet applications have a higher demand on bandwidth than on latency, as long as

interactivity is still low in these cases.

Requirements

• Bandwidth is defined by the lowest common denominator, not only by the I/O –

accordingly, data throughput, cache speed etc. play an important role

• In order to keep data available, cache size should be comparatively large

• I/O should allow for broad connections

• Bandwidth requirements can also arise from high level of concurrent access, in which case

parallelism can be exploited (server case)

◦ multiple I/O chipsets

◦ multiple processors

• the OS (or execution environment) should try to merge multiple data sets / messages into

larger packages, according to the bandwidth to exploit the connection maximally. Latency

needs to be observed in this context

• the programming model should ideally make the developer aware of the latency /

bandwidth capabilities and restrictions, respectively be able to restructure messaging

accordingly (e.g. turn multiple small web requests into a single large one – this is restricted

by data dependency)

I) LATENCY

As opposed to bandwidth, latency is in particular critical for interactive and tightly coupled

applications, i.e. where data needs to be available more or less immediately, as any delay leads to

either frustration or essential performance loss. Notably in these cases bandwidth cannot

compensate latency, as this would mean predicting user / data behaviour.

Latency is restricted by multiple factors, in particular by distance and type of connection – in

general, the longer the distance between two endpoints and the more intermediary points exist on

the route, the higher the latency.

Requirements

• Shortest and ideally direct connections

• The system (execution model, OS, compiler) must be able to collocate data & code closest

as possible, according to their relationship / relevance

• The programming model should allow the user to specify segmentation boundaries,

dependencies, connectivity etc. and thus define distribution restrictions

• The operating system must respect data access frequency / requirement etc. during data

distribution

J) SCALABILITY

Scalability of an application refers to the degree in which it can spread out (“scale up”) across

multiple resources. We need to distinguish two types of scalability with respect to typical usage

scenarios (see also [85]):

59 | P a g e D5.1 State of the Art S (o) O S

Horizontal scalability reflects the degree in which the application can utilise the infrastructure to

increase its availability and thus potentially its performance. In the strong horizontal case, the

individual instances are unrelated and do not share data. This is the typical case for e.g. Cloud

Computing, where an increase in service access leads to its replication, and thus to its (horizontal)

scale out.

Vertical scalability, on the other hand, relates to the case where a single application exploits multiple

resources for directly increasing its own performance as a whole. In other words, where the

application is split up into coupled processes or segments that can spread out across the

infrastructure. Typical (“coupled”) HPC jobs scale out vertically by employing multiple compute units

for its calculation, e.g. by segmenting the data into a structured grid, and assigning each cell to an

individual unit.

Note that accordingly, P2P computing takes an intermediary between horizontal and vertical

scalability.

Requirements from horizontal scalability

• a number of mostly independent, complete compute units (PCs) that reflect the number of

instances to be scaled out

• typically high bandwidth between these units during scale out for data and code replication

• the Operating System or execution environment must provide a “platform” in which to

upload and execute the application instance (instantiation)

• typically a high degree of concurrent access must be handled

• coherency of data is generally secondary, but still needs to be achieved at least eventually –

ideally it is maintained “on the spot”

Requirements from vertical scalability

• applications must be able to scale

• typically low latency

• similar requirements than for tightly coupled HPC

• coherency is essential

• distributed, synchronised execution

• on-the-fly instantiation and execution of code segments

• data distribution without delay

• programming model must allow easy segmentation

• operating system must reduce overhead

K) OFF-LOADING

Whether the application can delegate some part of the computation to a remote server

infrastructure (e.g. the cloud). This may require code mobility, as the application may not be present

on the server – respectively at least a platform like environment in which to host the application's

logic.

Also, the byte code from the source host may be incompatible with the remote host, and require

run-time adaptation or the creation of a virtual environment. This may also impose additional

overhead to clients as they have to provide information about the desired environment.

Current applications which exploit off-loading capabilities are designed to a particular system and

little code mobility or adaptation is required. In practice, most off-load methods work by delegating

part of the application tasks to a well known remote system. Applications interacting with Clouds are

a good example, but there are others such as real-time gaming with remote rendering, or even mail

clients. Because most Cloud systems are mostly closed or have incompatible interfaces, off-loading is

60 | P a g e D5.1 State of the Art S (o) O S

at a very incipient age. Still, with the appearance of many small devices with low resources, proxy

computation (an off-loading mechanism) becomes more interesting.

Considering systems with lesser complexity, off-loading as been used for a long time as part of the

standard data centre model: application servers would off-load database queries to clustered

systems, or SSL cyphering and deciphering to dedicated hosts (usually with dedicated acceleration

hardware).

From the operating system perspective, the challenge resides in identifying off-loadable segments of

code, identifying other systems capable of correctly executing the code, and split the execution

environment between all participating systems.

Requirements

• the offloading process itself typically requires large bandwidth but has no latency

requirements (this obviously changes with the execution of the remote instance)

• the hosting (source) environment needs to provide some form of sand boxing mechanism

for hosting the code / logic / data

• in order to maintain availability and communication stability, messages must be

dynamically routed without affecting the code (behaviour)

• the new host must meet the communication requirements (synchronisation, coherency,

latency, bandwidth) of the application (or provide a means to compensate it accordingly)

L) MOBILITY

If the application is mobile, the location of some of the nodes involved in the computation can

change during execution. The most classical example for such behaviour is obviously mobile phones.

Mobile applications are aware of the location of the hosts where they execute. Location can be

expressed both in terms of physical location (typically using the GPS system), or topological location

(using the IP address). Most client applications of web and cloud services running at the mobile

nodes (such as PDAs and Notebooks) can be considered as mobile. Mobile applications can adapt

their execution to the current location. Examples of this adaptation can result in changing the

protocols used (e.g Skype and other VoIP applications), choosing peers located closer (e.g. cloud

clients), or adapting the interface or other execution parameter (e.g. CoreLocation in OSX 10.6).

Moreover, some even may exploit locality and coordinate execution with neighbour peers (e.g.

BitTorrent clients). Some operating systems such as Apple OSX 10.6 have support for location

adaptation by allowing dynamic configuration of internal parameters (proxy, ip address, security

parameters, etc...) in a reactive manner.

Mobility can also be classified as slow or fast, depending on the time the transient mobility process

lasts. VoIP and Real Time Interactive applications are very sensitive to delays and packet loss and

require fast mobility. Other applications such as mail clients or IM clients can tolerate disconnection

time of several seconds .

Requirements

• connectivity should at no time be interrupted for longer than the messaging requirements

of the application specify (e.g. latency and real-time constraints)

◦ this is particularly true, if the endpoint is part of a distributed & parallel process

• handover to the new location must be seamless without interrupting or affecting the

process' behaviour

◦ dynamic routing

◦ maintain streams

◦ maintain quality

61 | P a g e D5.1 State of the Art S (o) O S

• mobility of a client could imply that some information of the server “follows”, i.e. is passed

on into the vicinity of the endpoint to maintain availability

• support for fast mobile aware network protocols (Mobile IP family of protocols)

• support for local discovery protocols such as UPNP, Bonjour or M-DNS.

• low latency of the networking stack (to allow fast mobility)

◦ low latency process scheduling

◦ event driven, asynchronous interface to applications.

• provide applications with low level information about current environment (e.g. packet

loss, MAC access delay)

M) SPECIALIZED HARDWARE

Some kind of applications work best if a specific type of hardware is employed (typically a type of

“application accelerator”). Without restriction of generality, we assume here that any other resource

than a general purpose processing unit (GPPU) must be considered a “specialised hardware” - even

though graphics processing units (GPUs) have basically already reached “general purpose” status.

Requirements depend very much on the use case (application), as the point behind application

accelerators (or specialised hardware) is exactly to support specific tasks. The best example consists

in the FPGA chipset which can be dynamically reconfigured to meet the specific application's

behavioural requirements.

3. CONCLUSIONS

In this deliverable, we discussed the future trends in computing systems in the four principal areas

related to the SooS project: Hardware and Processors (in Chapter II.), Communication (in Chapter III.

), Programming models (in Chapter IV.)and Operating Systems (in Chapter V.). We also discussed

the requirements of future applications, with a specific focus on High Performance Computing

(Section VI. 1.), Personal Embedded Devices (Section VI. 2.), Social Networks (Section VI. 3.), Office

and Home usage (Section VI. 4.), Multimedia Stream-Processing (Section VI. 5.), and video games

(Section VI. 6.).

The main goal of this activity consisted in assessing the development that the infrastructure is most

likely to take within the next few years and which kind of support will be needed through a

middleware / operating system. We thereby particularly examine the aspects related to a “holistic”

environment that not only covers a wide range of application domains, but also addresses the

different developments in different areas, stacks or tiers forming a computing system. It is as yet not

clear, whether such full convergence can be achieved and is as yet one of the major problems of

both operating system and system developers that leads not only to interoperability and portability

issues but also to instability and failures, as well as performance loss. The relationship between

application requirements and the supporting technology is indeed very complex, and this work can

be seen as a tentative systematization of the large set of issues that are involved. Our work certainly

does not pretend to be exhaustive: however, we believe it is important to propose a global

perspective on the different issues involved and on their interworking. For this reason, in this

deliverable we tried to widen the perspective as much as possible, rather than to focus on a small

set of specific issues or problems. At the same time, we tried to highlight the important details, the

ones that we believe will be the key issues in the development of next generation computing

platforms.

Therefore, in this chapter we proposed a possible taxonomy of application requirements and

discussed its impact on the technology development trends. The results of this work will thus not

only serve as a basis for evaluating the project outcomes through defining a set of testsuites (WP6),

but also as driving input for the technical work in Workpackage 2-4. It must be noted in this context

62 | P a g e D5.1 State of the Art S (o) O S

that this work already incorporates input from these work packages as part of the state of the art

assessments in the respective areas.

Finally, we believe that such an assessment is relevant for any attempt to support future computing

systems, in particular due to the increasing amount of processing units in a single system.

63 | P a g e D5.1 State of the Art S (o) O S

REFERENCES

[1] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S. et al (2009). The multikernel:

a new OS architecture for scalable multicore systems. In SOSP '09: Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, pages 29-44.

[2] Cucinotta, T. (ed.) (2010). Service-oriented Operating Systems: State of the Art. In production.

[3] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson,

D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K. (2009). A View of the Parallel Computing

Landscape, In Communications of the ACM, Vol. 52, No. 10, pages 56-67

[4] Amdahl, G. (1967). Validity of the single processor approach to achieving large scale computing

capabilities, In AFIPS spring joint computer conference. Available at http://www-

inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf - accessed March '10

[5] ITU ICT Statistics, http://www.itu.int/ITU-D/ict/statistics/, as in June 2010

[6] Mishra, A., Shin, M., and Arbaugh, W. 2003. An empirical analysis of the IEEE 802.11 MAC layer

handoff process. SIGCOMM Comput. Commun. Rev. 33, 2 (Apr. 2003), 93-102.

[7] 3GPP, http://www.3gpp.org/, as in June 2010

[8] Nokia E72 Product page, http://europe.nokia.com/find-products/devices/nokia-e72, as in June

2010

[9] SYMBIAN EKA2: http://developer.symbian.org/main/documentation/reference/s

%5E3/doc_source/guide/KernelandHardwareServices/kernelarch/index.html, as in June 2010

[10] Facebook Now Has 30,000 Servers

http://www.datacenterknowledge.com/archives/2009/10/13/facebook-now-has-30000-servers/,

as in June 2010

[11] Needle in a haystack: efficient storage of billions of photos, http://www.facebook.com/note.php?

note_id=76191543919, as in June 2010

[12] Facebook Statistics, http://www.facebook.com/press/info.php?statistics, as in June 2010

[13] Facebook boasts 11 times more page views than MySpace, 59 times more than Twitter,

http://royal.pingdom.com/2010/01/05/facebook-twitter-myspace-page-views/, as in June 2010

[14] http://socialmediastatistics.wikidot.com as of June 2010

[15] Entertainment Software Association (ESA) (2010). Essential facts about the computer and video

game industry. http://www.theesa.com/facts/pdfs/ESA_EF_2009.pdf

[16] Entertainment Software Association (ESA) (2010). Annual report, fiscal year 2009.

http://www.theesa.com/about/ESA_2009_AR.pdf

[17] Nielsen Games (2009). Video Gamers in Europe – 2008. Prepared for the Interactive Software

Federation of Europe (ISFE). http://www.isfe-eu.org/tzr/scripts/downloader2.php?

filename=T003/F0013/8c/79/w7ol0v3qaghqd4ale6vlpnent&mime=application/pdf&originalname=

ISFE_Consumer_Research_2008_Report_final.pdf

[18] Interactive Software Federation of Europe (ISFE) (2008). Key Facts – The Profile of the European

Videogamer 2007. http://www.isfe-eu.org/tzr/scripts/downloader2.php?

filename=T003/F0013/44/c5/w7ol0v3qaghqd4ecogdcb081y&mime=application/pdf&originalnam

e=Key_Facts_English_final.pdf

[19] Samuel K. Moore, “Multicore is bad news for Super Computers”, IEEE Spectrum, November 2008,

http://spectrum.ieee.org/computing/hardware/multicore-is-bad-news-for-supercomputers

64 | P a g e D5.1 State of the Art S (o) O S

[20] Sweeney, Tim. (1999) Unreal Networking Architecture. Epic Games, Inc.

http://unreal.epicgames.com/Network.htm

[21] Claypool, Mark and Claypool, Kajal. (2008) On Latency and Player Actions in Online Games.

[22] Svoboda, P., Karner, W. and Rupp, M. (2007) Traffic Analysis and Modeling for World of Warcraft.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,

Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch

and Simon Winwood, “seL4: Formal verification of an OS kernel”, in Proceedings of the 22nd ACM

Symposium on Operating Systems Principles, Big Sky, MT, USA, October, 2009

[24] Gerwin Klein, “Correct OS kernel? Proof? Done!”, USENIX ;login:, 34(6), 28–34, (December, 2009)

[25] Gernot Heiser and Ben Leslie, “The OKL4 Microvisor: Convergence point of microkernels and

hypervisors”, Proceedings of the 1st Asia-Pacific Workshop on Systems, New Delhi, India, August,

2010.

[26] Udo Steinberg, Bernhard Kauer, “NOVA: A Microhypervisor-Based Secure Virtualization

Architecture”, Proceedings of EuroSys 2010, Paris, France, April 2010

[27] Udo Steinberg, Bernhard Kauer, “Towards a Scalable Multiprocessor User-level Environment”,

IIDS'10: Workshop on Isolation and Integration for Dependable Systems (Eurosys 2010 affiliated

workshop) , April 2010

[28] Andreas Merkel, Jan Stoess, and Frank Bellosa , “Resource-conscious Scheduling for Energy

Efficiency on Multicore Processors”, Proceedings of the 5th ACM SIGOPS EuroSys Conference

(EurosSys'10), Paris, France, April 2010

[29] Qingbo Yuan, Jianbo Zhao, Mingyu Chen, Ninghui Sun, GenerOS: An Asymmetric Operating

System Kernel for Multi-core Systems, IEEE International Parallel & Distributed Processing

Symposium, Atlanta, USA, April 2010

[30] David Wentzlaff and Anant Agarwal, Factored Operating Systems (fos): The Case for a Scalable

Operating System for Multicores, ACM SIGOPS Operating System Review: Special Issue on the

Interaction among the OS, Compilers, and Multicore Processors, April 2009

[31] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek, Robert Morris,

Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang, Corey: An Operating

System for Many Cores, 8th USENIX Symposium on Operating Systems Design and Implementation

[32] ARM Ltd. “ARM11 Mpcore family”

http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php

[33] Freescale semiconductors, “P4 Series, P4080 multicore processor”,

http://cache.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf

[34] Miller, R. B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall

Joint Computer Conference Vol. 33, 267-277.

[35] Dennis, A. R., and N.J. Taylor, "Information foraging on the web: The effects of 'acceptable'

Internet delays on multi-page information search behavior.". Decision Support Systems 42 (2006)

810-824.

[36] Claypool, Mark, LaPoint, David and Winslow, Josh. (2003) Network Analysis of Counter-strike and

Starcraft.

[37] Sweeney, Tim. (1999) Unreal Networking Architecture. Epic Games, Inc.

http://unreal.epicgames.com/Network.htm

[38] Ho, R.; Mai, K.W.; Horowitz, M.A.; , "The future of wires," Proceedings of the IEEE , vol.89, no.4,

pp.490-504, Apr 2001

[39] Jayasimha, D. N. Zafar, Bilal. Hoskote, Yatin (2006). On-Chip Interconnection Networks: Why They

are Different and How to Compare Them, Intel Corporation, Platform Architecture Research

65 | P a g e D5.1 State of the Art S (o) O S

[40] William J. Dally and Brian Towles, "Route Packets, Not Wires: On-Chip Interconnection Networks",

in Proc. ACM IEEE Design Automation Conference (DAC), pp 684-689, 2001

[41] Ray Kurzweil, THE SINGULARITY IS NEAR: When Humans Transcend Biology, Viking Press, 2005

[42] 3GPP – IMS, http://www.3gpp.org/article/ims, as in June 2010

[43] Do van Thanh, Paal Engelstad, Tore Jonvik, Do van Thuan, Ivar Jorstad, "Towards a Uniform IMS

Client on Heterogeneous Devices," wimob, pp.196-201, 2008 IEEE International Conference on

Wireless & Mobile Computing, Networking & Communication, 2008

[44] Xbox Live Arcade http://www.xbox.com/en-US/, as in June 2010

[45] DVB - Digital Video Broadcasting - DVB-T, http://www.dvb.org/technology/dvbt2/, as in June 2010

[46] Frequenzversteigerung 2010, http://www2.bundesnetzagentur.de/frequenzversteigerung2010/,

as in June 2010

[47] Amazon Elastic Compute Cloud (Amazon EC2) http://aws.amazon.com/ec2/, as in June 2010

[48] DragonFly BSD http://www.dragonflybsd.org/, as in June 2010

[49] OpenSSI, http://openssi.org/cgi-bin/view?page=openssi.html, as in June 2010

[50] LinuxPMI, http://linuxpmi.org, as in June 2010

[51] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj and Karsten Schwan, “High-Performance

Hypervisor Architectures: Virtualization in HPC Systems”,1st Workshop on System-level

Virtualization for High Performance Computing, Portugal, 2007

[52] Fang Yu, Yanlei Diao, Randy Katz, T. V. Lakshman. “Fast Packet Pattern Matching Algorithms”,

Algorithms for Next Generation Network Architecture, edited by Graham Cormode and Marina

Thottan. Springer Computer Communications and Networks Series, October 2009.

[53] R. A. Gupta and M.-Y. Chow, "Networked Control Systems: Overview and Research Trends," IEEE

Transactions on Industrial Electronics, March 2010

[54] Generalized Multi-Protocol Label Switching (GMPLS) Architecture. IETF RFC 3945

[55] Encapsulation Methods for Transport of InfiniBand over MPLS Networks, draft-puri-

pwe3-ib-encap-01.txt, IETF Draft, March 2009

[56] Bolotin, E.; Guz, Z.; Cidon, I.; Ginosar, R.; Kolodny, A.; , "The Power of Priority: NoC Based

Distributed Cache Coherency," Networks-on-Chip, 2007. NOCS 2007. First International

Symposium on , vol., no., pp.117-126, 7-9 May 2007

[57] P. Bhojwani, R. Mahapatra, J. K. Eun, and T. Chen, “A heuristic for peak power constrained design

of network- on-chip (NoC) based multimode systems”, Proc. IEEE International Conference on VLSI

Design, pp. 124-129, 2005.

[58] IP Mobility Support for IPv4, IETF RFC4721

[59] Proxy Mobile IPv6, IETF RFC5213 (Proposed Standard)

[60] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana, "Internet Indirection

Infrastructure," Proceedings of ACM SIGCOMM, August, 2002

[61] SIP: Session Initiation Protocol, IETF RFC3261

[62] Host Identity Protocol, IETF RFC 5201

[63] Renjish Kumar, K.R.; Rokkas, T.; Varoutas, D.; Kind, M.; Von Hugo, D.; Harno, J.; Smura, T.;

Heikkinen, M.; , "Fixed-Mobile Convergence: An Integrated Operator Case Study,"

Telecommunication Techno-Economics, 2007. CTTE 2007. 6th Conference on , vol., no., pp.1-6, 14-

15 June 2007

66 | P a g e D5.1 State of the Art S (o) O S

[64] Call My Cell: Wireless Substitution in the United States,

http://www.nielsenmobile.com/documents/WirelessSubstitution.pdf, Nielsen, 2008

[65] Bluetooth Core Specification 3.0 + HS,

http://bluetooth.com/SiteCollectionDocuments/HS_Doc_Web.pdf

[66] IEEE Standard for Information technology--Telecommunications and information exchange

between systems--Local and metropolitan area networks-- Specific requirements Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate

Wireless Personal Area Networks (LR-WPANs)

[67] Asymmetric Digital Subscriber Line, ITU G.992.5

[68] 3GPP - LTE, http://www.3gpp.org/LTE, as in June 2010

[69] IEEE Standard 802.16-2004, http://standards.ieee.org/getieee802/download/802.16-2004.pdf

[70] 3GPP - UMTS, http://www.3gpp.org/article/umts, as in June 2010

[71] IEEE Standard 802.3, http://www.ieee802.org/3/, as in June 2010

[72] IEEE 802.11, The Working Group Setting the Standards for Wireless LANs,

http://www.ieee802.org/11/, as in June 2010

[73] CATV Cyberlab, http://www.catv.org/frame/cmt_standards.html, as in June 2010

[74] Subramanian, A.P.; Lundgren, H.; Salonidis, T.; Towsley, D.; , "Topology control protocol using

sectorized antennas in dense 802.11 wireless networks," Network Protocols, 2009. ICNP 2009.

17th IEEE International Conference on , vol., no., pp.1-10, 13-16 Oct. 2009

[75] Jain, V.; Gupta, A.; Agrawal, D.P.; , "On-Demand Medium Access in Multihop Wireless Networks

with Multiple Beam Smart Antennas," Parallel and Distributed Systems, IEEE Transactions on ,

vol.19, no.4, pp.489-502, April 2008

[76] IEEE 802.11n-2009—Amendment 5: Enhancements for Higher Throughput. IEEE-SA. 29 October

2009

[77] IEEE 802.11 TG AD - Very High Throughput in 60Ghz,

http://www.ieee802.org/11/Reports/tgad_update.htm, as in June 2010

[78] Gomez, C.; Catalan, M.; Viamonte, D.; Paradells, J.; Calveras, A.; , "Internet traffic analysis and

optimization over a precommercial live UMTS network," Vehicular Technology Conference, 2005.

VTC 2005-Spring. 2005 IEEE 61st , vol.5, no., pp. 2879- 2884 Vol. 5, 30 May-1 June 2005

[79] 3GPP - LTE, http://www.3gpp.org/article/lte, as in June 2010

[80] LTE Benefits V3.3, https://www.lte.vzw.com/Portals/95/docs/LTE%20Benefits%20Guide.pdf, LTE

Product Design, May 14, 2009

[81] L. Schubert, A. Kipp, B. Koller, and S. Wesner, "Service Oriented Operating Systems: Future

Workspaces," IEEE Wireless Communications, vol. 16, 2009, pp. 42-50.

[82] L. Schubert and A. Kipp, "Principles of Service Oriented Operating Systems," Networks for Grid

Applications, Second International Conference, GridNets 2008, P. Vicat-Blanc Primet, T. Kudoh,

and J. Mambretti, Springer, 2009, pp. 56-69.

[83] L. Schubert, A. Kipp, and S. Wesner, "Above the Clouds: From Grids to Service- oriented Operating

Systems," Towards the Future Internet - A European Research Perspective, G. Tselentis, J.

Domingue, A. Galis, A. Gavras, D. Hausheer, S. Krco, V. Lotz, and T. Zahariadis, Amsterdam: IOS

Press, 2009, pp. 238 – 249.

[84] L. Schubert, S. Wesner, A. Kipp, and A. Arenas, "Self-Managed Microkernels: From Clouds Towards

Resource Fabrics," In Proceedings of the First International Conference on Cloud Computing,

Munich, 2009.

67 | P a g e D5.1 State of the Art S (o) O S

[85] L. Schubert, K. Jeffery, B. Neidecker-Lutz, and others, "The Future of Cloud Computing," Cordis

(Online), 2010.

[86] Wentzlaff, David and Agarwal, Anant, “Factored operating systems (fos): the case for a scalable

operating system for multicores”, SIGOPS Oper. Syst. Rev., 43, 2, 2009, pp. 76-85

[87] http://blog.hubspot.com/blog/tabid/6307/bid/4514/Making-Friends-LinkedIn-vs-Facebook-vs-

Twitter-cartoon.aspx

[88] Lynn Reedy, http://academicearth.org/lectures/ebay-volume-statistics

[89] B.L. Jones, "Do Newer Processors Equate to Slower Applications?," DevX online publication, 2010.

Available at: http://www.devx.com/enterprise/Article/34588/1954

[90] Intel Corporation,"An Introduction to the Intel QuickPath Interconnect," Intel Whitepaper.

Available at: http://www.intel.com/technology/quickpath/introduction.pdf

[91] Proceedings of the 2009 Symposium on Application Accelerators in High Performance Computing

(SAAHPC'09), Urbana, USA, July 2009.

[92] Convey Computer Corporation, "Hybrid-Core Computing: Extending a Commodity Instruction Set

with Application-Specific Logic, " In: Proceedings of the 2010 Symposium on Application

Accelerators in High Performance Computing (SAAHPC'10), Knoxville, USA, July 2010 to be

published.

[93] W.P. Petersen, "Playing with parallelism on PS3s". Seminar for Applied Mathematics, 2007.

Available at http://cluster.qubits.ch/files/u2/20070328_PS3_Talk_LBL_WPP.pdf

[94] J. Planas, R.M. Badia, E. Ayguadé, and J. Labarta, "Hierarchical Task-Based Programming With

StarSs," International Journal of High Performance Computing Applications, vol 23 (3), 2009, pp.

284-299. DOI= http://dx.doi.org/10.1177/1094342009106195

[95] S. Tagaya, M. Nishida, T. Hagiwara, T. Yanagawa, Y. Yokoya, H. Takahara, J. Stadler, M. Galle and

W. Bez, "The NEC SX-8 Vector Supercomputer System," High Performance Computing on Vector

Systems, Part 1, 2006, pp. 3-24

[96] K. Krewell, "Cell Moves Into the Limelight," Microprocessor Report, 2005

[97] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki, "Synergistic

Processing in Cell's Multicore Architecture," IEEE Micro, Vol 26 (2), 2006, pp. 10-24. DOI=

http://dx.doi.org/10.1109/MM.2006.41

[98] P. Colella, "Defining Software Requirements for Scientific Computing," DARPA HPCS presentation,

2004.

[99] S. Seow, "Designing and Engineering Time: The Psychology of Time Perception in Software,"

Addison-Wesley, Amsterdam: 2008

[100] P. Zimbardo, "The Secret Powers of Time," Presentation at the Royal Society for the

encouragement of Arts, Manufactures and Commerce (RSA), 2010. Available at:

http://www.thersa.org/events/vision/vision-videos/philip-zimbardo-the-secret-powers-of-time

[101] D.F. Bacon, S.L. Graham and O.J. Sharp, "Compiler transformations for high-performance

computing," ACM Comput. Surv., Vol 26(4), 1994), pp. 345-420. DOI=

http://doi.acm.org/10.1145/197405.197406

[102] S.P. Midkiff and D.A. Padua, "Issues in the Compile-Time Optimization of Parallel Programs".

Online publication, 1990. Available at: http://www.csrd.uiuc.edu/reports/911.ps.gz

[103] Herlihy, M. and Moss, J. E. “Transactional memory: architectural support for lock-free data

structures.” SIGARCH Comput. Archit. News 21, 2 (May. 1993), pp. 289-300

[104] Li, Z., Wang, C., and Xu, R. “Computation offloading to save energy on handheld devices: a

partition scheme.” In Proceedings of the 2001 international Conference on Compilers,

Architecture, and Synthesis For Embedded Systems (Atlanta, Georgia, USA, November 16 - 17,

2001). CASES '01. ACM, New York, NY, 238-246.

68 | P a g e D5.1 State of the Art S (o) O S

[105] Karthik Kumar, Yung-Hsiang Lu, “Cloud Computing for Mobile Users: Can Offloading

Computation Save Energy?,” Computer, vol. 43, no. 4, pp. 51-56, Apr. 2010,

doi:10.1109/MC.2010.98

[106] A. Jha and D. Yee, “Increasing Memory Throughput With Intel® Streaming SIMD Extensions 4

(Intel® SSE4) Streaming Load - Intel® Software Network,” Nov. 2008.

[107] Fritts and W. Wolf, “MultiLevel Cache Hierarchy Evaluation for Programmable Media,” IEEE

Workshop on Signal Processing Systems, IEEE, 2000, pp. 228-237

[108] Miller, R. B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall

Joint Computer Conference Vol. 33, 267-277. 100 ms

[109] L. Hennessy and D.A. Patterson, “Computer Architecture: A Quantitative Approach,” Morgan

Kaufmann, 2006.

[110] A. Bader, J. Chhugani, P. Dubey, S. Junkins, S. Lyalin, T. Morrison, D. Ragozin, A. Ryzhova, S.

Sidorov, A. Soupikov, and M. Smelyanskiy, “Game Physics Performance on the Larrabee

Architecture,” Intel Corporation 2008.

[111] G.H. Loh, “3D-Stacked Memory Architectures for Multi-core Processors,” Proceedings of the

35th Annual International Symposium on Computer Architecture, IEEE Computer Society, 2008,

pp. 453-464.

[112] D.H. Woo, N.H. Seong, D.L. Lewis, and H.S. Lee, “An Optimized 3D-Stacked Memory Architecture

by Exploiting Excessive, High-Density TSV Bandwidth,” Proceedings of the 16th International

Symposium on High-Performance Computer Architecture, Bangalore, India: 2010, pp. 429-440.

[113] J. Huang, “Understanding Gigabit Ethernet Performance on Sun Fire™ Systems,” Sun Blueprints,

2003. Available at: http://www.sun.com/blueprints/0203/817-1657.pdf

69 | P a g e D5.1 State of the Art S (o) O S

