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EXECUTIVE SUMMARY

This document assesses the expected development in the area of (large scale) computing infrastructures expected 

in the  future from different standpoints, with a particular focus on the main IT tiers, namely hardware (across all  

layers),  communication  (including  protocols  ),  middleware  (with  a  main  focus  on  Operating  Systems),  and 

applications (including their  programmability).  We shall  thereby distinguish  between  their  structure  and their 

usage,  i.e. between  the  goals  pursued  by the  manufacturers  and  the  requirements  posed  by  the users.  This 

document therefore investigates the problem from three major perspectives:

(1) the short-term developments to be expected in the major tiers. As it can be expected, these are based  on 

current  production attempts,  official  roadmaps etc.. In facts,  most  of  the short-term developments  are  quite 

clearly laid out, though it should be noted that this does not imply that all these roadmaps will actually be pursued 

in full detail. In the corresponding sections (II. 1. , III. 1. , IV. 1.  and V. 1. ) a strong tendency towards increasing 

scale  and parallelisation  of  systems will  be noted.  As  is  the  general  (unwritten)  manufacturing  rule  and with 

manycore technologies etc. still being in a “prototyping” stage, progress is comparatively slow as most commercial 

organisations only make careful attempts first. This is mostly due to the fact that little expertise about multicore 

systems exist as yet and has to base mostly on knowledge gained from HPC so far.

(2) More interestingly, however, is the long term development to be expected in these domains. The nature of 

such an assessment must be highly speculative due to the fast changes this area is subject to and due to the lack of 

expertise as noted above. Accordingly, many statements here are essential assumptions basing on the knowledge 

and expertise of the participants in the project. In order to maximise the degree of certainty, we needed to extract  

relatively  generic  assessments  that,  whilst  being  generic,  still  provided  enough  details  to  be  meaningful  for 

estimating future requirements. In general, we can note that the long term trends in general computing systems 

will be oriented along the line of current high performance computing (HPC) architectures, whilst HPC itself will 

introduce additional levels of hierarchy and different means to communicate across and along these levels.

(3) A major influence in development trends comes from usage of the system and therefore from the demands of 

the  end-user.  Even  though  industry  will  try  to  lead  such  development  in  certain  directions  fitting  their  own 

manufacturing plans, they nonetheless are subject to sales figures. In the final section we accordingly examine the 

usage trends to be expected in the long term future and their impact on computing infrastructures in the sense of 

which  systems  best  suit  the  respective  needs.  In  this  context,  we  must  obviously  distinguish  between  such 

contrasting domains such as high performance computing and desktop computing, even though a general trend 

towards convergence of the two domains can already be noted. The main problems thereby consist less in usage 

though  (interactivity  in  HPC  is  a  nice,  but  often  unnecessary  feature;  similarly,  fast  complex  calculations  in 

spreadsheet  manipulation  is  not  a  mandatory  feature),  but  in  particular  in  programming  focus  and  implicit 

complexity – with one of the main issues being parallelisation.

It must be noted in this context that the document is far from being a complete assessment of all developments 

related to computing systems, application requirements etc. - this is not only due to a lack of time and available 

effort, but in particular due to the fact that providing more detail would only be of limited additional benefit to the 

project: as S(o)OS does not aim at addressing an individual aspect optimally, but tries to identify the common 

issues across all these aspects, it is of primary concern how they interrelate and thus which requirements need to 

be addressed on a higher level. Along the same line, S(o)OS is less affected by the degree of uncertainty involved 

in assessing the long term developments.
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I. INTRODUCTION

A quick overview over the document’s background and structure

The IT sector is a very dynamic and versatile industrial domain in which no single specific line of 

development is pursued. Substantial changes occur every so often which have to be catered for by 

the  respective  environment.  For  example,  new  cache  and  interconnect  models  require  new 

processor  architectures;  new  processor  architectures  directly  affect  compilers,  but  also  the 

Operating System; new Operating Systems may imply new programming models, etc.

The most visible change of this type occurred during recent years with the introduction of multi-core 

processors  and  now  with  the  movement  from  cores  to  tiles.  However,  even  here  the  actual 

implications on OS architectures, interconnect specifications, cache coherency etc. only slowly begin 

to emerge and become visible for developers and designers.

So  far,  it  is  not  possible  to  identify  the  best  approach  for  dealing  with  the  future  concurrent 

environments,  where  not  only  cores   but  also  pipelines,  cache  and  RAM  modules,  I/O  etc.  are 

accessed in a (massively)  parallel  way. Processor  manufacturers  such as Intel  are still  examining 

different architectures and protocols, whilst Microsoft and others examine new Operating System 

models  for  dealing  with  such  environments.  Industry  is  primarily  driven  by  (short-term)  goal-

orientation, i.e., even though all manufacturers will try to look ahead beyond the next 10 years to 

elaborate  appropriate  strategies,  they  will  have  to  execute  steps  limited  by  such  factors  as 

feasibility,  evaluation  results  etc.,  always  trying  to  remain  cutting-edge.  Accordingly,  long-term 

development typically deviates strongly from the short-term based predictions.

S(o)OS, like other initiatives (see e.g.  [1]), takes a disruptive approach towards such development, 

addressing the issue from the perspective of long-term requirements and environments first, rather 

than trying to advance existing distributed execution support in a step-by-step fashion. Only this way 

can  the  appropriate  merge  and  alignment  of  the  individual  developments  be  ensured  and  the 

necessary performance and efficiency, and thus long-term validity be achieved.

Accordingly, a long-term prediction of IT development needs to form the basis  of  the necessary 

assessment and research work. As noted, such predictions bear the strong risk of maladjustment 

due to the high dynamics of IT development. 

This document tries to lay the foundation for such work by estimating the IT environment in 10-15 

years  time  from  now.  Given  this  time-scope,  such  an  estimation  can  almost  only  be  highly 

speculative in nature. To reduce the risk of wrong predictions,  the project builds on three major 

information sources:

1. expertise  in  all  related  technological  areas  through consortium  members  being  actively 

involved in the related research and development;

2. development trends in the IT landscape, basing on current technologies and plans, as well 

as lessons learned from recent developments;

3. the fact that all development is essentially driven by usage needs and hence by the typical 

application landscape and their expected development.

This deliverable can therefore be regarded as a follow-up to the D5.1 State of the Art document [2]. 

It builds on current cutting-edge R&D and the short-term trends inherent to these developments. 

Basing on the short-term trends and the development over recent years, as well as the research 

agendas and industrial  strategies,  long-term trends can be identified that mostly reflect essential 
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tendencies, such as exponential increment in core numbers. By nature, these trends are much more 

generic than short-term ones, simply because future development is more unpredictable.

Obviously, these trends have significant impact on future ways of dealing with the infrastructure, as 

e.g., just the number of cores expresses the degree of scalability that needs to be supported etc. As 

noted, an essential driver for all development is uptake, i.e., usage of the system – notably, even if 

different  application areas  need  to be distinguished,  producers  in  all  areas  have  to weigh  costs 

versus benefits, thus tending towards covering multiple areas at the same time.

As already discussed in the context of the state of the art document  [2], current development is 

mostly  dictated by  the impact  of  multi-core  processors  on individual  domains,  but also strongly 

influenced  by  the  developments  with  respect  to  the  future  Internet,  i.e.,  towards  a  more 

heterogeneous, dynamic and widely distributed infrastructure. 

It may indeed be the case that no single system will be able to fulfill all these requirements equally 

well and that we have to distinguish between general purpose systems that cover the majority of 

areas and specialized systems that support specific working areas. Bearing in mind that S(o)OS does 

not intend to realize a full-fledged, fully integrated Operating System, but in particular aims at a 

comparative  approach  to  identify  the  best  architectural  basis  for  future  systems  and  to  make 

justified  recommendations  towards  future  developments  in  all  related  areas,  one  of  the  major 

questions to address is the degree of (architectural and algorithmic) overlap between the respective 

application areas. Building on fundamental modularity concepts, it will be possible that appropriate 

modules may provide the needed functionality for adaptation to specialized areas. However, this will 

be addressed in future deliverables.

The  document  is  organized  as  follows:  in  the  first  part  (Chapters  II-V)  we  address  short-term 

developments and long-term trends from the point of view of the areas of hardware architectures, 

communication and networking, programming model and operating systems, which we address in 

this project.  These chapters go beyond the state of the art analysis  in so far as they summarize 

current experimental investigations of companies and research bodies with respect to near future 

developments. In other words they relate to non-established approaches of which results and actual 

usage are still dubious. 

In the second part (Chapters VI and VII), we analyze future applications requirements, investigating 

both the area of general purpose computing, high performance computing, mobile and distributed 

system,  multimedia  and  gaming,  embedded  and  real-time  systems.  Gathering   applications 

requirements will help the consortium to lay down the long term goals of the project. 

Since  the information  provided  in  this  document  is  based  on  the  expertise  and involvement  of 

consortium members in the respective areas, including in particular industrial  development areas 

potentially under non-disclosure agreements, this document is treated as confidential to exploit this 

expertise to the maximum extent without compromising this work. 
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II. HARDWARE AND PROCESSORS

Multi-core  and  large  scale  systems  are  still  in  an  experimental  stage  –  many  companies  and 

researchers try to identify best ways to improve performance and efficiency of these systems. Current 

research is therefore very experimental and divergent.

1. SHORT TERM DEVELOPMENTS 

Almost all processor manufacturers follow the so-called Tic-Toc model in their development process 

– this means that they intermittently employ new manufacturing processes to decrease size (Tic) to 

then  focus  on  development  of  a  new microarchitecture  (Toc)  on basis  of  this  new  process.  As 

opposed to the classical attempt to increase clock rate whilst decreasing the manufacturing process, 

the current goal clearly  rests on decreasing size to allow for integrating more cores. Not only will 

clock rate no longer increase,  but,  as we will  also show below (Section  II. 2.  a)  ),  it  will  actually 

constantly decrease in order to counterbalance energy consumption and heat dissipation problems: 

even though there are 3 GHz processors available, the frequency of up-to-date high-end multi-core 

processors tends towards 2 GHz.   

Accordingly, the primary development trend goes clearly towards integrating more cores in a single 

processor. It will even be noted that a distinction between multi- and many-core processors arose 

recently,  which reflects  the  lessons  learned from Amdahl's  law  [4]:  whilst  multi-core  processors 

incorporate in particular so-called “fat” cores that have large, coherent cache and are specialised in 

executing complex serial tasks, many-core processors generally consist of thin (or small) cores that 

are specialised in parallel execution, i.e. have stronger interconnects than fat cores, but less cache 

and a simpler instruction set. Besides improving performance in accordance with Amdahl's law (and 

hence depending on the type of application, see below), the many-core approach also supports the 

manufacturing process with respect to fault “tolerance”: 

Since  the probability  of  manufacturing-induced faults  increases  proportionally  to  the number of 

cores on the chip (e.g. the Intel Core Solo means that (at least) one of the cores is disabled – mostly 

because  tests  showed  that  they  are  faulty),  many-core  processors  are  in  the  long  run  more 

economically  feasible:  due to  the  high  number  of  (small)  cores  –  more  than one  hundred  per 

processor  are  to  be  expected1 –  failure  of  individual  cores  have  only  minimal  impact  due  to 

redundancy, if the according interconnect loss can be compensated. 

The  type  of  architecture  (many-  vs.  multi-core)  hence  impacts  on  the  system's  performance 

regarding  serial  or  parallel  applications  –  however,  even  parallelised  processes  are  not  purely 

parallel  but  contain  serial  elements.  According  to  Amdahl's  law  [4],  the  actual  speed-up  thus 

depends on the relationship  of  serial  to  parallel  segments  and the  according  capabilities  of  the 

processor:

where rs and rp is the ratio of the sequential  and parallel  portion in one program, respectively – 

accordingly rs + rp = 1. In other words, the speed-up of a program is limited by its sequential portion. 

In  Figure  1 the  solid  line  depicts  the  effective  speed-up  of  an  application  that  is  90%  (left), 

respectively 70% (right) parallelisable. As one can see, the curve saturates quickly at around 32-64 

1 Nvidia has already 256 cores in a CUDA processor architecture, but they have a restricted interconnect model due to 

the specific GPU requirements
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cores  –  obviously  this  cut-off  point  diminishes  further  as  the  sequential  portion  increases.  This 

means  however,  that as opposed  to the constant  gain  through increased frequency  (“frequency 

race”), the realistic gain through increased scale will degrade with the number of cores integrated 

into the processor.  Note that the calculation is purely academic as it disrespects communication 

overhead and the fact that all parallel processes typically contain a sequential part again, so that the 

actual gain is even below the one indicated here.

Once saturation  is  reached,  speed-up  depends  solely  on the  execution  speed  of  the  sequential 

application part (cf. dashed and dotted lines in Figure 1). Thus, in order to reach higher performance 

many  manufacturers  investigate  into  speeding  up  sequential  and  parallel  application  portions 

individually  by  employing  a  mixed  (many-multi-core)  architecture.  This  will  integrate  cores 

dedicated to the execution of the sequential portion of applications (“fat” cores) and to the parallel 

portion (“small” cores) – see also [2]. It should be noted in this context though that processing units 

are not “sequential” or “parallel” as such – in particular since all processors incorporate some means 

of parallelism (see e.g. [109]).  The ideas to realise fat cores therefore  include higher clock rates 

(maintaining an overall low energy profile), application specific accelerators etc. whereas small cores 

concentrate  on  simple  execution  pipelines  with  potentially  lower  clock  rates  and  stronger 

interconnectivity etc.

Figure 1 illustrates the theoretical gain through mixing fat and small cores in a system: the effective 

speed-up through employing a fat core that would take up the space of 10 small cores but has 2 

(dashed line), respectively 3 times (dotted line) the execution power of a small core would implicitly 

lead to a (saturated) execution speed of 2, respectively 3 times the one without such a fat core. Note 

that in the figure we start calculating the speed up with 16+ cores,  as a fat core size 10 would 

accordingly reduce the possible maximum amount of units in the system. What can also be seen is 

that in the area before the sequential part of the process dominates the performance, a fat core 

actually decreases the performance.

Figure 2 illustrates this better by displaying the  relative speed-up of the fat cores, where anything 

below 1.0 is actually a performance loss.
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and one fat core size 20 and 3x the speed (dotted)



As tempting as it may be, adding further fat cores does not further improve the performance as the 

primary assumption is that the sequential part can be subdivided no further. 

The relationship is further complicated when it is observed that in desktop environments multiple 

applications with different degrees of parallelism are executed concurrently. Accordingly, multiple 

fat cores may take over individual applications, but their actual structure may change according to 

the respective application's requirements and capabilities. It is also not clear how much parallelism 

can be expected in future applications (cf. Chapter IV, Programming Models).

So far most manufacturers are building on a mostly fat core oriented multi-core architecture, where 

essentially  all  cores have  the same computational  “power”.  It  can furthermore be noted in this 

context that the number of cores in processors is not growing strongly exponentially, as was initially 

expected. Intel for example is building up from the Nehalem (4 cores) to Westmere (2010, 6 cores), 

Sandy Bridge (2011, 8 cores) and Ivy Bridge (2012, maybe 10-12 cores). At the same time, there is 

the more experimental 48 core system that is essentially  a many-core architecture but not (yet) 

planned to  be  made available  for  the  consumer  market,  though its  application in  HPC is  to  be 

expected soon. Similarly, AMD plans to release a 16 cores processor called Interlagos in 2011.

In  order  to  further  improve  performance  and  to  meet  specific  usage  areas'  requirements,  a 

growing tendency to incorporate  specialised cores can be noted: as opposed to general purpose 

cores,  these units are dedicated to a specific tasks and have an architecture that is almost solely 

capable of  executing according commands (such as graphics accelerators,  encryptors etc.)  These 

cores will extend the command set of the respective chip, implicitly leading to portability issues that 

have to be addressed either on programming, compiler or OS level. It should be noted that in a first 

iteration  development  (and  integration)  will  focus  more  on  micro  architectures  already  known 

(vector processing units, Gfx accelerators etc.) and which have proven useful, as knowledge about 

general application support in scalable environments is still mostly missing (see also section II. 2. )

Whilst  in  particular  in  the  embedded  domain,  specialised  cores  for  e.g.  communication  and 

encryption related tasks can already be found and will appear more and more in the near future,  

more general-purpose areas, including in this case desktop and HPC, will remain more conservative 

regarding  this  development.  As  can  be  seen  below,  a  long  term  trend  towards  dedicated 

“application accelerators” can be expected, but it first requires more information about the type of 

scaling applications to be expected in the future (see also Chapter  VI on Applications). The more 

short-term development instead focuses on areas where “specialisation” in the widest sense has 

already shown successful and relevant – this includes in particular graphics accelerators and vector 
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processing units – visible for example in Intel's AVX (Advanced Vector Extension) development which 

is expected to be part of the Sandy Bridge architecture (see above) with increasing SIMD length over 

future development. Similarly, full monolithic media / Gfx (graphics acceleration) integration seems 

to be planned from 2011 onwards.

With the advent of plenty (fat, small and mixed) cores in processors, new issues arise: current multi-

core processors are “fully” connected in the sense of each core being connected to all cores (via the 

cache).  Some of these  processors  even share higher-level  caches,  respectively  employ hardware 

based cache coherency protocols such as MESIF over QPI. However,  with the increasing scale of 

multi-core processors, these approaches are no longer feasible, due to lack of space and the implicit 

overhead for cache coherency related broadcasts (see challenges, below). On the one hand, this will 

lead to  network like interconnects  between cores,  i.e. meshes and tori in order to maintain low 

latency  and a  maximum  degree of  connectivity  –  nonetheless,  not  all  cores  and  caches  will  be 

reachable directly,  meaning that  more  effort  has to be vested  into mapping the  code onto the 

system structure. On the other hand,  incoherent cache will be employed, cache-coherency will no 

longer be supported by the hardware, meaning that the software will have to cater for it.

Similar  issues  apply  to  memory:  as the consumption  speed  of  the processors  increase,  external 

memory and data sources will not be able to provide data as fast as it is consumed, so that the 

processor hits the so-called  “memory wall”. Generally, 8 cores are considered the maximum that 

current memory architecture can serve for average usage  [19] – however,  the effect  of lacking 

memory  bandwidth is  already  noticeable  at  smaller  levels,  so  that  memory  intensive  processes 

already run into problems with more than 3 cores. Whilst this problem is related to the efficiency 

problem in HPC, namely  to reduce access  to external  resources,  it  nonetheless will  lead to new 

memory access methods and structures. A current research approach to solving this issue consists in 

stacking  memory  directly  on to the CPU (see  e.g.  [111][112]),  thus increasing  access  speed  and 

multiplying connectivity – at least Intel and Sandia already have first conceptual products of this type 

available. However, this approach leads to multiple issues: not only does production become more 

problematic and with the increased source of potential problems significantly decreases the yield, 

but  also  heat  dissipation  become more problematic  due to  the  additional  layers  on top of  the 

processing unit. Furthermore,  this approach implies  serious scalability issues,  as stacked memory 

cannot scale infinitely even theoretically – whilst cache per core can reach up to 2 GB already, 3D 

stacked memory will always require additional “external” memory to compensate lack of space (see 

also long term trends below).

The shorter term approach to address this issue relies on network like interconnects on the cache 

hierarchy. For example,  the architecture of Intel's Knight's Ferry builds on Larrabee's architecture 

and integrates a level 2 cache ring across cores. Individual cores can thus access neighbouring L2 

cache with increasing latency over  “distance” (see also below, section  II.  2. a)  ).  Access to main 
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Figure 3: the Intel Larrabee architecture showing the L2 Cache ring 

across cores (adapted from [110]) – note that Intel does not officially  

refer to the architecture by name “Larrabee” anymore.



(“external”) memory must thus not only be routed via local, but also via neighbouring L2 caches, 

thus leading to increasing delays to central data, thus requiring a higher degree of parallelism from 

the running processes in the first instance (cf. Figure 3). This implies that access to remote L3 cache 

through specialised interconnects may be faster than main RAM access for an individual core.

Summary:

• increasing scale of mostly fat cores

• specialised cores focusing on specific task types (SIMD, Gfx)

• network like interconnect between cores

• no hardware supported cache coherency

• lacking knowledge about future application structure and behaviour

2. LONG TERM TRENDS

Hardware and in particular processor development trends are primarily dictated by the market, as 

manufacturers have to ensure revenue for their production costs. With the change from single- to 

multi-core processors,  it is however no longer clear what the market actually wants / needs. This is 

mostly due to the fact that no clear approach has been identified yet that tackles all the implications 

from parallel on chip processing . Accordingly, chip development is currently in a very experimental 

stage where manufacturers such as Intel still investigate  different architectures and their benefits / 

drawbacks. 

A) CHALLENGES

The  major  challenge  of  hardware  development,  in  particular  on  processor-level  consists  in  the 

energy consumption and heat production of the chips – which was actually one of the reasons to 

initiate the change from single- to many-core architectures in the first instance.  Power consumption 

grows increasingly with CPU clock speed (by the power of 2 or 3),  and obviously also many-core 

systems are affected by this: in order to maintain power consumption at the same overall  level, 

frequency would have to be reduced by 15% with every doubling of the amount of cores  [89]. As 

such it is for example interesting that Intel's latest processor (Knight's Ferry) has a 2 GHz operating 

frequency.

Proportional to energy consumption, heat increases not only with the amount of transistors on the 

chip, but also with decreasing size in semiconductor technologies. In order to cope with the heat, 

new cooling methods are needed that again consume energy and, more importantly, space. Notably, 

decreasing the clock rate helps reducing this effect accordingly (cf. above).

Space is a critical aspect in semiconductor manufacturing, not only so as to merge more transistors, 

but in particular in order to maintain short(est) communication paths, and thus to reduce latency. 

As the number of cores (or tiles – see section II. 2. b) ) on a single chip increases, the interconnect 

moves  towards  network  like  topologies  (see  also  short  term  development  above),  the  distance 

between cores increases accordingly, in the sense of increased latency to access remote cores. This 

is due to the fact that routers on the path take at least 1 cycle to react, thus increasing the amount 

of cycles required to connect over that path. It should be noted here that such network topologies 

on the chip (see also [2]) comes at the cost of space and power consumption. Shared memory design 

and implicitly tight coupling between caches is the general pursued programming model so far (even 

modern  programming  models  such  as  PGAS  rely  on  the  principle  of  shared  memory  from  the 

programming perspective, even though they act on distributed memory architectures – see Chapter 

IV.  for more details) – this implies that cache coherency needs to be maintained across all cores. 

With  the  growing  “distance”  between  cores,  respectively  between  their  caches,  maintaining 

coherency leads to significant cycle loss (for example the MESIF protocol over Intel's QPI requires 3-4 

hops for coherency check [90]). An even stronger performance impact, however, originates from the 
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broadcasting like protocol involved in cache-coherency protocols: in order to reach all caches (for 

updates and queries)  each cache has to be reached at least  once – this  impacts  on the overall  

communication bandwidth with a factor of at least 2 (i.e. reducing it to less than 50%).

In summary, major challenges of future chip architectures are:

• Manufacturing cost

• Energy consumption and heat dissipation

• Communication latency & bandwidth

• Distance, number of hops

• Cache coherency

B) DEVELOPMENT & RESEARCH TRENDS

Even though many-core development is still very experimental, there are nonetheless a number of 

trends notable which will most likely dictate the developments over the next 10-15 years.

There is  a  general,  obvious  trend towards constantly  increasing  the numbers of  cores in future 

system architectures, as this allows for more manufacturing progress than trying to further improve 

the clock rate. It is furthermore to be expected that programming support (and future applications) 

will make better use of the parallel environment by exploiting threading and concurrency. As has 

been noted above, the number of cores is thereby limited by the memory wall related issues and by 

the type(s) of application(s) executed – following Amdahl's law leading to  mixed many-multi-core  

processors (see also Section II. 1.   above) take over the “sequential” (non-parallelisable) portion of 

an application and small cores focus in particular on parallel execution. With the architecture (and 

hence the relationship between parallel and sequential code segments) being as yet unknown, so is 

the architecture of the processor (and hence the number of fat and small cores to be expected). 

Even though the future architecture is unclear as yet, it is obvious that the trend towards specialised 

cores will be pursued further, leading to very  heterogeneous systems  where specialised cores (or 

tiles) share the system space with general purpose ones. As already noted above most of these cores 

will support different computation approaches, such as with a vector architecture. Just like with the 

Gfx accelerators, however, it can be expected that even very application specific cores,or at least 

application specific instruction  sets in hybrid-multicore systems, so-called  application accelerators 

will arise which  will be developed or adapted for the specific logical tasks of relevant applications 

(see e.g.  [91][92])2. To this end, core requirements of these applications have to be identified first, 

which implies however that more information about the nature and structure of these applications 

is available first (cf. above), respectively that application behaviour is pushed into a specific direction 

from the  hardware  side,  which requires  tight  collaboration between  application-  and hardware-

developers. 

Besides for very application- and usage-dedicated cores that focus just on a specific set of tasks, 

reconfigurable compute units will support more dynamism in task support, and thus enabling the 

program to dynamically select the capabilities that would benefit from according hardware support.

Through combination of different specialised units with clusters of general-purpose cores, one can 

effectively achieve a higher system parallelisation level, where sets of cores together form a tightly 

coupled compute unit on its own very much like a node in a current cluster machine. These units are 

referred to as “tiles” (multi-tile architecture) that again are connected with each other on a higher 

level,  i.e. with potentially higher latency and in particular not using a full connection between all 

cores. Assuming that future applications will only make limited use of parallelism, given the natural 

2 Note that the “application accelerators” referred to here belong to the area of hardware accelerators (like Gfx, FPGA 

etc.).  During  the  turn  of  the  century,  software  “application  accelerators”  (e.g.  compiler  extensions)  were  not 

uncommon – similar  to hardware accelerators these accelerators  focused on application behaviour,  yet typically 

were restricted to specific application implementations and not generally applicable
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restrictions of the system and the algorithms, tiles can be adapted and exploited as a whole for 

specific applications, rather than to threads or process parts of one application. Similarly, they may 

process different scales (and in most case different computations) in simulations across different 

levels of scale. This can be exploited in particular for concurrent execution of coupled and uncoupled 

applications.  The  structure  is  essentially  similar  to  a  heterogeneous  cluster  with  specialised 

connected units. 

It will be noticed that introducing a multi-tile architecture has effective similarity to a hierarchical  

organisation of the system where individual units incorporate multiple subsystems – in these cases 

not all units are connected equally and do not fulfil the same purpose. What is more, individual units 

can effectively take control over or act on a higher level than other units, e.g. for scheduling and 

management purposes. Higher-level units can thus be specialised to the respective task, typically at 

the  same time  reducing  its  manufacturing  costs  –  e.g.  cache is  already hierarchically  organised 

(typically  L0  to  L3)  where  the  lowest  (closest)  cache  is  the  fastest  (but  typically  smallest)  and 

accessing higher levels implies according delays in communication. 

Figure 4 depicts a potential structure of a multi-tile architecture with hierarchically organised cache 

and  a  networking  interconnect  on  different  layers,  where  an  individual  segment  can  take  over 

control over the Gfx unit which is not exposed directly, i.e. always acts on a lower hierarchical level, 

and  horizontal  connected  units  can  for  example  make  use  of  HD  Video  processing  powers.  A 

potential use case for such a structure consists in a a set of video analysis tasks that use a small  

portion of physical simulation to assess e.g. the movement of an object in a video from different 

perspectives.  Whilst  this  may  seem  very  specific,  the  principle  can  be  used  in  multiple  related 

contexts. 

As energy consumption becomes more important with the “green awareness”, but the amount of 

required energy increases to feed all cores, more  dynamic control and management mechanisms  

will  arise,  such as dynamic clock rate and on / off  switch-able cores.  The Intel  Atom PC already 

makes use of this  principle to reduce power consumption, which is not simply applicable to large-

scale mixed-core models, in particular when timed synchronisation is embedded in the program in 

some  form. Due to this strong dependency with the actual program requirements, energy related 

control will have to be implemented on both soft- and hardware level.
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Figure 5: memory hierarchy 

Similar development and structural approaches will be noted on the cache and memory level, too: 

not only will cache size increase, but due to the increase of cost and the hierarchical structure of the 

computation units, cache hierarchy and even memory hierarchy will increase too (cf. Figure 5). This 

will imply new structures of memory architectures, such as 3d stacked memory on the CPU with new 

means for heat dissipation (cf. short-term developments). 

Summary:

• increasing scale and heterogeneity, including specialised accelerators

• hierarchical organisation of the system

• architectural structure of the systems as yet unknown (lack of knowledge)
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III. COMMUNICATIONS

1. SHORT TERM DEVELOPMENTS

A) NETWORK

Networking makes part of our daily life. Following this same trend of increasing importance of the 

communication flows, actual networks are expected to become richer and more powerful [42], while 

providing  ubiquitous  connectivity  over  heterogeneous  networks  [43].  We  currently  observe  the 

trend where all devices are becoming network enabled, and wireless technologies become dominant 

in that aspect. All laptops are now Wifi enabled, most cell phones support multiple communication 

interfaces, and even more established equipments such as TVs and gaming consoles are being sold 

network  interfaces, and some other devices are connected to large online communities [44]. With 

these devices, the network is now reaching us everywhere, and if we consider the example of IPTV 

and VoIP, we see that even traditional services are being migrated to the “new” network paradigms. 

Also in line with this convergence, large amounts of the wireless spectrums is being reused to digital 

communications and digital television [45][46]. Because in the future all devices are expected to be 

connected by some interconnect, this inter-host interconnection can be exploited in order to make 

devices cooperate and share more resources, providing an aggregated service, in line with the SOA 

paradigm. Network connectivity is becoming so natural to our life, and to our systems, that even 

execution  environments  are  becoming  network  aware.  The  first  form  are  Cloud  infrastructures 

which can provide massive elastic execution environment for users and businesses to deploy their 

services  [47].  Then,  by  incorporating  networking  concepts  into  the  inner  functional  aspects  of 

kernels, by the creation of forks which aim at distributed operating systems under a single system 

image [48][49][50].

In order to cope with different requirements, isolate complexity, and maximise component reuse, 

communication  systems  are  organized  in  layers.  This  well  tested  paradigm  allows  for  greater 

flexibility, as well as an increase in bandwidth. At the top of the network stack (see Figure 6) we have 

the Internet as a communication medium for Internet applications, and near the bottom we have 

physical  interconnects  such  as  Infiniband  and  Ethernet.  As  complexity  increases,  and  systems 

become more distributed,  concepts  from packet  based  networks  are  being  generalised  to  most 

interconnects. In this aspects, networks are coming closer to processors and cores, and we now find 

NoC providing interconnectivity between cores in multicore processors. 

Transport and Wide area networks,  while relevant  in the area of communication networks,  may 

have little impact in a distributed operating systems, as these networks are mostly used for bulk 

transfer of data. The utmost impact of these networks will be in making Internet system more tightly 

coupled.
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Internet

The Internet,  while  a  combination  of  multiple  technologies,  provides  a  communication  medium 

between applications sparsely located across the globe. Its transmission characteristics are highly 

dependent on the underlying technologies and present high variability in the time domain. Especially 

because end-to-end communications require crossing multiple administrative domains,  as well  as 

different technologies.

While we will see bandwidth increasing on the internet during the next years (see Figure 7), as well 

as  all  other  networks,  the same will  not  be true  for  latency,  which is  bounded by  physical  and 

processing limitations. 

The most important limitations are the speed of light, and the processing capabilities of the routing 

devices. Speed of light imposes hard latency boundaries on pulse propagation across systems, which 

are much aggravated by the fact that light slowed down on fibre (about 2/3 of vacuum speed), 
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Figure 7: Evolution of the Internet Backbone Bandwidth over the 

last 40 years [41] 

Figure 6: Hierarchy of common network types by latency and 

bandwidth



imposing a 5ms delay per 1000km, which restricts optical transport networks. Other aspect is that 

while bandwidth is increasing, electronic equipments have a hard time dealing with the throughput 

required, which affects all types of communication networks. Processing latency will be increasingly 

higher in relation to the transmit latency, as it did in the past, which will surely pose a bottleneck if 

development on parallel systems does not accelerate. Even today it is not difficult to find that end-

to-end delay between hosts exceeds 500ms. Unless reliability, bandwidth and latency improves, a 

distributed operating system over the Internet seems unfeasible in the following years. However, 

because  internet  is  an  important  driver  for  innovation  of  systems,  services,  and  underlying 

communication technologies, its development will have an impact in future operating systems.

Local Area Networks

Local area networking,  as been since a long time dominated by Ethernet,  and more recently by 

802.11.  Capacity  of  these  networks  has  being  increasing  steadily,  as  both  the  underlying 

technologies  also  improved.  Interconnects  with  100Mbits  are  now  well  established  and  most 

equipments  already  support  1G  Ethernet.  It  is  expected  for  these  networks  to  keep  improving 

capabilities, as well as moving from wire based solutions to wireless solutions. The 802.11 family of 

protocols now reaches 300Mbits, supporting rich media contents as well  as multimedia contents 

with  QoS  guarantees.  In  the  short  term,  more  equipments  will  start  to  be  equipped  with  10G 

Ethernet interfaces,  and high speed LANs will  be commonly available.  This trend will  make Local 

Area Networks more and more suited as a scenario for distributed operation.

HPC and Tightly Coupled Systems

Due to  its  nature,  High  Performance  Computing  requires  fast  interconnects  in  order  to  reduce 

execution delays (and hence performance reductions) through high latency. Typically, latency is the 

more critical factor than bandwidth and, as opposed to loosely coupled systems,  bandwidth can 

rarely compensate low latency in these cases (see also sections IV. 1. b) , II. 2. b)  and [2]). The most 

widely used technologies in this context are InfiniBand and Gigabit Ethernet, as can be seen from the 

Top 500 list3:

Gigabit Ethernet is the general term for all technologies that allow the transmission of a Gigabit of 

data per second. Current  Gigabit  Ethernet technologies can reach up to 100 Gigabit  per second 

(100GbE).  We  can  distinguish  between  (1)  optical  fibres  (1000BASE-X),  (2)  twisted  pair  cables 

(1000BASE-T), and (3) balanced copper cables (1000BASE-CX) as physical medium for transportation. 

The  choice  impacts  on  the  maximum  length  of  the  connection,  as  well  as  on  its  latency,  with 

minimum latency being around 70 µs  [113] and one can roughly estimate 1 µs added latency per 

100m cable. Single mode optical fibre can thereby be extended to up to 70km – however, in HPC 

environments, the distance is typically much shorter (generally up to 10 meters). The main strength 

of  Gigabit  Ethernet  consists  on  its  ubiquity,  it  basing  on  IEEE  standards,  thus  making  it  also 

comparatively cheap, yet slow to adapt to necessary changes. For example, the development of the 

40GbE/100GbE took almost 4 years. 

As opposed to this,  the community behind  InfiniBand (originating from Compaq,  IBM, HP, Intel, 

Microsoft and Sun) is much more agile and thus allows quicker adaptation to new requirements and 

environments. The fastest Infiniband configuration can reach up to 300 Gigabit per second and has a 

latency of roughly 1-3 µs. InfiniBand even supports RDMA capabilities, in which case the latency is 

even  less  than  1  µs.  These  specifications  make  InfiniBand  the  preferable  technology  for  tightly 

coupled parallel processes that have to communicate across nodes and potentially across connected 

units  –  however,  the lack  of  a  clear  standard and according programming API  makes InfiniBand 

slightly  more  complex  to  use.  As  opposed  to  Ethernet's  hierachical  switched  network  topology, 

3 http://www.top500.org/stats/list/35/conn   
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InfiniBand employs a switched fabric topology where nodes area typically connected in a Fat-Tree 

(CLOS), mesh or 3D-Torus topology via crossbar switches.

Networks-on-Chip

When  dealing  with  multi-core  (and  more  specifically  with  many-core)  systems-on-a-chip,  the 

interconnect fabric is increasingly viewed as the key limiter for effective system integration, and thus 

is becoming one of the major design challenges. Network-on-Chip (NoC) is an emerging paradigm for 

communications within large scale integrated systems: In a NoC system, modules such as processor 

cores,  memories  and  specialized  IP  blocks  exchange  data  using  a  network  as  a  "public 

transportation" sub-system for the information traffic. An NoC is constructed from multiple point-to-

point data links interconnected by switches (a.k.a. routers), such that messages can be relayed from 

any source module to any destination module over several links, by making routing decisions at the 

switches.

In Deliverable 5.1, Section II.3  [2], we did a recognition of current interconnect topologies for on-

chip  communication,  most  of  them  can  be  classified  as  Network-on-Chip.  The  communication 

protocols mimic similar techniques used in LANs, apart from some specific issues that need to be 

addressed. In particular, routers/switches are usually  simpler than their LANs equivalent, as they 

only provide small buffers. Therefore, techniques derived from circuit switching (rather than from 

packet switching) networks are sometimes employed, like Virtual Circuits/Channels; in other cases, 

specific techniques to minimize buffering are employed, like Wormhole switching.

Network-on-Chip are still  in an intensive research stage,  as testified by a number of EU research 

projects. For example, the NaNoC4 project addresses issues related to composability of IPs in a NoC 

architecture by providing a design platform constituting a toolkit for the construction of NoC-based 

multi-core systems in nanoscale technologies.  The MOSART project5 aims to design a  multi-core 

architecture  with  distributed  memory  organisation,  a  Network-on-Chip  (NoC)  communication 

backbone and configurable processing cores that are scaled, optimised and customised together to 

achieve diverse energy, performance, cost and size requirements of different classes of applications. 

The GnoC6 project explores various possible set of traffic patterns in different NoC architectures. 

Then a Gaussian-based NoC model  is  introduced to provide statistical  guarantees  on delays and 

throughputs. 

It is still an open problem how an Operating System should deal with NoC architectures. An attempt 

to provide a standard API has been made by the Multicore Association7. The MCAPI is based on a 

classical  message  passing  paradigm,  but  has  been  tailored  for  the  specific  issues  of  multi-core 

technology, addressing in particular the need for fast communication between heterogeneous cores 

on a chip and QoS support. However, such standard is not yet widely employed in products. 

Quality of Service

Networks don't always transport data transparently. Packets may be reordered, delayed, and even 

filtered based on dynamic or previously defined rules. Particularly important to this project is the 

shaping applied to packet or flows, as a mean of differentiating end-to-end (E2E) Quality of Service 

(QoS).  An  operating  system  operating  over  a  communication  infrastructure,  should  take  in 

consideration existing differentiation mechanisms, so that process execution priority is respected, or 

at least,  system consistency is maintained (vital  communications of the kernel  will  need to have 

priority  over  all  other  communications).  Research  in  this  topic  is  increasing  as more  distributed 

systems are developed.

4 http://www.nanoc-project.eu

5 http://www.mosart-project.eu

6 http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=290

7 http://www.multicore-association.org/home.php
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Quality  of  Service  mechanisms  are  not  present  in  all  technologies,  nor  at  all  layers  of  the 

communication stack,  which makes the increased use of QoS as a short term trend upwards (in 

opposition  to  the  long  history  of  over-provision,  wich  is  now  being  abandoned).  Every 

communication  above  IP  can  be  differentiated  from  the  others  using  two  well  established 

mechanisms:  Integrated  Services(IntServ)  and  Differentiated  Services  (DiffServ).  Current  trends 

evolved  the standard DiffServ  model  so  that  traffic  can be intelligently  identified  [52] and then 

shaped  accordingly.  Short  term  developments  will  increase  the  accuracy  of  traffic  identification 

methods. At the same time, we are  observing the application of QoS to most technologies and its 

wide spread use in the control data plane [53].

A  relevant  amount  of  work  has  already  being  developed  in  differentiating  communications  by 

creating physical or virtual paths, and this has indeed became a standard procedure for high capacity 

networks supporting the GMPLS [54] family of protocols. Because GMPLS was initially designed for 

optical transport networks (where it proved to be much successful), the concept of Multi Protocol 

Label Switching is now generalized to other communication technologies such as Infiniband [55].

Infiniband is designed to have basic QoS mechanisms, built around the Flow Control mechanisms, 

which are also found in Ethernet (yet in a simpler form). Infiniband supports the concept of virtual 

lane (channel)  which can be arbitrarily  deployed,  while Ethernet  supports only  on demand flow 

control  (it  is  argued that  VLANs can be used  as Virtual  Lanes).  The  use  of  Virtual  Lanes  in  fact 

provides multiple channels between hosts, all with different buffering, and flow control resources. 

Also, lanes can be built in an hierarchical manner, thus allowing highly customised differentiation 

scenarios.  Current trends propose datacenter  consolidation using Infiniband, where virtualization 

techniques, allied to the congestion control and QoS capabilities of Infiniband are vital pieces [51], in 

order to provide isolation (and SLA conformance) between virtual network instances.

In Networks-on-Chip, there is also the need for QoS. Messages between cores are multiplexed into 

links and resources  are shared.  The result  is  high bandwidth at the cost of unpredictable delay, 

which  may  pose  serious  penalties  if  high  priority  messages  are  delayed.  As  well  as  with  other 

technologies, research in NoC architectures tried to put hard boundaries in delay and throughput. 

Short term trends will focus in improving QoS support for NoCs so that the impact of distributed 

execution can be alleviated. One expected development is the support for explicit packet ordering, 

which would benefit the implementation of cache coherent systems  [56]. Other is the creation of 

more QoS aware NoC architectures with different impact [57], thus allowing the NoC architecture to 

be deployed in low power devices, or with highly limited area.

Indirection Mechanisms

An important aspect being pursued is the creation of indirection mechanisms for communication 

between hosts and applications. This new layer sits bellow applications or just after IP and decouples 

location from endpoint identifiers  Currently,  users  communicate  directly,  either  personally or  by 

sending information to others email addresses. Users are able to receive information independently 

of  their  location,  because  of  the  indirection  service  provided  by  the  email  system.  In  common 

networks  that  is  not  possible,  and  the  research  community  already  developed  many  solutions 

capable of making location transparent to actual communication. The result of this effort is in the 

form of the Mobile IP protocol [58] (and its many variants such as [59]), the i3 infrastructure [60] or 

the SIP [61] and HIP [62] protocols. All these solutions, which are all under active refinement, specify 

that either transport nodes or dedicated nodes can track the location of a given host, and redirect 

traffic  to it in real time.  Tunnels  and additional overhead is implied,  while providing almost free 

mobility over heterogeneous technologies (or even equipments). In the nearest term SIP will be the 

first protocol to actually be used due to the deployment of IMS platforms and the upcoming 3GPP 

LTE standard. Later, with the wide spread use of IPv6, Mobile IP, or one of its variants, is a serious 

candidate  for  the  future  indirection  platform.  A  multi-core  distributed  system  must  tackles  this 
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aspect in two ways: first  by supporting the indirection solutions being developed, and second by 

incorporating indirection mechanisms in its operation.

B) WIRELESS TRANSACTIONS

Now  that  networking  became  part  of  our  life,  the  next  step  is  to  improve  ubiquity.  Wireless 

technologies allow users to access a multitude of services with much freedom. Network providers 

believed that  wireless  technologies would  provide  a convergence of  services  between  fixed and 

mobile  (Fixed  Mobile  Convergence  [63]).  However,  it  was  recently  observed  that  wireless 

technologies  are  in  fact  replacing  fixed  technologies,  and  the  actual  trend  is  of  Fixed  Mobile 

Substitution [64]. Most technologies now are being replaced by their wireless counterpart such as 

ADSL [67] for LTE [68], WiMAX [69] and UMTS [70], Ethernet [71] for 802.11abg [72], or CableTV [73] 

for  DVB-T/S/H  [45] or  IP  based  services.  Simply  put:  for  many services,  and use  cases,  wireless 

technologies  provide  a  service  level  similar  to  fixed  technologies,  with  improved  deployment 

flexibility and easy of use. This fact show the importance of wireless technologies, both in the near 

and long term. Surely communications are going wireless.

Wireless technologies can be divided in three areas of networking: Personal, Local Area, Wide Area. 

For the sake of brevity, we will ignore transport networks (typically using Ultra Wide Band), as well 

as  satellite  networks.  The  first  comprises  communications  limited  to  a  few  meters  around  and 

individual. These networks adopt concepts where communication is centralized, or with great focus 

to a single, powerful device, connected to many, less power devices (Master/Slave). Bandwidth is 

low to moderate,  with Bluetooth 3.0 HS  [65] providing up to 24Mbits/s.  Still,  typical  devices are 

currently much constrained, and the specification was only recently ratified, so most most devices 

are unable to sustain such transfer  rate. In the short term we expect all  devices to support this 

bandwidth as Bluetooth 3.0 HS becomes widespread. Also of interest are the protocols arising from 

802.15.4  [66] which  provide  low range communication  to  sensors,  home alarms,  and other  low 

power devices. 802.15.4  is one of the protocols leading the creation of the term “Internet of Things”  

as, due to its low complexity, allows very simple devices to be available to the Internet (frequently 

by means of a proxy). Since simple devices cannot carry on complex computation, in some case they 

can  off-load  part  of  their  computation  to  other,  ,  more  powerful,  devices.  It  should  be  noted, 

however, that the reduced bandwidth does not allow complex coordination schemes among remote 

devices, as it is needed, for intance, in distributed operating systems (see Chapter V. ).

For more than two decades, Local Area Network was identified with Ethernet.  Now a Local Area 

Network most  certainly  uses  802.11 at  some point  in  its  infrastructure.  The exponential  growth 

observed  for  this  family  of  standards  proved  the  value  of  mobility.  802.11  is  now  commonly 

available  at  many  enterprises,  university  campus  and  homes,  providing  an attachment  point  to 

users. The standard evolved from its original bandwidth of 2Mbits/s to 300Mbits/s now provided by 

802.11n  [76]. At the core of such improvement are greater efficiency of the wireless medium and 

incorporation of concepts such as Multiple Input Multiple Output (MIMO) . 802.11n was ratified in 

October 2009, with pre-n devices available since over 2 years. In the near future we will observe the 

adoption  of  concepts  such  as  Beam  Forming  [75],  Sectorized  Antennas  [74],  or  alternative 

frequencies (3.650Ghz, 60Ghz) [77], with the respective increase in bandwidth, interoperability and 

reliability. From the point of view of an Distributed Operating System, the great bandwidth provided, 

as well as the active development around 802.11, makes it possible and very desirable to extend the 

distributed execution environment over devices communicating by means of the 802.11 family of 

protocols. 

Providing connectivity over larger areas is not typically suited for 802.11, where range is limited to a 

few tens or hundreds of meters. In these scenarios, 3G as been the technology of choice to provide 

broadband connectivity to roaming users. This technology is the most responsible for the migration 

of users from DSL to wireless as it provides a reasonably compared service, but over a wide area. 
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Current deployments using the HSPA+ standard provide up to 56Mbits/s download bandwidth. Still, 

as with all cellular technologies, latency is an issue as it averages to a few hundreds of milliseconds 

[78], which may pose some constrains to distributed execution. In the near future, the 3GPP will 

release further improvements over the existing technologies, in the form of the Long-Term-Evolution 

standard [79]. This new standard will evolve cellular networks by providing more efficiency spectrum 

usage, as well as higher flexibility and support of packet based communications. Peak bandwidth is 

currently at more than 300Mbits/s and latency is much improved over  existing UMTS networks, 

reaching values as low as 5ms  [80]. Such high bandwidth and low latency (close to the latency of 

802.11  and  Ethernet)  presents  good  expectations  towards  distributed  operation  over  cellular 

networks.

Also relevant to the near future is WiMAX (802.16) [69]. In comparison with LTE it currently provides 

lower bandwidth, however there are many expectations on the upcoming 802.16m standard, which 

aims at 1Gbp/s over a wireless link. Still adoption of WiMAX has been rather slow and LTE, which is a 

natural evolution to existing network providers, may undermine its future use.

2. LONG-TERM DEVELOPMENTS

On the long term, we will see an even greater increase of bandwidth as the efficiency reaches the 

maximum values allowed by the theoretical information limits. Surely, the world will be driven by 

networking technologies, pervasive communication will become a natural component of everyday 

life according to the Internet of Things paradigm. In particular, wireless technologies will dominate 

by connecting most devices to other devices connected to the high speed wired back-haul. Also, 

direct communication between devices, in a Peer-to-Peer fashion, may be an important technology. 

Not in the traditional sense of today P2P overlay networks over the Internet, but directly between 

devices  in  the  neighbourhood.  One  example  is  the  development  around  the  UWB  and  60Ghz 

frequency band to replace all wired interconnects over short distance, while providing over 1Gb/s.

Optical  interconnects  will  play  an  important  role  in  the  long  future.  The  potential  for  optical 

technology is great, and we are very far from its physical limits. Nowadays the standard choice for 

long distance fixed communications, it will also be used as an interconnect between cores in future 

systems. The impact will be lower total dissipated power and reduced latency. If optical memories 

prove  to  be  possible  and  commercially  viable,  optical  CPUs  will  be  created,  much  boosting 

computation power. 

For future operating systems, it seems natural to assume that interconnectivity between devices will 

become less than a bottleneck, allowing for more distributed operation models. Computation power 

will  increase  continuously  due  to  the  advances  in  optical  technology.  More  importantly,  most 

devices will  have high capacity wireless links with other devices in the surrounding environment, 

making possible the creation of distributed, on-demand processing environments. Communication 

trends will evolve in the direction of indirect addressing, where data is exchanged between entities 

independently  of  their  location.  Other  important  aspect  is  that  the  volume  of  data  exchanged 

between devices will also increase, continuing to put pressure the available bandwidth.

Summarising, we see the following challenges and opportunities:

• Increasing connectivity and increasing bandwidth

• Physical limits to the minimum achievable latency

• Wide diffusion of wireless communication

• Increased location independent distributed computation

• Use of networking techniques in system-level software 

• Internet of things

• Optical interconnects also on chip
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IV. PROGRAMMING MODELS

Programming models for parallel environments develop slowly. Simplicity and efficiency are crucial 

for any changes in this domain

Programmability of distributed and in particular large scale environments is crucial for the success of 

any  system.  Unfortunately,  there  are  enough  high-tech  machines  out  there  that  would  provide 

powerful capabilities if developers would only be able to make efficient use of them – e.g. IBM's Cell  

processor is comparatively difficult to program given current programming models and compilers 

(for example the software must be designed to request a transfer between main memory and local 

memory  [93]), and also with other new architectures the necessary hardware support (OS image, 

libraries etc.) is lacking in the beginning.

In the near (and longer term) future, scalability and heterogeneity of systems will increase rapidly 

(see  also  Chapter  II on  Hardware  and  Processors),  so  that  multiple  challenges  arise  on  the 

programming level:  not only should it  be easy  to program distributed, scalable  environments,  it 

should also be efficient and match the specific capabilities / restrictions of the system so as to offer 

maximum efficiency.  With the increasing  heterogeneity  this  means  that the model  needs  to  be 

highly portable and that the underlying compiler systems can adapt quickly.

In this section we will investigate some of the expected development in programming languages and 

models as indicated by current trends, as well as the expected long term changes along that line.

1. SHORT-TERM DEVELOPMENTS

As  noted  in  D5.1  “State  of  the  Art”  [2],  we  need  to  distinguish  between  the  aspects  and 

developments in programming models on the one hand and the ones in the underlying compiler 

technologies  on  the  other:  whilst  programming  models  evolve  comparatively  slow  and  try  to 

maintain a maximum degree of downward compatibility, compilers have to evolve quickly to adjust 

to  the  changes  in  the  hardware  and  thus  maintain  efficiency  of  the  language  on  top.  Still, 

programming languages evolve faster than compilers due to the simple fact that they do not have to 

accommodate for system changes so much.

A) COMPILER DEVELOPMENT

Most compiler suites consist of (at least) a front-end, dedicated to a specific source language (such 

as C extended with OpenMP) that is converted (in any number of steps) into an ideally platform-

independent intermediary code, which is then compiled by the back-end into the actual hardware-

specific  optimised  code.  Accordingly,  most  adaptations  have  to  be performed  on the  compiler's 

back-end in order to meet the specific hardware-capabilities and most language changes affect the 

front-end.

With the increasing diversity and heterogeneity in system architectures, the complexity of the back-

end  will  increase  accordingly.  Since  a  wide  range  of  quickly  changing  architectures  are  to  be 

expected (cf.  Chapter  II on Hardware  and Processors),  this means that not so much time can be 

vested  into  fine-tuning  the  compiler  any  more,  as  was  typically  the  case  in  particular  for  High 

Performance Computing (see D5.1 on HPC  [2]). What is more, processor developers such as Intel 

plan to extend the instruction set of the processor to exploit the capabilities of the specialised cores, 

meaning that not only platform-independence will  be more difficult to achieve, but also that the 

compilers  will  have  to  become  even  more  processor-specific  than  before  (at  least  in  the  wide 

consumer market).
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At least in the common end-user sector  compiler developers therefore will go a similar way than 

modern  programming  languages  (cf.  D5.1  [2] and below),  namely  to  make use  of  parallelisable 

patterns to ensure scalability to the increasing amount of cores and to essentially leave all platform 

specific adaptations up to the compiler's decision. Whilst this simplifies development, at the same 

time it  reduces  efficiency  and programmer  control,   as  the  developer  will  have  no information 

available on why and which transformations have occurred.

A slightly different trend consists in extended “just-in-time” (JiT) compilation where the code is only 

pre-compiled into a platform-independent form that the JiT compiler will adapt to the respective 

environment at execution time. In principle, JiT compilers take up a lot of the performance, as they 

effectively are nothing else but virtual machines or code interpreters (cf. D5.1  [2]). In the area of 

High Performance Computing,  however,  where efficiency is more important than simplicity,  it is 

unlikely to expect compilers to take over  all code-adaptation and optimisation,  even though the 

principle  trend  is  clearly  visible.  Current  compilers  have  a  tendency  to  look  for  transformable 

patterns in the code, but do not respect any higher-order information about the code behaviour, so 

that e.g. nested loops and double-linked lists can cause optimization problems and performance loss 

[101]. Next generation compilers (and implicitly programming languages, cf. below) will therefore 

have to respect  additional information provided by the developer  about the code behaviour,  its 

restrictions and limitations – StarSS (see programming models below) is a step in this  direction. This 

means, however, that even in the HPC sector, compilers have to become more intelligent to actually 

interpret the code-behaviour information – in the long run, this will  make code more hardware-

independent, too (cf. long term trends below).

Summary

• in common mass market, maintain simplicity of usage for developer

• in HPC, higher-order code behaviour needs to be respected

• more intelligent compilers that actually perform the scale and hardware-adaptation

• multi-pass  and JiT compilers to increase platform-independence

B) PROGRAMMING MODELS

Development in programming models is basically following the same tendencies as the ones of the 

compilers (cf.  above) – we thereby need to distinguish in particular between common (end-user) 

programming models and high performance computing related ones, even though there is a wide 

range of end-user programming languages that partially overlap with HPC.

In  the  common mass  market  sector,  programming  languages  in  particular  aim for  simplicity of 

usage,  that  means  that  they  generally  want  to  provide  a  powerful  high-level  language  that 

incorporates most of its functionalities in simple operations according to the typical requirements in 

the  according  usage  domain.  Scripting  languages  for  example  provide  a  very  explicit  set  of 

commands that fulfil the specific purposes of controlling the respective application it belongs too. It 

should  be  noted  that  functional  programming  models  found  little  uptake  -  non-regarding  their 

benefits  for  parallelised  developed  (cf.  [2]).  Nonetheless,  more  and  more  modern  programming 

models take over concepts from functional programming, such as the Lambda operator for improved 

function passing etc. to increase and even simplify the development tasks. The .NET framework was 

specifically  devised to provide functionalities that encapsulate most  of the low-level  tasks that a 

developer typically has to perform, to e.g. open a communication channel across the web etc.

Next to increasing simplicity, this also makes the language more platform-independent and leaves 

more tasks to  the compiler  which can take  hardware-specific  optimisation decisions.  Effectively, 

programming language development in all areas tends to add abstraction layers on top of existing 

languages,  thus  hiding  complex  algorithms  in  more  simple  operations  and  leaving  it  up  to  the 

compiler to transform the according pattern.
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With the increasing necessity to achieve performance by exploiting the scale (and potentially the 

heterogeneity, cf. below) of future processors, programming models need to come up with solutions 

that allow for parallelising and scaling the code. Since automatic parallelisation is NP hard, some 

information needs  to  be conveyed by  the developer:  a  particular  starting point  for  serialisation 

thereby consists in particular in the so-called “unrollment” of loops, to which end some information 

about the dependency of data between loop iterations needs to be known, though. The current 

trend thereby goes towards extending the language with a set of additional commands that clearly 

indicate their parallelisability (such as “parallel_for”), leaving it up to the compiler to do the most 

efficient spread-out and manage the parallel threads. This is thereby generally restricted to a specific 

set  of  loops (such as database queries)  and without  additional  information the scale-out of  the 

compiler  does  not  respect  that  overhead  for  communication  may  produce  more  delay  than  a 

sequential execution. The set of extensions and the type of information that needs to be provided 

with it will  have to be elaborated further. 

More responsibility will hence automatically be left to the developer, who is already encouraged to 

explicit  develop  threads  in  the  form  of  lambda  operators.  Thread  management  by  the  runtime 

environment  (compiler)  will  accordingly  increase  in  a  comparable  fashion.  It  is  therefore  to  be 

expected that in a first iteration, in particular the concepts from distributed (as opposed to parallel) 

computing will be elaborated in the direction of concurrent execution, such as e.g. decoupling of the 

application interface from the code, which is essentially already possible, but not respected in code 

distribution etc. As discussed in more detail below (on HPC programming languages), provisioning of 

meta-information for scale-out will remain difficult within the near future, so that semi-automatic 

scale out and hence parallelisation will focus on specific patterns, such as parallelisable loops. 

At the same time, extended features of specialised cores will become visible in the programming 

language, but uptake will  be restricted to specific use cases (such as mobile devices) in order to 

maintain a maximum degree of portability. It is to be expected that in the long run (cf. long term 

trend below), the knowledge acquired from next generation HPC programming models will influence 

the next developments in common programming languages by extrapolating patterns for dealing 

with heterogeneity and increasing scale.

Programming languages in the area of  High Performance Computing  develop more slowly than in 

the common end-user domain, as has already been noted. Rather than complete new programming 

models, it is rather to be expected that  current programming models that are basically still under 

development  will  find  more  uptake,  as  their  stability  and  performance  in  new  environments 

increases. To these languages we can count in particular:

• the  Partitioned  Global  Address  Space  (PGAS)  model  which  exposes  a  virtually  shared 

memory to the developer and takes care of messaging during synchronisation and memory 

locks itself, thus relieving the developer from having to think about the specific memory 

architecture (cf. D5.1 [2])

• As the long-term development will go into identification of more annotations (cf. below), 

intermediary  steps  will  investigate  into  means  to  define  dependencies  between  code 

segments  and  functions.  To  this  exploration  already  count  models  such  as  the  StarSS 

extension by Barcelona Super Computing [94].

• At the same time,  with a  clear  trend for  using  GPGPUs as part  of  HPC applications,  in 

particular  for  embarrassingly  parallel  tasks,  more  and  more  language  models  (and  in 

particular  compilers)  will  extend to integrate  these  types of platforms,  thus elaborating 

heterogeneity of the languages more closely.  NVidia is particularly interested in opening 

GPGPU platforms for HPC as can be seen by their development of “graphic card clusters” in 

recent years.  Along that line,  NVidia has published and  does further  develop the  CUDA  
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toolkit8, which provides the means to develop vector-like calculations to GPGPUs, typically 

using  the  C  programming  language.  A  similar  line  is  visible  by  Apple's  OpenCL  (Open  

Computing Language)9 which provides a similar environment to PGAS, but is devised to deal 

with heterogeneous platforms, and in particular with GPGPUs in these environments. CUDA 

already integrates OpenCL.

• As  already  noted  in  D5.1  [2],  supercomputer  clusters  already  incorporate  multi-core 

processors that are (currently) effectively shared memory machines (UMA), whereas the 

nodes follow the NUMA concept, i.e. do not share memory, and there is generally no cache-

coherency protocol in place. Accordingly the communication and synchronisation principle 

differs in clusters according to the hierarchical level, but there is no according programming 

model to reflect  both NUMA  and UMA architecture. An approach growing in popularity 

consists  in a  hybrid programming model,  where  OpenMP is  employed on the processor 

level  and  MPI  for  any  communication  across  processors  (or  nodes,  depending  on  the 

system architecture). Obviously this implies more careful planning about code distribution. 

It is however not expected that this model as such will pertain long (i.e. become a long term 

trend), as cache-coherency in multi-core processors will probably disappear (see Chapter II), 

so that some form of messaging / synchronisation will  have to be specified at all levels, 

though potentially in slightly varying forms.

It must be noted again here that even though most of these approaches already exist in the form of 

experimental  and  under  development  programming  languages,  we  nonetheless  regard  them  as 

short-term development trends, as uptake will only slowly increase and thus lead to better efficiency 

and stability of these models.

Summary:

• Simplicity is a primary concern over efficiency to deal with scale and heterogeneity

• Principle approach by adding further layers (annotations) on top of existing models

• Examine means to convey additional (meta) code information

• Tendency towards improving the compiler, rather than the language

2. LONG TERM TRENDS

Talking about programming models, long term trends are very similar to short-term development, 

simply due to the fact that the issues to be addressed within the near future will not be solved 

quickly enough. Similarly, the development of programming languages so far did not so much result 

in completely different concepts, i.e. declarative and imperative models did (and will) prevail. Even 

aspect-orientation did  not so much introduce a  new concept,  but  took the  next  step along the 

development of compiler directives. 

In  particular  in  the  more  common  end-user  domain  programming  models  always  aimed  at 

simplicity of usage, even at the cost of efficiency. This trend will continue but will have to cope with 

the additional  constraints and requirements derived  from the  heterogeneity  and scale  of  future 

architectures. This will particularly lead to more intelligent compilers that can identify a larger scope 

of parallelisable patterns and match those to the characteristics of the infrastructure. In the long 

run, this will also lead to changes in the language constructs that allow implicit parallelisation, such 

as “for_each” as opposed to “for (int x=...”, since the prior does not proscribe an order of execution, 

therefore stating the independence of the algorithm within the loop etc.

The common programming models will  thereby lend concepts and lessons learned from the high 

performance computing domain with respect to patterns, dependency declaration etc. - however, 

8 http://developer.nvidia.com/object/gpucomputing.html

9 http://www.khronos.org/opencl/
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with a primary goal to automate and integrate these features into the compiler, as much as possible. 

As HPC and Desktop PC converge architecturally at least in principle, an important aspect for future 

programming models (and the according support through hardware, OS and compiler) consists in 

increased  portability  that  retains  a  maximum degree  of  efficiency,  which may  require  hardware 

specific annotations though (see below). There are already first research projects being initiated (see 

e.g. the call of the German Bundesministerium für Bildung und Forschung10) that aim in particular at 

increased portability between desktop PCs and supercomputer clusters to leverage the parallelism 

of  future  many-multi-core  to  test  and  pre-process  also  complex  simulations  before  they  are 

deployed in a large-scale environment. This means particularly that programming languages have to 

provide common features that can be equally exploited in different environments and hence that 

the compiler can deal with. As opposed to the common “mass-market” development area the goal 

consists not so much in automating parallelisation and adaptation, but to relieve the constraints on 

the developer, so that he / she can concentrate on the code instead. This can take different forms 

(which most likely will converge in the long run):

• Annotation of functions and / or code segments in a loop can provide information about 

the relationship and hence dependency of operations. This cannot only be used for scale-

out (degree of information exchange), but also concurrency spread-out, i.e. which segments 

can be executed in parallel, even if they do not belong to the same loop. StarSS is already 

providing the basis for such behaviour [94].

• At the moment, the developer still has to respect the word length in vector processors for 

efficient loop unrolling – however, with the compiler reading that information at execution 

time and the developer providing dependency information on top of even nested loops, 

unrolling can be done more efficiently by the compiler.

• The developer also knows which data is most likely to be used frequently, so that he / she 

can give indications with respect to whether they should remain in cache if possible or not 

• Hide  the  memory  management  details  from  the  user  regarding  shared-  or  distributed 

memory, so that he / she can assign preferences to data distribution that the compiler will 

actually  map  to  the  hardware  and  converts  synchronisation  points  into  the  necessary 

actions (PGAS model)

• etc.

In effect, we will notice the following main development steps:

Foremost,  memory  management  of  the  code  has  to  (and  will)  improve  so  as  to  allow  for  the 

differences in memory architecture in future processor and HPC architectures – this does not only 

involve  the  PGAS  like  “virtual  shared  memory”  structure,  but  also  annotations  that  provide 

information about the dependency and usage scope of data. 

Due to the increasing heterogeneity and scale of the computing environments (desktop PCs as HPC 

clusters) future models will include higher levels of abstraction that do not only affect the memory 

architecture, but also specifics regarding communication, I/O etc. A great deal of system adaptation 

must be taken over by the compiler and / or the operating system, to which end new constructs 

need to be examined that give the compiler more options to optimise the code behaviour. At the 

same time, in particular develops of highly efficient code (in the HPC domain), will want to exercise 

enough control over the compiler so as to exploit specific hardware characteristics – ideally in an 

aspect-oriented like fashion that increases the portability of the source code and performs hardware 

specific decisions (branches) either at compile or run-time. 

10 http://www.bmbf.de/foerderungen/14191.php   
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It is as yet unknown to what degree programming models, compilers and / or hardware are affected 

by these developments,  i.e. how much can (and should) be realised by e.g. the compiler, whether 

some kind of adaptations are needed on hardware level etc.

Summary:

• Compilers will become more intelligent to match hardware specifics with annotated code

• More code annotations to specify the overall behaviour of the code 

• Typical  development  patterns  will  move  from  the  actual  language  into  compiler  and 

annotation model

• Platform-independence will have to increase

• Full scope of impact from parallelism unknown as yet. 
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V. OPERATING SYSTEMS

The Operating System is the  component that most of all is experiencing the pressure of change due 

to the paradigm shift from single-core to multi-core and many-core technology. On one hand, the OS 

has to provide appropriate hardware abstractions so that applications do not depend too much on 

the underlying hardware platform; on the other hand, it must manage hardware resources in an 

efficient way, to unleash the power of future parallel hardware architectures. 

For this reasons, in the next future we will see Operating Systems go though a deep revision of their 

internal  architecture and of the way they provide services to applications.    

1. SHORT-TERM DEVELOPMENTS

Monolithic Operating Systems (see  [2]), which is now the architectural model of most commercial 

OS,  are going  through a  profound transformation  due  to  the  need  to adapt  themselves  to  the 

upraise of multi-core technology.

Currently, monolithic OS are implemented by running identical copies of the same kernel image on 

every  core,  all  of  them share  the  same  global  address  space  and the  same  data  structures.  To 

prevent data inconsistency in kernel data structures, monolithic kernels make a large use of spin-

locks, reader-writer synchronizations, read-copy update (RCUs), etc.  Unfortunately, performance of 

kernel routines strongly depends on the lock implementation, which in turns may depend on the 

underlying  hardware  architecture.  When  moving  to  multi-core  systems,  most  of  the  important 

shared  data  structures  (for  example  the  scheduling  queues  and process  descriptors)  become  a 

bottleneck,  due  to  the  high  bus  contention  and  the  overhead  of  cache  coherency  protocols. 

Therefore,  the  need  to  change  the  internal  data  structures  and  locking  strategies  from  one 

architecture  to  the  other.  Such  modification  take  a  long  time  and  huge  efforts  to  kernel 

programmers,  and  cannot  be  considered  definitive  as  we  move  toward  different  hardware 

architectures.  

As stated in [1]:

Even so, operating systems are forced to adopt increasingly complex optimizations [...] in order  

to make efficient use of modern hardware. The recent scalability improvements to Windows7 to  

remove the dispatcher lock touched 6000 lines of code in 58 files and have been described as  

“heroic” [...].  The Linux readcopy update implementation required numerous iterations due to  

feature interaction [...]. Backporting receive-side-scaling support to Windows Server 2003 caused  

serious problems with multiple other network subsystems including firewalls, connection-sharing  

and even Exchange servers.

Most of the problems cited above are due to the lack of modularity of existing monolithic kernels, 

and the lack of clear, stable and well-defined interfaces between the different services. The lack of 

modularity is a consequence of the race of OS vendors to optimize the performance for a specific 

service by introducing short cuts to direct hardware access. However, this is also the reason for the 

commercial  success of  monolithic  kernels.  With the advent  of multi-core technologies,  the deep 

intertwining of the different kernel services and the complexity of the cross interaction between 

kernel functions has been exacerbated by concurrency problems and race conditions introduced by 

parallelism, making the design of next version of the kernel an overly complex problem. 

It  is  clear  that  the  situation has  come  to a  point  in  which  a  complete  rethinking of  the  kernel 

structure is  needed.  In facts,  several  researchers  and practitioners reports that the scalability  of 
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current monolithic kernels is limited to 8-16 cores  [1]. A different approach is urged as hardware 

moves toward an increasing number of cores.   

We  expect  the  current  monolithic  kernel  structure  will  not  survive  the  next  advancements  in 

hardware design.  As discussed in D5.1 [2], there are different proposal to change the structure of 

the kernel: the multi-kernel approach [1], in which a different instance of the kernel runs on each 

core, each one with its own private data, and instances communicate by means of remote procedure 

calls; GenerOS and FOS [29][30] in a number of cores are reserved for the OS; Corey [31] in which 

the application has the responsibility to specify access modes and the level  of contention of the 

resources. 

It is important to notice the analogy of this proposal with the micro-kernel architecture (see [2]). 

Micro-kernels  are  a  promising  technology  for  massively  parallel  architectures,  because  of  their 

minimal footprint, their modularity and their strong focus on efficient message passing mechanisms. 

As multi-core and many-core systems start to resemble distributed systems on a chip, and as shared 

memory systems become less convenient due to the complexities of cache coherency protocols,  we 

believe  that  the micro-kernel  modularity  will  be  a  better  tool  to  tackle  complexity  and address 

scalability.

However, recently researchers have focused on enhancing the security aspects of microkernels [23]

[24], and for using the microkernel as a hypervisor  [25][26]. As a matter of fact, security and fault 

tolerance are two distinctive features of microkernels that cannot be easily found in other systems. 

However,  we  believe  that  microkernels  can  play  an  important  role  in  future  many-core 

architectures. Unfortunately, only few researchers are investigating the use of classical microkernels 

for multicore systems [27][28]. 

Lutz et al. [81] recently proposed a Service-Oriented Operating System (S(o)OS) model constituting 

an enabling technology for future distributed collaboration scenarios called Future Workspaces. In 

this work, it is suggested that the Operating System should possess a distributed and heterogeneous 

nature.   A  “Main”  OS  instance  is  the  one  offering  the  most  complex  services  to  applications, 

comprising process management,  virtual memory management,  I/O, networking,  and a graphical 

user interface, whilst other OS instances exhibit a limited set of functionality focused/specialized on 

the capabilities locally available on the nodes they are running on. Specifically, it is envisioned that 

an “Embedded Micro OS” instance should be used to directly control remote resources and devices, 

while a “Standalone Micro OS” instance should be used to  expose access to virtualised resources 

made available through virtualisation technology by some further Operating System. This structure 

will  enable an unforeseen enhanced level of experience for mobility, where the actual resources 

(computational  power,  storage,  data)  will  be  maintained  remotely  through  dedicated  corporate 

server farms, thus greatly reducing administration efforts.

One advantage of such a structure is that the Operating System may easily embed the additional 

features needed by GRID applications  [82],  which usually  are made available today by means of 

specialized extensions to the OS. S(o)OS introduces a novel resource provisioning concept [83] that 

differs from existing approaches of Grids and Clouds,  in that it  aims for making applications and 

computers more independent of the underlying hardware and increase mobility and performance.

One of the ideas that is stressed in the S(o)OS concept, is that the programs do not necessarily need 

to be written in a parallel nor distributed way, like it happens in the MPI approach. Rather, it should 

be possible in principle to take a sequential application and automatically identify those portions of 

the program code that may be run remotely, then migrate them on a more powerful Embedded OS 

instance for a faster execution. The additional latency due to the distribution of the functionality 

would be largely compensated by the increased performance of the code when running remotely. 

For example, this would be easily the case for a laptop designed for mobility running the main OS 
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instance,  whose code is  partially  remotely  executed  on a  high-performance  remote  machine.  In 

order to achieve this, sophisticated monitoring mechanisms will need to be built into the OS, such as 

monitoring the memory access patterns, building statistics on the frequency of access to the various 

pages, tracking dependencies and interactions among various code segments.

Also, in a cloud environment, a vast  amount of computational resources will be at reach of each 

process across the web or locally. Therefore, the S(o)OS concept calls for deep investigations into 

dynamic  and  intelligent  processes  (re)distribution  policies  according  to  resource  availability  and 

demand, and it proposes [84] a micro-kernel OS architecture model designed to compensate these 

deficits. All these elements are under investigation in the context of the S(o)oS project.

Summarising,

• OS are subject to pressure

• Current monolithic structure to be changed, some microkernel concept will be used

• Need to use smaller kernels for efficient distribution of code

2. LONG-TERM DEVELOPMENTS

The  OS  has  to  mediate the  hardware  aspects  with  the  programming  model:  keywords  will  be 

modularity,  scalability,  distribution,  dynamic  configuration  and  reconfiguration.  In  order  to 

efficiently support future parallel hardware architectures and programming models, the following 

areas and services will be revolutionized.

Synchronization

Parallel and distributed software need to be synchronized and coordinated in a more or less strict 

way, depending on the application coupling level. However, the underlying hardware platform could 

be highly parallel, and or distributed; the underlying interaction model could be based on shared 

memory  in  on-chip  parallel  architectures;  or  on  message  passing  on  distributed  systems.  The 

operating system will need to dynamically and adaptively support all possible models of interactions. 

Also, the OS must support different application scenarios, from remote execution on a cloud, to local 

execution of the same service with a reduced QoS. We envision a hierarchical approach, where an 

application  is  recursively  split  in  subsystems  with  different  coupling  levels  at  each  layer  of  the 

hierarchy; at the lowest level, there will be highly coupled parallel software that needs to execute on 

many-core systems on chip, probably with some shared memory; at higher layers, subsystems will 

interact  less  frequently  and  communicate  via  message  passing.  Therefore,  the  OS  will  need  to 

support  a  mixture  of  shared  memory  (whenever  possible)  and  remote  procedure  call,  and 

automatically  and  transparently  switch  between  the  two  models  depending  on  the  application 

requirements and the underlying platform support.  

We also envision a tighter interaction between OS and hardware features: many of the low level 

mechanism that are today realized in software will be supported in hardware in future hardware 

architectures. One example is transactional memory  [103], which has been proposed as a way to 

simplify the writing of lock-free data structures.  Another example is support for message passing 

features  in  hardware:  rather  than  simply  sending  an  interprocessor  interrupts  to  realize 

communication between cores, it may be possible to rely on NoC features to safely and efficiently 

implement message passing and remote procedure calls, with support for priority based message 

enqueueing and Quality of Service. 

Concurrency

The dynamic and distributed nature of future hardware platforms (many-cores, but also clouds) will 

require an high degree of adaptation to the application and to the OS. In particular, the OS must 

allocate resources  and distribute the load across  a set  of nodes that is  potentially  unknown (or 
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scarcely  known)  during the  design of  the  application and its  implementation,  and may even  be 

scarcely known at execution time.  In order to efficiently perform load balancing and optimization of 

computational resources  (with a energy saving impact),  it wil  be necessary to efficiently  migrate 

code across  nodes,  let  them be cores  in a multi-core architecture,  or  complex  subsystems  of  a 

distributed environment. This will have an impact on processors ISAs and on compiler technology, 

but also on the Operating Systems. In fact, the OS will need to “split” and “merge” the application 

code depending on the specific underlying platform that is actually available. As a consequence, the 

concepts of process and thread as we know them may need to change in the future. One possibility 

is  to  use  lightweight  active  objects  with  a  reduced  state/context,  that  may  be  used  as  simple 

functions in a sequential program (with a minimal overhead) or as threads in a parallel many-core 

environment, or as processes in a distributed environments. The OS will be in charge of split and 

merging those objects into threads or processes as needed.

In the same way, the kernel code needs to be designed and built in a component-based way, and the 

kernel will dynamically change its code and profile depending on the needs of the application. While 

such a trend is already present in modern OS (e.g. Linux kernel modules), in the future this approach 

needs to be taken to an extreme level.

Distributed Control

Future OS will need to cooperate in a completely distributed manner. It is simply impossible to think 

of a central Operating System that manages all local and remote resources and takes all decision in a 

optimal way. To enhance scalability, instead, every processing unit will have its own copy of the OS. 

By processing unit here we mean several different things, depending on the granularity at which we 

consider the system: it could be a multi-core chip, or a tile in a many-core architecture, or an entire 

subsystem of a distributed cluster. These OS will interact with each other in a distributed manner to 

carry on their job.  Not all OS will be the same, instead each one could provide a different set of 

services.  This  means  that an application that  needs one specific  service will  ask  the local  OS to 

“discover”  other  OS  nearby  that  may  provide  the  service.  Service-oriented  Architecture  (SoA) 

concepts and techniques will  be essential  to provide such mechanisms.  Also,  this  will  enable an 

unprecedent level of fault-tolerance, as one service may be provided by different peers,  and the 

local requesting OS may request the service to more than one node in a replicated manner and then 

choose the most appropriate results.

Scheduling

One  important  problem  that  needs  to  be  addressed  is  how  to  properly  schedule the  different 

activities in the system so that all timing constraints are respected. In order to keep performance 

under  control,  especially  for  real-time  applications,  it  is  important  to  precisely  control  how 

computation is distributed across nodes and when it is executed; and how and when messages are 

enqueued in the network, be it a on-chip network interconnect, or on a classical inter-node network.

Some researchers state that the number of cores in future processor architectures will be so large 

that there will be no need for multitasking on cores, thus making processor scheduling not relevant. 

For example, Wentzlaff and Agarwal argue [86] that, in the near future, “the reliance on temporal 

multiplexing of resources will be removed”.

It is our opinion that such a scenario will not actually happen, or at least not in all systems, and not 

so drastically, for a variety of reasons. First,  the various cores,  caches and memory elements will 

need  to  communicate  and  exchange  messages,  but  they  will  hardly  be  fully  and  completely 

connected, thus various parts of the physical  links  and interconnects will  be time-shared among 

multiple activities. 
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Second, while the tremendous take-off of parallelism at the hardware level could not be followed by 

software at the same rate,  we expect in the future to see much more parallel  applications.  This 

means  that  applications  will  try  to  exploit  to  the  maximum  extent  the  underlying  parallelism 

available in the hardware, creating a number of small parallel tasks that is unforeseen in the current 

programming culture. This will imply an increase in orders of magnitude in the number of parallel  

threads created by each single application.

Third,  in  order  to  achieve  good resources  saturation  levels,  there  will  be anyway  the  need  for 

temporal  scheduling  of  multiple  tasks  on  the  same  core.  In  fact,  while  cores  communicate, 

synchronize,  exchange data,  among each other or with  external I/O devices,  a context-switch to 

another ready task will promptly allow for a good exploitation of the core computational power.

Also,  there will  be anyway the need for inter-mixing,  on the same system and core,  application 

workloads  of  heterogeneous  types  and  with  different  timeliness  requirements,  e.g.,  batch  and 

interactive applications. A batch activity like a software compilation will likely try to occupy all the 

available cores, in order to exploit available computing power to the full extent. Yet, in response to a 

user action, some task will need to preempt the currently executing task on some core, in order to 

execute  something  else.  Waiting  for  some  core  to  finish  its  current  task  before  activating  the 

interactive task may simply lead to unacceptable response latencies for the application. On the other 

hand, a static partitioning of resources (e.g., cores) among applications may be detrimental in that 

some cores would likely remain greatly under-utilized.

Furthermore,  considerations  on  efficient  power  management  may  shed  a  different  light  on  the 

problem of scheduling and allocation of tasks on cores. For example, it may be important to compact 

all  tasks  on  fewer  processors  and turn  off  the  other  cores,  thus  reducing  energy  consumption. 

Similarly, in order to keep under control heating and temperature in some parts of the chip, cores 

can be dynamically switched on and off according to some scheduling policy, and tasks be migrated 

between cores so to make power dissipation easier. 

Hence,  in  our  opinion,  temporal  scheduling will  still  be an important  topic  in  future many-core 

systems.

Summarising:

• Synchronisation  will  remain  a  crucial  aspect  of  kernel  development,  need  to  make  it 

adaptive

• Some of the kernel low level operations implemented in hardware 

• Efficient migration of code

• distributed control, no centralized kernel

• temporal scheduling and load balancing still an important research aspect
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VI. APPLICATION TYPES AND AREAS

Development is primarily driven by usage. As areas converge over time, future systems will have to 

address a wide scope of application types.

Each company defines their next generation of products according to the needs of the respective 

usage  domain  –  e.g.  over  recent  years,  vector  processing  has  had  a  huge  demand  in  high 

performance  computing.  This  demand  has  led  to  many  manufacturers  providing  vector  based 

computing systems,  such as the NEC SX 8 in  2003  [95].  At that time,  the end-user  market  was 

interested in vector systems only in the sense of graphics cards, contributing to the success stories of 

companies such as NVidia and ATI.  IBM has taken a more courageous (albeit  co-developed with 

manufacturers  for  Gaming  Consoles)  approach  back  then  by  manufacturing  the  CELL  processor 

which shows an attempt of serving both domains' needs [96][97]. 

In other words, the individual companies are concentrated on the applications of the respective user 

domains.  With  the  advent  of  GPGPU  to  a  broader  audience,  this  focus  and  distribution  across 

domains has slightly  changed though and graphics  cards  manufacturers  now offer  vector  based 

cluster systems for intermediate scoped high performance computing etc. But even in these cases, 

companies  such  as  NVidia  clearly  aim  at  vector  computation  use  cases  and  not  at  say  audio 

processing.  Intel  on  the  other  hand  tries  to  serve  different  markets  equally  well  and  therefore 

investigates into general  purpose processors  which can execute computational  intensive,  vector-

related, stream-centric etc. applications.

The corresponding application domains pose completely different demands on the system (the most 

obvious ones being e.g. vector versus scalar systems) and this does not only circumscribe HPC and 

desktop users,  but also the full  range from embedded systems, via mobile devices to distributed 

data  centres.  By  examining  these  application  areas,  it  is  possible  to  identify  joint  (respectively 

divergent) requirements towards the underlying resources. On this basis, the degree of convergence 

through future systems can be analysed, and the usability across (and within) domains of specific 

solutions be assessed.

In the following, we give an assessment of some important application domains and their general 

requirements for parallel computation. 

1. HIGH PERFORMANCE COMPUTING

HPC  applications  have  a  high  demand  for 

computational performance. Latency is a critical factor

High Performance Computing arose from the need to perform complex computational tasks faster 

and  with  higher  accuracy  than  current  computers  could  /  can  achieve.  HPC  systems  do  not 

necessarily  consist  of  parallel  cluster  machines,  but  can  in  principle  be  realised  using  high-end 

processors,  even though multi-processor architectures proved to be the most  successful approach 

given  the  hardware  limitations.  Most  modern  clusters  employ  multiple  specialised,  high-end 

processors high-speed connections such as Infiniband (IB) in order to combine the benefits of fast 

processors with parallel execution. 

Multi-core processors are obviously being employed in high performance computing, thus adding 

another  hierarchical  layer  to  distributed  machines  where  nodes  do  not  only  contain  multiple 

processors, but each processor also contains multiple computing units, so that we can identify the 

following layers in modern day distributed settings:
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1. Inter-processor (core-2-core using e.g. QPI)

2. Inter-node (processor-2-processor using e.g.  e.g. IB, IXS)

3. Inter-node (node-2-node using typically infiniband)

4. Beyond clusters (e.g. user-2-cluster e.g. via Ethernet)

Standard applications obviously do not benefit from such a distributed setup as they typically cannot 

use more than a single compute unit (i.e. core). Applications exploiting cluster machines need to 

explicitly be programmed to execute parts of the algorithm concurrently across multiple compute 

units (classically processors, now cores). Not all algorithms can actually be treated in this fashion and 

some do actually show worse behaviour in parallel environments – as we will show below, there are 

also different parallelisation strategies that will not only lead to different efficiency depending on 

the algorithm type, but also to different infrastructure requirements.

What is more,  though, the process(es)  not only need to be parallelised,  but also adapted to the 

specific  hardware:  a  great  deal  of  performance  of  cluster  machines  is  achieved  through 

specialisation to computational task types and implicitly to specific algorithms. For example, vector 

processors are specialised to repeating the same mathematical / logical operation on multiple data 

sets successively (SIMD). 

A) SPECIFIC APPLICATION TYPES

Though the scope of applications that can efficiently run on high performance machines is vast, we 

can actually make a few generic statements about the types of algorithms and their generic usage 

areas that benefit most from HPC environments. With the high relationship between HPC and multi-

core systems,  this  distinction is  of particular  interest  for  exploiting the parallelism of  multi-core 

systems. In accordance with Amdahl's law, the performance gain through parallel systems depends 

on the parallel  versus  serial  portions  of  the  application to  run  [4].  However,  one must  thereby 

respect the degree of connectivity between the parallel threads, as this defines the synchronisation 

and  messaging  overhead,  which,  in  the  worst  case,  can  lead  to  performance  lower  than  serial 

execution – these are generally  examples for  algorithms that can not be parallelised in the first 

instance.

General Classification

Degree of connectivity plays  an important role in selection of the infrastructure,  as this defines 

connection speed and type, ranging from shared memory (maximum connectivity) to p2p computing 

(completely loosely coupled). We can distinguish applications by the degree of scalability according 

to the connectivity between data / threads:

Unrelated Instances

The  most  extreme  case  of  scaling  applications  consists  in  multiple  instances  of  the  same 

application / process being executed in parallel – neither result nor execution are related to each 

other and hence no synchronisation or message exchange between the instances needs  to  take 

place. Often enough the initial state and parameter set is identical for all instances so that no data 

coherency needs to be maintained either.

Such applications show no real scaling behaviour, i.e. the execution performance is not affected by 

the amount of compute units employed – neither in the sense of strong or weak scaling (cf. below). 

In fact, “scaling” here means “replication” rather than distribution. These types of applications can 

typically  be found on server  farms or  data  centres  where  the degree of  replication defines  the 

availability of the according data / service, and are the ideal candidates for cloud environments.
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Implicit requirements:

• Extended status information about the hardware

• Remote deployment and execution (potentially “live”)

• Dynamic scaling up and down as needed

Embarrassingly Parallel

Similar  to  unrelated  instances,  embarrassingly  parallel  applications  can  actually  be  executed  in 

parallel  without  requiring synchronisation or  high  messaging  between  instances.  As  opposed  to 

unrelated computation, the problem space and hence data sets and results do relate to each other, 

in other words,  each instance either computes an (independent) subset of the full data, or uses 

different parameters on the same data set. The execution time per instance is independent of the 

amount of processors employed, even though calculation of the full problem space proportionally 

decreases with the number of instances. Examples of such algorithms are projections of 3d models 

into 2d space, as the projection space can be segmented into sections that each can be calculated 

independently  and  all  p2p  computing  applications  (such  as  Folding@HOME11)  which  effectively 

execute completely independently and results are collected and integrated at random.

Along the same line,  we can thereby distinguish between  weak  and  strong scaling behaviour: in 

weak scaling, the amount of required processors grows proportionally to the problem space (e.g. 

size of the data set) whilst execution time remains constant, or in other words the problem size per 

processor  remains effectively  constant.  This  typically  applies  to  p2p computing like applications, 

where  the calculation is  effectively  serial  and the  problem (either  data or  algorithm)  cannot  be 

segmented further. On the other hand, in strong scaling, the problem size is fixed and by increasing 

the number of compute units, execution time can be reduced – with the amount of compute units 

changes  also  the  workload  per  processor.  The  3d  projection  example  shows  strong  scaling 

behaviour, as is clearly demonstrated by modern day graphics cards that improve performance time 

through employing multiple cores on small data sub sets. 

Strong  scaling  applications  typically  show  higher  data  dependencies,  as  the  results  need  to  be 

synchronised  more  often  to  improve  throughput.  Nonetheless,  the  communication  and 

synchronisation need in embarrassingly parallel use cases is still much lower than the one in tightly 

coupled applications (see below). In either case, scalability is limited by the overall problem space: 

as soon as it cannot be segmented or distributed further, adding more instances does not make 

sense any more.

Implicit requirements:

• Extended status information about the hardware

• Remote deployment and execution (potentially “live”)

• P2P like routing

• Fast & broad bandwidth

• Data & process structuring for workload balancing

Tightly Coupled

Most typical (and most demanding) HPC applications show strong coupling between the instances 

on the individual compute units – this is simply due to the fact that most algorithms simply are not 

embarrassingly  parallel  and  results  need  to  be  constantly  exchanged  between  calculations.  For 

example, when simulating particles in plasma, even weak interactions between remote areas have 

to be considered for accuracy. Scaling can principally be achieved either by segmenting the problem 

space (the data set), or by distributing parts of the logic that is typically executed multiple times. In 

the first case, too small segments will lead to too high data dependencies along the boundaries and 

too large segments will hardly improve performance. Similar issues apply to distributing the logic, 

11 http://folding.stanford.edu/
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where  e.g.  small  loops  lead  to  high  data  dependencies  whilst  too  large  loops  will  remain 

comparatively slow if not segmented further.

A huge amount of  time is  hence wasted  on synchronisation and data exchange.  As opposed to 

embarrassingly parallel applications, scalability of tightly coupled applications is more limited by the 

messaging  overhead than by the  data set  (even though this  plays a  role,  too).  Due to  the high 

information exchange, a primary requirement consists in fast and broad interconnects. Messaging 

and  implicitly  resource  access  are  major  obstacles  to  be  considered  during  coding  –  ideally  all 

relevant data and functionalities are fitted into the local cache, so as to minimise overhead. One 

criteria during data preparation hence consists in adjusting the segment size to available memory 

(cache) and structuring it so as to reduce dependencies between segments. 

Typically, tightly coupled applications tend to fall into the category of strong scaling, as the general 

goal behind distributing such algorithms consist  in speed up rather than higher data throughput, 

even though the long-term goal may consist in higher accuracy and hence larger data calculation. 

Implicit requirements:

• standard communication and messaging

• typically some form of shared memory / cache-coherency

• large & fast cache 

• extended resource status information

• code / process deployment (typically not “live”)

• fast & broad interconnect 

• synchronisation (of communication and execution) 

• concurrency management

• maximise cache usage, minimise communication and memory swaps

Computation Patterns: The “13 Dwarfs”

Most  applications  on  High  Performance  Computing  systems  fall  into  either  of  the  preceding 

categories  and  pose  the  according  requirements  towards  the  system  –  as  Colella  notes,  High 

Performance Computing applications typically  adhere  to a  base  set  of  algorithmic  patterns  [98]. 

Asanovic  et al. elaborate on these base patterns to identify a total  of 13 so-called “dwarfs”,  i.e. 

application kernels that are at the mathematical and functional heart of a specific set of applications 

[3]. Asanovic et al. try to deduce the general hardware requirements for these dwarfs and implicitly 

for the set  of  applications behind it  – similar  to  the goal  of  this  document's  section. Instead of 

repeating the full paper, we will only provide the main highlights of the paper and recommend the 

interested reader to check out the full document at Berkeley12. It should be noted in this context 

though that while Asanovic et al. try to identify the base kernels that make up the core of a wide set 

of applications, we try to go the other way round, i.e. try to identify the core hardware requirements 

from a set of applications.  Whilst  the Berkeley  approach is particularly good for benchmarking a 

system environment with respect to its capabilities regarding a specific application suite (cf. D5.1 on 

“benchmarking” [2]), the top-down approach seems more useful to predict further development and 

to generate a more holistic view on the requirements in general, as has been noted in D5.1 too. 

 

12 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
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Finite State Machines + + + ~ ~ +

Combinatorial + ~ ~ +

Graph Traversal + ~ ~ ~ + + + + ~ ~

Structured Grids + + ~ + +

Dense Linear Algebra + + ~ + + + + + + +

Sparse Linear Algebra ~ ~ + + + + + + +

Spectral Methods (FFT) ~ ~ ~ ~ + + +

Dynamic Programming ~ + + + ~ +

Particle Methods ~ ~ +

Branch & Bound ~ + + ~

Graphical Models ~ + +

Unstructured Grids ~ ~ ~ + + + +

Map reduce ~ + + + +

Table 1: the 13 dwarfs (vertical) and their relevance for a set of application areas (horizontal). Red  

(“+”) denotes highly relevant; green (“~”) slightly and an empty block denotes no relevance

As  the  application  domain  of  HPC  is  currently  well  defined,  we  will  use  the  findings  from  the 

Berkeley paper as a main reference in this area. Table 1 lists the 13 dwarfs and their relationship / 

relevance to a given set  of usage domains – for a detailed description of the individual  dwarfs, 

please refer to Berkeley's “Dwarf Mine”13.

It  can be noted from Table  1 that  in  particular  grids,  linear  algebras,  spectral  methods,  n-body 

calculations and map reduce form the main applications of the high performance computing domain 

– this implicitly involves applications such as particle flow, plasma calculations, molecular tests etc. 

This  is  not  to  say  that  the  other  application  kernels  are  not  parallelisable,  but  that  they  are 

(currently) atypical for parallel computation environments (i.e. HPC).

For reason of completeness, we list in the following the specific hardware requirements per dwarf 

though highlighting in this context again that the HPC related dwarfs are of major importance in this 

context:

1. Classic vector and matrix operations belong to the class of Dense Linear Algebra – they are 

naturally ideal for vector machines. The performance depends very much on the size of the 

matrix in relation to the word length of the vector  unit,  where a mismatch can lead to 

unnecessary memory swaps and hence communication overhead. Data hence needs to be 

carefully  distributed  in  order  to  achieve  load  balancing  and  thus  optimal  performance. 

Cache hierarchies can lead to data feeding issues and hence to delays if  the number of 

calculations exceeds the size of cache (i.e. if data has to be loaded from the RAM).

Dense Linear Algebra calculations typically scale very well.

13 http://view.eecs.berkeley.edu/wiki/Dwarfs  
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2. If  the  vectors  /  matrices  contain  a  large  number  of  zeros,  we  speak  of  Sparse  Linear  

Algebra – in these cases, any zero calculation can be typically ignored, for which reason the 

matrix is typically compressed. This is e.g. achieved by maintaining the index of the non-

zero values.  This requires additional progressing steps for identifying and annotating the 

non-zero entries. Due to the unpredictable dependencies between data (according to the 

distribution  of  non-zero  data),  data  distribution  and  hence  efficient  scalability  is  quite 

difficult. Generally, the same issues as for Dense Linear Algebra apply, with the addition of 

more  complex  workload  and  increased  messaging  overhead  (due  to  non-optimal 

distribution).

3. Spectral Methods (operations in the spectral domain) generally consist of computation of 

complex numbers (i.e. 2 inputs and 2 outputs). As the same operations are executed on a 

large data set, the algorithm is typically highly vectorisable. Each core / node typically only 

needs to access local data reducing communication to transposing steps. 

4. In N-Body Methods, the calculations relate to a number of n bodies which all interact with 

each  other  in  some  form,  so  that  in  the  simplest  programming  approach,  complexity 

reaches O(N^2) and thus typically touches the memory wall problem (see D5.1 [2]). Divide 

& conquer approach accumulating the influence of remote particles increases performance 

– however, for parallelisation, load balancing is the major problem, in particular since the 

movement of bodies imply constant redistribution. Shared concurrent memory access (link 

to all bodies)  causes communication overhead. Notably there is specialised hardware for 

astrophysics14 and molecular dynamics15 calculation.

5. Most simulations can be segmented into Structured Grids where each cell contains a subset 

of  the  environment  of  the  same  size.  This  is  optimal  for  regular  “stationary”  data 

distribution (as opposed to moving particles), as e.g. in the case of heat distribution over an 

area. As basically the same operations are performed again and again, the code is highly 

vectorizable.  For  distribution,  each  core  is  typically  assigned  an  individual  cell.  Since 

neighbouring cells influence each other at the boundaries, some data needs to be shared 

between  cores  –  this  does  not  necessitate  shared  memory  though,  as  typically  only  a 

fraction of the data is needed and shared accordingly (so-called “halos”). In most cases this 

data needs to be exchanged after every calculation iteration across the whole grid.

In some cases, only specific areas are of main interest, in which case locally refined grids are 

applied – these require a more adaptive and better aligned load and data distribution (see 

also Unstructured Grids).

6. Most  simulation  and  modelling  problems  actually  act  on  irregular  shapes  (such  as  the 

human body or a car) which cannot be segmented into regular cells  (see Structured Grids), 

but  are  instead  segmented  into  a  set  of  cells  of  different  size  and  shape,  i.e.  an 

Unstructured  Grid.  They  basically  behave  like  structured  grids  and  have  similar 

requirements, with the difference that the size of the individual cells have to be adjusted 

for best load distribution (in the worst case dynamically).

7. Some calculations effectively consist of a series of mostly independent function execution, 

where all results are aggregated and processed in order to get the actual result of interest. 

To these  count Monte-Carlo algorithms,  or  more  generally  MapReduce.  The function is 

therefore effectively embarrassingly parallel, with communication only being performed at 

the  end  of  each  individual  function  –  which  does  not  necessarily  have  to  occur 

synchronised,  since no further processing is blocked by the delay (besides for the central 

gathering).  Load  balancing,  to  reduce  this  delay,  may  potentially  be  difficult,  as  the 

14 http://grape.astron.s.u-tokyo.ac.jp/grape/   

15 http://www.research.ibm.com/grape/   
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functions may not always have the same execution time (e.g.  with a precision breakout 

criteria).

8. Searches through graphs and trees, as e.g. in data mining base on the principle of  Graph 

Traversal,  i.e.  traversing through a number of (linked) objects and executing (the same) 

process  on  each  object.  If  the  function  is  essentially  small,  the  main  task  consists  in 

(unpredictable) traversal across memory. If the graph / tree is balanced, than the traversal 

can essentially  be parallelised with good load balancing by segmenting the graph in sub-

graphs.  Each  according  traversal  is  effectively  embarrassingly  parallel  but  segmentation 

may be difficult due to the nature of the graph. In most cases the main overhead is caused 

by random memory access latency. Memory requirement per core is proportional to its 

search space.

9. Some problems can be solved by solving simpler subproblems and then comparing results, 

as is typically the case in optimisation tasks – the according technique is called  Dynamic 

Programming. Whilst  this  increases  the problem  space,  it  decreases  the  computational 

overhead – also,  in an ideal case,  the sub-problems can be distributed across individual 

cores in an almost embarrassingly parallel fashion. More typically however, any degree of 

data  needs  to  be  exchanged  between  the  sub-problem  calculations  in  which  case  the 

performance increase is directly dependent on the relationship between communication 

overhead and computation (i.e. high degree of communication and only little computation 

leads to low efficiency). 

10. Problems such as route finding are similar to graph traversal and dynamic programming, 

where the function traverses the search space according to some optimisation criteria and 

accordingly performs a  Backtrack or  Branch & Bound algorithm. Also problems such as 

Linear  Programming  and  Boolean  Satisfiability  etc.  fall  into  this  category.  The  problem 

generally poses the same requirements as graph traversal, i.e. the graph can be segmented 

and traversed in parallel, with the same problem of load balancing. Since most problems in 

this area use some form of weighing for estimating the optimum, the according invariants 

ideally  need  to  be  communicated  between  all  processes  –  however,  this  does  not 

necessarily  need  to  occur  after  every  step,  weighing  the  uncertainty  against  the 

communication overhead. 

11. Knowledge  maps,  Bayesian  networks,  neural  networks  etc.  fall  under  the  category  of 

Graphical  Models,  where nodes represent  variables and edges  conditional  probabilities. 

Typically  a  graphical  model  is  traversed  multiple  times,  e.g.  for  the  purpose  of  sound 

analysis  or  for  applying  a  neural  network  to  a  data  set.  A  simple  approach  towards 

distribution consists in either segmenting the data space or the graph into subgraphs per 

core. If the data space can be segmented ideally (i.e. without temporal dependency), the 

problem becomes embarrassingly parallel – in all other cases, data needs to be transferred 

after  each  iteration  step,  whereas  typically  the  size  of  data  is  small  compared  to  the 

computation to be executed, making the problem scale very well.

12. Most programs can be represented in the form of Finite State Machine consisting of tuples 

of in-  and output  values,  and a state S.  Finite state machines (FSM) can accordingly be 

represented at graphs where nodes represent (active or passive) states and edges input, 

respectively  output  values.  Whilst  the  principle  of  executing  a  FSM  is  similar  to  graph 

traversal, an FSM is signified by having an explicit state traverse the graph – even though 

the state may branch out at designated transitions (and can hence be parallelised),  the 

graph can not be segmented and computed in parallel as in the graph traversal case. A FSM 
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therefore  represents  the  sequential  and  parallel  aspects  of  typical  applications  which 

means that there is no generic parallelisation approach to it16.

13. Simple boolean operations on large data sets, such as computing checksums can typically 

be represented in  Combinational Logic. Most operations are on a bit-level, making them 

difficult to develop due to lacking appropriate coding support. The algorithm can typically 

be broken down into data pipelines that can be executed in parallel – individual cores can 

take over steps in this pipeline and forward results to the next core(s). Quite generally, the 

overhead  for  data  transportation has  to  be weighed  against  the  computation effort  to 

achieve a good workload. The memory wall (cf. Section II. 1. is thereby a critical factor (as 

for most stream processing).

Quite generally it can be stated that most HPC applications are defined by the relationship between 

computation and communication, where all communication (including data exchange as much as 

memory swaps) is essentially a performance loss that should be avoided. Accordingly, cache tends to 

be as large as possible,  with hierarchical  structures as a means to address manufacturing issues. 

However,  with  high  data  throughput  in  a  process,  memory  access  latency  becomes  the  major 

efficiency throttle where performance is directly proportional to the slowest memory connection, as 

it has to forward all data to the fastest cache level. In such cases, direct access to the data source is  

preferable to any cache size and hierarchy, as these add fixed access delays that cannot be avoided. 

2. PERSONAL EMBEDDED DEVICES

Smart  phones  and  other  personal  embedded  devices 

include  an  ever  increasing  amount  of  features, 

becoming  more  general-purpose,  and  require  a 

constant connection to internet

Personal Embedded Devices are one of the faster growing markets today. The necessity of having a 

personal  computation  and  communication  device  is  a  growing  factor  in  modern  day's  lifestyle: 

future users will handle more and more of their private and business life on the move as devices get 

more and more powerful. Nowadays it is expected of most users to be online almost all the time. 

Related  to  that  and  as  a  consequence  of  the  growing  web2.0  uptake,  a  noticeable  shift  from 

personal to internet based social  interactions has occurred and such electronic  networks are an 

essential part of many peoples' social life.  It is to be expected that this tendency will  grow even 

further,  as  modern  environments  even  support  the  elderly  and  disabled,  and  as  the  distance 

between friends and family grows – amongst other due to the increased mobility of users. 

A) HISTORICAL EVOLUTION OF PERSONAL COMMUNICATION

Increased mobility has been one of the trends driving progress for the last decades. In the start of 

the Internet revolution (mid 80s), the availability of communication platforms such as the BBS, and 

later email and the World Wide Web, triggered a rapid increase in the amount of information being 

exchanged.  The  internet  made  possible  to  exchange  information  at  a  speed  which  abolished 

frontiers and distance. It was now possible to place different parts of the same corporation in the 

most  suitable  place,  while  maintaining  information  flows.  One restriction  at  that  time was  that 

connectivity was tied to copper (and later fibre) links. In order to support the increasing nomadic 

way of life,  cell  phones were  introduced to the mass  market.  These devices,  which required no 

physical wires, allowed individuals to move and still  communicate with others. They existed since 

the 50s but its use was not really widespread due to coverage and cost issues. The creation of Global 

System for Mobile Communications (GSM), in 1991, and its dissemination into most of the world, 

allowed to migrate the traditional  analog communication networks to more flexible scenarios where 

16 Note that it can be segmented though, having state traverse across different nodes or cores
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information was already digital.  GSM, already provided call continuity for users on the move by 

means of rapid handover between base station cells. Due to the simple technology used, handovers 

were quickly executed and mobile device operating systems were relatively simple. 

Cell phones kept driving mobility but soon it was clear that ubiquitous connectivity was the next 

step.  This  required  porting  the internet  concepts  to  the small  handheld  devices,  which became 

extremely powerful and complex in relation to their ancestors. In particular, evolution made it clear 

that the traditional technology, still  incorporating many concepts from circuit switched networks, 

needed to be upgraded to a full packet driven network. With IP protocol support on our cell phones, 

now commonly called Smart-phones or PDA, we are able to move almost freely in any developed 

country while maintaining our email, chat and even voice sessions active. The trend is to put more 

power into these little devices and make them a portal to the representation of our digital life, which 

will exist somewhere in the Internet cloud. 3GPP [68] is since a long time creating standards such as 

Internet  Multimedia  Subsystem and Long Term Evolution,  which make available more and more 

bandwidth following the principle of more rich devices supporting more complex services, which are 

integrated  into  the  network  operator.  Future  trends  point  to  intelligent  devices  which,  being 

location  aware  (by  means  of  GPS),  and  having  access  to  our  personal  preferences  and  friends 

recommendations, can make automatic suggestions,  help in some decision processes  or provide 

contextualized services.

With the increase in capacity, the number of devices increased very dramatically [5] followed by the 

number of users. It is now common to  see users with more than 1 device: one for personal use, one 

for professional use. Some devices already support multiple environments [8] where users are able 

to switch environments. According to  [7] in 2008, the number of mobile subscribers reached 4100 

million, which represents more than half of world population. In comparison, this number is much 

than the number of Internet users (1542 million),  a technology which also radically changed our 

world.

While the project does not directly address cell  phones,  it addresses embedded devices such as 

PDAs. These devices, while popular, have never been massively adopted mainly due to the lack of 

resources,  and in particular due to the lack of communication technologies.  Recently,  it became 

common for PDAs to incorporate a cellular communication technology such as GSM, so that most 

PDAs currently are smart phones. The market is changing and the PDA is becoming our personal 

communication hub. This trend is gaining momentum as phones become more powerful, and even 

start to compete with small laptops, as the Apple iPad is an example.
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B) REQUIREMENTS OF EMBEDDED PERSONAL DEVICES

The transition from voice call based devices (cell phones) to smart phones was long anticipated and 

seemed natural. These devices absorbed the market of PDAs and are becoming a single market. The 

objective is to provide ubiquitous connectivity  to the Internet, which continuously provide more 

services,  and with the advent  of  Social  Networks,  starts  to replicate our social  fabric. This trend 

imposed major challenges to operating system development, underlying hardware and protocols. 

Moving  to  a  digital  packet  based  network  much  increased  complexity  of  the  underlying 

communication stack. As an example,  in certain interfaces of the 3GPP UMTS specification, more 

than 10 logical layers are required before an application can add its payload. The number of systems 

required for a single handoff also increased, and a single location update can generate more than 20 

messages and involve at least 4 different systems. Such numbers are normal for a traditional host 

connected to the Internet, but the specificities of the applications used on mobile scenarios impose 

heavy limitations.

Smart phones (as other embedded devices) are very constrained in terms of resources.  A typical 

system has a ARM CPU with a clock ranging from 200Mhz to 700Mhz, runs on batteries with capacity 

for 2 or 3 days of operation (non-continuous), and has less than 128MB of RAM. 

Operating systems designed for smart phones, and other embedded devices, usually have limited 

multitask  capabilities  and  are  single  user  [9].  They  must  employ  intelligent  garbage  collection 

mechanism  so  that  available memory is  maximized,  and reduce power  consumption  by  keeping 

complexity at a minimum and by disabling any unused hardware. According to ETSI regulation, cell 

phones can transmit data up to 2W of EIRP (900Mhz band), which would deplete a 3.6V, 900mAh 

battery in about one and an half hours if in continuous operation. An emerging trend (that will not 

slow down) asks for  bigger  displays,  higher  CPU performance,  more RAM and higher  bandwidth 

which further imposes higher efficiency.

On this platform users expect to have their email, chat with friends, surf the web, listen to music,  

watch television (using 3G, 4G or DVB interfaces), watch movies, and more importantly make voice 

and video calls (both using cellular and VoIP technologies). Web surfing, chatting or email imposes 

that devices have multitasking capabilities, as well as enough CPU and memory for processing and 

storing information. 

C) REQUIREMENTS FOR MOBILITY

One important requirement created by mobility is that hand-off between attachment points, event 

when  considering  intra-technology,  requires  many  messages,  and  the  entire  process  must  be 

completed very quickly. This requirement and its challenges applies both to embedded devices such 

as smart phones or PDAs, and to laptops. GSM technology, being a TDMA technology, allows devices 

to use their idle time to hand-off between attachment points. However, the communication stack 

must  be  able  to  react  with  real  time  assurances,  which  imposes  the  need  for  hard  scheduling 

guaranties.  In  packet  based  networks  using  CDMA,  such  as  the  widely  used  802.11  family  of 

standards,  hand-off  is  more  complicated.  A  typical   hand-off,  in  optimized  situations,  can  take 

around 50ms (see Figure  9) [6], and 4ms is the minimum achieved internally by our consortium. 

However, these measurements are obtained in situations where terminals are mostly idle and no 

other traffic exists. 

Streaming  video  or  audio  requires  hard scheduling  deadlines,  where  packets  must  be sent  at a 

monotonic rate (10ms when considering ITU G.729). At the same time, the stream must be displayed 

(or captured), and sent through the codec. With too many processes requiring hard deadlines, and 

competing with a complex communication stack which must handle several interrupts per handoff 

(at least one per packet), it may be difficult to always have hard guaranties. The result is that video 

37 | P a g e D5.1 State of the Art S ( o ) O S



will  lag or handoff will take longer,  introducing packet loss,  and consequently degradation in the 

user perceived quality. Moreover, as multimedia applications become richer, the interval between 

packets will  decrease,  imposing higher requirements on QoS and scheduling. With the advent of 

multi core devices, its important for real time scheduling to be supported so that applications can 

benefit for heterogeneous and mobile environments.

D) REAL-TIME REQUIREMENTS AND QUALITY OF SERVICE 

Personal embedded devices (and in general other embedded devices like TVs, set top boxes, etc,) 

exhibit some real-time requirements, although not critical as in the case of hard real-time systems 

(see Section VI. 7. ). In particular, such systems must interact with the user providing a high level of 

Quality  of  Service  (QoS).  Quality  of  service  includes  functional  requirements  (as  quality  of 

video/audio, resolution, graphical effects,  etc.)  as well  as non-functional requirements (as frame-

rate, or sampling rate of audio streams, video or audio jitter, end-to-end delay). Of course, QoS must 

be as high as it is possible, to make the user experience in using the device more satisfactory. Given 

such constraints, these systems are usually referred as soft real-time systems, as computation and 

communication must typically   be performed within certain time windows;  nothing catastrophic 

happens if a time constraint is not respected, however missing deadlines can negatively impact on 

the QoS.  

In addition,  such systems are subject to many other constraints.  One is power consumption and 

heating: these devices are powered by batteries that must last as long as it is possible. Also, they are 

subject to a high pressure on production costs, which are reflected in the final cost for the user and 

in the net income for the company.  Therefore, as always, the objective is to achieve more with less. 

In most cases, such systems are already multi-core and multiprocessor. The hardware architecture is 

heterogeneous,  consisting of  one general-purpose micro-controller with one or more specialised 

DSPs  for  specific  tasks  (like implementation of  the RF  communication  protocol,  or  decoders for 

audio/video). Streaming applications, which present the hardest challenges in these systems, can be 

modeled by Data Flow diagrams, consisting of directed acyclic graphs of computations blocks, each 

performing one specific functionality. The graphs are then mapped on the heterogeneous hardware 

architecture, and an analysis is performed to identify bottlenecks, calculate throughput and end-to-

end delay, dimensioning communication buffers, etc. Typically, the analysis is stochastic, as it is very 

difficult  to  estimate  a-priori  the  execution  time  of  such  computational  blocks,  especially  for 

compressed variable bit-rate streams. 

Interaction with  the user  (human-machine interface)  is executed as a normal application on the 

general-purpose processor which features a reduced version of a general-purpose OS (e.g. Win CE, 
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Android), or an OS specifically developed for embedded devices (iPhone OS, Symbian, etc.). Usually, 

the DSPs run with a simple BIOS or a minimal OS that do not support multi-tasking and concurrency, 

and do not allow preemption. 

One of  the  main  problems  in  programming   such  systems  is  the  lack  of  standard  libraries  and 

programming  tools.  Every  vendor  provides  its  own  set  of  tools  specifically  targeted  at  their 

technology. Most of the programming is  done ad-hoc, though low level C/C++ or even assembler 

code that must interface with the libraries provided by the vendor. Code is statically mapped on the 

cores.  A more standard and coherent  approach would greatly  benefit  the development of such 

application, greatly reducing development costs.

In the future, we expect a convergence between portable personal devices and regular PCs. On one 

end,  such  devices  will  become  more  and  more  general  purpose,  including  a  larger  amount  of 

services and applications. On the other end, the classical desktop PC has been substituted in most 

cases by laptops and netbooks, which will probably be substituted soon by tablet PCs, and other 

personal devices.   We do not expect  the “one-size-fit-all” paradigm: there will  always be a large 

amount of different solutions to cover different markets. For example, in professional environments 

the classical PC with a keyboard and a screen will survive for a very long time. However, there is a 

clear trend for integrating applications that now are only available on PCs into “personal” mobile 

devices. Also, these devices will be “always connected” with local networks or Internet.

From  the  software  point  of  view,  we  will  see  an  increasing  pressure  for  integrating  different 

heterogeneous applications in portable devices without losing too much in performance. 

One possibility will be to off-load part of the computation on remote servers, so to save on energy 

[104][105].  When in close proximity to a cloud, capacity can be borrowed from the surrounding 

environment and make embedded devices capable of more intensive tasks. Cloud computing could 

thus be an important opportunity to bring complex applications on these devices which will  just 

support interaction with the user, demanding the bulk of the computation to the cloud. This is a 

scenario where S(o)OS can much improve over existing and near future use cases. 

Also,  interaction  with  the  user  will  be  much  more  sophisticated  and  “natural”,  featuring  voice-

recognition and synthesis, gesture recognition, and artificial intelligence to make the device more 

“human”. In our opinion, sophisticated user interaction will still be performed on the device to avoid 

large  response-time  delays  and  unavailability  in  case  of  broken  connection.  Such  services  will 

require  a  medium-large  computational  power  with  low energy  consumption,  which can only  be 

achieved by using multi-core technology. We still  don't  know if the most appropriate multi-core 

technology  for  these  devices  will  be  a  standard  general  purpose  array  of  processor  or  a 

heterogeneous  network-on-a-chip  architecture  with  dedicated  processors  for  different  tasks, 

although the second one seems to be more promising. 

3. SOCIAL NETWORK APPLICATIONS

Social  applications  act  in  particular  over  largely 

distributed data.

Compared  to  other  computer  usage  (such  as  High  Performance  Computing  or  Multimedia 

applications),  social  network  applications  (from  the  client  perspective)  have  very  little  demands 

towards the processor power. Also, data throughput and storage is comparatively low. However, if 

we consider completely distributed social networking applications (without centralized systems), or 

we consider the back-end supporting a typical social application, many challenges arise. In particular 

with the growing interest social networks, the major obstacle is not so much the individual data, but 

the combination of all concurrent data requests and processes, as well as the need for fast petabyte 

scale storage systems – for example LinkedIn counts more than 60 million users already, and Twitter 
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even more than 75 million, and the numbers are growing.  According to  [13], in Facebook, which 

already surpassed the 400 million active users, each person is connected to an average of 130 other 

users and 60 other pages and events (groups, fan pages). Also form the same sources, each month, 

the  400 millions users (100 million using mobile devices),  exchange 25000 million objects, which 

gives an average of 62.5 million transactions per user per month. The result is an astounding 260000 

million page views [13]. If we only consider photos, Facebook reports that its storage increases at a 

rate of 25TB per week. That is about 250MB per user per month for photos, numbers will be much 

higher  if  we  consider  the  complete  set  of  interactions.  As  an  example,  reports  indicate  that  it 

generates 25TB of log data per day [10]!

In  order  to  handle  that  size  and amount of  data,  the  principles  of  cloud computing  have  been 

employed  by  data  centres  for  a  long  time  now.  This  means  in  particular  that  data  (and  some 

functionality) moves and grows with the user: the higher data of a specific source is in demand, the 

more often it is replicated. For example the eBay platform recorded in 2003 to have 670 million page 

views, 120 million searches and 4 billion database calls a day [88]: if all auctions would get the same 

degree of availability through replication, high-demand auctions would either be hardly available or 

the full data size would go beyond the currently available data space of any data centre. 

In  general  it  can therefore  be noted that both mobile and social  networks put forward specific 

requirements towards data throughput and availability.

A) REQUIREMENTS OF SOCIAL NETWORKS

Obviously, social network applications focus primarily on communication, and message / status, and 

object (photos) exchange between members of the respective community. However, this can take 

various  forms,  depending  on  demographics  of  the  users  primarily  addressed  by  the networking 

platform. For example, professional networks, such as LinkedIn or Xing focus on business-oriented 

relationships and thus aim mostly at professionals aged between 30 and 50 – in 2008 they recorded 

7.5M unique visitors in a month17. As opposed to that, social networks such as MySpace, Facebook 

and  Twitter  aim  at  a  broad  user  scope  and  provide  general  communication,  status  and  event 

services, such as picture sharing etc. Even though these networks typically attract a more younger 

user demographic, Facebook registered 484M unique visitors in 2010 in one month18.

17 According to http://www.web2innovations.com/most-popular-web-2.0-sites.php 

18 According to http://techcrunch.com/2010/04/21/facebook-500-million-visitors-comscore/ 
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General purpose networks can take on different flavours and shapes, though they generally aim at 

combining fun and entertainment with the communication and messaging capabilities. Second Life 

takes  a  strong  game-like  approach  towards  such  networking  which  includes  a  full  3d  virtual 

environment, very closely related to massive multiplayer online (MMO) gaming. As opposed to such 

games, however, Second Life does not prescribe game missions and hence restricts itself to specific 

gamer types, but instead allows people to “build their own world”. Surprisingly though, Second Life 

attracts less users than World of Warcraft (WoW), one of the most successful MMO games: whilst 

WoW attracted 9M users in one month, Second Life peaks at 1M. Even though 3d platforms are 

expected  to  become  more  and  more  relevant  even  in  social  networking,  the  underlying 

requirements and application types with respect to the virtual environment are effectively identical 

to gaming (see section VI. 6. ). 

What is more important for social networks is the sheer amount of data communication: as already 

mentioned in the introduction, the data per connection is comparatively small, as not even in MMO 

games the full environment is transferred, but primarily control data, or just communication and 

status update messages. The main stress on the system originates from the number of users which 

access (down- and upload) data concurrently: e.g. in 2008 there were already 2-3 TB of photos being 

uploaded to Facebook every day and traffic peaked at 300k images per second; Twitter served 3M 

messages per day and Last.FM 18M tracks per day19.

Other type of applications which is around the corner are fully distributed social applications. These 

arose  from the  fact  that  traditional  web  applications  such  as  Facebook,  MySpace,  LinkedIn  and 

Twitter, create much concerns regarding data privacy. In these systems, users are frequently lost 

between  tens  of  privacy  settings,  and  companies  can  change  their  privacy  policy  at  any  time. 

Moreover,  all  information  added  to a  system is  seen  as an asset  of  the  company,  in  the  same 

manner a car or a building are assets. When companies are sold, merge or declare bankruptcy these 

assets  are  made available  to  new persons.  Eventually  we  will  all  loose  track  of  who owns our 

information. 

Following this trend, future environments (e.g. Get6D) promote close collaboration between users 

but in a decentralized manner. In this case, there are no privacy policy to agree upon and users are 

responsible for making available or delete all their personal information. While public pages, such as 

blogs, may be available, actual data is not centralized on ones system.

From a technological point of view, these environments rely in the concepts first developed for P2P 

file sharing networks, yet they extend the standard TCP/IP network stack. The result is a pervasive 

communication environment which must keep track of tens or hundreds of other systems all over 

the world, with the support for distributed object access and reliable transaction support.

SUMMARY

The  major  requirements  put  forward  by  social  network  origins  from  their  high  data  driven 

application: this does not so much relate to latency and bandwidth per connection / communication, 

but in particular to the amount of concurrent data streams and messages that are forwarded to (and 

possibly  broadcasted  from)  the  individual  user  machine.  On  the  server  side,  data  management 

implies  in  particular  (1)  high  availability  given  (2)  large  degrees  of  concurrent  access,  implying 

according means of (3) storage; finally (4) data consistency given the large degree of concurrency 

will  play  an  increasing  role,  though  not  in  the  same  scope  as  in  Cloud  applications  or  shared 

workspaces.

19 All statistics have been taken from  [14].
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4. OFFICE AND HOME USAGE

The most common usage of computing systems consists 

in  work  desk  and  home  applications  which  require 

comparatively high interactivity and response rate

Home  and  office  usage  still  dominates  computer  usage  and  as  such  defines  many  of  the 

requirements for next generation computer development. Nowadays, most desktop systems can be 

distinguished according to three categories (of use): gaming, multimedia and office – each of these 

systems put a different stress on its hardware configuration so as to meet the respective domains 

usage requirements best. Whilst a large degree of home usage is defined by gaming and multimedia 

applications, as well as by internet and social networks, a substantial part is defined by the more 

office-related applications, including document management but also personal calendars, contact 

management etc.

Since almost all enterprises and companies make extensive use computing systems as part of their 

daily work, such applications have a substantial share in the market and even though the average 

requirement  towards such applications is  low compared  to e.g.  gaming,  users  not  only demand 

richer and easier features, but in particular high interactivity and reaction speed: a surprisingly high 

number of users complains about start-up time of both computer and application, even if that is only 

in the range of 1 or 2 minutes in total [99][100]. 

A) SPECIFIC APPLICATION TYPES

Work related usage of machines is not restricted to word and spreadsheet processing, but actually 

consists of a – typically strongly integrated – set of applications, which base on similar underlying 

technologies though. Investigating the whole range of applications, one may in particular note the 

following applications:

• word processing

• spreadsheets

• slide generation & presentation

• emailing

• task managers

• calendar

• contact manager / address book

• shared workspaces (document managers etc)

• database management

• etc.

It will be noted that common to all (home) office applications is the capability of (1) editing data 

through the user, as well as generally some means of (2) saving and retrieving data (database, file 

system). Further to this,  some applications have specific functionalities in common which will  be 

examined in more detail in the following:

3. data management

this  involves  not  only  storing  and  retrieving  data  from  a  database,  but  also  selection, 

querying and some (simple) combinatorial and logical functions on these. The demands of 

such calculations and combinatorial tasks are however way lower than the ones of typical 

HPC applications (see there) by the magnitude of a few orders. 

4. calendar / timer

a simple functionality to keep track of date and time in a way that allows association with 

events and initiate reminders. 
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5. communication (internet etc.)

data  (including  files,  databases,  simple  texts  etc.)  is  more  and  more  frequently 

communicated over the web – not only in the form of email, but also for the purpose of 

sharing documents and tasks in a workspace etc.

Emailing for example essentially consists of the capabilities to edit text (1) and communicate it over 

the network (5). Typically, one will also store the mails (2) and potentially execute searches over 

them (3), and finally maintain the information about time of arrival, response etc. (4). A spreadsheet 

consists of a mostly textual editor (1) that enables data management functions (2) on storable data 

(3). We will not elaborate this for all applications, though, as the principle is quite apparent.

From these categories it can be noted that the general requirements of these applications types are 

comparatively weak (regarding computational performance) as compared to the other application 

domains. Main computational load rests in particular on potential data queries and combinational 

tasks, as well as graphical displaying and editing, depending on the complexity of the graphics – note 

that explicit graphic manipulation capabilities are treated under the subsection of Multimedia and 

Gaming (see there).

Requirements

With the set of application kernels (cf. “13 dwarfs”, section on HPC), a set of functional capabilities 

can be derived that are needed in order to realise the application's demands. For most of these, the 

direct requirements are quite obvious:

1. editing data:

To support data editing, some form of visualising data is needed, as well as some means of 

interactivity, such as keyboard input management. Whilst  these requirements sound like 

they can be taken for granted, graphics demands even in common desktop applications 

increase constantly – be it for the (aesthetic) visualisation of (potentially dynamic) data or 

for  preparation  of  slides  with  diagrams  and  charts.  As  compared  to  more  demanding, 

specialised  applications,  the  data  set  is  typically  much  smaller,  but  similar  visualisation 

techniques are employed (see Multimedia and Gaming; HPC). 

More critically though is the aspect of interactivity in this context: for direct interaction with 

a machine (i.e. typing etc.) to not become cumbersome, interactivity delay must be lower 

than 100 ms, and in order to not interrupt the user flow, displaying information should not 

be delayed more than 1s, though the user will not have the feeling of acting directly on the 

data any more  [34]. Both these aspects imply that direct working on the internet without 

additional precautions is not acceptable for the (home) office application types. This also 

restricts the acceptable routing delay within a distributed system for acting on the data – in 

other words: fast processing is secondary, if the data is not displayed fast enough. 

2. saving & retrieving data:

Next to the availability of some storage element (typically some disk storage somewhere) 

that is persistent enough for the purposes of the application, a similar delay time as for data 

editing needs  to  be respected  (less  than  1  second  to maintain  user  flow,  less  than  10 

seconds to keep user's attention focused [34][35]). To this end, loading and saving of data is 

typically executed in the background of the application, which means that an image of the 

data at save time is needed to not create data conflicts or block the user interaction with 

the data.
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3. data management

In home office applications, data is not only created and stored, but typically processed too 

(e.g.  spreadsheets).  Though  mostly  the  required  combinatorial  functionality  scope  is 

comparably low, most spreadsheet systems offer a mathematical capability scope that does 

not yet fulfil the complexity or depth of MatLab or similar programs, but is getting closer. 

Essentially, Excel formulas are small programs which can essentially be solved by a finite 

state machine and thus have similar requirements towards the system – in worst cases, 

linear algebra solvers etc. have to be executed though again typically on less data than in 

more demanding applications (see section on HPC). Accordingly, workload distribution will 

typically  cause  more  delays  due  to  segmentation  and  distribution  than  gained  by  the 

parallelised execution.

4. calendar / timer

The capability to maintain date and time does not pose specific demands on the system, 

unless real-time requirements have to be respected. In case of the given applications, this is 

however not the case. 

5. communication (in the sense of internet)

Even though the size of data in these kinds of applications is small compared to the data in 

multimedia or HPC applications, data throughput of the network is a critical factor in these 

cases  due  to  their  interactivity demands.  In  particular  with  the  growing  integration  of 

networked  resources  for  application  purposes  (outsourced  storage,  collaborative 

workspaces, cloud environment etc.), it is important that this does not cause unnecessary 

delays  or  bad  user  experience.  Unfortunately,  not  all  tasks  can  be  executed  in  the 

background of the application, so that time constraints, and more critically coherency and 

synchronisation  constraints  have  to  be respected  across  the  systems involved.  Reduced 

latency and increased bandwidth alone are insufficient to address this issue as data need 

will  grow faster  – instead  new data distribution and data management  approaches  are 

needed,  as  well  as  means  for  handling  updating  and  coherency  maintenance  in  the 

background.

B) SUMMARY

The most critical aspect in (home) office applications consists in their demand for interactivity and 

the  implicit  real  time  constraints  with  time  windows  of  less  than  0.1  seconds  for  direct 

communication (mouse, keyboard) and less than 1 second for interactions that maintain usage flow. 

In particular in shared workspace environments, where changes on one end would affect the data 

on all other ends, time delays may lead to bad user experience.

On the other hand, most applications of these kind are strongly data editing (and hence interactivity) 

centric,  but  produce comparatively  little  processor  work  load,  so  that  the  actual  computational 

requirements are mostly low and have only little parallelisation requirements. 
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5. MULTIMEDIA & STREAM-PROCESSING

Applications acting on (audio & video) streams require 

high data throughput.

Speaking of  multimedia  we think of  digital  audio,  video and still  images.  Presentations including 

effects which require 3D support like the visual controlling enhancements when browsing through a 

collection of images or a document can also be added to this section.

Encoding  and  decoding  high  resolution  video  including  one  or  more  audio  channels  is  a  very 

processing intensive task when done by a multi-purpose processing unit without support of specific 

functions in hardware. Equipping devices with such powerful processors is both expensive and not 

very wise thinking of the power consumption and heat generation especially on mobile devices.

To  enable  HDTV  decoding  on  netbooks  NVIDIA  recently  came  up with  the  ION  chipset20 which 

enables the Intel Atom, mostly built into small desktop systems and netbooks, to replay H.264 full 

HD video content.

The  recording  and  encoding  of  digital  video  with  high  resolution  is  a  much  more  computation 

intensive  task  than  decoding  and  is  therefore  mostly  done  in  hardware  to  meet  the  real-time 

requirement,  for  example  in  camcorders  or  video  telephony  and  conferencing  systems.  When 

recording digital  video,  not  only the processing  power  to  compress the frames in  real-time is  a 

limiting factor but also the access to data storage for video and audio data which also implies the 

handling of large data sets. Most times this is a trade off between data size and processing power. 

Keeping the same image quality can either be achieved by less processing intensive codecs and a 

higher data bandwidth or more  advanced computing intensive video  compression at lower data 

rates.

3D accelerated handheld devices like the iPod, iPhone etc. also use specialized hardware to display 

3D effects.  Unlike the modern graphics adapters from ATI  and NVIDIA these controllers  are also 

optimized for low power consumption and support only a set of specific operations like resizing or 

rotating still images in real time21. 

Not only  mobile  equipment but  also  desktop machines can gain  profit  from application specific 

hardware audio and video accelerators. Hardware for a specific purpose can be optimized for low 

power consumption, handling high data rates from audio and video sensors and covering real time 

requirements regardless of the power of the main processor.

Most  graphic  adapters  of  consumer  home  computers  contain  hardware  accelerators  for  video 

decoding of online content and DVD video to reduce the CPU processing load or even enable the 

system to decode the streams in real time. This has been the usual setup since the late 1990s when 

the MPEG-2 standard was used for digital video on the nowadays widely available DVDs. With the 

rising core frequency and with that the additional processing power decoding an MPEG-2 stream 

was no longer a killer task, but bandwidth to broadcast or stream video compressed in MPEG-2 was 

an issue. The follower of MPEG-2 was MPEG-4 Part 2 more commonly known by the names of codec 

implementations like Xvid or DivX which were capable of compressing video at much lower bitrates 

but keeping the same image quality. Many consumer standalone DVD players nowadays are able to 

playback not only MPEG-2 video stored on DVD discs but also MPEG-4 compressed material which 

usually fits on a single CD-R at the same image quality22 .

In the last few years, when high resolution flat panels got more and more affordable by consumers, 

two optical media standards emerged: the HD DVD and the Blu-ray Disc. The two formats stood in 

competition to each other on the market which was won by the Blu-ray Disc when Toshiba dropped 

20 More information is available at:  http://en.wikipedia.org/wiki/Nvidia_Ion.

21 http://en.wikipedia.org/wiki/IPhone

22 http://arstechnica.com/gadgets/guides/2009/12/from-cinepak-to-h265-a-survey-of-video-compression.ars/
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the development of HD DVD standalone players and Sony's  PlayStation 3 was a widely available 

game console capable of playing Blu-ray Discs23.

The video compression used for high definition material on Blu-ray Discs and for digital television 

broadcasting over satellite or cable is MPEG-4 Part 10 or more commonly known as H.264 which 

again outperforms MPEG-4 Part 2 in times of video quality and bandwidth usage at the cost of being 

more processing intensive to decode. The follower of H.264, currently under development, will be 

H.265 introducing a loss in picture quality when looking at the single frames of a video sequence. But 

since video is about moving pictures the single frame quality of fast paced video sequences won't be 

noticeable by the human eye.

Besides the development in video compression technology content creators keep looking for new 

ways of improving their material by adding new visual experiences like 3D effects to movies like the 

2007 production 'Beowulf'  viewable in IMAX movie theatres and the 2009 production of 'Avatar' 

which was  also  available  for  regular  movie  theatres  equipped with  a  technology  to  synchronize 

special shutter glasses worn by the audience.

Offering 3D material for the consumer market TV panel producers like Samsung, Panasonic and Sony 

recently started selling kits of shutter glasses to be used with their products for watching 3D enabled 

Blu-ray movies. Focusing the desktop PC market NVIDIA offers solutions to enable 3D experience for 

computer games as well as digital video on home computers equipped with their recent graphics 

adapters in combination with LC monitors capable of running at a display rate of 120 Hz and a pair of  

shutter glasses24.

SPECIFIC APPLICATION TYPES

Large streaming applications include radar and radio astronomy. These application are now currently 

implemented as phased-array receivers that use multiple antenna elements to pick up radio waves. 

The antenna elements are positioned at a certain distance from each other, such that the wave front 

arrives  at  slightly  different  times  at  the  various  elements.  By  combining  the  signals  from  all 

elements, the original signal can be restored and the direction of the transmitter is obtained. This 

process is called Beamforming. Multiple transmitters can be traced at the same time by applying 

different delays to a copy of the input signals. State-of-the-art radar systems can for example form 

10 beams, thus tracking 10 objects, at the same time.

A state-of-the-art  radar has around 4096 antenna elements,  that  are sampled  at  16 bits  at  200 

Mbps.  The resulting  stream is  thus  13.1  Tbit/s  at  the input  of  the digital  system.  The required 

processing is equally large, with around H*410 GMAC/s for the antenna processing (H-order FIR-

filter with H/2 non-zero elements),  and around 8.2 complex TMAC/s for the beamforming (when 

beamforming 10 beams). This also results in a large amount of internal communications, where the 

communication between the antenna processing and the beamformer reaches 54.2 Tbit/s (assuming 

32bit complex numbers) and 128 Gbit/s between  the beamformer and the information processing 

part.  These  figures  should  give  some  indication  about  the  large  amount  of  processing  that  is 

required for  these  systems,  and  that  even  only  buffering  for  a  second  already  requires  a  large 

amounts of low-latency (and most likely high bandwidth) storage.

Synthetic Aperture Radar (SAR) Satellites also use beamforming techniques, and although they do 

not  form  as  many  beams  as  radar  systems  found  on  military  ships,  they  are  burdened  with 

compressing the information stream to fit the limited bandwidth of the communication link between 

the satellite and the base-station. The resulting computational complexity (given by the number of 

(complex) operations) is in the same order as the computational complexity of the radars found on 

23 http://en.wikipedia.org/wiki/High_definition_optical_disc_format_war

24  (http://www.nvidia.com/object/3D_Vision_Main.html)
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the military ships. The power envelope of SAR-Satellites is however many orders smaller than the 

power envelope of ship-based radars (30 Watt vs many KiloWatt).

SUMMARY

• Stream processing (encoding and decoding) often performed by dedicated processors 

in heterogeneous platforms

• Typically organized as Data-Flow graph applications

• Soft Real-Time requirements that impact on Quality of Service (QoS), require precise 

QoS control over computational and communication resources

• Higher  definition  and  3D  will  require  more  bandwidth  and  higher  computational 

requirements

• In SAR, power requirements and large amount of data require 

6. GAMING

3D  worlds  dominate  the  gaming  industry  which 

demands  high  interactivity  and  fast  graphics 

processing.

Playing console or PC video   games is  listed  amongst  today's  most  common  leisure  activities  in 

Europe, where 40% of the European population spends about 6-14 hours a week on playing video 

games  [17],[18]. In the USA about 68% of the households play computer of video games, 42% of 

homes in the USA have a video game console, and 37% of heads of households play games on a 

wireless device such as a cell phone or PDA [15][16]. In Europe 44% of gamers also play on a wireless 

device [17]. In the USA (2008), game console software sales totalled $8.9 billion with 189.0 million 

units sold; computer games  sales were $701.4 million with 29.1 million units sold; and, there is $2.1 

billion in portable software sales with 79.5 million units sold. Although these figures do not include 

the revenues made from the advertisements usually displayed in the (browser-based) free-to-play 

games,  it  is  clear  that  (portable)  console  games  are  dominant  in  the  interactive  entertainment 

industry. 

Examining the specifics related to these console software sales we see that the most popular game 

genre is “Family Entertainment”, which accounted for 19.3% of all games sold in 2008. In addition, of 

the games sold in 2008, 57% were rated “Everyone (E)” or “Everyone 10+ (E10+)”. Also the top 5 

console games includes 4 games for Nintendo's Wii console, which are all “Family Entertainment” 

games. Only 16% of the games sold holds the “Mature (M)” rating, which includes the 5th most sold 

console game for 2008, Grand Theft Auto IV for Xbox 360. Of the top 20 (portable) console games, 

there  were  7 games  for  the  Wii,  6  for  the  Microsoft's  Xbox  360,  5  for  Nintendo's  portable  DS 

console, and 2 for Sony's PS3.

Examining the specifics  related to computer  software sales we see that the most  popular game 

genre is “Strategy”, which accounted for 34% of all games sold in 2008. Also Role-Playing is a popular 

genre  among  computer  game  players,  accounting  for  19.6%  of  all  games  sold.  This  last  figure 

correspond  with  the  top  5  computer  games,  which  includes  3  games  belonging  to  Activision-

Blizzard's popular World of Warcraft series.

62% of European computer and video gamers also play these games online  [17].  42% of gamers 

between the age of 6 and 42 in the USA play games online for 1 or more hours a week [18]. Of these 

games,  the  games  that  are  played  the  most  belong  to  the  type  “Puzzle/Board 

Game/Show/Trivia/Card”  which  are  usually  (browser-based)  free-to-play  games.  Followed  by 

“Action/Sports/Stragegy/Role-Play” with 21%, and “Persistent  Multi-Player Universe”  on 3rd place 

with 16%.
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A) SPECIFIC APPLICATION TYPES

Games will be subdivided into 3 main platforms: Non-portable consoles (such as Wii and PS3), PC 

and Mobile (which includes portable consoles such as the Nintendo DS). As all three platforms can 

connect to the internet, online games have  been included in this section as well.

Console – Low-Performance

The main difference between console games and pc games, is that console games are usually the 

only  running program  on the  platform.  Console  games  are  also  expected  to  be  playable  within 

seconds the console is turned on. So this means that the demands on an operating system are few, 

just that it initialises the system fast, and relinquishes control to the gaming application as soon as 

possible.

PC – High-Performance

PC Games that are most demanding on their hardware, and are used to benchmark the latest GPUs 

and CPUs are those that fall within the “First-Person Shooter” (FPS) genre. Familiar titles include Epic 

Games' “Unreal” series and ID Software's “Quake” series. Crytek's “Crysis: Warhead” is considered 

todays most demanding (and perhaps least efficient) game in the FPS-genre used to benchmark the 

latest  range  of  GPUs.  Only  the  latest  GPUs  such  as  Nvidia's  GeForce  GTX480  (Fermi/GF100 

architecture), in combination with high-end CPUs (Intel Core i7 920), can now can display the large 

open worlds with a minimum of 30 frames-per-second25 (although the average case is higher), when 

the game is set to its highest visual fidelity settings on a FullHD (1920x1200) screen.

Although the introduction of  video cards that support DirectX 11 might make one of the newer 

games, such as A4 Games' Metro 2033 (which uses specific DirectX 11 features) the “default” gaming 

benchmark. A synthetic benchmark used to test how well  graphics cards perform for these high-

performance  games  is  the  3DMark  benchmark  suite,  with  3DMark  Vantage  being  the  latest 

instalment.

The reason that the FPS-genre, and especially games like Crysis, are so demanding on the hardware 

is that they try to display interactive, realistic, open 3D worlds, with a lot of foliage, as a live stream. 

Having 3D worlds approach reality does not only mean the realistic rendering of all its objects, but 

also modelling the physical interactions between all its objects, such as trees moving in the wind and 

the destruction and collapse of buildings.

Mobile 

With the porting of Snake from TI's graphical calculators to Nokia's mobile phones in 1997, the first 

game for a mobile phone was born. With the introduction of  smart-phones,  new games can be 

downloaded and installed on a phone, increasing the market for mobile game developers. Games 

cause a mobile phone to be in constant use, so although the battery-hungry antenna might not be 

used, the backlight of the screen as well as the CPU of the mobile device are put to constant use. 

This means that the OS should cater for several power-saving techniques that are “gaming-friendly”, 

such as saving the state of the game and shutting it down after a certain time of inactivity.

B) ONLINE GAMING

The nature of the Internet poses several challenges for the real-time requirement  of online games. 

The Internet is a shared medium and packets can be lost or delivered out of order. Which means 

that, there are no guarantees of network bandwidth, latency or reliability at all.

Most online games run on a client-server architecture, which enables large scale Internet gaming. In 

this architecture the server is authoritative and, as such, it is responsible for all game play decisions 

25 30 FPS is considered as the minimum frame-rate for high-pace games at which motion appears smooth

48 | P a g e D5.1 State of the Art S ( o ) O S



[20]. If the latency between the client and the server is large enough, the responsiveness of the 

game to a player action decreases, and the player performance is likely to degrade. However, not all 

games  are  equally  tolerant  to  latency.  In  a  “First  Person  Shooter”  game,  shooting  at  a  moving 

opponent is greatly impacted by latency, while in a “Strategy” game, selecting a set of troops and 

moving them across a battlefield tends to be less sensitive to latency [22]. 

Game traffic behaves differently in different phases of online gaming. During a play session, the 

traffic rate of an action game depends mostly on the players actions, while in a MMO game the 

traffic rate is more consistent  [36]. A player can join a game in the middle of a session and it may 

need to download assets from the server if these are not cached locally. Downloading imposes a 

high demand on bandwidth which as to be balanced with other clients already playing. But due to 

lack of QoS, game servers have to use a hard limit on the download rate, resulting on less efficient 

use of bandwidth.

Action games,  like a “First  Person Shooter”,  are one the most  demanding games for bandwidth, 

reliability and latency. If network bandwidth was unlimited, at each game state update26 a server 

would send an exact game state update to all clients. The reality is that, the limited bandwidth and 

the low latency requirement makes this difficult27, and while bandwidth has been increasing so has 

the complexity of action games (more complex game physics, wide open areas with player manned 

vehicles and on foot). To overcome this issue, a game server transmits a reasonable approximation 

of the game state to the client [20]. Client side prediction is used to compensate this approximation 

and also packet loss, however its accuracy depends on available bandwidth and rate of packet loss.

The TCP transport protocol is widely used for the majority of reliable Internet traffic. In the early 

days of online gaming, it was used by most game engines. TCP provides means for flow control, 

congestion control, ordered delivery  and reliability.  Thus it was far more easier to write a game 

engine using TCP,  and at the time, very few had Internet access.  However,  for  more demanding 

game genres TCP provides a much more poor experience, because reliability comes at the price of 

retransmissions that increases latency. While today most demanding games avoid reliable transport 

protocols,  games that are less  sensitive  to latency  have successfully  use it,  which is  the case of 

games like World of Warcraft [20]. Nevertheless, TCP still has some undesirable features that impact 

latency. One of these is the Nagle algorithm, which is supposed to improve efficiency by waiting for 

small chunks of data to be gathered for sending within a threshold. This has the obvious side effect 

of increasing the latency, thus it is usually disabled by the option known as TCP_NODELAY28.

To  overcome  the  poor  experience  provided  by  TCP  in  more  demanding  games,   many  have 

implemented middleware solutions on top of UDP. UDP is much like the underlying IP protocol, in 

that there is no congestion control and mechanism for reliable or ordered delivery of packets. For 

games with high sensitive to latency, its critical that clients receive frequent updates of the game 

state, if a packet is lost there's no point in being retransmitted because only the most recent game 

state matters. While receiving the position of opponents can be unreliable other actions, such as 

firing a weapon, must be transmitted to the server reliably. Unfortunately, UDP does not provide 

any  support  for  reliability,  congestion  control,  flow  control  and  connection  management.  The 

middleware solutions implemented by most games address some of these. But some issues,  like 

congestion and flow control, are not trivial.

One protocol that provides many of the requirements for online games is SCTP. Originally develop 

for telephony, it provides reliable and unreliable packet based communication. However, because of 

26 A game state update is the state of the game simulation at each iteration.

27 For low latency it is desirable to send a game update in one packet, thus avoiding the additional delay between 

packets  for  the  same game state  update,  but  this  is  limited  by  the   MTU.  To overcome  this,  games prioritize  

individual object state to be sent to clients based on their impact on game play [20].

28 In Berkeley like socket interfaces, see: 

http://www.opengroup.org/onlinepubs/000095399/basedefs/netinet/tcp.h.html
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its lack of support on major commercial operating systems, little is known on how it performs for 

online games in a real world scenario.

C) SUMMARY

Figures  [15][16][17][18] show  that  console  gaming  is  the  dominant  form  of  gaming  as  far  as 

revenues are concerned. Within this domain, by total units sold, the casual “Family Entertainment” 

genre prevails, and games for Nintendo's Wii hold the #1 to #4 spot in the top 5 console games. This 

shows that cheap/low-performance hardware, combined with software for 'casual'  gaming, is the 

platform/game combination where most money is made. Games that are most demanding of their 

hardware include games that fall within the “First-Person Shooter” genre, such as Crytek's Crysis, 

and are usually rated “Mature (M)” which only account for 16% of the sales,  for both video and 

computer games. 

So from an economic point of view, it seems wisest to focus on those aspects of an operating system 

that are most beneficial for running 'casual' games on low cost / low performance hardware, and not 

the hardcore/mature games that run on high-cost / high-performance hardware.

There also seems to be a move to duplicate parts of the game to an online platform, for example 

Activision-Blizzard's World of Warcraft has an iPhone application with which you can access the in-

game  marketplace.  In  some  sense,  World  of  Warcraft's  in-game  market  has  actually  become  a 

service which you can not only access using the regular game-client, but also a mobile application or 

even a web application.

In spite the best effort nature of the Internet, online games have been successfully in providing a 

general good experience. Still,  many improvements can be done as the complexity in games will 

continue to increase. Requirements on future networks to support bigger MTUs will help keep low 

latency,  as  more  information  can  be  transmitted  on  a  single  packet.  More  flexible  transport 

protocols with reliable and unreliable communication, packet and stream based flows for the game 

communication needs. And QoS that can be adapted for different game traffic patterns during the 

various game play phases.

7. HARD REAL-TIME CONTROL APPLICATIONS

Hard  real-time  systems  require  predictability  of 

response-time, and at the same time early performance 

estimation through accurate hardware models

This  class  of  applications  includes  plant  control,  robotic  and  industrial  automation  systems, 

aerospace and automotive systems. 

Typically,  these  applications  have  critical  timing requirements,  so  they are called  hard real-time  

systems. They are implemented by a set a periodic concurrent threads, that must complete before 

their  deadlines,  otherwise  the  system  correctness  could  be  compromised.  Depending  on  the 

criticality of the applications, missing a deadline could have catastrophic consequences. An example 

is the software for controlling the brakes of a car: a  bug can cause the malfunctioning of an essential 

component of the car safety, which in turn can cause injuries to human beings. 

The design of these systems is quite complex due to the strong requirements on software testing 

and verification. The main programming language is plain C, mainly for efficiency reasons. However, 

development is supported by design and analysis tools that guide the developers through all phases 

of the life cycle: 

• specification of the control algorithm in high level graphical block languages (e.g. Simulink 

and Stateflow from Mathworks, or UML Statecharts and MARTE UML); 

• to code-generation; 
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• mapping or code on threads, and of threads on computational nodes; 

• configuration of threads parameters (e.g. priorities, periods, etc.)

• static analysis of the code for estimating execution time; 

• scheduling analysis to identify potential deadline misses or bottlenecks; 

• and finally, generation of test-cases.  

In certain contexts (e.g aerospace applications) reducing the cost is a secondary objective,  safety 

being the first.  In  other  areas,  developers  are  subject  to  a  high cost  pressure:  it  is  the  case  of 

automotive software, where electronic boards and software are produced in large amount of pieces, 

and reducing the cost of the hardware can bring significant cost reductions. Thus, from one side 

there is pressure on safety and validation; on the other side there is pressure on reducing cost by 

using the least powerful computational resources. 

In the past, safety and fault tolerance were achieved by using a separate hardware board for each 

different feature. Considering again the case of automotive software, brake control was running on a 

physically separated board than e.g. power train and gear shift controllers. However, such approach 

does  not  scale  well  with  the  ever  increasing  number  of  required  features.  Hence,  the  need  to 

integrate different features on the same physical board, possibly featuring a multi-core embedded 

microcontroller. 

Many chip vendors are proposing their own multi-core solution tailored to embedded systems, with 

a significant reduction in power consumption, heating, etc. with respect to single core solution with 

similar computational power. Examples are the  ARM 11  [32], the PowerQuiCC Series from Freescale 

[33].

Currently, penetration of such architectures is still slow in the domain because of the lack of proper 

design and tools for multi-core, for the  increased difficulty of synchronization, and for the lack of an 

establish real-time scheduling methodology.

For the next future, we foresee a slow but steady increase in the adoption of multicore technologies 

for such systems. However, it is clear that the adoption of multi-core and many-core platforms will 

only  be  justified  by  a  strong  market  case,  as  most  of  the  developers  are  concerned  with  the 

increased difficulty in designing,  programming and analysing parallel  software rather then single-

processor concurrent software. Therefore, as the availability of software design techniques and tools 

for multi-core processors will be more widespread, the market will move to multi-core solutions as 

well, most probably with a few years of delay with respect to non-real-time applications. 
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VII. CONCLUSIONS: REQUIREMENTS & RELEVANCE

Given the expected developments and the usage scope, an initial assessment of which features future 

systems need to address can be provided

1. A GLIMPSE OF THE FUTURE

From  the  analysis  on  the  expected  future  trends  in  common  application  domains  made  in  the 

previous  chapter,  we  can  now  try  to  forecast  the  emergent   future  applications,  and  the 

requirements they will pose on future generation computing systems. As already discussed, the user 

requirements are the main forces driving development in the computing domain, the ones that will 

select the most successful strategy out of the many tentative paths that will be tried by hardware 

and software designers.

However,  it  is  important  to  underline  that  future  computing  architectures,  and  the  expected 

increase in computing power, will enable new applications (or new services for existing applications) 

that are simply impossible right now due to their high computational requirements that cannot be 

fulfilled by current technologies. Therefore,  it is  not always clear who is the driver: is application 

requirements that impose the development of certain technologies, or new technological advances 

that make new applications possible? 

This  chicken-and-egg  problem,  however,  should  not  refrain  ourselves  from  reasoning  about  the 

future of computing technology and application usage: while it is impossible to forecast the future, 

the general directions that the computing technology will take are quite evident from the discussion 

made in the previous chapters. In the following section, we will pin-point general characteristics of 

current and future applications and the requirements they impose on the underlying technology. 

2. REQUIREMENTS FOR REALISING THE FUTURE

In order to identify the requirements of future emerging application, we first classify applications 

according to their  general  characteristics. Then, we will  derive requirements from these general 

characteristics.  The following table provides a correspondence between applications described in 

the previous chapter, and characteristics. 
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Embarrassingly parallel (P2P  

computing)

No Generally 

no

No Rarely Sometimes Often (e.g. 

Folding@ 

Home)

Relatively 

high

Relatively 

high

low Essentially 

horizontal

Yes No No

Embarrassingly parallel (like  

visualisation)

Maybe Maybe Maybe Maybe Often Rarely average Relatively 

low

Low 

(rendering)

Horizontal / 

Vertical

No No Yes (GPU)

Tightly coupled (e.g. structured  

grids)

No No Rarely Rarely Often29 Often Relatively 

low

Very low High Vertical No (latency 

too high)

No Often

Cloud Computing (Grid and similar) Often Often rarely Rarely Rarely Rarely high due to 

replication

Relatively 

high30 

Low Horizontal Yes Maybe No

Personal devices (client) Maybe Yes Rarely Maybe No No Relatively 

low

Interactive 

(<0.1s)

LOW - YES YES yes

Social Networks

(server)

YES Yes - Maybe YES - High due to 

replication

Interactive 

(<0.1s)

LOW horizontal - - -

Office/Home

(server)

YES Yes - - YES (server) - High due to 

replication

Interactive 

(<0.1s)

LOW horizontal YES - -

Office / Home (standalone PC) Rarely (but 

increasing)

Yes No No Maybe Rarely - Interactive 

(<0.1s)

None None no (cf 

clouds)

Rarely No

G

a

m

i

n

g
31

standalone No Yes Soft often Yes 

(rendering)

Increasing 

(AI, PhysX)

n/a Interactive n/a None32 No some-times Yes 

(consoles)

MMO (client) yes Yes soft No Yes High

(graphics)

average interactive low none Yes (see 

MMO 

server)

Sometimes Yes 

(consoles)

MMO (server) Indirectly indirectly soft No No Low High 

(server)

interactive average Horizontal33 Yes 

(rendering)

No No (GPU)

Action (client) Yes Yes Soft Yes Yes High

(rendering)

Average Low Low Vertical Maybe - Yes

(GPU)

29 simulations

30 Depends on interactivity

31 See HPC: visualisation for rendering related aspects (part of most games)

32 Vertical for graphics cards

33 Also vertical for graphics
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Action (server) Indirectly Indirectly Soft Yes No Medium-

High

(physics)

High Low High Horizontal Yes

(rendering)

- Maybe

(physics)

Remote Rendering (client) Yes Yes Soft Yes Yes Low Medium Low Low Vertical Yes - Maybe

(video 

decoder)

Remote Rendering (server) Indirectly Indirectly Soft Yes Yes High High Low Low Horizontal 

and Vertical

No - Yes

M

u

lt

i

m

e

d

i

a

Offline Video & Audio - - Soft 

(frameskip)

Yes Yes rarely n/a n/a Low Vertical 

(Vector)

n/a Maybe often

Online Video & Audio - - Soft 

(frameskip)

Yes Yes rarely high low low Vertical & 

Horizontal34 

Implicit Maybe often

Video Chat Yes Yes Soft 

(frameskip)

Yes Yes Rarely High Low Medium Vertical & 

horizontal

Partially Maybe often

HRT Control applications - - YES Maybe - - HIGH YES - - -

Data retrieval (search engines) - - - - YES YES 

(indexing)

LOW YES - - Maybe

On-line trading YES YES YES - YES - HIGH YES - - -

34 Vertical for vector processing, horizontal for handling multiple clients



In the following, we will analyse and discuss each one of the characteristics listed above and derive 

requirements  for  the  4  research  areas  addresses  in  the  project,  namely  hardware  platforms, 

communication, operating systems, programming models.  

A) COLLABORATIVE

An application is collaborative when it consists of multiple clients/peers, relative to different users, 

that can access and modify common shared data. All clients/peers share some state: however, the 

different  views of  the global state may or  may not  be always synchronised  and consistent  (see 

coupling level  below). For example,  in certain collaborative applications like document editing or 

chatting, at some instant one user can see an old view of the state while the others may see a more 

updated view. The different views of the state will eventually be consistent among each other. In 

other applications (like on-line trading,  or on-line gaming),  instead, it is important that all  peers 

always have the same consistent view of the shared state. 

Requirements:

• Collaborative applications are mostly distributed (client/server or p2p). The bandwidth and 

latency  requirements  depends  on  the  specific  application  type.  Some  collaborative 

applications are interactive in nature (e.g. online chats).

• They are expected to deal with a large number of users, thus one important requirement is 

scalability with respect to number of users (horizontal).

• The memory model (shared or distributed, global consistency and coherency) depends on 

the type of application.

• Generally, consistency and coherency needs to be maintained.

B) INTERACTIVE 

An application that interacts with one (or multiple) human user, which requires a response in a time 

relative to typical human time-constants, depending on the type of interactivity desired: for hard 

interactivity, less than 100ms reaction time are desired; for web like interactions (user flow), up to 

1s delay is acceptable [108].

Requirements

• The typical requirement of interactive application is low-latency.  To achieve low-latency it 

is necessary to operate at different levels of the system: 

◦ latency  of  computation  (response  time)  requires  proper  scheduling/allocation  of 

resources; 

◦ latency of communication (synchronisation) for distributed applications; 

◦ latency of I/O devices for data-intensive applications. 

• Notice that we make a distinction between interactivity and from real-time requirement, as 

interactivity is a fuzzy concept that is mostly treated in a best-effort, heuristic way. 

C) REAL-TIME

The application has real-time constraints, either hard real-time (i.e. missing a deadline may cause 

some incorrect computation) or soft real-time (i.e. late computation degrades the quality of service 

without causing incorrect behaviour). Again, real-time imposes a constraint on latency. As opposed 

to interactive applications, however, in real-time applications latency needs to be estimated a-priori, 

either at design time, or when launching the application. In both cases, an admission control test is 

done  to  estimate  the  expected  performance,  and  if  the  performance  is  not  satisfactory,  an 

appropriate action is taken. This requires precise modelling and analysis of the system performance 

off-line;  and on-line  monitoring  of  resource  usage at  run-time.  Also,  operating  systems  services 
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needs to have predictable behaviour and predictable response time, and this in turn may impose 

constraints  on  the  hardware  (i.e.  cache  may  be  locked  or  even  disabled  because  it  introduces 

unpredictability).

Requirements

• Predictable hardware; this implies precise control over (and knowledge about) hardware 

features like cache, processor interconnects, so to minimize unpredictable execution time.

• Predictable OS; operating system services must be designed and implemented to have a 

predictable execution time; heuristic algorithms will never be used in favour of predictable 

algorithms.  For  example,  the scheduler  must  be based on priorities;  memory allocation 

algorithms must have a predictable worst-case execution time; priority-based access to I/O 

devices; etc.

• Predictable, QoS-aware communication protocols: it must be possible to allocate a virtual 

channel with guaranteed minimum bandwidth and maximum latency over the network.

• On-line monitoring; both the hardware and the OS must allow for on-line monitoring of the 

performance of the real-time tasks.

• Memory model can be based on shared memory or distributed message passing, as both 

models allow for predictable algorithms as long as the previous requirements are met.

• Predictable application behaviour: in particular computation driven applications are difficult 

to assess with respect to their execution time.

D) STREAMING 

Applications that stream data from/to the user, in which data must be processed periodically at a 

certain rate (e.g. audio/video encoders and decoders). The main characteristic here is the constant 

(or periodic) arrival of data that can be of constant size (CBR) or variable size (VBR). In the case of 

MPEG2 coding, data belonging to different frames   

Streaming applications essentially require that the same logic / operations are executed on a series 

(stream) of data and the behaviour is (only minimally) influenced by the data itself.

Requirements

• Network on Chip architectures may be used in this case, as streaming applications have a 

data-flow-graph  structure,  where  each  block  in  the  graph  can  be  implemented  on  a 

different processor, and data flowing between blocks can be supported by dedicated point-

to-point processor interconnections.

• Specialized hardware resources; SIMD processors perform best in these cases (for example, 

vector processors or dedicated FPGAs for encoding and decoding).

• Cache for data: the typical data throughput is higher than the available cache size allows to 

store – accordingly, streaming applications quickly reach the point where data has to be 

gathered via external I/O (disk, network). Data throughput therefore primarily depends on 

how fast data can be forwarded to the compute units. A simple cache hierarchy can thereby 

lead to additional delays (as requests are routed to the higher levels) [107].

• Bandwidth may compensate latency by pre-fetching data – e.g. by employing stream load 

cache extensions [106]. 

• The problem can be solved by a parallel algorithm, which can thus employ multiple data / 

cache lines.

• The OS needs to support asynchronous I/O services,  to pre-load successive data frames 

while processing current frames.

• The OS needs to support some real-time mechanism, to allow synchronization and periodic 

execution of the code. For example, audio and video must be synchronized to prevent bad 
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effects. However, in most cases streaming applications have soft real-time requirements, 

thus it is not required that the OS be fully real-time.

• The programming model should take into account the fact that most of this applications are 

modelled by DFG. MPI is already a good choice, and in general support for communication 

and buffering at the programming/library level helps the programmer to write clean and 

portable code. Streaming SIMD extensions may have to be explicitly invoked [106]. 

E) DATA-INTENSIVE 

Applications that deal with large amount of data and comparatively little operations on this data, 

such as is the case for most SIMD (“single instruction multiple data”) applications – this includes data 

mining,  and  graph  traversals,  as  well  as  operations  on  (audio  and  video)  streams  (see  also 

“streaming”,  above).  It  must  be  noted  that  not  all  of  these  applications  can  be  equally  well 

parallelised,  as  this  depends  in  particular  on  their  synchronisation  and  coherency  requirements 

(audio streams are for example more coupled that data mining algorithms and hence more difficult 

to parallelise). 

Requirements

• The general requirements are highly related to streaming applications.

• In most cases,  bandwidth should be high, but throughput is automatically limited by the 

lowest bandwidth in the interconnect chain.

• Bandwidth can compensate latency.

• Cache should either be large enough for all data to fit in, or should address the streaming 

requirements above.

• Vector processors and similar SIMD units can support the repetitive actions on the data set.

• Parallelisability (in the sense of horizontal scale) depends on the specifics of the respective 

algorithm (see also section 13 dwarfs above).

• If  the application is  parallelisable,  the  same issues  as  for  compute intensive  algorithms 

apply (see below).

F) COMPUTATION-INTENSIVE

Applications that must perform a large amount of computation on comparatively low amount of 

data (e.g. many iterations in simulated annealing, magnetic field calculations etc.). Note that some 

simulations, in particular fluid dynamics applications etc. show behaviour similar to data-intensive 

computation, as the particles flow through the computation grid – this has specific implications on 

throughput  which is  generally  higher  and more dynamic than in  e.g.  simulated annealing cases. 

However, as the behaviour is data-dependent (i.e. the operations may differ, depending on data) 

and  as  each  datum  may  have  many  computation  iterations,  we  considered  this  a  computation 

intensive application case, too.

Compute intensive algorithms can belong to either of the three types: (1) not parallelisable due to 

too many dependencies (simple example: many iterations on a single datum),  (2) embarrassingly 

parallel, where e.g. the same computation and data set are subject to different parameters, and (3) 

tightly coupled parallel where the amount of compute resources define the overall execution time 

(“strong scaling”).

Requirements

• In most computation-intensive algorithms, some form of data exchange is needed, so that 

synchronicity, coherency etc. should be supported, e.g.

◦ Shared memory,

◦ hardware- or software-cache-coherency (e.g. ccNoRMA),
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◦ UMA or NUMA architecture.

• The degree  of  communication,  and  hence the  requirements  on  bandwidth and  latency 

differ, depending on the parallelisation case:

◦ not parallelisable: no communication needed (obviously),

◦ embarrassingly parallel: higher need on bandwidth than on latency,

◦ tightly coupled parallel: higher need on (low) latency than on bandwidth.

• The clock rate of the processor should be as high as possible (the higher, the faster the 

execution).

• Cache should be large enough to host the respective data segments and minimize cache 

misses.

• In parallel applications, there should be as little access to restricted resources (OS, I/O, disk 

etc.) as possible, as these resources may become bottlenecks.

• The threads / processes  should take up as much of  the processor's  capacity as possible 

(exclusiveness, no time sharing).

• There should be no centralised control (such as OS), as this would lead to synchronisation 

and communication delays.

• Either data or work needs to be segmented – in either case,  the programming language 

should allow for according segmentation and distribution, as well as implicit (and explicit) 

communication.

G) COUPLING LEVEL 

The amount of interaction between the different (parallel or concurrent) tasks of the application. For 

example, embarrassing parallel algorithms are loosely coupled (i.e. rarely exchange data), whereas 

fluid model simulation is typically tightly coupled (i.e. frequently exchange data) - see also the 13 

dwarfs  classification  in  the previous  chapter  for  low,  medium and high coupled  algorithms.  The 

coupling level partially depends on the presence of shared state in the algorithm. For embarrassingly 

parallel  applications,  it  is  possible to divide the (full)  state space into separate and independent 

subspaces,  so  that  every  parallel  task  acts  independently  on  the  assigned  subspace  without 

influencing the others. In tightly coupled applications, instead, every modification to a state variable 

may influence all the state space. 

Requirements for low-coupling

• Applications with a low coupling level may be easily implemented on modern distributed 

systems,  like  GRID  systems,  or  cloud  computing  systems,  because  the  low  interactions 

between  parallel  applications  makes  it  possible  to  distribute  the load over  a  wide-area 

network  of  distributed  systems,  and the  high  latency  in  communication only  minimally 

influences overall performance;

• There is no requirement on communication latency; the bandwidth depends on the specific 

application;

• GRID-aware distributed OS (like Xtreme OS) and Cloud Computing infrastructure support 

well.

• Message  passing  programming  models  like  MPI  are  already  adequate  for  this  kind  of 

applications. 

Requirements for high-coupling

• Highly connected clusters or many-core systems with fast interconnection. 

• On a single node they may require a large shared memory with cache coherency protocols, 

so to make it easy to represent the shared state, and maintain its consistency. 

• Programming models that provide a shared memory abstraction (like PGAS) are best suited 

for this kind of applications. 
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H) BANDWIDTH 

Related to the coupling level between instances / processes, the bandwidth requirements indicate 

whether the respective system has a high demand on data size, i.e. whether a large bandwidth is 

needed to transport the necessary information. In some cases, bandwidth can compensate lack of 

latency, but only if the data is not dependent on application behaviour (e.g. through interactivity) in 

which case latency would predominate the according requirements.

Most  internet  applications  have  a  higher  demand  on  bandwidth  than  on  latency,  as  long  as 

interactivity is still low in these cases.

Requirements

• Bandwidth  is  defined  by  the  lowest  common  denominator,  not  only  by  the  I/O  – 

accordingly, data throughput, cache speed etc. play an important role

• In order to keep data available, cache size should be comparatively large

• I/O should allow for broad connections

• Bandwidth requirements can also arise from high level of concurrent access, in which case 

parallelism can be exploited (server case)

◦ multiple I/O chipsets 

◦ multiple processors

• the OS (or execution environment) should try to merge multiple data sets / messages into 

larger packages, according to the bandwidth to exploit the connection maximally. Latency 

needs to be observed in this context

• the  programming  model  should  ideally  make  the  developer  aware  of  the  latency  / 

bandwidth  capabilities  and  restrictions,  respectively  be  able  to  restructure  messaging 

accordingly (e.g. turn multiple small web requests into a single large one – this is restricted 

by data dependency)

I) LATENCY 

As  opposed  to  bandwidth,  latency  is  in  particular  critical  for  interactive  and  tightly  coupled 

applications, i.e. where data needs to be available more or less immediately, as any delay leads to 

either  frustration  or  essential  performance  loss.  Notably  in  these  cases  bandwidth  cannot 

compensate latency, as this would mean predicting user / data behaviour. 

Latency  is  restricted  by  multiple  factors,  in  particular  by  distance  and  type  of  connection  –  in 

general, the longer the distance between two endpoints and the more intermediary points exist on 

the route, the higher the latency.

Requirements

• Shortest and ideally direct connections

• The system (execution model, OS, compiler) must be able to collocate data & code closest 

as possible, according to their relationship / relevance

• The  programming  model  should  allow  the  user  to  specify  segmentation  boundaries, 

dependencies, connectivity etc. and thus define distribution restrictions

• The operating system must respect data access frequency / requirement etc. during data 

distribution

J) SCALABILITY 

Scalability  of  an application refers  to  the  degree in  which it  can spread out  (“scale  up”)  across 

multiple resources.  We need to distinguish two types of scalability with respect  to typical  usage 

scenarios (see also [85]):
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Horizontal scalability reflects the degree in which the application can utilise the infrastructure to 

increase  its  availability  and  thus  potentially  its  performance.  In  the  strong  horizontal  case,  the 

individual  instances  are unrelated and do not share data.  This  is  the typical  case  for e.g.  Cloud 

Computing, where an increase in service access leads to its replication, and thus to its (horizontal) 

scale out.

Vertical scalability, on the other hand, relates to the case where a single application exploits multiple 

resources  for  directly  increasing  its  own  performance  as  a  whole.  In  other  words,  where  the 

application  is  split  up  into  coupled  processes  or  segments  that  can  spread  out  across  the 

infrastructure. Typical (“coupled”) HPC jobs scale out vertically by employing multiple compute units 

for its calculation, e.g. by segmenting the data into a structured grid, and assigning each cell to an 

individual unit.

Note  that  accordingly,  P2P  computing  takes  an  intermediary  between  horizontal  and  vertical 

scalability.

Requirements from horizontal scalability

• a number of mostly independent, complete compute units (PCs) that reflect the number of 

instances to be scaled out 

• typically high bandwidth between these units during scale out for data  and code replication

• the Operating System or  execution environment must  provide a “platform” in which to 

upload and execute the application instance (instantiation)

• typically a high degree of concurrent access must be handled

• coherency of data is generally secondary, but still needs to be achieved at least eventually – 

ideally it is maintained “on the spot”

Requirements from vertical scalability

• applications must be able to scale

• typically low latency

• similar requirements than for tightly coupled HPC

• coherency is essential

• distributed, synchronised execution

• on-the-fly instantiation and execution of code segments

• data distribution without delay

• programming model must allow easy segmentation

• operating system must reduce overhead

K) OFF-LOADING

Whether  the  application  can  delegate  some  part  of  the  computation  to  a  remote  server 

infrastructure (e.g. the cloud). This may require code mobility, as the application may not be present 

on the server – respectively at least a platform like environment in which to host the application's 

logic. 

Also, the byte code from the source host may be incompatible with the remote host, and require 

run-time  adaptation  or  the  creation  of  a  virtual  environment.  This  may  also  impose  additional 

overhead to clients as they have to provide information about the desired environment. 

Current applications which exploit off-loading capabilities are designed to a particular system and 

little code mobility or adaptation is required. In practice, most off-load methods work by delegating 

part of the application tasks to a well known remote system. Applications interacting with Clouds are 

a good example, but there are others such as real-time gaming with remote rendering, or even mail 

clients. Because most Cloud systems are mostly closed or have incompatible interfaces, off-loading is 
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at a very incipient age. Still, with the appearance of many small devices with low resources, proxy 

computation (an off-loading mechanism) becomes more interesting.

Considering systems with lesser complexity, off-loading as been used for a long time as part of the 

standard  data  centre  model:  application  servers  would  off-load  database  queries  to  clustered 

systems, or SSL cyphering and deciphering to dedicated hosts (usually with dedicated acceleration 

hardware).

From the operating system perspective, the challenge resides in identifying off-loadable segments of 

code, identifying other  systems  capable of  correctly  executing  the code,  and split  the execution 

environment between all participating systems.

Requirements

• the  offloading  process  itself  typically  requires  large  bandwidth  but  has  no  latency 

requirements (this obviously changes with the execution of the remote instance)

• the hosting (source) environment needs to provide some form of sand boxing mechanism 

for hosting the code / logic / data

• in  order  to  maintain  availability  and  communication  stability,  messages  must  be 

dynamically routed without affecting the code (behaviour)

• the new host  must  meet  the communication requirements  (synchronisation,  coherency, 

latency, bandwidth) of the application (or provide a means to compensate it accordingly)

L) MOBILITY 

If  the application is  mobile,  the location of  some of the nodes involved in the computation can 

change during execution. The most classical example for such behaviour is obviously mobile phones. 

Mobile applications are aware of the location of the hosts where they execute.  Location can be 

expressed both in terms of physical location (typically using the GPS system), or topological location 

(using the IP  address).  Most client applications of web and cloud services running at the mobile 

nodes (such as PDAs and Notebooks) can be considered as mobile. Mobile applications can adapt 

their  execution  to  the  current  location.  Examples  of  this  adaptation  can result  in  changing  the 

protocols used (e.g  Skype and other VoIP applications),  choosing peers located closer (e.g.  cloud 

clients),  or adapting the interface or other execution parameter  (e.g.  CoreLocation in OSX 10.6). 

Moreover,  some  even  may  exploit  locality  and coordinate  execution  with  neighbour peers  (e.g. 

BitTorrent  clients).  Some  operating  systems  such  as  Apple  OSX  10.6  have  support  for  location 

adaptation by allowing dynamic configuration of internal parameters (proxy,  ip address,  security 

parameters, etc...) in a reactive manner.

Mobility can also be classified as slow or fast, depending on the time the transient mobility process 

lasts.  VoIP and Real Time Interactive applications are very sensitive to delays and packet loss and 

require fast mobility. Other applications such as mail clients or IM clients can tolerate disconnection 

time of several seconds .

Requirements

• connectivity should at no time be interrupted for longer than the messaging requirements 

of the application specify (e.g. latency and real-time constraints)

◦ this is particularly true, if the endpoint is part of a distributed & parallel process

• handover  to  the  new  location  must  be  seamless  without  interrupting  or  affecting  the 

process' behaviour

◦ dynamic routing

◦ maintain streams

◦ maintain quality
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• mobility of a client could imply that some information of the server “follows”, i.e. is passed 

on into the vicinity of the endpoint to maintain availability

• support for fast mobile aware network protocols (Mobile IP family of protocols)

• support for local discovery protocols such as UPNP, Bonjour or M-DNS.

• low latency of the networking stack (to allow fast mobility)

◦ low latency process scheduling

◦ event driven, asynchronous interface to applications.

• provide  applications with  low level  information  about current  environment  (e.g.  packet 

loss, MAC access delay)

M) SPECIALIZED HARDWARE

Some kind of applications work best if a specific type of hardware is employed (typically a type of 

“application accelerator”). Without restriction of generality, we assume here that any other resource 

than a general purpose processing unit (GPPU) must be considered a “specialised hardware” - even 

though graphics processing units (GPUs) have basically already reached “general purpose” status.

Requirements  depend very  much on the  use  case  (application),  as  the  point  behind application 

accelerators (or specialised hardware) is exactly to support specific tasks. The best example consists 

in  the  FPGA  chipset  which  can  be  dynamically  reconfigured  to  meet  the  specific  application's 

behavioural requirements.

3. CONCLUSIONS

In this deliverable, we discussed the future trends in computing systems in the four principal areas 

related to the SooS project: Hardware and Processors (in Chapter II. ), Communication (in Chapter III.

),  Programming models (in Chapter IV. )and Operating Systems (in Chapter V. ). We also discussed 

the  requirements  of  future  applications,  with  a  specific  focus  on  High  Performance  Computing 

(Section VI. 1. ), Personal Embedded Devices (Section VI. 2. ), Social Networks (Section VI. 3. ), Office 

and Home usage (Section VI. 4. ), Multimedia Stream-Processing (Section VI. 5.  ), and video games 

(Section VI. 6. ). 

The main goal of this activity consisted in assessing the development that the infrastructure is most 

likely  to  take  within  the  next  few  years  and  which  kind  of  support  will  be  needed  through  a 

middleware / operating system. We thereby particularly examine the aspects related to a “holistic” 

environment  that  not  only  covers  a  wide  range of  application domains,  but  also addresses  the 

different developments in different areas, stacks or tiers forming a computing system. It is as yet not 

clear, whether such full convergence can be achieved and is as yet one of the major problems of 

both operating system and system developers that leads not only to interoperability and portability 

issues but also to instability and failures,  as well  as performance loss.  The relationship between 

application requirements and the supporting technology is indeed very complex, and this work can 

be seen as a tentative systematization of the large set of issues that are involved. Our work certainly 

does  not  pretend  to  be  exhaustive:  however,  we  believe  it  is  important  to  propose  a  global 

perspective  on  the  different  issues  involved  and  on  their  interworking.  For  this  reason,  in  this 

deliverable we tried to widen the perspective as much as possible, rather than to focus on a small 

set of specific issues or problems. At the same time, we tried to highlight the important details, the 

ones  that  we  believe  will  be  the  key  issues  in  the  development  of  next  generation  computing 

platforms. 

Therefore,  in  this  chapter  we  proposed  a  possible  taxonomy  of  application  requirements  and 

discussed its impact on the technology development trends. The results of this work will thus not 

only serve as a basis for evaluating the project outcomes through defining a set of testsuites (WP6), 

but also as driving input for the technical work in Workpackage 2-4. It must be noted in this context  
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that this work already incorporates input from these work packages as part of the state of the art 

assessments in the respective areas.

Finally, we believe that such an assessment is relevant for any attempt to support future computing 

systems, in particular due to the increasing amount of processing units in a single system.
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