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EXECUTIVE SUMMARY

This document reports the results of the preliminary investigations about general Operating System 

(OS) architecture models that will make it easier for developers to code applications on massively 

parallel  and  distributed  systems  as  expected  to  be  available  in  10-15  years  in  the  future.  The 

discussion focuses first on a small set of target application scenarios which are useful to highlight 

particularly critical requirements posed by the applications on the OS, as arising in the context of 

S(o)OS. These requirements are mainly related to scalability issues of nowadays OSes and run-time 

environments. Then, the OS architecture model is sketched out in terms of subcomponents, their 

interconnections  and  interdependencies  and  behaviour.  However,  as  this  constitutes  a  first 

preliminary investigation that will be refined in the future version of this deliverable D5.4, the whole 

set of details of an OS architecture are not deeply discussed, but rather the focus is on those aspects 

that are critical for the project objectives.  A recurring discussion in this context relates to kernel- 

versus user-space location of the OS/kernel components, which we however want to avoid in this 

first iteration, for the sake of concentrating on the OS capabilities in the first instance. Indeed, the 

definition of a whole OS architecture is actually outside the scope of the S(o)OS project. The main 

focus of this document (and of the refined version that will be released later) is the one to identify 

critical architectural elements and subcomponents that, constituting major bottlenecks in nowadays 

operating systems, need to be reviewed and rethought for the purpose of being able to face with 

future massively parallel and distributed systems so as to expose the available computing power to a 

broad range of developers, ranging from average developers to highly experienced ones.
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TERMS

Term Definition

Kernel Core  part  of  an OS  implementing  basic  fundamental  functionality  that 

serve as a basis for realising all of the other OS services.

Node, Machine, Host All  synonyms  denoting  a  physically  separated  autonomous  computing 

element (a PC, a node inside an HPC rack, etc.), which is connected to 

other elements via network adapters.

Thread Single thread of execution, sharing the same memory space as all the 

other threads belonging to the same process.

Process A process is composed of one or more threads. Processes on the same OS 

do not share the same memory space, however they can use shared 

memory segments if they use explicitly the corresponding OS services.

Task Synonym of thread.

Code Segment A piece of a program that can be extracted from a process, and executed 

on a different core than the one where the rest of the process is being 

executed. For example, a sequential execution involving a loop over a 

large number of items can be split into code segments to be executed on 

different cores in parallel for enhanced performance.

Scheduling The algorithm by which it is decided which physical resources are 

allocated to which program execution units and when. For example, 

scheduling code segments, threads and processes over the available 

cores and processors, scheduling the network packets over the available 

network adapters, etc.

Scalability Property of a system to not suffer of major performance penalties as its 

size grows.

Component, 

Module, Service

An OS component, or OS module, or OS Service, is a piece of software 

implementing a specific OS functionality.

Driver A specific component of an OS supporting a specific hardware capability, 

peripheral or peripheral type.

Operating System The run-time environment that mediates the interactions between an 

application and the underlying hardware, simplifying the task of writing 

applications for a variety of physical platforms.

Middleware Software layer mediating the interactions between the applications and 

the core part of an OS. An OS itself may include middleware components 

for the purpose of providing application developers with high-level and 

powerful management interfaces.

Service, Primitive OS functionality or OS component(s) implementing a particular 

functionality.
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I. INTRODUCTION

With the movement from single-core machines to large-scale heterogeneous multi- and many-core 

processors, the classical development and even execution paradigms changed completely: not only 

does the average developer has to face challenges similar to the ones in the HPC domain, but also 

HPC  developers  have  to  cater  for  a  much  more  complex  environment,  requiring  even  higher 

expertise than before. Whilst the general tendency seems to consist in shifting the burden to the 

developer, the S(o)OS project aims at significantly reducing this burden through increased support 

by the operating system.

This means in particular that the OS must provide a method to abstract the underlying hardware and 

enable a common execution model on top of it, yet still be able to exploit the respective capabilities 

in the best fashion for the program. At the same time, it must be enabled to deal with the large 

amount  of  resources,  at  least  without  affecting  negatively  the  performance  of  the  deployed 

applications. Current operating systems fail with both of these respects.

1. ORGANISATION OF THIS DOCUMENT

This document is organised as follows.

In Chapter  II.  ,  basic concepts around the need for designing novel  operating systems are shortly 

recalled,  starting  from  summarising  key  hardware  characteristics  that  future  massively  parallel 

systems will posses, and proceedings to highlight the shortcomings of nowadays OSes as well as the 

potential  for overcoming them in a novel  S(o)OS  operating system. We outline how we foresee 

S(o)OS to behave in  the context of  a generic  application lifecycle,  thereby highlighting the main 

benefits and challenges. 

In Chapter  III.  , we list the general OS requirements which are critical for the project, and whose 

importance is highlighted by focusing on a couple of application scenarios particularly critical for the 

project. These help in shaping the requirements towards a next-generation class of OSes which are 

able to overcome such limitations.

In Chapter IV. , we depict a preliminary set of OS architecture models, detailing what are the set of 

possible OS components, services and functionality and what is their layout in terms of distribution 

and interactions across a massively parallel physical system.

In Chapter  V. , we focus on a subset of OS services which are particularly critical in the context of 

many-core and massively parallel systems. These include resource discovery and matching, including 

the support for heterogeneous hardware, scheduling, and others.

In Chapter VI, we discuss the relationships and interactions between these services, thus developing 

the integrative view on the S(o)OS architecture. We thereby classify the components and align them 

to the general architecture discussions in chapter IV.

In Chapter VII. , we provide a preliminary discussion on issues specifically related to the API and the 

programmability  of applications in the context  of an OS with  the enriched functionality and the 

architecture model as described in the previous chapters.

Finally, conclusions and the research roadmap for the following S(o)OS activities are sketched out in 

Chapter VIII. 
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II. S(O)OS BASIC CONCEPTS

In this chapter we overview the key concepts at the basis of a novel operating system architecture 

for massively parallel and distributed systems. This is done by recalling first what are the hardware 

trends that massively parallel systems will see in the future, then summarising the shortcomings of 

nowadays OSes and key innovations that allow S(o)OS to overcome them.

1. HARDWARE TRENDS

As detailed in the S(o)OS Deliverable D5.2 “Future Requirements” [15], a key characteristic of future 

many-core platforms consists in the increasing heterogeneity of the runtime environments, which 

will not only incorporate a large set of completely different resources, but, what is more, will differ 

strongly  from  one  another.  In  other  words,  it  must  be  expected  that  no  two  computing 

infrastructures will be the same in the future. Also,  it must be generally assumed that the current 

development  trends  in  processor  and  system  manufacturing  will  continue  and  even  grow  in 

complexity. It is in particular notable that the era of the so-called “frequency race” has come to an 

end. This implies that future processor generations will no longer be faster (in terms of clock speed), 

but integrate more processing units instead, i.e. they will process more operations at the same time. 

Due to the nature of this form of processing, the classical (sequential) programming paradigm does 

not apply any more, and future code needs to be parallelised in order to still gain in performance. As 

manufacturers compete with  each other to realise  large scaling processors with high theoretical 

peak performance, this development has become known as the “core race”.

However, it cannot be expected that all code is parallelised optimally – instead, many algorithms are 

essentially sequential in nature, or at least in parts (see [45]). Since the executing frequency can no 

longer be improved, manufacturers therefore try to develop specialised processing units that are 

explicitly built to perform specific actions well. Mathematical coprocessors and graphical processing 

units are historical examples of such specialised processors, that became very well known.

Modern processors already combine multiple specialised units, such as floating point, vector and 

general purpose units. In order to make best use of these resources, the developer has to organise 

the code accordingly, respectively adjust the algorithms to meet the hardware specifics. Not only 

does this imply additional effort for the developer, it also implies that portability of code becomes 

more and more problematic, as individual processors incorporate different specialised units.

Since  there  are  no clear  indicators either  for  the  software  requirements  or  the usage of  future 

processors, nor for the optimal combination of specialised and general-purpose units under these 

circumstances,  future processor generations will essentially be “experimental” in nature. In other 

words,  manufacturers  will  take  different  approaches  to  iteratively  improve  the  quality  / 

performance of their processors. At the same time, the diversity of use cases, such as mobile, office, 

home  and  high  performance  computing,  leads  to  a  wide  range  of  requirements  that  different 

manufacturers approach differently.  To the normal  divergence on grounds of  lacking knowledge 

comes thus the divergence due to the variety of use cases.

Currently, there are processors emerging that incorporate fast and energy-saving cores allowing the 

system to switch between “performance” and “energy-saving” modes by switching between either 

core type, depending on workload and circumstances. On the other end of the spectrum, Intel is 

examining how to incorporate multiple homogeneous cores in a cloud like fashion on a single chip, 

whilst AMD is investigating a more hierarchical approach where segments share specialised floating 

point units. For more details, please refer to S(o)OS Deliverable D5.2 “Future Requirements” [15].
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1.A) ABSTRACTING THE HARDWARE

The divergence of application domains, and implicitly of hardware types, causes multiple problems 

not only on the program development side, but also on the operating system, as we will elaborate in 

more detail  in the next section. In order to optimally deal with resource types,  all details of the 

respective resource(s) should be known to the compiler / operating system / middleware. However, 

neither do manufacturers want to publish all this information, nor is the impact of these details onto 

code execution, let alone programming, fully understood. Efficient programming is typically mostly 

constrained by this lack of knowledge regarding the resource details.

What is  more,  these  details  would  further  restrict  the portability  of  the code.  Accordingly,  it  is 

neither feasible, nor sensible to act upon the whole resource details. Instead, ideally an abstraction 

level can be found that not only provides enough details for essential adaptation steps, but that also 

covers future developments to a wide degree, so that no constant re-adaptations of this information 

schema is needed.

From  the  most  generic  level  of  both  optimisation  and description,  we  can  distinguish  between 

essential resource “classes” along the lines of1:

• memory/storage units;

• processing units;

• connection elements.

Each of these elements in turn have further characteristics that specify the concrete behaviour and 

low-level optimisation details – however, on the highest abstraction level, these three classes suffice 

to provide essential information about the potential degree of parallelisation, the distribution and 

adaptation  of  threads  /  processes  and  the  communication  impact.  It  will  be  noted  that  this 

description is closely related to von Neumann's architecture, which forms the basis of all modern 

processor architectures. Von Neumann's model is however insufficient to capture different levels of 

hierarchical storage over different communication layers, as well as multi-core units within a single 

processor.  We therefore build upon a “new” von Neumann architecture as depicted in  Figure 1, 

where  multiple  generic  Processing  Units  (PU)  and  multiple  generic  Memory  Units  (MU)  are 

interconnected through proper interconnection elements (Data Bus in the picture).

This architecture allows us to equally cover local cache, as well as even Internet-provided storage, 

and single-core desktop machines, as well as large-scale cluster machines etc. Even though S(o)OS 

does not try to address all these varieties in the same degree, the principles of S(o)OS can thus be 

extended to cover  further  architectures,  such as cloud infrastructures,  or even  future processor 

architectures.  We  claim  thereby  that  developments  such  as  3d  stacked  memory  are  implicitly 

covered  by  this  structure,  too:  any  of  these  architectural  choices  will  either  be  hidden  to  the 

developer,  such  as  using  shadow  caches,  in  which  case  they  subsume  under  the  specific 

characteristics of a unit in the new von Neumann architecture, reflecting the special functionalities 

aimed at their respective development in the first instance. Or the choices will be explicitly exposed 

to the developer, in which case the respective choices are simple units in the new von Neumann 

architecture.

1 Note that we focus exclusively on hardware elements that are needed to support computing. For example, these 

classes do not cover peripherals.
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According to this architecture, all units are connected via some form of communication link. In other 

words, processing  units  and  memory  (such  as  cache)  are  not  connected  directly,  but  via  an 

interconnect that exhibits all  the characteristics of a regular messaging route,  i.e.  are subject to 

latency  and  bandwidth  restrictions.  The model  allows for  multiple  units  of  different  type to  be 

connected along the same communication link, or hierarchically using multiple routes with different 

connectivity and properties. It is secondary for this model that external devices (sensors, displays 

etc.) are equally connected via such a communication interconnect.

The model  does not prescribe the type of either processing  or memory unit  – that is,  they can 

equally well cover concrete low-level units, such as L1 cache and processing cores, as well as more 

abstract  units,  such as virtual  files,  internet-provided disks,  tables,  many-core processors,  virtual 

hosts etc. In general, a processing unit is any entity that can execute computational tasks on data, 

and likewise a memory unit is any resource that can store data. It thereby does not matter whether 

the unit itself is again built up by multiple processing or memory units, as long as the developer does 

not  have  to  cater  for  it  either  –  or  more  generally  spoken,  as  long  as  the  details  are  of  no 

consequence for development.

The architecture thereby takes mainly a (software) developer's / optimiser's perspective – i.e. whilst 

it may not be suitable for the hardware developer, it provides a software developer aiming for high 

efficiency in his code execution with all essential information. Even though classical programming 

development neglects such aspects as latency to L1 cache, this information in combination with the 

size of this cache and the bandwidth of its connection proves vital for optimisation tasks and for 

identifying scalability issues. In heterogeneous environments, it furthermore provides the necessary 

data to identify the best distribution of dependent code segments. It may be noted in this context 

that hardware-specific adaptation steps are still necessary, even though subsumed in this model – 

for example, when two processing units have different ISAs.

Even though S(o)OS does not try to address all these varieties in the same degree, the principles of 

S(o)OS can thus be extended to cover further architectures, such as cloud infrastructures, or even 

future processor architectures.  With this architectural concept,  it is possible to depict the whole 

layout of an infrastructure, down from the lowest processing units up to the highest-level systems. 

We can thereby choose between a flat or a hierarchical description of the infrastructure (cf.  Figure

2). For more details about hardware descriptions, please refer to S(o)OS Deliverable 2.2 [31].
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1.B) S(O)OS INFRASTRUCTURE CHARACTERISTICS

Though the new architectural structure allows for a wide variety of infrastructures to be covered, 

S(o)OS restricts itself to a selected subset of architectures in order to keep the effort feasible and 

improve  the  quality  of  the  results.  With  S(o)OS  aiming  specifically  at  dealing  with  large-scale 

problems and improving  their  programmability,  the  primary  application  domain consists  in  high 

performance computing,  as the according code has typically  been explicitly  developed for a high 

degree of scalability.

As S(o)OS deals with improving the parallel  execution of code by exploiting inherent and explicit 

concurrency, it is relevant to estimate timing behaviour of code segments given specific conditions. 

A domain where the timing behaviour of software is actually critical  is the one of real-time (RT) 

systems, where timing is at least as important as functional correctness.  Furthermore, a notable 

class of RT applications exists where the high computational workloads can meet the in-place tight 

timing constraints only thanks to proper parallelisation and distribution techniques (we could think 

of these as belonging to a hybrid HPC-RT class). Accordingly, a secondary application domain for 

S(o)OS consists in time-sensitive applications – ranging from interactive to soft RT use cases. Both 

HPC and RT applications benefit from a highly predictable duration of code segments which should 

ideally  be nearly  constant,  or  with  minimum variability.  However,  when  this  is  not  possible  (as 

common in e.g., multimedia processing), HPC development cares particularly about the average-case 

performance for maximising the achievable throughput, whilst for RT development the focus is on 

the  worst-case  duration,  or  some  percentile  of  its  probabilistic  distribution,  for  the  purpose  of 

respecting the in-place timing constraints, such as deadlines.

In particular S(o)OS thereby addresses the increasing need for interactive HPC use cases. Implicitly, 

the major infrastructure type consists in HPC and cluster machines that incorporate a high amount 

of resources with dedicated, high-performing interconnects.  It is notable in these infrastructures, 

that their general hierarchy is comparatively flat, i.e. processors are connected as directly as possible 

(via I/O) without having multiple levels on top of them, such as servers,  servers farms and world 

wide web (i.e., intranet and internet). Furthermore, even though HPC systems become more and 

more heterogeneous, their diversity is way lower than the heterogeneity in the Internet. In other 

words, HPC systems have a high degree of homogeneity, such as multiple GPU cards of the same 

type, multiple identical processors, etc. Similarly, the interconnect is typically very homogeneously 

arranged in order to maintain equal latency and bandwidth behaviour.

Further to this, it can be expected that the code already exhibits characteristics of parallelism and 

concurrency and that the algorithm is not essentially sequential in nature. The according programs 

typically also exhibit a minimum of OS interactions, thus making the dependencies clearer. As the 

major aim of  HPC consists  in execution performance,  jobs are generally  executed in an isolated 

fashion, both task and hardware wise. In other words, the OS does not need to handle multi-tasking 

aspects  and  generally  does  not  have  to  cater  for  security.  In  all  these  cases,  the  according 

capabilities can be built up on this base model.

In general, the concepts of S(o)OS are by no means restricted to the given use cases – in fact it will 

be noted from the detailed descriptions below that the same principles can be applied to cater for 

other application domains,  such as more  general  purpose  home and office  usage or  distributed 

environments, such as clouds, or social networks. S(o)OS does not explicitly address them so as to 

not diverge from its main objectives (scalability and heterogeneity), by having to cater for additional 

concerns, such as security, task isolation, reliability etc.
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A NOTE ON RELIABILITY

Since reliability is a major concern also for HPC applications, we must elaborate this latter issue in 

more  detail:  we  can  distinguish  between  different  types  of  reliability,  in  particular  between  (a) 

reliable execution of the application and (b) reliability of the OS itself.

Reliable execution of type (a) refers to fault tolerance at runtime, i.e. that neither problems on the 

infrastructure or the application itself lead to an execution failure. This covers a vast research area in 

itself and can be mainly separated into the following main approaches: (1) execute the code in a 

managed framework, (2)  replicate the application, i.e.  execute it  multiple times in parallel  or (3) 

checkpoint  the  application  in  time  and  roll  back  when  need  be.  Even  though  S(o)OS  can  be 

compared in parts  with a managed framework,  the according tasks (monitoring and adaptation) 

serve  different  purposes  and  are  not  executed  everywhere.  Similarly,  replicating  application 

execution is only sensible when the code size does not exceed a certain degree of scale, as otherwise 

this leads to bad resource utilisation in large scale environments such as envisaged by S(o)OS – more 

advanced algorithms try to identify the critical code segments, yet this is (for now) outside the scope 

of  this  project.  Since  S(o)OS  aims  to  be  general  purpose,  reliability  would  also  have  to  cover 

dynamicity issues, which are generally unsolved as yet. 

The most typical form of application level reliability in HPC environments consists in checkpointing at 

regular intervals and rolling back the application state if an unexpected error occurs. Notably, the 

same error may occur again if the code is buggy in itself. S(o)OS will indirectly support this approach 

by  providing  all  essential  means  for  checkpointing and rollback,  yet  either  a  middleware  or the 

application itself will have to actually employ these capabilities according to the respective need of 

the use case.

As opposed to this,  S(o)OS will  address reliability  on the level  of the operating system itself,  i.e. 

trying to ensure that the whole system does not fail with problems in a single node. This document 

does not explicitly address this issue though, as it will be subject to future work in the project.

2. THE ROLE OF THE OS

The S(o)OS project proposes to address the problem of scalability and heterogeneity through a novel 

OS architecture approach which builds up from the lessons learned in Service-Oriented Architectures 

and Distributed Systems. All these domains are signified by a large degree of scalability, but at the 

same time by a comparatively low degree of communication and connectivity. As opposed to that, 

typical HPC scalable applications have a high demand of data exchange and thus require a strong 

interconnect. Naive programmers now implement a program in such a fashion that the degree of 

data  exchange  between  threads  is  very  high.  What  is  worse,  some  parallel  programs  exhibit 

tendencies  to act like a set  of processes that  require constant OS support  – in these  cases,  OS 

communication strongly interferes with the interprocess  communication,  and OS execution stalls 

multiple processes at the same time.

From  the application  perspective,  we  can  therefore  distinguish  different  types  of  dependencies 

across threads, code segments and OS system functions that have different impact on the execution 

performance depending on their way of implementation. In general we can state that the “tighter” 

and more frequent a certain form of dependency (and implicitly communication) occurs, the higher 

the impact of any delay due to the implementation choices. For example, if the access to registers 

were  delayed  e.g.  through  a  message-based  access  implementation,  the  code would  hardly  be 

executable any more.  On the other hand, the impact of delaying a web service invocation even 

further is minimal from the total application execution perspective.

Due to the extended distribution features in S(o)OS which may involve separating an application at 

“arbitrary”  points,  the  operating  system  needs  to  cater  for  different  types  of  dependencies  in 
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different  forms of  communication in a fashion that is  mostly  invisible  to the application,  and in 

particular  to  the  developer  –  i.e. the  developer  should  not  have  to  cater  for  choosing  the 

communication means for all different setups. For example current HPC developers have to consider 

the distribution of threads across cores and processors to implement a well-adjusted hybrid mix of 

OpenMP  and  MPI  communications  in  order  to  achieve  the  best  performance.  Accordingly,  the 

communication choices may fail in different infrastructures.

We can distinguish in particular the following levels:

• Register access: the lowest level of information access in a program and at the same time the 

one with the highest  frequency of  occurrence. Register  access is  completely inherent  to the 

program code and generally not interceptable, nor is it sensible to increase the access delay. We 

can generally assume that this level is unchanged.

• Memory access: in particular in shared memory applications, this level forms the most crucial 

form of inter-process state and data sharing. Depending on the implementation choice and the 

programming model used, this type of access is realised in completely different ways. Memory 

access in general is very frequent in any form of application. The degree of memory sharing 

depends very much on the type of application and its coupling.

• System calls  & events: system calls are handled by the OS, leading to a non-negligible amount 

of cache swaps and to implicit communications on memory level. The amount of invocations is 

comparatively high, but lower than memory access.

• Remote procedure calls and inter process communication: the highest level of communication 

consists  in explicit  invocations of remote processes  or services  via  dedicated messages.  This 

type of communication is typically explicitly catered for in the code and delays are considered in 

the overall execution time.

Notably, there are further types of dependencies and communication on intermediary levels which 

however expose similar properties. What is of main importance here is that the highest levels are 

typically  catered for by a middleware,  whereas  the lowest  level  is left  up to the hardware.  The 

intermediary levels are either completely neglected or left to the programmer (sometimes helped by 

the compiler), who faces a higher development effort and may (involuntarily) specialise the code for 

a specific infrastructure.

The S(o)OS approach tries to cater for all these levels in three major ways: (1) selecting, injecting and 

adjusting the communication according to the current deployment and distribution; (2) distributing 

code  and  threads  according  to  their  dependencies  and  hence  communication  requirements  / 

restrictions; and (3) distributing and replicating operating system level support according to these 

dependencies.

3. MAIN S(O)OS PRINCIPLES

S(o)OS main concept builds on exploiting concurrency implicit and explicit to application code: as 

communication forms the major obstacle towards highly efficient and large-scaling code execution, 

the  major  task  in  parallelisation  optimisation  consists  in  reducing  any  communication  between 

parallel  processes / threads.  Communication is encoded in the degree of dependencies between 

different parts of the code, thus including not only direct invocation and explicit messaging, but also 

common  memory  or  data  access  and  thus  state  sharing.  Any  two  parts  of  the  code  can  be 

considered “concurrent” to one another,  if  there is  little  to no dependency between these  two. 

Ideally,  the developer exploits this concurrency at development time and enables execution of a 

maximum number of independent threads in parallel. Typically however, dependencies cannot be 

avoided and a clever developer must attempt to reduce their impact to a minimum.
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S(o)OS  supports  this  task  by  analysing  the  code  behaviour  with  particular  respect  to  its  cross-

dependencies, i.e. potential points of concurrency. It will thereby not only consider low- or high-level 

communication dependencies, but in particular the intermediary dependencies with the operating 

system itself.  It  will  thus not only support  identification of the main segmentation points in the 

application itself, but even of the operating system itself.

The main principle of S(o)OS consists in splitting up the operating system into a series of essential 

functionalities that are atomic in nature, i.e. they should not further be subdivided, but provides the 

minimal set of capabilities whilst still  maintaining maximum performance. It has been shown that 

[29] message-based  communication  between  distributed  kernels  has  a  potential  for  avoiding 

performance bottlenecks of the OS when scaling to many-core architectures. By clever distribution 

and exploitation of concurrency, the messaging overhead can be massively reduced, thus improving 

the overall performance. This is supported at the same time by extending parallel execution beyond 

the point of “just” work / data distribution, to concurrent execution that no current programming 

model supports properly. This allows reducing the impact from Amdahl's law by even parallelising 

the sequential code part to a certain degree.

The  essential  OS  functions  therefore  become  “services”  to  the  code  (application  or  other  OS 

segments). Similar to the principles of Service-Oriented Architectures, the individual services can be 

easily replaced with others, as long as they offer the same interfaces and the same functionalities.  

The service-oriented approach allows replacement of individual modules / services easily without 

affecting the whole OS. In other words, hardware specific adaptations, as well as application-specific 

services, can be realised easily by providing only the relevant modules in an adaptive fashion. This 

implies that the OS has to identify and deploy these modules though. The architectural concept of 

S(o)OS is described in more detail in section IV. 2. 

In the following we will exemplify how an application behaves on such an OS.

4. APPLICATION BEHAVIOUR

The lifecycle of a parallel and distributed application spans the whole range from development to 

actual execution on the destination platform. This covers in particular the following steps:

I. Development / Programming

Most applications are essentially  sequential  in nature,  i.e.  the underlying algorithm is not per se 

suited  for  a  parallel,  multi-core  or  multi-processor  environment.  Automatic  parallelisation  only 

reaches  bad  execution  performance,  so  that  in  principle  the  developer  has  to  think  about 

parallelising the algorithm itself. Supporting tools for this are limited to low-level actions, rather than 

parallelisation of the overarching logic such as:

• parallel libraries that offer specific functions in a parallel fashion - in particular mathematical 

libraries that provide functions e.g. for parallel matrix calculation;

• libraries or programming extensions to support communication or data exchange across threads 

(OpenMP, MPI, PGAS etc.).

In order to parallelise the application,  the developer  has to think about means to distribute the 

actual execution over the available cores,  processors and nodes. This implies that he/she has to 

either  split  up  the data  and work  among the  processing  units,  and thereby  has  to  respect  the 

different communication modes in a heterogeneous environment.

II. Compilation

Even  if  the  developer  has  parallelised  the code and potentially  optimised  it  for  the  destination 

platform, the compiler will still  execute further parallelisation tasks and optimisation steps. When 

supporting languages or tools were used, the compilation step will replace the according commands 

with  the respective  parallel  command pattern, such as replacing the OpenMP pragmas with  the 
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according thread creation commands, or replacing the shared memory invocations with messaging 

in PGAS.  Further  to  this,  the compiler  will  perform specific  optimisation steps  dedicated to  the 

respective hardware by identifying typical patterns and replacing them with the corresponding code 

patterns that suit the hardware best.

As a consequence of the compilation step, the resulting code is fixed to a specific platform, i.e. the 

executed  optimisation  and adaptation steps  make the  code most  suited for  the  single  selected 

infrastructure, but restricts its portability to platforms that are almost identical.

III. Submission and reservation

In HPC scenarios, the user submits the application execution to the job queue of the machine. As 

part of this, the developer will specify the required amount of nodes and time for execution of the 

code. Generally, it is currently not possible to specify more details, such as communication needs, 

quality  restrictions  or  hardware  needs.  With  the  heterogeneity  increasing,  it  slowly  and  more 

frequently becomes possible to specify the destination hardware, but generally it is assumed that 

the developer has put thoughts into this prior to selecting the machine.

The queues order the submissions on basis of their requirements and availabilities in the platform. In 

some  cases,  the  queues  will  also  respect  priorities  basing  on  customer  type /  role.  The actual 

execution does not begin before the job queue has reached the according submission. Once the 

respective position in the queue is reached, the binary package is deployed.

IV. Deployment

Of the reserved resources, one instance is selected as the main node for execution. On this node, 

the actual job is deployed (stored) and invoked. Typically, the application itself is responsible for 

creating and deploying additional threads and to ensure their availability through unique identifiers.

In HPC scenarios, the nodes are reserved for the execution of a single application for the reserved 

time, and cannot be used for other purposes.  In most cases,  however,  the resources are shared 

between multiple applications. In general,  the hosting environment already needs to contain and 

run a middleware that enables deployment and communication (i.e. an  operating system). In IaaS 

environments, the user can deploy full environments that are typically hosted in the form of virtual 

machines.

V. Execution

The  actual  execution  of  parallel  code  is  essentially  identical  to  running  multiple  independent 

processes in a distributed environment, whereas each process (thread) is either explicitly invoked by 

the main thread or executed right after deployment.  The differentiation between sequential and 

parallel  code parts  thereby  poses  the  major  problem for  efficient  code execution  in  large-scale 

environments (cf. Amdahl's law).

The main task for the middleware to realise parallel execution consists however in synchronisation 

and state maintenance across threads, as well as communication between them. This means that 

some level of the execution framework needs to be able to identify and distribute shared data – 

generally, rather than identifying specific data, the framework will distribute and maintain all data 

that is specified as “shared” in one way or another in the source code (s. e.g. PGAS). More low-level 

approaches  require  the  user  to  explicitly  send  and  synchronise  all  according  variables.  As  a 

consequence,  the  communication  overhead  is  typically  high  -  and  typically  way  higher  than 

necessary.

VI. Profiling & Monitoring

During execution,  the  behaviour  of an application is  monitored  with  respect  to  resource  usage, 

performance etc. so as to create a behaviour profile. Behaviour profiles give an indication of the 

software  system  requirements,  including  such  aspects  as  memory  size,  computing  and  network 
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bandwidth  requirements.  Such  information  is  helpful  for  the  application  developer  to  further 

improve the code performance, or to the run-time environment to adaptively schedule applications 

for maximum performance. Notably, this is very important for interactive and real-time applications 

(e.g., adaptive feedback-based scheduling). Profiling and monitoring information can also be used in 

order to react to faults or to adjust energy consumption.

Profiling information covers aspects such as:

• what is the duration and execution time of certain code segments, including the overheads due 

to scheduling, synchronisation and communications;

• what are the actual delays experienced as due to the communications among the distributed 

application components;

• what are the latencies experienced across various critical monitoring points of the application, 

including the end-to-end latency;

• what are the sustainable data throughput for various critical parts of an application execution, 

and where are the bottleneck.

Even  though  performance  profiling,  modelling  and  analysis  are  critical  steps  for  real-time 

applications, they constitute sometimes important steps also in HPC scenarios. Indeed, often an HPC 

application  needs  to  check  whether  the  various  parts  of  the  computations  carried  out  in  a 

distributed fashion are exactly balanced (i.e., they exhibit similar execution times) or not, so it is 

important to keep under control the execution time of the various code segments.

5. S(O)OS APPLICATION LIFE CYCLE

S(o)OS extends this application life  cycle  by explicitly  adding means for  the purpose of handling 

scalability and heterogeneity. In other words, by steps that are typically left up to the developer or 

the middleware into the operating system and adjusting the latter so as to cater for the implicit 

changes on the architecture.

Similar to the “classical” lifecycle, we can identify the following main phases:

• development/programming;

• compilation;

• code analysis;

• resource identification;

• execution preparation;

• execution;
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• post-processing.

Notably,  as  the  operating  system  incorporates  more  dynamicity  and  adaptability  than  classical 

models,  the phases become more interdependent.  Execution may thus “jump” between  phases, 

depending on the context triggers (cf. Figure 3). For example, profiling during execution may indicate 

that the application shows vectorial behaviour in parts, thereby enabling deployment on a vector 

processor  –  this  automatically  triggers  redeployment  of  the  code,  given  that  the expected  gain 

outweighs the cost for adaptation.

In the following sections we will explain these phases in more detail.

5.A) DEVELOPMENT

Program development in  S(o)OS can be enriched with  high-level  code annotations that  provide 

information about the dependencies of code executions (and hence principle concurrency) which 

could be exposed  in the form of  algorithmic descriptions ("code purpose",  if  you want);  further 

annotations of that type could explicitly  steer  the behaviour of the S(o)OS components,  such as 

specifying the best  resource types for a specific task,  which could support resource discovery  in 

making a selection.

On the other  hand, S(o)OS will  expose  low-level  code annotations that  are related to  explicitly 

controlling the behaviour, such as dependency scope of an individual parameter, messaging specifics 

(send as block, send individually etc.), segmentation sizes etc. This will improve the performance of 

S(o)OS and hence the code execution, if the developer has enough knowledge about code behaviour 

and destination platform. Low-level annotations hence aim at expert (HPC) developers.

Similarly, real-time application developers will mainly benefit from a high-level declarative approach 

by which they will provide explicitly the timing constraints of their applications, in addition to the 

dependencies among code segments. The adaptive capabilities of the OS will manage to parallelise 

and deploy the application in a way that is suitable for meeting the in-place timing constraints. On 

the other hand, expert RT developers might prefer to use a lower-level control of scheduling and 

parallelisation,  for  improving  predictability  of  a  particular  application  execution  on  a  particular 

hardware platform.

5.B) COMPILATION

Compilation in S(o)OS could be executed in different forms: since the OS (tools) will perform the 

final adaptation steps towards the destination platform, the code may not actually be converted into 

full machine code, but into an intermediary form. Also, due to the dynamic behaviour of the OS, the 

compilation should lead to  an additional  set  of  meta-information (such  as  dependencies)  which 

could be used for analysis and deployment (and execution) purposes.

Accordingly, we can see at least the following options:

• source-to-source: the compiler converts the code into another code form that is closer to the 

actual S(o)OS specifics, e.g. C with low level annotations;

• source-to-intermediary: the compiler generates a "close-to-machine" code that can be easily 

converted into machine code, but still contains relevant information about the last conversion 

steps;

• JiT compilation (relates to source-2-intermediary): the actual compilation is executed on-the-fly, 

i.e. as soon as information about the destination platform and the code distribution is available;

• recompilation  on  the  fly:  the  compiler  generates  full  machine  code  but  provides  enough 

information that allows detection of the appropriate source (or intermediary) code position to 

trigger recompilation if need be (see debugging symbols). In other words: during distribution, 

the OS detects that the destination platform differs from the existing compiled code version - it 
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therefore  detects  the  according  source  code  and  requests  the  compiler  to  compile  the 

according segment with different options (different destination);

• conversion on the fly:  the most difficult  way to treat heterogeneity consists in adapting the 

machine code on the fly to different platforms. This has no impact on the compiler - instead, 

compilation will  be directed towards a generic platform, that allows easy adaptation to new 

systems.  In general,  this is not  possible (e.g.  different  ISA) - however,  low-level  adaptations 

could be executed this way, depending on circumstances and purpose. For example, the same 

code can always be executed on a system with an extended (rather than a restricted) ISA; also, 

certain patterns can be identified to use these extended operations; adaptations such as data 

restructuring for a different cache organisation may also be possible etc.;

• multiple  destination platforms:  the compiler  will  create  multiple branches of  selected code 

areas with an additional annotation or branching mechanism to select the appropriate branch 

once the execution environment is known. Accordingly, non-executable or non-optimised code 

would take up memory space, but would not threaten execution, if the parameters can be read 

correctly. Some compilers already exploit these features in order to address a scope of (similar) 

platforms in the best fashion (e.g. Intel IPP2, Cray Compiler Environment). S(o)OS may use this 

information already during deployment to only select the appropriate branch.

Realistically,  S(o)OS will  take an approach that combines these options on different  levels.  Most 

likely seems the compilation to different destination platforms, whereby the individual destinations 

will be represented as generic and abstract as possible. The resulting code should have clear entry 

points  for  low-level  adaptations,  such  as  loop  unrollment  etc.  through  annotations  during 

compilation  process  and  according  meta-information.  These  low-level  adaptations  are  then 

executed on the fly, but only when necessary. Finally, when the destination deviates too much, or 

more complex adaptations are required, S(o)OS will trigger recompilation of the according segment.

It must be noted in this context that the choice of approach depends on multiple additional factors,  

the major one relating obviously to performance: not only should the approach realise efficient code 

that exploits the hardware features to its best, but the process itself should not conflict with the 

execution performance. Recompilation, adaptation etc. therefore should only be considered if the 

expected gain outweighs the cost for the according process – this, however, implies that the cost / 

benefit can be estimated beforehand. As this must base on the execution time of the respective 

code-segment, this requires a means to estimate the timing behaviour and compare it accordingly.

5.C) CODE ANALYSIS 

The  goal  of  code  analysis  consists  in  identifying  potential  points  of  parallelisation  and,  more 

importantly, the degree of concurrency implicit in the code. To this end, code analysis can take place 

on multiple levels:

• on  source  code:  source  code  provides  the  level  of  concurrency  as  (intentionally  or  non-

intentionally) provided by the developer. It furthermore provides the level of concurrency that 

is independent of the restricted memory architecture of the destination platform (i.e. registers 

instead of variables etc.) and is therefore on a higher level allowing for easier and more coarse 

segmentation. However, it does not contain any information about the actual code behaviour 

once fed with specific data (data-specific behaviour) and therefore cannot identify the size of 

parameter-bound loops;

• on  machine  code:  the  machine  code  level  provides  the  low-level  dependency  information, 

including the memory related behaviour of the actual execution. On the one hand, this allows 

for more fine-grained and execution related segmentation. It also allows to watch the actual 

2 http://software.intel.com/en-us/articles/intel-ipp/

24 | P a g e D5.3 First OS Architecture S ( o ) O S



data-specific  behaviour.  On  the  other  hand,  it  provides  too  much  detail  and  makes 

segmentation more difficult.

The result  of code analysis  consists  in a dependency graph. In the case of  a highly scalable and 

mostly embarrassingly parallel application, this graph will be comparatively "sparse",  e.g. you can 

identify loops that have high connectivity internally, but very little across iterations. Even though the 

source code based graph will look similar, the relation of amount of edges internal to and across the 

loops will be less clear (no count).

The resulting meta-information (graph and more) will enable a preliminary assessment with respect 

to the type of required resources (see next step).

5.D) RESOURCE IDENTIFICATION

Once the  code has  been  analysed  regarding  its  main  dependencies,  the  resulting graph can be 

analysed with respect to the specific hardware features that would suit  the execution best.  This 

involves aspects such as:

• big segment => large code heap

• data from external source => minimal cache hierarchy 

• high interactivity => close to user 

• data dependency => little latency 

• small independent loops => vector 

• etc. 

From  this  information,  resource  discovery  is  initiated,  which  tries  to  identify  the  most  suitable 

resources fulfilling the requirements best. Notably, this does not mean that the code is restricted to 
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this  type  of  resources  (cf.  compilation  above),  but  that  it  will  execute  less  efficiently  in  other 

environments.

For example in the case of a ray-tracing application, the best resources would be graphics cards with 

shader units (GPUs) and large memory. Since it is not clear from the analysis that this is a graphics 

related task, the actual request will look for vector units, rather than GPUs with at least 3 pipes but 

the more the better, and high memory capacity. Communication will be secondary, but still exist at 

some point with a single unit, thus preferring a star shaped layout. The resource specific information 

can be enhanced through profiling the application behaviour, as well as the resource performance 

given a specific code type (see execution and post-processing).

5.E) EXECUTION PREPARATION 

Prior to execution,  the code will  actually  have to be adapted to the specifics  of the destination 

platform - as already discussed in the development/programming step, this can take multiple forms. 

Within the context of this application, we can safely assume that a sufficient amount of graphics 

cards are actually available. Major point is rather to find the most suitable CPU for the execution of 

the main thread. We can furthermore assume that the developer knew that he/she was preparing a 

graphics  related  application  and  therefore  specified  GPUs  as  destination,  which  helps  resource 

identification and code adaptation - this is not a general assumption though.

If  the code does not contain a GPU branch, it will have to be recompiled due to ISA compliance 

issues.  However,  only  the  individual  render  iterations  need to be recompiled,  whilst  the rest  is 

mainly CPU related and does not require recompilation.

Once the destination resources are known, they will be reserved and prepared, i.e. all necessary OS 

modules  for  maintaining  communication,  loading  code,  executing  rendering  etc.  will  be  loaded, 

along with the actual code. Notably, the actual code and the accompanying data will potentially only 

be  uploaded  at  the  time  of  spread-out.  Further  to  this,  all  communication  routes  have  to  be 

established and set up. This follows the communication dependencies (i.e. data source and sink) as 

identified in the graph during code analysis. Here again, the communication is mostly star shaped, 

requiring mostly direct routes to the main thread.

Notably, in an ideal case  the S(o)OS environment will  also investigate at this  point the different 

potential schedules for all code segments to achieve the highest throughput / resource utilisation. 

We can generally assume that there are less vector pipelines than pixels and hence loop iterations in 

our example. Accordingly, each unit will have to execute multiple iterations itself - either leading to 

multiple full loop iterations one after another, or to a single operation on a range of data, storing 

them individually. It is potentially possible that there are say 1.5 times more pixels than vector units,  

leading to half the resources being idle half of the time. If we leave timing (12 fps or similar) aside, 
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the free resources could be used to execute the next render iteration even after  the sequential  

synchronisation part - potentially even purely speculative, if the interactions with the main thread 

are not fully known.

5.F) DISTRIBUTED EXECUTION 

The actual execution involves off-loading code according to spread outs, initiating and maintaining 

communication, as well as ensuring state availability and consistency. Thereby, "threads" should be 

as minimal as possible and effectively just involve code deployment and execution.

Furthermore, during execution additional performance and dependency data may be gathered that 

may trigger re-analysis (step 1), if too many discrepancies are identified. Notably, rearranging the 

code has to be reassessed against potentially incurring costs.

In  our  example,  the  main  thread  will  prepare  the  data  for  rendering  (e.g.  calculating  some 

interactions or the camera position) and then spread out the actual rendering threads. Since there is 

no  communication  between  the  threads,  but  only  with  the  main  thread,  the  main  data 

dependencies exist during spread-out and aggregation (synchronisation), where in both cases data is 

stored in the main thread. However, the individual renderers should not communicate all individual 

calculations back to the main thread, as this would lead to too much overhead.

Since ray-tracing are "static" applications, their behaviour does not change a lot during execution, 

i.e. no re-arrangement of code should be necessary.
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5.G) POST PROCESSING 

In general, after execution the resources have to be freed for other processes again – this includes in 

particular  freeing  the  memory,  but  in  the  case  of  distributed  execution  also  the  resource 

reservations have to be removed again, so as to make sure that the resources available for other 

processes.  In  addition,  communication  routes  and configurations  can be released  again  and the 

potentially deployed OS modules be removed, so that the resource can be discovered and initiated 

again (see section II. 5.d) ).

However, S(o)OS will allow for storing information about the monitored/observed code behaviour, 

so that it can be reused for future executions. The recorded monitored data includes code-specific 

information, such as dependencies and algorithm types, as well as hardware-specific information. 

Such information may be greatly useful for deploying the same application again in the future with a 

better performance.

The analysis  results can be stored at multiple points in the execution process,  but should at the 

latest be stored during post-processing. It may be noted in this context that code-related analysis 

results may also be stored as extended annotations in the source code, if the latter is accessible.
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III. USE CASES AND REQUIREMENTS

It  has  already  been  discussed  in  preceding  sections  how  the  concepts  of  S(o)OS  aim  towards 

supporting a generic hardware and software model. In other words, the concepts behind S(o)OS are 

designed  so  as  to  be  generally  independent  of  the  underlying  infrastructure  and  the  type  of 

application  to  be  executed  on  top  of  it.  This  is  due  to  the  fact  that  S(o)OS  principles  behind 

identifying  and addressing  software  requirements,  respectively  behind identifying  and exploiting 

hardware capabilities are generally applicable to all currently known software and hardware models.

However,  it  must  be  noted  in  this  context  that  not  necessarily  all  applications  actually  expose 

characteristics  that  S(o)OS  can exploit:  some strongly  sequential  algorithms for  example  cannot 

efficiently  be parallelised and distributed and thus will  not benefit  from S(o)OS specific  support. 

S(o)OS specifically aims for supporting scalable application development and execution for and on 

large  scale  heterogeneous  infrastructures.  The  project-related  research  and  development  will 

therefore  specifically  focus  on  scenarios  and  applications  that  can  explicitly  use  the  S(o)OS 

supporting features, thereby adding to the evaluation of the project success.

Accordingly,  the  most  suitable  use cases  relate  to  applications with  high-scale  and specific  time 

constraints, as detailed in what follows.

1. SPECIFIC USE CASES

Rather than considering the whole scope of the application scenarios as presented in D5.2  [15], 

S(o)OS will focus its efforts on use cases that can actually contribute to the S(o)OS objectives.  In 

other words, that exhibit specific requirements towards hardware capabilities and expose behaviour 

characteristics  that allow principally for segmentation and distribution. 

With  the  overarching  objectives  of  S(o)OS  in  mind  (i.e. the  capability  to  support  large-scale 

heterogeneous  environment),  we  can  particularly  identify  two domains  that  specifically  require 

support in the according directions and at the same time expose characteristics  of relevance for 

S(o)OS:

1. High Performance Computing: HPC applications are generally explicitly written in a way that 

increases the level of concurrency, thus allows higher scalability with as little communication 

overhead as possible. HPC machines tend towards higher and higher heterogeneity, though at 

the same time, an according system typically offers a large number of each resource type.

2. Real-Time Applications: Though real time applications as such do not strive for parallelisation, 

there is an increasing demand for handling distributed real time applications. Of specific interest 

for S(o)OS are thereby the timing constraints of such applications which bears resemblance to 

the  synchronisation  estimation  (i.e. execution  timing)  in  distributed  applications.  In  other 

words,  by exploiting the timing constraints  applicable in real-time scenarios,  the distributed 

synchronisation behaviour can be improved further.

1.A) SCALABLE HPC APPLICATION

In  the  following  we  look  at  a  generic  HPC application that  combines  aspects  of  embarrassingly 

parallel and weak scale, which primarily shows aspects of vertical scale. Renderers and ray-tracers 

exhibit  such  characteristics,  even  though  they  can  be  considered  almost  only  embarrassingly 

parallel. However, in combination with interactive controls or physics that shape the behaviour of 

the  renderer,  dedicated  sequential  tasks  have  to  be  executed  which  request  for  explicit 

synchronisation.  Other  applications exhibiting similar  characteristics  (i.e.  vertical  scale  with  both 

strong and weak coupling), are Grid -based calculations, such as aerodynamics, molecular flow.
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Also, heavyweight 3D renderers (that need parallelisation) are commonplace in interactive real-time 

applications (think of virtual or augmented reality). The main difference between the deployment of 

a rendering engine in an HPC scenario and in a RT one is that, in the former case it needs to run as 

fast  as possible,  in a batch-computing fashion, whilst  in the latter  case it  has normally a clearly 

stated deadline within which it needs to terminate, and a faster computation it is not necessary nor 

required.

In what follows, the main characteristics of a scalable HPC application are described, with particular 

reference to:

• spread out;

• synchronisation and communications;

• aggregation;

• example behaviour;

• post-processing.

SPREAD OUT

At dedicated points in the process,  the main node will thus request the OS to instantiate a given 

number of processes or threads and to deploy them in the infrastructure. Generally, the developer 

does not designate specific nodes to these threads and the OS or middleware will have to take care 

of this step. Each spawned process / thread is assigned with a specific identifier which allows other 

threads to communicate directly with each other. Frequently, however, the main thread is used as a 

communication point, i.e. the main thread collects and distributes data - this follows the principle of 

shared memory machines, where all information is equally available to all threads. 

Threads  are  effectively  fully  stand-alone  processes  where  dedicated  communication  points  and 

mechanisms ensure availability of data, respectively their distribution. 

It must be noted here that creation and deployment of separate processes or threads is a relatively 

expensive operation, so creating threads with a very small workload may result in work distribution 

and synchronisation overheads that turn out to be higher than the potential speed-up in parallelising 

the workload, achieving a worse performance than a sequential execution would.

COMMUNICATIONS

Besides for dedicated synchronisation points, where all processes / threads get to share the same 

data, the developer can specify dedicated communication points which allow specific exchange of 

data between selected threads. In particular in cases of work (rather than data) distribution, this is 

necessary  whenever  the  tasks  show  data  dependencies.  In  most  cases  the  communication  is 

asynchronous,  i.e.  it  does  not  expect  a  reply  as  in  the  remote  process  invocation  case.  Since 

communication implies a specific dependency between threads (even if possibly just in the form of 

an event), the receiving process is stalled until the data becomes available - accordingly, in the ideal 

case the data is sent prior to the point of requirement in the receiving thread, so that the according 

data  is  already available  in the message queue.  However,  since this  depends very  much on the 

execution speed of both threads, this is hardly ever catered for. Similarly, hardly any programming 

model allow other communication models, such as an "early reception" or "pull model" etc. Again, 

this is simply due to the fact that the data will not be available early. In general, the data will be 

distributed as early as possible, thus - it is assumed - reducing any delay. Messaging overhead or 

bandwidth problems are not considered thereby.

It must be respected that the actual communication (protocol etc.) differs strongly depending on the 

system and the type of sender / receiver. We must therefore distinguish between:

• core-core communication 

• processor-processor communication 
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• node-node communication 

• (and all according intermediaries) 

Hardly any programming model / compiler currently respects this mix but will  instead select one 

communication protocol,  non-regarding the overhead  this  implies.  Modern developers therefore 

tend to hybrid OpenMP / MPI development. 

SYNCHRONISATION

Following the shared memory model, most implementations choose the full distribution of data over 

all threads, as this is simplest. In general, this is an implication from the "data distribution" approach 

towards parallelisation. Synchronisation can either be realised  as a point-2-point communication 

between all threads, or - more typically - as a communication with the main thread which receives 

and then distributes all data again. 

A synchronisation point is implicitly a break point in a thread, as it will have to wait until all threads 

have finished their execution and provided the data.  Similar  to communication,  this  can lead to 

major delays in the overall execution. As the unit cannot perform other tasks during synchronisation, 

the resources may be under-utilised. 

In both cases, communication, as well as synchronisation, the full communication processes have to 

be implemented in each thread's code, thus increasing the respective overhead.

AGGREGATION 

After all threads have performed their tasks, the main node will aggregate results through a final 

synchronisation step. Once the units have been freed again, they can be used for the next iteration 

of spread out.

EXAMPLE BEHAVIOUR

In the specific case of a renderer, the main thread consists of hardly anything more than preparing 

the next iteration of distributed processes. Notably, synchronisation over a main thread is important 

to ensure that the frame rate of image displaying is maintained, as otherwise an individual unit may 

already process the data of the second frame, whilst all other units are still working on the first one 

– whilst this could be beneficial for resource utilisation, no current system is capable of dealing with 

this  out-of-band data provisioning  behaviour,  in  particular  since  an individual  resource  may run 

completely out of sync.

The individual render threads do hardly share any data, but instead receive their full information at 

the spread-out time and provide it back again at synchronisation and hence aggregation.

In the case of grid-based simulation, however, the individual threads will send information directly 

to other threads, as they pass over the "grid boundaries". A grid-based simulation, such as molecular 

behaviour,  implies  that  specific  particles  or  information  units  can  move  fairly  freely  over  the 

dedicated space. Each grid thereby represents a part of this space and therefore only calculates all 

its designated particles in one time step. Once a particle crosses the boundary of a grid, i.e. moves 

into another grid, the according information has to be communicated to the processing unit being 

responsible for the respective "receptive" grid unit.

POST PROCESSING

Once the main process has finished execution, the data is stored in the storage space of the user and 

the resources are freed for the main queue again,  so that new jobs can be started. All  assigned 

nodes are released again.
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1.B) SCALABLE DISTRIBUTED RT APPLICATION

A  distributed  real-time  application  is  composed  of  a  number  of  computing  activities  being 

interconnected in a Direct Acyclic Graph (DAG) like fashion, as shown in Figure 9 (a). In the simplest 

case, the whole application is activated periodically by some data made available from a data source 

providing input, and having to be delivered to some destination peer/consumer after the whole 

chain  (graph)  of  computations.  For  example,  an  interactive  video  editing  or  video  streaming 

application  would  fit  in  such  a  model,  in  which  the  data  source  might  be  a  camera  providing 

continuously A/V frames to be encoded on a node local to the camera,  then possibly processed 

remotely and finally delivered to other users on the network, or back to the same user. In such an 

application, it is commonplace to find a multiplexing logic separating the audio processing path from 

the video processing path, then joining the two paths later for further transmissions.

One particular topology that we may want to consider is the simple case in which we have a pipeline 

of activities, as exemplified in Figure 9 (c). However, in the most general case, we may have multiple 

sources and multiple destinations, as shown in Figure 9 (b).

The application needs to respect the in-place real-time constraints: 

• maximum end-to-end latency D, from when a new data frame is available from the source, to 

when the output of the computations is delivered to the final destination, at least with a given 

probability; D is normally sub-second (< 1s, e.g., a few hundreds of ms);

• in the case of multiple sources and/or consumers (Figure 9 (b)), independent end-to-end latency 

constraints can be expressed for multiple paths;

• communication throughput for all the links among activities need to be sustainable; links may 

exhibit  heterogeneous  requirements,  e.g.,  like  before/after  compression  for  multimedia 

processing;

• data is  coming from the  source  in  the  form of  periodic/sporadic  "frames"  with  a  minimum 

known  inter-arrival  period of  T – or,  alternatively,  we might  have  a probability distribution 

(model) for the incoming inter-arrival times.

Note that the individual activities in the DAG explicitly provided by the programmer may on their 

own be parallelisable. This means that the programmer will generally code them in such a way that 
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Figure 9: Real-Time Application composed of a DAG (a) with possibly multiple data 

sources and consumers (b), or the simple case of a linear workflow of activities (c).
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it  is  possible  to  take  advantage  of  available  massively  parallel  hardware.  Alternatively,  the 

programmer might use a mainly sequential way of programming, but the S(o)OS run-time will be 

able to automatically try to realize speculative parallelisation so as to take advantage implicitly of 

the available massively parallel hardware also for the individual activity.

EXPECTED OS BEHAVIOUR

The  application  developer  expects  that  S(o)OS  helps  (at  run-time,  as  well  as  at  application 

development  time via  proper  interfaces  and  tools)  in  understanding  how  to exactly  deploy  the 

application on massively parallel hardware (e.g., how many parallel threads, how they are deployed, 

on which cores with what capabilities, etc.) so as to meet the timing constraints.

S(o)OS expects the application to cooperate (either explicitly or implicitly) in understanding whether 

or not its own timing constraints are being fulfilled, so as to be able to undertake corrective actions 

at run-time (i.e., changes in the deployment/scheduling decisions w.r.t. the initial configuration).

As compared to the HPC scenario, the real-time one mainly distinguishes because:

• there is no need to "take any free resource so as to go as fast as possible", but it is sufficient to 

merely "take the resources/cores that are needed to meet the timing constraints at least most 

of the time";

• S(o)OS will take care of handling more instances of this application, and/or of other applications 

with similar characteristics,  so that they manage to run all at the same time, whilst the HPC 

scenario normally foresees a single application running over a clearly identified set of physical 

resources.

2. HIGH-LEVEL OS REQUIREMENTS

Novel architectures, which embed more and more cores, and associated user requirements will pose 

new challenges that future OSes must address. The inherent additional concurrency of such contexts 

will shed more lights on problems related to consistency, including synchronisation of distributed 

entities, system recovery from failures, or even security.

High-Level OS Requirements

In  the following,  we review  shortly  the key  high-level  requirements  on the  software  stack  (and 

particularly  the OS)  for  future massively  parallel  systems,  as  derived  from the discussion  in  the 

S(o)OS deliverables D5.1 State of the Art [33] and D5.2 Future Requirements [15]. These high-level 

requirements have been identified in:

1. Scalability

2. Efficiency

3. Predictability

4. Usability

5. Adaptiveness

6. Heterogeneity

7. Modularity

8. Energy Management

9. Security

10. Robustness

11. Portability

12. Mobility

13. Compatibility
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First,  we  describe  shortly  each  one  of  these  high-level  requirements,  in  order  to  provide  an 

unambiguous  interpretation  of  these  terms.  Then,  we  connect  them  with  more  concrete  and 

detailed low-level requirements on the OS which constitute a driver for the initial OS architecture 

that is sketched out in the following chapters.

SCALABILITY

Scalability is the ability for a system to make an efficient use of the available resources despite its 

size  growing.  Considering  future  massively  parallel  platforms,  this  means  that  the  available 

parallelism degree can actually be exploited by applications, avoiding any major bottleneck (e.g., as 

due  to  excess  of  contention  on  shared  resources)  that  may  cause  overheads  (e.g., 

communication/synchronisation ones) to grow uncontrolled limiting the achievable performance.

We must distinguish between different types of scalability:

• Horizontal scale is  a form of  replication.  This means that the application itself  does not use 

multiple resources in order to increase its performance, respectively the precision of its data - 

instead, the full application is replicated onto multiple resources. Horizontal scale is typical for 

cloud application use cases, and it is needed to increase the application availability to a wide 

users community.

• Embarrassingly  parallel  scale belongs  to  the  area  of  strong  scale.  In  other  words,  the 

performance (or result precision) increases proportionally with the number of resources vested 

in the application. Embarrassingly parallel tasks are denoted by a strong independence of the 

individual  working threads / processes,  i.e.  by little  communication and messaging across.  A 

particular  application  domain  for  embarrassingly  parallel  applications  comes  from  the 

eScientists community, where the same calculation has to be applied to multiple parameters in 

order  to  get  the  full  result  scope.  Implicitly,  in  some  cases  embarrassingly  parallel  relates 

strongly to horizontal scale. The main scalability aspect, however, relates to vertical scale. 

• Vertical scale is the typical form of HPC application, where one single application is spread over 

multiple resources in order to increase performance or data precision. Generally, the individual 

worker  threads  share  common  data,  which  requires  them  to  communicate  across  the 

infrastructure. Frequently, parallelised applications belong to the area of  weak scale,  i.e. the 

performance scales only to a certain point of saturation with the number of resources employed 

(cf. Amdahl's law [45]).

EFFICIENCY

The OS should allow for the efficient exploitation of the available physical resources. This means that 

the core OS components need to be efficient and highly optimised, and that they should not limit 

the actually exploitable concurrency degree (compare with the problems raised in the past by the 

Linux big kernel lock). Being the expert of the hardware, the OS should play the role of mediation 

with  the  applications  in  such  a  way  that  applications  developers  may  exploit  OS  services  that 

abstract  away from the details  of  the underlying  hardware,  still  with  the possibility  to make an 

efficient use of the available computing power, without wastes.

EASE OF USE

The OS should hide the complexity of the underlying hardware, and allow programmers to develop 

applications at a sufficiently high abstraction level.  This  allows for deployment of the developed 

applications on a number of different hardware systems (connecting with portability, see below), 

and also leaves the freedom to the OS to deploy various parts of the same application onto different 

and possibly heterogeneous resources possibly available in the same system (e.g., CPUs, GPUs, etc.)
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HETEROGENEITY

Another essential requirement is the support for heterogeneity of the resources in a cluster or even 

inside the same system and chip (e.g., GPUs mixed with CPUs), in terms of hardware architecture. In 

this  regard,  heterogeneity  should  be supported  more  dynamically  compared  to  what  commonly 

done in nowadays OSes, where the code is compiled statically for one possible target, with perfect 

awareness  of  the  available  optimisations  as  due to  the  target  ISA.  Differently  from  the  current 

programming  approach  which  is  static  with  respect  to  the  destination  platform  (ranging  from 

compilation to execution),  the S(o)OS approach will  allow to exploit a wider scope of destination 

resources more easily and efficiently.

ADAPTIVENESS

An  important  requirement  is  the  one  of  providing  sufficient  support  for  adaptiveness  of  the 

applications, and the OS itself being sufficiently adaptive. This means that the OS and kernel should 

be capable  of  adapting its  internal  structure and configuration to  the needs  of  the  dynamically 

varying workload. Indeed, it may happen that the optimal way to realise certain functionality at the 

OS level, such as scheduling and deployment of tasks or specific OS functionality (e.g., system calls) 

to  resources  be  dependent  on  the  actual  workload  as  imposed  by  the  mix  of  the  running 

applications.  For  example,  when  deploying  HPC workloads  or  real-time workloads the OS  might 

detect it and change its internal behaviour accordingly.

Finally, another aspect of adaptiveness is related to robustness and fault-tolerance. Whenever in a 

large many-core chip a failure of one or more units occurs, the OS should be capable of detecting it 

and re-configuring itself accordingly.

PREDICTABILITY

Predictability in the timing behaviour of the various parts of the software stack is also an important 

requirement  for  S(o)OS.  Indeed,  concurrent  executions  are  inherently  unpredictable  due  to  the 

unexpected behavior of asynchronous executions of concurrent computational entities. A large-scale 

and highly concurrent OS should be able to cope with such an unpredictability to guarantee QoS to 

the user. 

Both HPC and Real-Time workload scenarios may benefit of predictable execution. On one hand, in 

HPC  having  predictable  duration  of  code  segments  allow  for  exploiting  better  the  available 

computing resources, because tightly coupled and often-communicating code segments will waste 

less  time  on  waiting  for  completion  of  (and  messages  from)  each  other.  On  the  other  hand, 

predictability in time duration constitutes a strong requirement in RT scenarios, in order to support 

properly  a stable performance of the applications,  in  terms of providing the necessary  QoS and 

timing guarantees (e.g., in terms of throughput, responsiveness, etc.).

MODULARITY

Modularity is the ability to write modular and composable code, both at the kernel level and at the 

application level. Improving composability involves a number of issues, like: having the possibility to 

use or not certain modules depending on the local application needs, without any impact on the 

performance due to the unused modules; ensuring the interfaces and communication paradigms of 

software components are compatible (e.g., synchronous versus asynchronous, binary representation 

of data despite the components may be running on heterogeneous hardware, etc.).

SECURITY

Security  issues  arise  in  modern  operating  systems,  middleware  components,  services  and 

applications for a number of different reasons. A comprehensive overview of them would be outside 

the  scope of  the  present  document.  However,  some  of  these  issues  have  been  due to  certain 
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inherent difficulties in coding, and particularly some of them have been attributed to the difficulty in 

writing bug-free parallel and distributed code and protocols.

For example, consider a modification to the file-system consisting of updating a file by first checking 

its associated rights. If an attacker concurrently modifies the file system name space between the 

access control check and the open() operation, this may result in overwriting a sensitive system 

file. OpenSSH (before version 1.2.17) suffered from a similar issue from a socket race exploit that 

allowed a user to steal another's credentials3.

ROBUSTNESS

The OS should have support for robustness and fault-tolerance, for dealing with failures. First, in a 

massively  parallel  many-core  system,  it  is  foreseeable  that  hardware  failures  may  occur.  For 

example,  in  a  many-core  chip  with  thousands  of  computing  units,  if  one  of  those  units  has  a 

malfunctioning or does not work as expected, it is not acceptable nor needed to turn off the entire 

chip, as long as the units that work are still reachable and usable. Therefore, the OS should possess 

the needed sensing capabilities (exploiting of course hardware diagnostic features that also need to 

be  present),  and  undertake  the  necessary  corrective  actions  (i.e.,  dynamically  turn  off  the 

malfunctioning core, or deciding to ignore a broken/malfunctioning memory bank etc.).

Second, in a massively parallel system it is foreseeable that software failures may happen across the 

chip, similarly to what happens in a large distributed data centre. Possible bugs at the OS and kernel  

level may show up more easily, once thousands or even more kernels are instantiated within a single 

chip and cooperate very tightly. It should be possible to safely restore the OS/kernel status to a safe 

and healthy one, whenever such failures are detected.

ENERGY MANAGEMENT

Energy management constitutes an important requirement on OSes for future massively parallel 

systems. First, the OS will have to support intelligent configuration of the hardware in such a way to 

save energy whenever possible, both for properly supporting mobile devices (see Mobility below), 

and  for  “green-computing”  purposes.  In  particular,  the  sensibility  of  the  HPC  world  to  green-

computing issues is gaining more and more interest, recently.

For example, it is important that the OS is capable to detect when there are nodes inside a system or  

cores, interconnect and memory elements inside a chip, that are not used, so as to be able to shut 

them down. Also, the OS needs to properly exploit idle and deep idle states of the computing units 

whenever available from the hardware, in order to let the system save energy for example while 

waiting for messages to be received from the network.

Also, it must  be noted that future many-core systems targeting unprecedented performance will 

suffer of major issues related to dissipating heat. In order to properly cope with this problem, one of 

the envisioned trends in system design is the one of allowing for temporary overheating of parts of 

the  chip,  in  order  to  boost  computations  for  a  certain  time,  then falling  back to  a  normal  safe 

operation that  allows for  cooling.  For  example,  the Intel  TurboBoost4 technology is  practically  a 

hardware-driven over-clocking of the core controlled by hardware by means of a feedback  loop 

involving local thermal sensors.

In the future, manufacturers of systems based on 3D chips design will  push even further such an 

approach  by  relying  more  and  more  on  software,  for  the  proper  management  of  overheating 

situations [42][43][44].

3 More information can be found in the SSH FAQ: http://www.employees.org/~satch/ssh/faq/.
4 More information is available on the Intel website: http://www.intel.com.
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PORTABILITY

In nowadays HPC programming practice, developers often focus on a single type of target hardware 

(i.e., the system over which the application is going to be deployed), and also OSes provided by HPC 

systems  manufacturers  are  sometimes  optimised  for  specific  underlying  hardware  capabilities. 

However, as already mentioned, one of the goals of S(o)OS is also the one to provide a sufficient 

abstraction  level  that  allows  application  developers  to  program  on  a  wider  range  of  hardware 

systems (this follows the requirements coming from ease of use). Therefore, the OS will support a 

wide range of possible hardware devices, something that makes it easier to deploy applications on 

data  centres  with  heterogeneous  systems,  as  well  as  the  deployment  on  completely  different 

centres.

Also, the OS will  have to support a wide range of devices and peripherals, as commonly seen in 

nowadays OSes. Especially if the OS will be adaptable to be used both on client-side ends (e.g., a 

mobile device – see also the Mobility requirement), and on server-side ones (e.g.,  HPC resources 

remotely available to the client), then the range of supported hardware devices and peripherals will  

have to be wide. This is possible in S(o)OS thanks to the modularity of the OS, that allows various 

features that can be made available as modules only where needed, and be actually loaded into the 

OS only when needed.

MOBILITY

The development of applications for future massively parallel systems, and in particular of real-time 

and  interactive  ones  in  which  users  interact  on-line  with  a  massively  parallel  application  (e.g., 

distributed  session  for  editing  huge  multimedia  data  as  required  in  the  film  post-production 

industry, or on-line gaming with heavyweight physics simulations, etc.), will likely need to support 

both  mobile,  possibly  lightweight  hosts,  under  the  direct  control  of  users,  and  heavyweight, 

massively  parallel  ones  available  remotely.  S(o)OS  will  support  such  scenarios,  allowing  the 

lightweight device to hand-over computations to the remote side whenever needed and possible, in 

order to save energy (see also the requirement on Energy Management).

COMPATIBILITY

Another  OS feature  that  is  of  secondary  importance  due to the disruptive  innovation  nature  of 

S(o)OS is the one of backwards compatibility. Of course, it would be nice to have, in a future OS, a  

compatibility layer that allows developers of nowadays applications to easily port their applications 

to the new run-time environment, still taking advantage of the new OS features and capabilities. For 

example, a POSIX-compliant (or Unix-compliant) software layer may be available for such purposes, 

enhancing the chances for developers to write portable code across a number of heterogeneous 

Oses.

2.A) DISCUSSION

Here we summarise the major key points in how S(o)OS will be able to tackle the above described 

high-level requirements.

SCALABILITY

A direct implication of the scalability requirement onto the design of the OS is the need for avoiding 

any type of centralisation in resource management, supporting dynamic behaviours and tolerating 

failures.

Ensuring scalability of various OS components that are not embarrassingly parallel is far from being 

trivial due to inherent contention. For example, in a concurrent environment a file system should 

support multiple modifications from various cores at the same time. Such a concurrency is allowed 

for example by transactional soft updates [12] of FreeBSD, but not by BSD 4.2 [1]. In Linux, a recent 
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VFS  scalability  patch5 addresses  bottlenecks  arising  when  many cores  are  performing  filesystem 

operations at the same time. As a further example, when considering the process scheduler of the 

OS, it is important to avoid a centralised data structure, that would quickly become a bottleneck for 

the whole system when the number of cores grows, or at least scalable data structures should be 

used [50].

Also, while accessing data structures shared across multiple cores,  it  may often happen that the 

modifications  can  actually  be  made concurrently,  because  they  deal  with  different  independent 

parts of the data. The transaction programming abstraction can easily enhance scalability in such 

cases, as opposed to alternative techniques, generally using locks to handle the contention between 

concurrent  accesses.  Roughly  speaking,  the  analogy  between  lock-based  and  transaction-based 

programming lies typically in the mapping of critical sections (wherein correctness validation is prior 

to  execution)  to  transactions  (wherein  execution  is  performed  in  a  speculative  manner  before 

correctness validation).

Even  though  the  transaction  bookkeeping  and  additional  aborts  and  restarts  can  penalize 

performance,  transactions have shown impressive scalable results in various applications [13] due 

to the lack of overly conservative protections.

A critical aspect in supporting scalability of software is that, in the nowadays programming practice, 

scale  is  limited  to the amount of  threads  explicitly  specified by the developer.  With the S(o)OS 

approach the amount of used resources will  be more dynamic,  whereby the actual number can 

exceed the amount of explicit threads through implicit concurrent execution, whenever possible.

EFFICIENCY

One of the main implications of the efficiency requirement is that the OS itself should be scalable in 

the  number  of  cores,  threads,  processes,  applications,  without  suffering  of  major  performance 

bottlenecks  and  overheads  becoming  overly  predominant  when  the  number  of  managed  items 

grows  higher  and  higher.  Also,  the  OS  services  should  allow  developers  to  write  scalable 

applications.  Therefore,  the efficiency  requirement  partially  overlaps  with  the  one of  scalability. 

However, efficiency means not only that the performance can scale with the number of resources, 

something referring to the complexity by which performance grows for example in the number of 

cores,  but  also  that  the  absolute  achieved  performance  should  not  be  too  far  away  from  the 

theoretical one.

Also, an implication of efficiency is that the OS may dynamically re-allocate resources whenever in 

need. For example, if delays are predictable then they can be exploited for executing other tasks, 

and free resources can be provided to other processes.

EASE OF USE

One aspect of easing the use of a platform is that the OS may offer a single system image (SSI) vision 

for using all, or a subset of, the available resources, especially whenever such resources are handled 

in a distributed-system fashion (i.e., by different OS instances running within the same node, board 

and/or chip). This would allow for instance to launch an application execution from anywhere with 

the possibility to be able to access the whole application data set, without taking care of the real 

execution location.  This  may be useful  also  at an in-chip level,  where it  may basically  realise  in 

software a coherent  view of the memory,  that is  not realised in hardware due to the potential 

performance and scalability drawbacks. However, such a feature is well-known to potentially lead to 

scalability and efficiency issues, if the programmer does not use it properly, as it easily happens in 

SSI clusters realised on a set of distributed nodes. For example, using a programming model similar 

to P-GAS may mitigate such problems. Also, when considering realisation of an SSI-like view over 

5 For more information, see for example: http://lwn.net/Articles/401738/.

38 | P a g e D5.3 First OS Architecture S ( o ) O S



clusters of cores in the same chip, it must be noted that the mentioned performance drawbacks may 

show up less  often, as inside the chip it  may be extremely  easy  to move memory pages  across 

different OS instances running in different cores and tiles.

One  of  the  key  issues  is  to  design  proper  trade-offs  in  the  OS  between  programmability  and 

efficiency. For example, in order to reduce contention with a high number of cores, the OS can adopt 

more fine-grained locking strategies. A commonly known move along this direction was the one of 

the key improvement from the 2.4 to the 2.6 Linux kernel series, where some critical sections using 

the big kernel lock were shortened, by releasing and re-acquiring the lock more frequently when 

possible  (e.g.,  kmem_getpages),  and  the  later  progressive  removal  of  all  the  big  kernel  lock 

usages,  shifting towards more fine-grained locking strategies.  However,  despite the performance 

increases,  this  may  easily  lead  to  difficulty  in  maintaining  the  code  in  later  developments.  For 

example, the Linux kernel source file  linux/mm/filemap.c starts with a header containing 50 

commented lines to explain in which order the different elements are locked.

Due  to  the  support  through  code  analysis  and  segmentation,  as  well  as  through  explicit  code 

annotations,  programmability  should  be  simplified  so  that  no  low-level  annotations,  such  as 

required by MPI or OpenMP should be necessary any more. Instead, the OS related tools will analyse 

the code for  concurrency  and parallelisation aspects,  and the OS will  take care of  the low-level 

communication  and  state  maintenance  aspects,  thus  relieving  the  developer  from  this  burden. 

Instead, high-level annotations will steer the OS behaviour for improving the analysis, segmentation, 

distribution and deployment of the code segments.

HETEROGENEITY

One possibility to support better heterogeneity is to allow developers and/or compilers to annotate 

the (machine) code with the requirements on the underlying hardware capabilities. This information 

may  be  exploited  when  the  tasks  are  submitted  to  the  distributed  OS  in  order  to  ensure  the 

execution with the most appropriate resources.

Differently from the current programming approach which is static with respect to the destination 

platform (ranging from compilation to execution), the S(o)OS approach will allow for exploiting a 

wider scope of destination resources more efficiently. For example, it would be desirable to have an 

approach  resembling  on-the-fly  recompilation  (e.g.,  just-in-time  compilation)  of  code  segments, 

whenever needed to potentially improve performance. The OS will possess the needed degree of 

adaptiveness  and  dynamicity  that  allow  for  the  maximum  flexibility  in  allocation  of  tasks  and 

generally code segments to available resources.

The principle is related to Grid / WS service discovery, where providers are identified according to 

the task needs. In S(o)OS, we advocate the analysis of the code for its specific needs towards the 

hardware and the identification of the most suitable resources, rather than restricting the code to a 

certain precise platform.

ADAPTIVENESS

The OS should be adaptive in that it may monitor (via proper interfaces and collaboration with the 

application) the performance being experienced at run-time, and undertake corrective actions on its 

internal behaviour (e.g., on the scheduling and deployment side).

For  example,  consider  those  novel  OS  approaches  for  many-cores  [33],  advocating  the  use  of 

dedicated kernels and cores for specific OS functionality (such as interrupt management or system 

calls execution). One of the issues of such approaches is the one of dimensioning properly the OS. 

Indeed,  the  correct  configuration in  terms  of  the number  of  execution  units  dedicated to  each 

specific  OS functionality may depend on the actual workload type, that needs to be dynamically 

sensed at run-time.
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Concerning the support for adaptiveness at the application level, the direct implication on the OS 

architecture is the need for providing to applications the sufficient “sensors” so that applications can 

adapt to the dynamically sensed run-time conditions. Furthermore, whenever multiple adaptation 

loops are present at multiple levels  of the software stack (application, middleware,  OS services), 

they might  need to be designed so as to  operate  in a coordinated way  [51],  as opposed to an 

independent operation that might sometimes lead to undesired or sub-optimal results.

PREDICTABILITY

In a S(o)OS environment,  the code execution will  be more predictable.  This  is achieved  both by 

exploiting  proper  tools  made  available  by  the  OS  (e.g.,  for  profiling  the  execution  times  of 

applications,  task  bodies,  code  segments,  functions),  and  by  run-time  mechanisms  (such  as 

scheduling) designed around adaptive policies that are fed by data coming from properly designed 

monitoring services.

When  considering  transactional  memory  support,  it  must  be noted  that  transactions  and  more 

generally speculative executions add another layer of unpredictability due to the unexpected impact 

of conflicts.  A conflict  may cause a transaction to abort, roll-back and restart a large number of 

steps. In other executions, the conflict would simply be avoided due to the particular interleaving of 

transactional accesses. Conversely, transactions are complemented with a contention manager that 

usually arbitrates adequately between conflicting transactions. In RT scenarios, a future OS should 

provide deadline-driven contention management,  that is capable of favouring those tasks whose 

completion is more urgent over the others.

SECURITY

One of  the  ways  to  deal  with  security  at the OS/kernel  design  level  is  the one to  enhance the 

programmability of parallel  and concurrent applications and services.  For example,  providing the 

support  for  easier  programming  models  (e.g.,  transactional  memory)  or  letting  the  OS  expose 

synchronisation primitives which are easier to use and understand by the developers, would easily 

decrease  the  likelihood  of  having  security  issues  related  to  bugs  in  parallelisation  and 

synchronisation logic.

However, it should be noted that such approaches may non-necessarily be undertaken across the 

whole OS and kernel. Indeed, parts of the kernel which are performance-critical, may still  need a 

number of optimisations and complex synchronisation  logic that simply  cannot or should not be 

simplified too much, lest the achievable performance or scalability.

ROBUSTNESS

For example, whenever a kernel failure occurs, it is again non-acceptable and probably unneeded to 

cause a major shut-down and reboot of the whole system/chip. Instead, the specific core over which 

the  kernel  failed  may  be  shut  down  and  rebooted  safely,  especially  if  the  memory  that  was 

accessible by that core was not the whole memory available in the chip, but merely a subset. For 

example,  a  similar  approach  was  attempted  also  on  Linux  [41] when  running  on  multi-core 

machines, where it was shown how to keep an application running without failures, despite a kernel 

failure on one of the cores of the machine.

Furthermore,  whenever  dealing  with  a  stronger  notion  of  fault-tolerance  in  a  distributed 

environment, of course checkpointing is of crucial help for OSes to ensure that a system always act 

on a consistent state of the kernel. Checkpointing is already used in common OSes to make sure that 

a partial system upgrade does not let the system in an inconsistent state. For example, Microsoft 

OSes  already checkpoint  key  structures,  like  registries  and some system files,  or sometimes the 

entire file system, to cope with software update problems [8].
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WAFL file  system [11] ensures that an old bunch of file  system data gets updated atomically  by 

recording them in a tree structure whose root is updated in a single step. The Sprite LFS [14] are log-

structuring file systems that write all filesystem data in a continuous stream, the log. Although it 

makes information retrieval more complicated, it is easy to mark the point in the log up to which 

data have been committed and stored and it benefits from consecutive writes without disk seeks. 

Finally, journaling (i.e., log enhanced) FS keep old and new versions of incomplete updates on the 

disk. Only after commit, the new version is copied back to the original location as in Linux ext3.

Apart from the filesystem, when dealing with other generic parts of the OS/kernel, one possible way 

to deal with failures is also a transactional programming model, as opposed to a lock-based one. 

Indeed, transactions provide failure-atomicity, as it may be easier for the run-time to simply discard 

the uncommitted changes of a code segment that failed before the commit phase, as opposed to 

having to checkpoint and restore the previous version of the objects state. However, checkpointing 

may still  be used jointly with transactions, because the failure of a complex software component 

may involve the need for rolling back a number of commits made by that component during the 

failure, something that can be easily accomplished by restoring a previous checkpoint known to be 

safe.

2.B) PRIORITISATION OF THE OS REQUIREMENTS

The high-level requirements on the operating system as detailed above are not all equally important 

for the purposes of the investigations carried out in S(o)OS.  Therefore,  those requirements have 

been categorised into the ones that are considered “mission-critical” for the project and thus they 

have a high priority for us, the ones that are considered nice optional additions (low priority), and 

the  ones  that  are  actually  out  of  scope  for  S(o)OS.  This  prioritisation  of  the  high-level  OS 

requirements is summarised in Table 1.

Requirement Id Requirement Name Requirement Priority

HR1 Scalability High

HR2 Efficiency High

HR3 Heterogeneity High

HR4 Usability High

HR5 Adaptiveness Low

HR6 Predictability Low

HR7 Modularity Low

HR8 Energy Management Out of scope

HR9 Security Out of scope

HR10 Robustness Out of scope

HR11 Portability Out of scope

HR12 Mobility Out of scope

HR13 Compatibility Out of scope

Table 1: Prioritisation of high-level OS requirements.

2.C) LOW-LEVEL REQUIREMENTS ON THE OS

In  addition  to  the  above  described  high-level  requirements,  a  number  of  concrete  low-level 

requirements have been identified as a result of the analysis conducted in Section VII.2 of D5.2 [15]. 

These can be summarised (and somewhat aggregated) as:

1. support  for  horizontal  scale (multiple  replicas  of  the  application  to  support  many  users), 

including instantiation of the application;

2. support for a message-passing programming model at the application level;
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3. implicit  data  coherency,  i.e.,  support  for  globally  coherent  shared  memory  (for  ease  of 

programming);

4. support for the realisation by the (expert) programmer of explicit data coherency protocols, for 

increased efficiency/scalability;

5. support for low-latency workloads (for real-time applications);

6. support for high-throughput workloads (for HPC applications);

7. proper scheduling of  CPU,  network packets,  I/O requests,  supporting predictability  and QoS 

awareness (QoS-aware scheduling);

8. predictability in the duration of OS components, including scheduler and memory allocator;

9. predictability in  the  time  behaviour  of  applications (e.g.,  proper  scheduling  of 

applications/tasks on proper nodes so that the performance is predictable);

10. proper on-line monitoring API, so as to enable adaptiveness at the application level;

11. support for  asynchronous I/O services (pre-load next data frame while processing the current 

one);

12. support  for  explicit  parallelisation and  for  synchronised execution in  a  distributed 

environment;

13. support for DFG-like applications, and support for attaching performance requirements on DFG 

nodes and arcs;

14. support for expert developers allowing to query underlying hardware capabilities; for example 

tuning  the  parallel  algorithms  so  that  the  needed  data  fits  into  the  cache  size  (i.e.,  the 

application  needs  precise  information  on  the  underlying  hardware),  and/or  the  required 

latency/bandwidth  fits  within  the  available  capabilities;  in  addition  or  alternative,  allowing 

developers  to  explicitly  state what  are  the requirements on underlying hardware  (including 

cache size, bandwidth and latency requirements), so that the scheduling logic can select proper 

resources, among the heterogeneous available ones;

15. support for embarrassingly parallel applications: high bandwidth, latency unimportant;

16. support for tightly coupled parallel applications (HPC) and vertical scale: more importance to 

the control of latency and in general predictability (and little variation) of code execution time;

17. distributed  execution of  both  the  applications  and  the  OS,  avoiding  centralised contention 

sources, e.g., globally shared data structures or services within the whole many-core system – 

they become easily bottlenecks;

18. support for disabling time-sharing if needed (HPC case), to minimize overheads;

19. support  for  code  segmentation,  and  on-the-fly  instantiation/migration  of  segments,  with 

minimum overheads;

20. support for some form of “sand-boxing”, for enhanced security;

21. support for direct access (by expert developers) to  hardware acceleration (e.g., use of GPUs, 

FPGA, SIMD-like extensions, processor pipeline control when available, data pre-fetching, etc.): 

this  may  contrast  with  ease  of  use,  but  it  may  be  needed  for  increased  and  leading-edge 

performance;

22. Ease of installation/deployment;

23. Ease of maintenance/administration;

24. Resource sharing (as opposed to partitioned resources),  such as via  multi-tasking (i.e.,  time-

sharing scheduler), particularly important for RT workloads;

25. application-level  reliability through proper  support  for  fault-tolerance  mechanisms,  such as 

checkpointing;

26. Support of a wide range of available peripherals;

27. Stability of the OS API/ABI over time.
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The  table  below  connects  each  of  these  concrete  low-level  requirements  with  the  high-level 

requirements described in the previous subsection. Each mark in the table means that there is a 

direct relationship between the corresponding high-level and low-level requirements, however the 

exact implications of this are not described in this section (more information is provided throughout 

the document).
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LR1 Horizontal scale X X X

LR2 Message-passing X X

LR3 Implicit data coherency X

LR4 Explicit data coherency X X

LR5 Low-latency X X

LR6 High-throughput X X X

LR7 QoS-aware scheduling X X X X

LR8 OS predictability X X X X X X

LR9 Application predictability X

LR10 Monitoring API X X X

LR11 Asynchronous I/O X X

LR12 Explicit Parallelisation X X X

LR13 DFG-like applications X X

LR14 Hardware capability querying X X X

LR15 Embarrassingly parallel apps X X

LR16 HPC applications X X X X

LR17 Distributed execution X X X X X X

LR18 Disabling time-sharing X X

LR19 Code segmentation X X X X X

LR20 Sand-boxing X

LR21 Hardware acceleration X X

LR22 Ease of installation/deployment X X

LR23 Ease of maintainance/admin X X

LR24 Resource sharing X X

LR25 Application reliability X

LR26 Peripherals X X

LR27 Stability of API/ABI over time X X X

Table 2: Relationship between low- and high-level requirements
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IV. OS ARCHITECTURE MODELS

In this chapter we discuss the major architectural concepts behind S(o)OS.

1. BACKGROUND

In order to overcome the main limitations of nowadays OSes in terms of scalability in the number of 

handled resources (cores), the S(o)OS OS is designed around distributed computing principles (see 

the multikernel, FactoredOS and CoreyOS approaches discussed in [33]).

As already described in section II. 2. , the key factor thereby consists in building up a modular and 

distributed operating system, where each module represents an essential OS level functionality that 

is exposed to the program and the rest of the system in a fashion similar to a “service”. This differs  

essentially from existing OS architectural concepts.

1.A) CURRENT OS ARCHITECTURE CONCEPTS

The nowadays industrial practice in developing  operating systems cannot probably be considered 

any  more  as  following  the  traditional  monolithic approach,  however  it  is  still  strongly  oriented 

towards  centralised architectures  that  incorporate  all  essential  functionalities  within  the  main 

kernel, plus additional functionality that is dynamically loaded on-demand (e.g., device drivers for 

specific peripherals, or optional OS capabilities). The centralised architecture allows for tuning the 

OS so as to achieve good performance under certain specific scenarios (e.g., web servers, desktop), 

thanks to various optimisations that can be embedded within the kernel. However, it also leads to a 

number of design problems. For example, the OS may become rather bulky and in particular difficult 

to adjust: due to the large amount of internal dependencies between the OS functionalities, a single 

change may affect thousands of lines of code [29]. Additionally, all kernel-level code runs with the 

same privilege level,  leading to instability issues and potential  crashes of the whole system as a 

result of a buggy device driver for an unimportant peripheral (just to provide an example). These 

issues have been overcome by the introduction of  microkernel architectures. In these, the kernel 

was reduced to the bare minimum set of functionality, implemented through a very small code-base 

that can be more easily  verified,  maintained and kept  under control.  All  the additional (but still 

essential  for  the  OS)  functionality  can  be  implemented  as  user-space  modules  forced  to 

communicate to each other via a message-passing paradigm. This way, additional functionality is 

relatively  easier  to realise  and comparatively  more  stable than in traditional monolithic  kernels. 

Indeed, modern OSes incorporate some aspects of micro-kernel architectures (see  [33]).

While the micro-kernel approach has been proved to increase greatly the robustness of the OS, it 

also showed serious performance limitations, what hindered the development and adoption on a 

wide scale of microkernel-based OSes in those contexts in which performance is important.

Additionally,  traditional  OSes  have  serious  problems  to  adapt  to  the  expected  increase  in 

heterogeneity even in desktop PCs, due to the difficulty in handling differences at the ISA level in 

available cores.

Further to this, nowadays OSes are stand-alone systems that can only interact with other systems 

through dedicated  communication  channels  –  typically  on higher  level,  such  as the  middleware 

layer.  This  strategy  is  typically  exploited  in  typical  multi-processor  HPC  clusters,  where  each 

processor  hosts its own operating system and cross-process communication is  executed through 

explicit  invocations,  e.g.  through  MPI.  This  kind  of  set-up  of  the  software  stack  can  reach  a 

considerable high scalability on nowadays HPC platforms.
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However, with the foreseen introduction of many-core processors, multiple thousands of processing 

units are expected to build up a single processor, and accordingly share the essential resources, such 

as memory, hard-drive, I/O etc. The centralised structure of the OS can easily turn into a bottleneck, 

where the individual processes may block each other in attempts to accessing the OS functionalities 

which may block for example on spin-locks for accessing common data structures.

Therefore, the nowadays centralised structure of OSes and their kernels, which pretend to have a 

global/centralised  view  and  management  of  the  available  underlying  physical  resources,  cannot 

scale  when the amount of cores goes to thousands or even more.

Even when considering  micro-kernel  architectures,  these are still  used with  a single  OS instance 

serving  the multitude of  physical  resources  available  to  a  single  node.  Therefore,  they run into 

similar communication issues and thus do not generally show better scaling behaviour.

Recently, distributed-kernel approaches have been proposed (such as the already mentioned multi-

kernel),  or  the  distributed  Linux  kernel  as  available  on  the  Intel  SCC)  to  address  these  issues. 

Instantiating a full OS kernel instance per core, the scalability is increased as due to the reduced 

contention on common resources. However, as highlighted in [33], a large number of issues are still 

unsolved. First, when instantiating different kernel functionality on different cores, it is not clear at 

all how to dimension the OS/kernel layout. Second, the distributed nature of the OS also leads to 

usability/programmability  and potential  efficiency  problems (e.g.,  if  memory  needs  to be copied 

from  one  core  to  another  one,  when  simply  a  pointer  could  be  passed  by),  and  also  the 

heterogeneous nature of modern multi-core architectures remains mostly unsolved.

1.B) GENERAL CONCEPTS

One of the key drawbacks of the distributed-kernel approaches is on the side of programmability. 

Indeed, core to core communications are constrained to follow a message-passing paradigm, and 

the classical way applications deal with parallelism, i.e., spawning new processes or threads, do not 

work  any  more,  because  the  only  way  to  exploit  the  underlying  parallelism  is  to  have  another 

instance of the application being deployed on a different core, i.e., OS node. These limitations can be 

overcome by reusing concepts from the world of Single-System Image (SSI) kernels. Indeed, an SSI-

enabled OS is able to migrate a process to a remote physical node, handing to it all the needed data 

by exploiting the virtual memory mechanism. Similarly,  an SSI-enabled distributed kernel may be 

able to hand over a new process to a different OS instance running on a different core in the same 

chip. However, differently from the classical SSI case, in a many-core chip the SSI mechanism may 

exhibit  a  much  higher  performance,  being  able  to  exploit  the  incredibly  fast   core  to  core 

communications  available  inside  the  chip.  Not  only,  whilst  in  traditional  distributed SSI  systems 

memory pages of a migrating process need to be transmitted from one physical system to another, 

in a SSI-like distributed kernel within a many-core chip the memory may already be globally shared. 

Therefore, memory pages may be directly accessed after a much simpler cache flush operation (in 

case cache coherency will not be available in hardware), without any need for actually copying data.

However, the visibility of resources under an SSI model should not be brought beyond a certain limit. 

If, from one side, the clustering of more (closeby) cores together into a virtualised “single” SSI-like 

kernel may overcome on the software-side the limitations in programmability due to the lack of a 

completely coherent memory architecture across these cores, on the other side, as it is well-known, 

there is a risk of increasing the number of resources each kernel instance needs to be aware of.

Therefore, in S(o)OS we advocate a solution in which:

1. a few homogeneous cores close to each other which are sharing a coherent view of the memory 

(i.e., the same L2 cache in the same tile) can actually run a single kernel instance, similarly to 

nowadays multi-core, SMP systems;
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2. a set of kernel instances which run on a cluster of cores/tiles that are close to each other (thus 

they  exhibit  very  efficient  communications),  and  which  are  homogeneous,  can  easily  be 

clusterised to form a single virtualised OS/kernel by using SSI-like mechanisms (but with a far 

higher efficiency than traditional SSI);

3. different clusters of potentially heterogeneous cores within the same chip, or in different chips, 

run  OS/kernel  instances  which  are  actually  independent  from  each  other,  and  that 

communicate  exclusively  by  message-passing  primitives  (which  may  be  highly  optimised  to 

exploit again the efficient in-chip communications).

Additionally,  with  the typical  layout  of  S(o)OS  on the various  heterogeneous  cores  of  the  same 

many-core physical machine, it will be possible to have:

• multiple  instances  of  the  same  OS/kernel,  with  a  different  subset  of  modules/components 

loaded and active;

• multiple instances of different  OS/kernels,  possibly  obtained by compiling the same sources 

with different options: for example,  GPGPUs computing units may host a minimum run-time 

environment needed to move data and code and perform the needed batch processing, whilst 

general-purpose computing units will feature more complex features like scheduling, context 

switching, interrupt and peripheral management, etc..

This way, each OS instance will have to deal with a limited number of local resources (cores and 

interconnections)  and run-time entities  (processes,  threads,  files,  etc.),  resulting  in  an improved 

efficiency and scalability of the kernel-level operations of the individual instance. On the other hand, 

resource management and scheduling across the whole system will need to be done similarly to how 

load-balancing techniques are designed in service-oriented and distributed systems nowadays.

The immediate drawback of the distributed architecture is that both data and code may sometimes 

need to be replicated, in order to allow different OS instances to coordinate among themselves for 

performing a distributed operation.

Note  that,  considering  the  span  of  the  individual  OS  instance,  previous  distributed-kernel 

approaches  proposed  a  single  OS  instance  per-core.  However,  we  believe  that  having  each  OS 

instance control a subset of cores may be even more advantageous-  this ultimately depends on the 

availability of a coherent memory view at least across subsets of cores. For example, in a tile-based 

architecture, if each individual tile has a multi-core layout, then it is easy to think of these cores 

having the same coherent view of the memory, both of the local memory possibly available in the 

tile, and of the remote memory accessed through the Network-on-a-Chip (NoC).

The advantages of having an OS organised as a distributed set of multi-core OS instances rely in the 

lower memory overheads required to access common/shared data and code. For example, cores in 

the same tile will likely need to run similar OS services, and sometimes they will need to share the 

same  data.  A  shared-memory  model  is  still  convenient  to  be  exploited  by  applications  and 

developers, in order to increase programmability and ease of use of the underlying architecture.

In the context of RT applications,  global scheduling algorithms, applied to a limited set  of cores, 

leads to an easier deployment of the RT tasks over the system and to a better exploitation of the 

underlying resources, without suffering of the scalability issues arising when the number of managed 

cores increases over and over. At the same time, the distributed scheduling algorithms, that need to 

coordinate among the various OS instances for deploying and load-balancing the active tasks, are 

simplified,  as  they  need  to  deal  with  a  lower  number  of  deployment  targets  (OS  instances), 

potentially achieving a better performance due to lower overheads for the distributed scheduling 

decisions. For example, deploying optimally real-time tasks over a multi-core machine is well-known 

to be an NP-hard problem, which becomes quickly intractable as the number of cores grows.
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2. S(O)OS ARCHITECTURE CONCEPTS

Analysing the behaviour of a single distributed application it becomes obvious fairly quickly that the 

parallel threads / processes typically expose similar behaviour and thus similar OS needs. Even if the 

threads are not “just” replicated instances of the same task, hardly any thread requires the full OS 

system  support  for  its  execution,  as  e.g.  it  does  not  spawn  further  threads,  does  not  require 

scheduling, does not access the hard-drive etc. Instead, they only execute certain subtasks and thus 

only call system subroutines. Implicitly, it is not necessary to provide the full OS instance per core, if 

the core is only to execute threads / processes with limited OS requirements.

No current  OS architecture  supports  separation and distribution of  the kernel  itself  though and 

instead require that either a full instance is available, or that a central instance has to be called. The 

essence of the S(o)OS approach consists in not only supporting the segmentation and distribution of 

application code, but also of the operating system itself. To this end, the operating system is split 

into  individual  modules  that  expose  their  capabilities  not  unlike  services  in  a  service-oriented 

architecture. The individual modules can act standalone and incorporate the capabilities to interact 

with other services in order to function properly. The modules are furthermore selected to suit the 

respective  processes'  /  threads'  needs,  i.e. to  support  inter-process  communication,  access  to 

storage etc.

As already described S(o)OS supports the whole application lifecycle by identifying relationships and 

requirements  of  code segments  and distributing  them  across  the  infrastructure.  As  part  of  this 

process, the dependencies with the essential OS capabilities are identified and used to decide which 

functionalities to host parallel with the code, and which ones to make accessible via interconnect. 

Along  that  line  the  S(o)OS  also  has  to  maintain  execution  state  consistency  by  introducing 

communication commands at the respective points, respectively by introducing according system 

calls into the process. 

It will be noted first of all that the S(o)OS incorporates more functionalities than the core essential 

OS  capabilities  that  are  promoted  by  most  microkernel  approaches.  In  other  words,  S(o)OS 

incorporates functionality that is typically associated with the middleware, rather than the operating 

system.  As  noted  in  [47] there  is  a  growing  tendency  to  overcome  programmability  and 

management issues by adding further middleware layers on top of existing ones, so as to increase 

the capability scope. This approach not only leads to increasing misalignment between these layers, 

where some functionality is reproduced on multiple levels, but as a consequence also to a severe 

reduction of performance. 

Meanwhile,  certain  middleware  functionalities  have  been  well  established  and  for  example 

Microsoft already exhibits tendencies to integrate the .NET framework into the OS architecture. A 

major aim of S(o)OS is to incorporate the capabilities that are essential for large scale distributed 

code execution over a heterogeneous infrastructure into the operating system, so as to increase 

their performance and expose their capabilities as programming extensions to the user. A recurring 

discussion in this context relates to kernel versus user space which we however want to avoid in this 

first iteration for the sake of concentrating on the capabilities in the first instance.

In the following we therefore treat typical middleware features, as well as kernel and user space as 

one thing, subsumed under “OS architecture”.

2.A) GENERAL S(O)OS ARCHITECTURE

S(o)OS  incorporates  execution  and  hardware  management  capabilities  to  deal  with  handling 

application execution on top of large distributed heterogeneous infrastructures. To this end, the OS 

itself is split into essential  modules  (or  services) that provide functions relevant to this distributed 

execution. Each of these modules can in turn communicate with each other via different means, 

making the OS itself a loose set of services that can potentially be distributed themselves. From the 
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perspective of the application, the interactions on OS level thus become invisible in the sense of 

“virtualised”.

The main goal is thereby to structure the OS modules in such a fashion that, from the application 

perspective, a complete virtual local environment may be provided. This includes not only resources 

and OS functionalities, but implicitly also state and data. Similar to the PGAS programming model, 

the  developer  gets  an  API  that  exposes  a  shared  memory  machine,  even  if  the  underlying 

infrastructure  is  a NUMA cluster  machine.  As opposed to PGAS though,  the S(o)OS  support will 

distinguish between different system architectures to make the best protocol decisions. To put it in 

current computing terms, if PGAS were employed, S(o)OS would translate data access to

• simple direct access in a ccNUMA or shared memory environment;

• OpenMP like actions in a many core NUMA environment;

• MPI like communication across processors; and

• web service like invocations across the Internet.

Locally, these may have to be combined if various system types partake in the definition of the data. 

Accordingly, the OS must be able to principally support all 4 methods, but does not need to load the 

modules into memory that are not used. This may lead to different OS structures associated with 

different instances of the code.

We can thereby distinguish between three principle types of modules:

1. “optional”  modules:  can be located anywhere  in the  infrastructure  and are not  always 

needed – these are the most dynamic and flexible types of services;

2. “essentially  local”  modules:  have  to  be  co-located  with  the  executing  code  segments 

(classically: threads / processes). They provide essential capabilities, such as communication 

and memory management;

3. “essentially central” modules: are the least flexible and most rigid services. They form the 

main kernel which is implicitly responsible for the overarching functionalities, such as code 

segmentation and distribution, global scheduling etc. As will be detailed below, “central” 

does not necessarily imply “unique”.

In accordance with the application behaviour in a S(o)OS environment  the distributed execution 

support requires at least one instance to analyse, adjust and distribute code, as well as to organise 

the distributed execution, state maintenance etc. This central instance therefore also assigns and 

distributes the OS modules to the individual resources. This is comparable to the main thread in a 

parallel  application,  and  is  related  to  the  fact  that  the  essential  nature  of  the  application  is 

sequential, thus starting from a central point. 

We refer to this central instance as the “main OS instance”. As noted it serves as the entry point for 

the application and may thus also serve as the interface to the user, though this is not necessary (see 

detailed description below).

This main OS instance can instantiate “satellite” instances that take over working aspects of the 

distributed  code,  ranging  from  actual  execution  of  code  segments,  to  exposing  the  respective 

resources to the application – this may particularly apply to single instance resources in a distributed 

environment, such as a central hard disk etc. “Remote instances” are thereby primarily designed to 

be minimal, i.e. to only provide the essential local capabilities in order to reduce the local memory 

load and thus reduce the amount of memory swaps. At the same time, it should contain enough of 

the optional capabilities to reduce the communication overhead to a minimum. 

In the following, we will elaborate the respective instances in more detail. It should be noted in this 

context that,  since the architecture follows a strong service-oriented approach, the architectural 

diagrams should not be confused with deployment diagrams. In fact, even the main OS instance can 
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be segmented  and deployed in  multiple  resources,  but  the  additional  communication  overhead 

would reduce performance significantly.  Therefore the following discussions are essentially  to be 

interpreted along the line of “sensible recommendations”.

MAIN OS INSTANCE

The main OS instance builds the core entry point for an application. It  is thereby responsible to 

identify the potential  hosting resources,  for analysing the code, adapting and distributing it.  The 

main  OS  instance  is  therefore  closest  to  classical  operating  systems,  in  the  sense  that  it  can 

principally  execute  the  code  in  a  stand-alone  fashion,  i.e. without  the  support  of  any  remote 

instances.

This instance loads the application on request and therefore must  be able to access the storage 

system and identify  the correct  source.  To execute  distribution,  it  also  maintains  some form of 

resource  information  about  the  system,  though  it  may  initiate  a  query  upon  need.  Since  the 

individual capabilities may also be located remotely and in order to deploy and communicate with 

code segments, the main instance must necessarily incorporate communication capabilities. 

We will not list the full functionality scope at this place. The main issues to note here is that the main 

OS instance can be considered the “highest” hierarchical point in the distributed OS infrastructure, 

i.e. that can principally control all other instances and serves as a main communication point for any 

centralised actions. It therefore should maintain a general overview over all other instances, in the 

sense of location, status and availability.

Notably the infrastructure can host multiple main OS instances and share resources with other OS 

instances. This implies however, that multi-tasking capabilities are provided on the shared resources 

and that the process identification can be clearly associated with either instance. Even though this 

case is not explicitly addressed by S(o)OS it is nonetheless covered by its architectural principles.

Similarly, it is not necessarily implied that multiple applications running for the same user and even 

potentially interacting with each other all have to be hosted in the main instance. Instead, it may be 

sensible to instantiate one main OS instance per individual application and realise scheduling and 

other  cross-application capabilities  in  a  hierarchical  fashion.  This  corresponds  to  the  potentially 

hierarchical structure of an application where e.g. threads may spawn further threads at run-time, 

which thus have to be catered as a subinstance of the S(o)OS. 

REMOTE OS INSTANCE

Remote instances execute only work aspects / segments of the overall  application,  i.e. they can 

generally  be  regarded  as  service  hosts  for  application  functions.  These  functions  are effectively 

extracted code segments turned into services that are exposed to the main application thread as 

pure function invocations. From the application point of view, this distribution is either completely 

invisible (if the developer does not explicitly cater for it), or is only indicated through according code 

annotations,  which are  however  not  concretely  defined  yet.  In  either  case,  the  OS  handles  the 

routing and synchronisation of the messages, unless additional constraints are in place.

The remote OS modules are selected with respect to 

1. provide all essential functionalities to the local code segment's execution 

2. reduce the communication overhead with other remote OS instances or the main OS instance

3. reduce the number of memory swaps / cache misses.

Therefore, remote OS instances are essentially very small in nature and do not offer the capabilities 

for  standalone full  application execution.  Remote OS instances can furthermore be regarded as 

subordinated to the main OS, similar to a master-slave or client-server architecture. 
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OS COMPONENTS

As it has been noted in the preceding sections, the individual OS instances really consist of a set of 

modules, which in turn can be compared to services in so far as they expose a common interface 

that allows remote (or local)  interaction among these modules.  Following the modular / service-

oriented approach, the OS service instances or modules are agnostic to the communication mode 

necessary for interaction with one another. The overall functionality / capability (in this case of the 

operating  system)  is  composed  as  an  aggregation  of  services,  or  more  correctly  of  individual 

functionalities that are exposed as services,  i.e. with a standard interface and on top of a generic 

communication  infrastructure.  It  is  hence  irrelevant  for  the  individual  segments  whether  the 

respective  services  are  local  (i.e. do  not  require  messaging)  or  remote  (which  potentially  even 

requires routing support). However,  the dynamic and adaptive nature of the scheduling made in 

S(o)OS will properly account for the different latencies that may be experienced when deploying the 

various modules in different ways over the physical topology.

In  the  web  service  /  Grid  case,  the  according  communication  management  is  handled  by  the 

middleware,  though in the holistic case such as pursued by S(o)OS, the according support is not 

underlying the execution, but actually acts “on the same level”. This however enables the messaging 

capabilities to distinguish better between different  communication strategies,  thus removing the 

overhead for local messaging, where invocation would be sufficient (see e.g. the conflict between 

OpenMP and MPI).

What  is  more,  due  to  the  interaction  mode,  the  individual  functionalities  do  not  need  to  be 

implemented in exactly  the same fashion,  i.e. the modules can be specifically  developed for the 

respective resource type. This allows for quick adaptation to new processor models and hardware 

types without affecting the rest of the OS. 

In summary and in accordance with the grid  and web service based concepts,  these services  or 

modules can be regarded as separate function or code entities that can be hosted anywhere and 

used  transparently  from  another  location.  It  must  be  noted  that  within  the  context  of  this 

document, we use “module”, “service” and “component” synonymously unless otherwise stated.

2.B) S(O)OS LAYOUT CONCEPTS

As  discussed  above,  the  modular  architecture  implies  that  S(o)OS  can  be  deployed  across  a 

distributed infrastructure without a specific  deployment architecture. In  principle,  the OS can be 

fully distributed, i.e. with every module or segment being hosted on a different resource. However, 

it is obvious that this will fail for lack of communication support on the one hand and due to missing 

state  support  on  the  other:  in  order  to  coordinate  the  execution  of  the  OS  as  a  whole,  some 

functionalities  need  to  be  made  available  at  specific  times  across  all  instances.  For  example, 

communication needs to be generally  available,  whilst  scheduling related functionalities are only 

necessary during execution of the respective resource.

GENERIC DEPLOYMENT ARCHITECTURE OF A DISTRIBUTED OS 

Before investigating the specific deployment options for S(o)OS in more detail,  it is  necessary to 

examine  the  general  distribution  options  in  environments  such  as  pursued  by  the  project.  In 

particular, we need to distinguish between centralised and distributed deployments:

In the centralised case, all core controlling and management instances are located at a central point 

that can be reached by all service and code instances in the environment (see Figure 13) – this has 

the  advantage that  the  information  source  is  always  known  and  that  reallocation  of  services  / 

resources can be more easily propagated. At the same time, the central instance however becomes 

a  bottleneck  (as  discussed  in  the  context  of  monolithic  kernels)  and  a  single  point  of  failure. 

Centralised systems generally do not scale well.
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As  opposed  to  that,  in  the  fully  distributed case,  all  instances  have  to  host  at  least  the  base 

capabilities related to controlling and management (see  Figure 11),  so that they do not have to 

query a central instance for instruction and control information every time. Accordingly, the system 

becomes more failure resilient and in particular much more scalable. However, depending on the 

use  case,  the  degree  of  distribution  can  quickly  lead  to  a  management  related  communication 

overhead if all nodes have to share the same information which may arise from different endpoints 

– in these cases the distributed case leads to a all-to-all communication across the whole network. In 

addition,  it  is  more difficult  to  keep track  of  potential  reallocations,  as the location information 

either has to be distributed to all potential communication points, or some mechanisms for routing 

and updating has to be introduced.

The respective models can be extended by a hierarchical  substructure through which the relevant 

information is propagated in a hierarchical fashion, i.e. through locally connected layers that each in 

turn are connected to  lower  layers.  This  way, the information does not need to be propagated 

throughout the whole network and the communication overhead is restricted to the substructure. 

At the same time however, propagating the layers adds delay due to the messaging route, so that 

lower level will get access to the information later than higher levels (cf Figure 12 and Figure 13).
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Hierarchical  layouts  are  particularly  useful  when  the  actual  dependencies  between  the  hosted 

instances are non-uniform,  i.e. when some nodes require only parts of the information and with 

different timing constraints. By exploiting this information and layouting the network accordingly, 

the  communication  overhead can be reduced to a minimum,  whilst  maintaining a  maximum of 

adaptability and dynamicity.

In S(o)OS we can note that next to control and management data, the dependencies between the 

executing code segments  play  the  major  communication role,  according to  their  data  and state 

relationships. Just like in the HPC case, the according communication overhead can lead to severe 

performance reduction which should be avoided in either case. We can note thereby that the OS 

relationships are implied by the code dependencies, as – in the strictest case – the OS modules will  

not communicate with each other if the application does not (directly or indirectly) request it.
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Figure 12: Architecture of a hierarchical centralised deployment



It thus becomes obvious that the best (code and OS) module distribution relates to a hybrid hier-

archical  model  where  the communication  links  reflect  the  dependencies  between  the  individual 

code segments and their timing constraints. In other words, the deployment should strive to reduce 

the communication overhead whilst satisfying the timing constraints. For example, a local scheduler 

instance per tile / processor may be responsible to scheduling all code segments within that domain, 

but will itself be subject to a higher-level scheduler which triggers the respective code block as a 

whole.

Another typical example relates to resource discovery,  where the individual resource description 

sources can encapsulate multiple levels of aggregated resources, such as a full processor, instead of 

the individual cores or a full rack, instead of the full node details. This higher level information can 

either integrate all lower-level resource descriptions, or abstract from it by providing a more holistic 

view on the information.  Either  choice affects the communication strategy  as more  information 

implies a higher amount of data (and according maintenance), whilst more abstract data implies that 

additional queries may have to be executed in order to acquire details that are potentially required.

Further distribution and deployment details of the modules according to the code behaviour and the 

infrastructure requirements will be subject to further in-depth research in the second phase of the 

project. 

INTERACTION BETWEEN INSTANCES

As noted before and as elaborated in more detail in section V. 1. , the challenge for the distributed 

operating system consists in maintaining the state information and communication links between all 

instances of both code and operating system. The according overhead should thereby be reduced to 

a  minimum so  as  to  improve  the overall  execution  performance – this  is  closely  related  to  the 

classical  problems  in  distributed  execution  efficiency.  It  has  already  been  discussed  above  that 

normally  some  form  of  communication  middleware  takes  over  responsibility  for  injecting  and 

maintaining  the  interconnects.  Depending  on  the  type  of  system,  these  interconnects  are 

comparatively dynamic and well-adjusted to the infrastructure – however, due to the huge range of 

different interconnects and usage types,  the respective middlewares are not interchangeable and 

start causing problems in hybrid infrastructures,  or at least require the developer to invest more 

effort into coding the according application, thus at the same time making it more portable. One 

specific example that recently arose in high performance computing related to that consists in the 

mixed multi-core - multi-processor programming, which requires the developer to use both OpenMP 

and MPI [48].

By converging these different communication forms on the operating system level, the developer is 

relieved of this effort and allows the environment to decide which type of interaction to use on basis 

of the deployment and distribution in the infrastructure. As S(o)OS has to be aware of the code 

deployment (and hence hosting resources), it can derive the available communication paths from 

the resource description (see section V. 3. ) and select (and enact) the according protocol. We must 

however, distinguish two types of communications that arise from segmenting and distributing the 

code: (1) explicit communication and (2) implicit communication.

Explicit communication is fixed in the source code by the developer. It must thereby be respected 

that  if  the  developer  uses  a  specific  communication  protocol  at  this  level,  it  is  difficult  for  the 

operating system to adapt this to the specific infrastructure, so that this form will not exploit the 

advantages  of  the  OS  communication  support.  Under  certain  circumstances,  however,  the 

communication invocations may be intercepted and replaced with an appropriate protocol.

More interesting however is implicit communication, which derives from the fact that the code may 

be segmented  at  location unintended by the developer  so as to exploit  the infrastructure best. 

Implicit communication is not encoded in the application and has to be identified and provided by 
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the OS instead (cf. V. 1. ) - this implies awareness of distributed state and dependencies across code 

segments. S(o)OS must identify these points and intercept / redirect state access, invocations etc. 

according  to  the  distribution  across  the  infrastructure  and  the  implicit  communication  modes, 

without the code execution being affected – in other words, communication becomes invisible to 

the application.

What is more,  the OS itself  has to incorporate such communication strategies into its  very own 

execution,  as  the  individual  OS  modules  may  be  effectively  arbitrarily  distributed  across  the 

infrastructure.  Cross-module  communication  must  therefore  be  enables  in  an  efficient  manner 

employing different communication modes whilst being invisible to the modules themselves –  i.e. 

they  should  not  be affected  no matter  whether  the  respective  module  is  local  or  remote.  This 

implies that the right communication modules need to be accessible without enacting additional 

protocols – in other words in local cache or at least memory. The choice of modules ( i.e. protocol 

support) thereby depends on infrastructure layout and dependencies across resources.

Example: Virtual Memory

For the purpose of better understanding, we will describe the behaviour and usage of messaging on 

the OS level in the context of a typical program behaviour, namely accessing memory / data, without 

going into an in-depth discussion of memory management. What is important to notice in this case 

is  that  all  typical  operating  systems  expose  a  virtual  memory  address  space  for  the  executing 

application, but handles the actual source of the data internally. Frequently accessed data is thus 

maintained in cache, whereas rare, secondary data may be shifted to the hard-drive. Implicitly the 

“virtual” memory space of an application can exceed the available RAM, thus also ensuring that no 

memory  conflicts  across multiple applications  /  services  /  system functions occurs.  Without  the 

recent middleware support, this means that the essential OS functionalities are organised somewhat 

similar to the box with the black frame in Figure 14.

Within  S(o)OS  this  diagram gets  extended  by  typical  middleware  support  aspects,  i.e. access  to 

network exposed storage – directly or indirectly. This means in particular that additional network 

handling functionalities need to be added (Figure 14, full diagram). 

Without going into details of the individual modules' functionalities, the main point of the S(o)OS 

messaging support is to redirect an access attempt to the appropriate resource – notwithstanding 

whether that's cache, RAM, hard-drive or a remote storage. For example, the local virtual memory 

management system might identify that the actual source is located in a remote processor, so it will 

convert  the  access  attempt  into  a  message  based  invocation  to  that  remote  instance.  The 
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communication manager (here represented by the Network HAL and Port Manager) will enact the 

appropriate protocol for the request. 

At the reception side, the request triggers an interrupt that causes the local memory manager to be 

invoked and identify the actual source of the respective virtual address space (cf.  Figure 15). The 

manager  can  deal  with  this  access  attempt  like  with  a  local  request  and  take  according 

consequences to adjust the memory's relevance, thus lifting it e.g. from hard-drive to RAM. What is 

more important in this context is that the requester does not need to know these details about the 

actual  source,  but  just  its  location  in  the  infrastructure.  In  the  context  of  service-oriented 

architectures,  we refer to this as “double-blind invocations” to denote that the location must be 

resolved twice in the communication process [49]. 

Notably, the destination identified by the requester does not necessarily have to be the actual data 

source, but instead might cause the remote memory manager to initiate the same network based 

access  process.  Accordingly,  the  request  may  be  routed  further  according  to  the  potential 

dynamicity of the distribution and deployment. This process extends the storage hierarchy along the 

line indicated with the new Von Neumann architecture model in section II. 1.a) but at the same time 

complicates  estimation  of  timing  behaviour,  i.e. effective  latency  and  bandwidth.  Memory 

management must therefore respect the potential delays for access according to the dependency 

tables gained by behaviour analysis. In principle, similar methods for runtime data rearrangement 

can be employed, as for local memory management, i.e. moving frequently accessed memory closer 

to the requester etc. However, here also the same concerns for runtime rearrangement apply as for 

code (cf. section II. 5. ).
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V. CRITICAL OS CAPABILITIES

In this section we focus on some critical components of the OS design and architecture, discussing 

what options and alternatives are possible.

The discussion is particularly focused on:

• code segmentation and analysis;

• speculative parallelisation;

• resource description, discovery and matching;

• scheduling.

1. CODE ANALYSIS AND SEGMENTATION

The code analysis and segmentation related modules primarily fulfil two main tasks: (1) monitoring 

the code  behaviour and (2) adapting the existing code to the destination resource specifics.  The 

principle  idea  behind  this  set  of  components  consists  in  the  fact  that  parallelisation  and  more 

importantly  distribution  of  code  depend  primarily  on  the  communication  (data  and  message 

exchange)  density  between  the  respective  candidate  threads  (or  segments).  The  code  analysis 

examines the behaviour of the application in terms of these dependencies and relationships and 

applies  extended  (graph)  segmentation  principles  on  the  so-gained  information  to  identify 

potentially  distributable parts  of the  code.  This  may imply transformation strategies  in order  to 

improve the dependency layout, or allow for more structured data exchange. The patterns gained 

this way can also be exploited to identify hardware requirements, restrictions and preferences, such 

as vectorisable code and size of loop unrollment. 

The point of this set is not to automatize parallelisation, but to improve code concurrency for even 

higher degrees of parallel execution (better resource utilisation), and to support the developer in 

easily creating more efficient parallel code, by exploiting specific patterns in the dependency graph 

and feeding them back, exploiting them automatically and exposing them in form of annotations.

INTERNAL ARCHITECTURE PRINCIPLES

Given  the  typical  architecture  of  modern  processors,  the  supervising  and  analysis  related 

functionalities can be achieved in multiple ways, since a multitude of information is required which 

can be gathered from different sources. In particular we can distinguish between (a) intercepting all 

relevant transactions, (b) building a managed or virtual environment, where all according operations 

are  executed  “safely”  and  finally  (c)  completely  statical  (“offline”)  analysis  basing  only  on  the 

available  code and not  its  execution  behaviour.  Obviously,  these  approaches  allow for  different 

implementations, as they have different implications on the system requirements.

Figure 16 depicts the general principle of the code analysis & segmentation cycle: the four main 

conceptual tasks relate to 

1. Analysing the code with respect to dependencies, relationships etc.

2. Generating a dependency graph according to the information gathered during analysis

3. Identifying potential segmentation points according to min-cut graph theory (i.e. to minimise 

the dependencies across the cuts)

4. Segmenting  the  code  and  injecting  communication  points  to  ensure  distributed  execution 

capabilities

During the analysis related tasks (1 and 2), the major point for the environment consists in gathering 

and providing relationship information with minimal impact on execution, yet with enough detail to 

improve performance. The segmentation part is denoted by identifying the best match towards the 
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infrastructure in terms of hardware suited for the code requirements and layouts suitable for the 

communication needs. 

The following sections discuss how the individual tasks can be realised technologically.

1.A) CODE BEHAVIOUR ANALYSIS & MONITORING 

Analysing the code behaviour can be executed either offline, i.e. prior to code execution either by 

the compiler itself or a dedicated analysis engine, or online, i.e. whilst the code is actually running on 

a  physical  machine.  The  main  difference  between  the  two  techniques  relate  to  the  type  of 

information that can be gathered: whilst offline analysis primarily provides the information about 

"static" code relations - such as invocations, global and local data scope etc. - online analysis allows 

for  gathering  the  "dynamic"  code  behaviour,  i.e.  even  the  data-dependent  workflow  and  the 

dataflow in general. Notably, the relationship information gained from online analysis is subject to 

changes  basing  on  the  input  data  used,  and  therefore  can  potentially  lead  to  different 

segmentations. One major task is therefore to extract the points of stability from this information.

Complete offline analysis implies that the analysis is executed independently of code enactment and 

therefore of any information or support from the operating system. The information (dependency 

graph etc.) could therefore be provided by a third party application, or even by a human user (see 

also programming models). Implicitly, there are no specific requirements from offline usage that are 

not covered in online usage. 

In the case of online analysis, the monitoring / analysis related modules need be able to access and 

gather information about the current execution behaviour with minimal (ideally none) impact on 

code execution performance. 

In order to generate the code information graph in the desired fashion, the following data should be 

gathered: 

• dataflow dependencies:

• memory accesses (for data flow dependencies);

• I/O accesses;

• register accesses;

• workflow dependencies:

• instruction pointer access / changes.

Notably, in particular gathering low-level information, such as register access,  impacts heavily  on 

code execution and principally requires an intermediary visualisation layer to intercept the according 

operations in the first instance. In order to acquire this information, three possible options exist:
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1) Virtual Execution Environment / Interpreter 

The most straight-forward approach consists in executing the respective code in a completely virtual 

environment, where each register and memory access etc. can be interpreted / analysed prior to its 

execution. Due to the nature of this approach, performance is comparatively bad - what is more, 

distributed  execution  of  parts  of  the  code  becomes  more  difficult  in  a  completely  virtualised 

environment, reducing performance even further. 

Since  we do not  want  to  map between  different  environments  in  this  context,  but instead  can 

assume that the code was compiled (or already adapted) for the platform it is being executed on, 

the virtualisation does not have to actually cater for execution of the operations, but just for their 

interpretation. This allows serious speedup of the execution. 

The  main  task  of  the  according  interpreter  would  therefore  consist  in  assessing  the  respective 

operation(s) for potential relationships / dependencies with other parts of the code. In all  other 

cases, the operation can be executed directly on the chip. This requires however, that the context 

switches back and forth between OS (ISA interpreter) and the running code, thereby still impacting 

considerably on execution. It should / could be investigated whether execution on a second core 

could reduce the context switching overhead. 

Components: 

• File and / or Memory Access: to load the code operation wise (see external dependencies) 

• ISA interpreter/emulator (“code analyser”):  checks the current operation for any impact on 

dependencies (i.e. memory access etc.); simulates their execution 

• Dependency manager: maintain all the dependencies information, such as last accesses etc. to 

relate them.  

• Graph Generator: produces the dependency graph on basis of the interpreted commands and 

the context / state information

2) Behaviour Interception

The second approach consists in "just" intercepting access to memory, I/O, and registers. Whilst this 

obviously reduces the amount of information gathered, it still provides all necessary information for 

graph generation and increases the execution performance considerably. Further to this, most of the 

according modules / functionalities are already part of modern OS and HW architectures in order to 

allow  separate  execution  environments  (multi-tasking)  and  I/O  control.  However,  intercepting 

register access is currently hardly possible without seriously readapting the code (see Option 3) or 

virtualising the environment (see Option 1). 

As opposed to classical virtual memory and I/O managers, the extended version needed here would 

have to create access annotations to derive dependency information. 

Components: 

• Extended Virtual Memory Manager (EVMM): monitors not only how often which memory part 

is accessed, but also by whom, how and when 

• Extended I/O Monitor (EIOM):  like the EVMM monitors when,  how and by whom external 

resources where accessed 

• Virtual Registers (VR): intercepts and analyses register accesses. 

• Graph Generator: see Option 1

Effectively  the  components  in  this  case  are  extensions  to  memory  management  and  general 

messaging, with the addition of virtual register management.
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3) Code Rewriting

As a final resort, the code can be rewritten at compilation time with the specific goal to identify all 

the potential points of dependencies - more specifically, by replacing all memory, register and I/O 

accesses  with  dedicated  system  calls  to  modules  that  annotate  the  respective  memory  space, 

register etc. The annotations can then serve the dependency analysis. 

Whilst  this model is effectively very similar  to interpreting the individual operations,  it increases 

execution performance considerably. It furthermore allows for a certain degree of distribution, as 

long as the according annotation modules are either locally available or via a communication route 

(in which case the respective module becomes a bottleneck). 

Components: 

• Code Transformer (part of Code Segmenter and Code Adapter): converts dependency specific 

operations into OS module calls to EVMM, EIOM and VR

• Extended Virtual Memory Manager (EVMM): similar to option 2, but on system call 

• Extended I/O Monitor (EIOM): similar to option 2, but on system call 

• Virtual Registers (VR): similar to option 2, but on system call 

• Graph Generator: see option 1 

1.B) CODE TRANSFORMATION AND ADAPTATION 

As a second part of exploiting the code analysis and segmentation, the metadata gathered by the 

code  analysis  step  needs  to  be  analysed  with  respect  to  their  potential  distribution  in  the 

infrastructure, and the best destination resources for execution. Generally, it cannot be assumed 

that the appropriate ("best") resource distribution exists and is available. In order to make best use 

of the existing resources, this task is therefore ideally constituted by three major steps: 

1. identification  of  the  resource  layout  and  the  generic  capabilities  of  the  resources  in  the 

infrastructure 

2. segmentation of the code according to the layout and the potential adaptations - this implies 

selection of the resources to be used 

3. adaptation of the code segments according to the destination platform 

Thereby the degree of resource information changes drastically between these individual steps: at 

step 1, the resource information is just high-level to potentially steer a recompilation, or at least to 

enable selection of the right branch in a "multi-compiled" code, i.e.  where the source has been 

compiled to multiple high-level destinations. Step 3 however requires the full details of the selected 

resources in order to execute the final optimisation and adaptation tasks.

The tasks involved in transformation and adaptation form primarily functions rather than modules - 

however, as the functions may have to be provided independently from one another, they may turn 

into services that are effectively the same as OS modules. 

The main functions are the following: 

• Code (or Graph) Segmentation: finds the best graph segmentation according to dependencies, 

concurrency and overlap. Depending on the mechanisms selected for communication and state 

maintenance, as well as potentially for online, distributed code monitoring, the segmentation 

will also have to insert communication points to maintain distributed information (see also code 

transformation) 

• Code Transformation (“Code Adapter”):  takes  care of  adapting the code to the destination 

resource. As discussed, this may take different forms, ranging from recompilation to pattern 

replacement.  This  module /  function could also incorporate capabilities  for  injecting explicit 

communication operations and replacing access commands (see above). 
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• Resource Requirement Identification (part of Code Segmenter and Performance Predictor): 

through  pattern  analysis  in  the  dependency  graph  and  on  code  level,  specific  resource 

requirements  are  identified,  such  as  vector  support,  cache  size,  communication  latency, 

precision etc. This information is fed to resource discovery. 

1.C) EXTERNAL REQUIREMENTS AND DEPENDENCIES 

Next to the internal functionalities, the process depends on information and capabilities provided by 

"external"  modules,  i.e.  modules  that  fulfil  other  purposes  than  strictly  code  analysis  and 

segmentation related. Notably, some of the functionalities / modules presented in the preceding 

section are actually adaptations, respectively extensions of existing OS functionalities, such as virtual 

memory management or I/O monitoring. 

Further to the external requirements, the code also has impact on other modules, respectively in 

order  to fully  exploit  the functionalities  that code analysis  & segmentation aims at (namely  the 

exploitation of implicit  concurrency of the running code), other modules need to provide certain 

capabilities,  that  come  implicit  from  the  segmentation.  For  example,  state  maintenance  across 

segments can exploit the dependency information gathered during behaviour analysis. 

REQUIREMENTS TOWARDS OTHER MODULES (DEPENDENCIES) 

As  noted,  the  code  analysis  and  segmentation  capabilities  require  a  set  of  information  and 

functionalities from other modules in the operating system. The following lists these functionalities 

without proclaiming  specific  modules to  handle them,  as  this  depends on discussion across  the 

project: 

• Resource Information: the actual code segmentation and adaptation depends heavily on the 

capability to gather information about the available resources, their location and their specific 

usage details,  such as instruction set,  cache size etc.  The information may be gathered in a 

multi-step procedure, where different queries are posed depending on the current task in the 

segmentation procedure.

Data needed:  available resources;  resource  capabilities & specifics  (such  as cache size  etc.); 

infrastructure layout (including latency, bandwidth etc.)

Related components: Resource Manager 

• Monitoring:  in  order  to  execute  code  behaviour  analysis,  the  system  status  of  multiple 

parameters related to memory, I/O, registers, instruction pointer are required - the source for 

this information depends on the setup option chosen (see above for details)

Data needed: memory access, I/O access, register access, IP movement (all with timing and / or 

frequency,  and  type  of  access  (read,  write,  size));  expected  performance  given  a  specific 

algorithm

Related  components:  Virtual  Memory  Manager,  I/O  Manager,  Monitoring  system,  State 

Manager, Dependency Manager

• Execution Control: in order to execute code in a managed, respectively controlled fashion, the 

system needs to be able to control scheduling, process management etc.

Related components: Scheduler, Process Manager, Code Adapter

Impact On Other Modules 

The information gathered from code analysis and segmentation can only be effectively put to use, 

when  other  components  exploit  the  according  information  correctly.  As  opposed  to  the 

requirements  section  above,  this  section  therefore  does  not  describe  which  information  are 

required from other modules, but which information is provided to other modules and how they 

should use it. 

60 | P a g e D5.3 First OS Architecture S ( o ) O S



• Migration: obviously, in order to actually execute the segmentation, i.e. to distribute the code 

across the environment, the OS must be able to migrate code segments to a different location. 

Depending on the time of execution, the code may be currently running, about to be run, or 

paused.  Generally,  we  must  assume  that  migration  is  only  possible  during  locally  paused 

execution. This does not mean that the whole application must be halted - in fact, currently 

unused segments can be migrated at any time.

As  part  of  migration,  all  dependencies  needs  to  be  maintained  -  this  does  not  only  mean 

maintenance of the communication (see below), but also maintenance of state (see also below) 

and availability of the relevant OS modules. This latter part could imply either moving them with 

the  code,  having  them  available  on  the  destination  resource,  or  inserting  according 

communication links. The relevant information (which module, when and how) is encoded in 

the segmentation graph generated during code behaviour analysis.

Data provided: dependencies (including rough timing and type of content

Modules affected: Code Migration 

• Distributed execution: the main purpose of code analysis and segmentation consists in enabling 

concurrent,  distributed  execution  of  various  code  segments  forming  the  application.  By 

segmenting an application at "unintended" locations, i.e. where the developer did not cater for 

the actual distribution, context and state information becomes corrupted. Distributed execution 

needs  to  provide  means  that  enable  a  "virtual"  execution  environment  where  state, 

communication etc. is all maintained. This means mostly that the OS modules need to provide 

means  to  route  communications  and  memory  /  register  accesses  or  provide  the  according 

information in a different way (see communication)

Modules affected: execution management

• Communication:  communication,  as  intended  by  the  programmer,  i.e.  such  as  writing  or 

reading to a device, loading from the internet etc. but also explicit messaging to other threads 

or processes, must be explicitly handled by the operating system so as to route it to the correct 

endpoint. The endpoint may furthermore be potentially dynamic, i.e. vary over time. What is 

more, the connection TO the endpoint may imply different communication protocols (ranging 

from  intercore  to  TCP/IP),  which  needs  to  be  catered  for  by  the  OS.  In  other  words,  the 

communication means must be transparent to the application. The dependency graph provides 

the general  communication information (i.e.  which code segments  communicate  in  the first 

instance),  thus helping the maintenance of  routes etc.  Generally, however,  the OS needs to 

provide a fall-back mechanism in case the graph does not depict the according dependency (e.g. 

because it was never used before).

Data provided: dependencies (communication links between segments)

Modules affected: general messaging

• Distributed  State  Maintenance:  any  application  /  process  maintains  its  own  environmental 

state, i.e. content of register, memory, stack, heap etc. Through segmentation and distribution, 

this  context  information  gets  disrupted  and  therefore  needs  to  be  maintained  at  different 

locations  at  the  same  time.  Obviously,  different  mechanisms  are  possible  to  execute  state 

maintenance, such as: push data on availability, pull data on necessity, block push / pull, push / 

pull ahead of time.

The according communication mechanisms need to be artificially introduced into the code in 

order to ensure that state is maintained properly. Alternatively, any state related request needs 

to  be  intercepted  by  the  OS  (see  code  behaviour  analysis above  for  details).  Again,  the 

dependency graph gained  by  code behaviour  analysis  provides  information  about  the  state 

dependencies and hence helps in adjusting the communication points.

Data provided: dependencies (communication links between segments)

Modules affected: State manager, dependency manager
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1.D) ARCHITECTURE SKETCH

The overall integration of Code Analysis and Segmentation into the operating system takes a slightly 

higher-level stance than most of the other components. As described in more detail in chapter VI. , 

concurrency  increasing  related  mechanisms  are  not  essential  for  the  working  of  an  operating 

system,  though  they  are  relevant  for  the  specific  goals  of  S(o)OS  (cf  above).  Accordingly,  even 

though the respective components tightly integrate with the other OS components, this does not 

imply that the latter require the former for functioning, but rather the other way round. 

Figure 17 depicts the general behaviour of code analysis and segmentation in the context of the 

related components and functionalities. The figure thereby focuses on the offline analysis behaviour, 

i.e.  without  considering  the  additional  issues  for  execution  –  the  dotted  arrows  denote  the 

additional  feedback  loop  for  online  monitoring.  As  can be  seen,  the  system  essentially  takes  a 

(compiled or uncompiled) code and generates a set of additional information for steering execution. 

It can also generate adapted code on basis of this information, if so desired. 

2. BINARY CODE ADAPTATION

DISTributed Adaptable Executable (DISTAE) is the software layer that will allow the OS the portability 

of programs among different heterogeneous computing units of the system and run the different 

parts of the code simultaneously in a distributed and/or heterogeneous environment.

2.A) MOTIVATION

Previously  a  program execution depended mainly  on the compatibility  with the OS which could 

essentially run on any hardware infrastructure. But at the current moment, the trend in hardware 

infrastructure  development  is  to  increase  the  divergence.  The  new  semiconductor  fabrication 

technologies do not allow to continue increasing the performance of a single processing unit as fast 

as it  has been possible  in  the last  decades.  Manufacturers  have  only  been able to  increase  the 

processor computational power by adding new specialised units, creating new ISAs (Instruction Set 

Architecture) or new extensions to the current ISAs.

But at the same time the improvements in miniaturisation are leading to the new era of the multi-

core and may-core processors; implementing many heterogeneous cores in the same silicon die [24]. 
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This causes that the operating systems cannot run on any platform any more, making the execution 

of programs even more complex. And in the case that they can execute, then it is very difficult to 

obtain  a  substantial  performance  gain  of  each  different  hardware  architecture,  which  makes 

necessary to adapt the code to the available resources in each moment.

The overall complexity is increased even more in distributed systems as the heterogeneity [25] has a 

tendency to increase and it is added to the normal complexity of this kind of systems. And when it is  

a dynamic system,  this means that the configuration and availability of the computing resources 

change during the execution, the programs have to be modified and adapted during execution time 

to be able to execute and to make a better use of the platform in which it is running to achieve a 

reasonable performance.

In this chapter we  are going to analyse the means that are necessary in the OS architecture for 

DISTAE to be implemented and work correctly in a distributed and heterogeneous system. We will 

describe  the  minimum  OS  functionality  needed  and  optional  functionality,  that  if  not  strictly 

necessary, simplifies the implementation and/or improve the execution performance.

2.B) SET OF FUNCTIONALITY THE OS MUST PROVIDE

For the DISTAE layer to work, the OS will have to provide these modules and services:

CODE ANALYSER & SEGMENTATION

This module has the task of monitoring the behaviour of the code of a program and decide how to 

segment it.

CODE DISTRIBUTOR & SCHEDULER

This  module decides how to map the different  code segments of  the program extracted by the 

analyser to the resources available in the system.

CODE COMPILATION AND ADAPTATION

The compiler can produce different products depending on the desired result. The output can be:

• Generic source code: The original source code is cut in segments and wrapped into extra code 

that  will  deal  with  the  communications,  data  types  conversions  and  synchronisation.  Each 

segment is packed and then distributed to the computing units where it is finally compiled into 

the local binary code.

• Intermediary code: The source code is cut in segments, wrapped intro extra code that will deal 

with the communications, data types conversions and synchronisation. Then each segment is 

compiled into intermediary code. This code is called RTL (Register Transfer  Language),  it has 

already been parsed and has a first level of generic optimisations. Later it is packed and sent to 

the mapped processing unit, where the compiler will finish the compilation from intermediary 

code to binary local code.

• Binary code: The original source code is cut in segments and wrapped into extra code that will 

deal with the communications, data types conversions and synchronisation. Then it is compiled 

into binary called in these different ways:

• Uni-path package:   The package is only compiled and optimised for one architecture, this 

means that portability is reduced, but latency is improved as there is no need to make a 

final adaptation on the destination processing unit.

• Multi-paths  package:   The  package  contains  different  binary  files,  for  different 

architectures. The size of the package is increased, which affects negatively the latency, 

but at the same time increasing the portability.
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• Binary package translation:   This is a technique for making a binary uni- or multi-path 

package compatible with an architecture that has no binary path in the package. This is 

done by translating the binary code. The most common way is create a virtual machine, 

translate the binary instruction intro high level language code, and then compile it into 

a binary code. This is for example the technique used by the TCG (Tiny Code Generator) 

of  Qemu.  The  disadvantages  are  that  the  performance  and  latency  are  worse,  in 

exchange of being able to execute in a processing unit for which it was not prepared.

INTER SEGMENT COMMUNICATION

Different architectures have a different way of representing the data internally. That is the reason 

when code from different architectures is interacting all data types should be translated before and 

after getting into the communication channel. The data representation usually affects this items:

• Endianness:

• Word Endianness

• Bit Numbering

• Memory Address Space

• Memory Alignment

The OS should also handle and define the communication channel. It could be that two segments are 

running on  different  cores  of  the  same  CPU (in  this  case  the  can communicate  using  a  shared 

memory model or message passing, without needing to translate the data types) or in two different 

processing units connected over the Internet with very different architectures (then the OS will need 

to  handle  the  communication  and  the  translation  of  the  data  types).  All  this  should  be  done 

transparently to the application.

2.C) OPTIONAL EXTENSION 

PROFILING

Software  profiling  is  an  optimisation  technique.  It  is  a  form  of  dynamic  analysis  that  measure 

memory use, function calls (frequency and time), usage of particular instructions... Once the profile 

is realised, the information is analysed to find how to optimize the application. This information is 

very useful as the behaviour of the application can be difficult to analyse statically as there is no 

indication of the input parameters.

ADAPTED/COMPILED CODE STORAGE

The adaptation and compilation of code might take a considerable time. This specially affects the 

execution  of  small  running  time  segments,  as  the  compilation  time  can  be  higher,  drastically 

reducing the performance.

That is the reason it makes sense to have some local storage with already adapted and compiled 

code, for segments that are going to be used many times.  This has no advantages for first  time 

execution, but in subsequent executions, the latency can be greatly reduced.

COMPILATION CACHE

Some times the distributed segment might need to be recompiled because of many reasons like 

introduce  optimisations  derived  from  profiling  analysis  or  to  update  the  source  code  of  the 

application. Often this changes are small and most of the already compiled code, stored in object 

files, is valid. The use of tools that caches de compilation of object code so that it can be reused on 

the next time, and avoiding to recompile the whole code can greatly speed up recompiling time. This 

tool can be implemented by hashing different kinds of information that should be unique for the 

compilation and then using the hash sum to identify the cached output[27].

64 | P a g e D5.3 First OS Architecture S ( o ) O S



DISTRIBUTED COMPILING

There are some cases in which a processing unit can not adapt and compile a segment package or it 

is very slow in doing it. To solve this situations distributed compilation can be used in which another 

processing unit that is better suited for code adaptation and compilation generates the binary code 

for the target architecture. This implies to have cross-compilers installed [26].

2.D) CODE DEVELOPMENT

There are different  programming models that can be used in the implementation depending on 

what the OS provides and what the programmer wants to achieve, but that in principle interact with 

the code analyser and segmentation:

• Annotations: The  programmer  can  write  annotations  for  expanding code,  giving  indications 

about the behaviour of the program that can not be guess by static analysis. This annotations 

should suggest which chunks of the code could be segmented for distribution and which others 

should be kept as a single unsegmented unit.

• Automatic: If there is a lack of annotations then the code analyser with the profiling information 

if  available  and according to  the characteristics  of  the system and the code/application will 

decide how to segment the code.

2.E) INTERACTION WITH OTHER OS MODULES

SAM has effect on other modules:

• Resource Discovery: The resource discovery module finds the different processing units and its 

characteristics which will affect the adaptation of the code based on it unique peculiarities.

• Code analyser & Segmentation: How the code analyser decides to segment the code influences 

the adaptation. Depending on the characteristics of the segments it might need to be better to 

compile  it  locally  or  using  distributed  cross-compiling.  Also  different  compiler  binary 

optimisations (flags) might have different results depending on the code segment.

• Scheduler: The scheduler algorithm influences the adaptation in a few ways. Depending on if 

the segment is going to be run multiple times on that processing unit, it can keep the already 

adapted code for further reuse. If the other segments with what the segment is communicating 

are in different cores of the same processor, then the adaptation of the communicating later 

will be different as if they have to communicate using another kind of network.

3. RESOURCE DESCRIPTION

A resource  description component  stores  information of  (part  of)  the hardware  system state.  It 

potentially holds information about the entire system, part of the system, or only the hardware that 

is used by the OS instance the resource description component is running on. It can contain both 

static and dynamic information about the hardware state. It is comparable to the System Knowledge 

Base found in the Barrelfish OS [29].

3.A) MOTIVATION

In  order  to  decouple  low-level  heterogeneous  resources  from  higher  levels  and  to  aid  the 

development  of  programming  models  that  hide  the  complexity  of  future  of  architectures  from 

developers, the execution environment of applications has to be made resource aware.

The resource description component can assist other OS components to meet the requirements set 

out  for  S(o)OS.  The  resource  information  captured  by  this  component  can  be  used  to  improve 

efficiency,  as  code  can  be  tailored  as  much  as  possible  to  the  specific  characteristics  of  the 

hardware.  Including  dynamic  information  in  the  hardware  model  will  also  improve  potential 

scalability,  as  saturated  shared  resources  can be  identified,  which can  be subsequently  avoided 
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when executing other threads and/or code segments. The resource description component also aids 

in the support for heterogeneous platform, by making node-specific information far more explicit, 

and making commonalities between nodes (e.g.  both are 4-wide SIMD) apparent. This  will  make 

certain optimisations more platform-agnostic, and hence increase heterogeneity support.

The Resource Description functionality is needed by the Code Analysis and Segmentation one to 

provide information about the system state. It also provides resource information to the Resource 

Discovery component.

3.B) MINIMALLY REQUIRED OS FUNCTIONALITY

In a minimal setup of the resource description component, only the static resource information is 

considered.  In  the  minimal  setup  configuration,  a  system  information  “database”  can  be  pre-

configured and loaded at boot time of the component.  A minimal  setup would only require the 

following OS functionality:

OS FUNCTIONALITY: VIRTUAL FILE SYSTEM

A virtual file system is an abstraction on top of the different file  systems loaded on the running 

system. It allows applications to access storage devices in a uniform way, at the same time it allows 

to simulate storage devices (like RAM-disk) and to modify a file many times and only write it once in 

the storage device, after confirming the data is not going to be modified any further.

A  VFS  is  needed  to  get  access  to  the  pre-configured  resource  information  at  boot-time,  and 

potentially write any modifications to the component configuration.

3.C) OPTIONAL OS FUNCTIONALITY

The previously  described  set  of  functionalities  is  required to  implement a  minimal  setup  of  the 

resource description component. We should also consider however additional OS functionalities that 

are not strictly necessary, but would either simplify the implementation of the resource description 

component, or allow it  to have additional functionality. Do note however that such functionality 

does not have to be implemented as a separate module per se, but could be implemented as part of 

the resource description component, requiring only the minimal OS functionality.

EXTENSION 1: DYNAMIC SYSTEM DATABASE

In the minimal setup, a system database was preconfigured and loaded from a storage device. An 

extension to this scenario is to dynamically built this database at either boot-time or run-time (which 

could be saved to a storage device). This would allow the resource description component to deal 

with a dynamic environment in which system resources can appear (e.g.  hot-swap), or disappear 

(e.g. failure). Such an extension would require the following OS functionality:

OS FUNCTIONALITY: RESOURCE IDENTIFICATION

Can  acquire  hardware-specific  information  of  the  local  node  through  the  likes  of  CPUID-like 

instruction  or  alike.  Can  acquire  hardware-specific  information  of  remote  nodes  through  PCI 

information query (lspci) or alike.

EXTENSION 2: DYNAMIC INFORMATION

Besides static information of resources, such as cache size, instruction set, architecture type (VLIW, 

SIMD, etc), system information that is more dynamic in nature could also be stored. Such as cache 

and/or memory usage, or bandwidth and latency of a link scheduled by a best-effort mechanism. 

Such an extension would require the following OS functionality:

OS FUNCTIONALITY: SYSTEM MONITOR

Provides dynamic information about the system: cache-usage, stall-frequency, link usage, etc.
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EXTENSION 3: INFORMATION SHARING

There  are  several  cases  where  there  might  be  more  than  one  resource  description  component 

running on the system: the component is replicated for performance reasons, the system is dynamic 

as a result of mobile devices, etc. In these cases it might well be possible that separate instances 

have different information about the system state. Information could be exchanged  to provide a 

larger  or  more  precise  view  of  the  system.  Such  an  extension  would  require  the  following  OS 

functionalities:

OS FUNCTIONALITY: MESSAGING

A messaging  functionality  provides  the processes  a  means to  communicate  either  within  an OS 

instance or across OS instances.

OS FUNCTIONALITY: SERVICE DISCOVERY

A service discovery  functionality allows processes or components to find other components that 

provide a certain functionality (e.g. resource description).

3.D) IMPLICATIONS OF USE-CASE SCENARIOS 

Although the application requirements certainly influence the resource information that might be 

required (and most likely also provided), the environment in which an application is run has equally 

large effects.  The need for extension 2,  “Dynamic Information”, is considered mostly application 

dependent (as opposed to environment dependent). Both the HPC and RT application scenarios will 

be evaluated according to effects of the most likely execution environment of the application.

SCALABLE HPC APPLICATION

In the HPC scenario,  the full details of the system on which an application is run are most likely 

known. Meaning that a minimal setup, where the system “database” is preconfigured,  is a feasible 

deployment option for this scenario. Depending on the reliability of future hardware, the HPC use-

case might require extension 2 “Dynamic System Database”, as nodes might drop out of the system.

SCALABLE DISTRIBUTED RT APPLICATION

In  the  RT  Scenario,  the  application  will  most  likely  be  executed  on  many  different  system 

configurations  (desktop  machines),  so  extension  2  “Dynamic  System  Database”,  is  most  likely 

required  for  the  resource  description  component  to  work  properly.  In  case  of  the  application 

running on a mobile device, it might be worthwhile to offload parts of the computations to a more 

powerful  resource.  In  this  case  resource  description  components  running on different  machines 

might  exchange  information  regarding  each  others  configuration,  hence  requiring  extension  3 

“information sharing”.

3.E) HIERARCHICAL RESOURCE DESCRIPTION

Rather  than  repeating  all  information  on  resource  description  and  discovery,  this  section  only 

provides  some  additional  notes  with  respect  to  how  hierarchies could  be  exploited  to  improve 

discovery and segmentation - this could affect timing, as well as quality.

CONCEPTS / PRINCIPLES OF HIERARCHICAL DESCRIPTIONS 

Every system is composed of multiple resources, which in turn - in particular nowadays - incorporate 

multiple functional units, which may be further broken down into execution units etc. For example, a 

High Performance Cluster System can be broken down as follows: 

1. Cluster 

2. Racks 

3. Nodes 
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4. Processors 

5. Cores / Processing Units 

6. Individual ALU elements (multipliers, ...)

Even more accurately, the description would span a tree where each branch holds the parts that 

form the higher level abstraction, e.g. Node => Network on Board; Processors; RAM; I/O etc. 

At each level, different information about the system can be gained which can hence be matched to 

different requirements. For example, for running a large scale application, the information about the 

total number of cores available would be gathered on cluster level - on the other hand, the network 

on chip information etc. may not be of interest. On the other hand, a small scale application with 

timing constraint will not look at the cluster level etc. This distinction becomes even more relevant, 

the further down the segmentation advances, i.e. the lower the code abstraction level and the more 

details can / have to be respected. 

Obviously, higher level resource descriptions can expose lower level information upon query, but 

not  the  other  way  round.  However,  the  general  purpose  consists  in  reducing  the  size  of  the 

information through abstraction.

DISCOVERING RESOURCES USING HIERARCHICAL DESCRIPTIONS 

As noted in the preceding section,  the hierarchical  description concept allows for mapping more 

abstract requirements to a destination platform. Hardware abstraction is closely related to the scope 

of program investigated: 

• looking at  the program as  a  whole,  the hardware requirements  relate mostly  to  the whole 

system

e.g. required libraries, types of resource (gpu, cpu,...) 

• Application kernels have typical hardware requirements on an intermediary level

e.g. shared memory, vector processors etc. 

• at  the  lowest  level,  I.e.  across  a  few  operations,  the  hardware  requirements  become  very 

specific, such as

size of the cache, vectorsize, latency etc. 

Along that line, even though the requirements become more specific at lower level,  they at the 

same  time  become  less  binding.  I.e.  the  requirements  have  impact  on  performance,  not  on 

executability in the first instance. 

Regarding  the  actual  discovery  process,  the  hierarchy  can  be  exploited  to  reduce  the  size  of 

information gathered with each query - this however implies that the results cannot really be stored 

locally (requester side) and that it is more complicated to store the full information (provider side).

4. RESOURCE DISCOVERY AND MATCHING

In the future, computing nodes with thousands of cores may be connected together to form a single 

transparent computing unit which hides the complexity and distributed nature of the many core 

systems from applications.  In  such many core  environments  resource  discovery  is  an important 

powerful  building block to exploit highest capabilities of all distributed resources.  It aims to adapt 

the application's  demands to the resources potentials  by discovering and finding resources  with 

deep understanding of the resource  specifications according to application resource requirements. 

The resource discovery functionality is required by the “Code Analysis and Segmentation” to find the 

available  different  processing  units  and  exploit  their  characteristics  information.  It  also  uses 

Resource  Description  Provider  to  get  information  about  the  resources  and  employs  Resource 

Requirement Identifier to get information about the  code  specific resource requirements. 
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4.A) RESOURCE DISCOVERY

Resource discovery encompasses locating, retrieving and promulgating resource information in large 

networked  environments.  Resource  discovery  supports  both   exact  marching  and   partial  query 

which the generated  queries  can be ranged  from the simple  key-based  queries  to  the complex 

range-based  queries.  It  uses  hierarchical  chord  distributed  hash  tables  to  maintain  resource 

information  which  consist  of  the  detailed  descriptions  of  all  the  processors  in  distributed 

environment. DHTs are essential robust  components to provide storage and lookup services in peer 

to peer networks. Despite the existing master/slave data replication architectures approach DHTs 

are more reliable and provide performance guarantees. In multi-core environment we need to avoid 

exchanging unnecessary resource discovery information between nodes. It helps to reduce overload 

in the network during discovery procedure. To achieve this purpose we described resources in multi 

layer resource description which  implements using hierarchical chord DHTs.

Categorising  resource  specifications  includes  computational and communicational  properties  and 

behaviors   in  there  layers  from  more  abstract  information  to  more  detailed  characteristics.  In 

resource discovery we are considering resource description to avoid generating overload for the 

discovery  traffic.  By  using  hierarchical  resource  description  model   we  just  transmit  necessary 

information  and  resource  description  according  to  the    status  of  the  discovery  procedure. 

Hierarchical Distributed Hash Tables maintain all the benefits of flat DHTs and support extra valuable 

features for bandwidth usage of efficient caching.   In many core systems we have physical hierarchy 

of core-cpu-node, therefore HDHTs are the most efficient design for adaptation to the underlying 

physical structure. In DHTs we store key-data pairs by assigning keys to different processing units 

(cores)   in  many  core  system,  In  fact  the  Queue  Management  System  components  which  are 

distributed service directories employ H-Chord DHTs  to keep resource description for all the cores in 

a chip. Each QMS maintain the description values for all the keys for which it is responsible and for 

each core there is only a unique key. Chord specifies how keys are mapped to cores, chips or nodes,  

and how a node can find a data for a specific key or  the range of keys by first locating  the nodes 

which are responsible for  those particular keys.  In resource discovery,  DHT nodes in Distributed 

Computing  Environment  communicate  with  each  other  by  using  Anycast  messaging  mechanism 

which  is a robust scalable messaging mechanism for managing and locating resources. It allows a 

node to send a query to a group of nodes that are using the same Anycast address. The receivers of 

the message could be only one or several  group members where the  receiver nodes satisfy  the 

query requirements for metrics such as latency, availability and load balancing between the target 

servers.  Generally,  an  Anycast  system  must  provide  scalability,  location  awareness   and  load 

awareness   for  all  the nodes  group.  This  means  that it  should  be able  to  recognize  the  closest 

resource  to  the  query  sender  in  the  network.  The  system also  should  avoid  overloading  group 

members  in the case of high demand for a particular resource, therefore system must be aware  of 

resource utilisation in Anycast group.

The general  architectures  for  Resource  Discovery  are Structured (Directory  Based),  Unstructured 

(Directory Less) and Hybrid.

STRUCTURED

In a structured architecture we can understand systems on certain nodes of which the resource 

information is  fixed and pre-configured.  Structured  architecture is  classified into Centralised and 

Distributed. Resource descriptions are pre-configured on specific nodes or controlled by resource 

discovery system.

A-Central  ised  

RD: In centralised or directory system, the information about the resources which are provided by all 

other  nodes  is  stored  on  pre-configured  or  auto-configured  nodes  in  a  limited  number.  In  this 
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system nodes or the directory,  periodically update the registered resource information (resource 

description) in central repository. 

OS: With centralised resource discovery, the OS is characterised by:

1. Using the centralised OS architecture.

2. Running one instance of OS on each resource.

3. Only "Head-Node" OS instance has resource description component.

4. All resources should have resource discovery component.

5. All resources should have application description component to extract the application resource 

requirements.

6. All resources should have Query Generator Component to generate queries.

7. Resource discovery components can generate queries into  resource description component on 

"Head-Node" OS instance.

8. Resource  matching  or  resource  allocation  component  maps  the  queries  according  to  the 

resources.

9. Resource reservation component is required for Multimedia applications.

B-Distributed

RD: In decentralised systems, the distribution of resource information is controlled by RD system 

and the information is almost distributed between all the participant nodes in a predefined manner. 

Overlays of this type commonly make use of Distributed Hash Tables (DHT). Decentralised systems 

can be extremely effective for searching resources using unique identification. 

OS: With distributed resource discovery, the OS is characterised by:

1. Using the distributed OS architecture.

2. running one instance of OS on each resource.

3. All resources have their own resource description component.

4. All resources should have resource discovery component.

5. All  resources  should  have  application  description  component  to  extract  the  resource 

requirements  of application.

6. All resources should have Query Generator Component to generate queries.

7. Resource discovery components can generate queries into the resource description component 

on other OS instances.

8. Resource  matching  or  resource  allocation  component  maps  the  queries  according  to  the 

resources.

9. Resource reservation component is required for Multimedia applications.

UNSTRUCTURED

Distribution  of  the  resource  information  among  the  nodes  is  not  followed  by  a  predefined  or 

controlled  mechanism.  In  spite  of  the  decentralised structured  system,  the  system  built  as 

unstructured or classical peer to peer (UP2P) supports partial matching and also complex querying.

HYBRID

The classical P2P service discovery architecture do not scale well in the large networks, that is why it 

should be replaced with  the peer  to peer overlays that utilize a hybrid architecture.  The hybrid 

solution tries to combine the advantages offered by the classical structured and unstructured service 

discovery systems. It discovers the resources/cores that are needed as fast as possible and supports 

exact and partial matching. 
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C-Hybrid

RD: locating  resources  in  hierarchical  levels:  core-chip-node-network  using  DHT  and  Anycast 

messaging. 

OS: 

1. Using the distributed OS architecture.

2. running one instance of OS on each resource.

3. each group (group of cores in chip or node level) of resources have one Resource Description 

Provider component on header-node.

4. All resources should have resource discovery component.

5. All resources should have application description component to extract the application resource 

requirements.

6. All resources should have Query Generator Component to generate queries.

7. Resource  discovery  components  can  generate  queries  into  the  local  resource  description 

component

8. Resource  discovery  queries  can be forwarded  to  the  remote  Resource  Description  Provider 

component.

9. Anycast  messaging  is  used  to  disseminate  queries  to  the  remote  resource  description 

components.

10. The history of successful queries would be recorded on each individual resource storage.

11. Resource matching or resource allocation component maps the queries to the resources

12. Resource  reservation  component  is  required  for  particular  applications  such  as  Multimedia 

applications.

4.B) REQUIRED OS COMPONENTS

• Resource Discovery: locating the most appropriate available resources for applications queries. 

It is initiated by an application query, continued by finding the resource, and ended by mapping 

the query to the resource. To do these procedures we need to deploy the models/components 

for application description , resource discovery, resource matching and resource description.

• Resource Description Provider: A component to offer static and dynamic information about the 

resources

• Resource Requirement Identifier: Resource discovery protocol is required to be supported by 

an  application description  model  with  the  ability  to  estimate  the  resource  requirements  of 

applications before scheduling decisions are made. 

• Code Analysis and Segmentation: The resource discovery should have an initial trigger. Code 

Analysis and Segmentation component starts the discovery procedure and after that, it will get 

the list of discovered resources.

• Query  Generator:  Provide  mechanism  to  generate  query  according  to  the  application 

description

• Messaging: Support Anycast messaging

• Storage Component: Provide support to maintain Distributed Hash Tables and Resource Cost 

Tables.

4.C) IMPACT ON OTHER OS COMPONENTS

• Resource  Reservation  Component:  Provides  mechanism  to  reserve  resources  for  particular 

applications which  means that resources are only freed when the process has finished.

• Load  Balancing  Component:.  When  the  resource  discovery  step  is  fulfilled,  the  resource 

allocation procedure is  requested to match the most  suitable resource for execution of the 
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application according to several policies. As far as it is impossible to plan the real cost of an 

execution  at  the  resource  allocation  step,  load  unbalances  might  appear.  Therefore  Load 

Balancer  component  is  required  to  distribute  overload  of  each  of  the  nodes  among  other 

alternative potential resources. 

• Resource Matching Component: Mapping of the applications to the resources

DEPENDENCIES 

Other OS components related to Resource Discovery are described below.

Related OS 

Component

 Description

Resource Description 

Provider

A component to offer static and dynamic information about the resources

Resource 

Requirement 

Identifier

Resource discovery protocol is required to be supported by an application 

description model with the ability to estimate the resource requirements 

of applications before scheduling decisions are made. 

Code Analysis and 

Segmentation

The resource discovery should have an initial trigger. Code Analysis and 

Segmentation component starts the discovery procedure and after that, it 

will get the list of discovered resources.

Query Generator Provide mechanism to generate query according to the application 

description

Messaging Provide support for Anycast messaging. Anycast  is a robust scalable 

messaging mechanism which can be implemented for resource location-

awareness (resource discovery)  and resource load-awareness (load 

balancing) 

Storage Provide support to maintain Distributed Hash Tables and Resource Cost 

Tables.

5. SCHEDULING

Scheduling  refers  to  the  capability  of  the  run-time  environment  to  decide  where  and  when  to 

schedule individual code segments, threads of execution or whole processes. We will refer to these 

generically as scheduling entities from here on, unless otherwise stated.

As detailed above, the S(o)OS layout in terms of how many OS/kernel instances manage how many 

resources/cores,  may include multiple possibilities.  As a consequence,  the scope of  a scheduling 

algorithm (i.e., in terms of where software can be deployed) may be:
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• one single core;

• a subset of the cores in the same physical system handled by the same kernel (e.g., traditional 

multi-core or multi-processor platforms or memory-coherent multi-core tiles in tile-based ones);

• a  cluster  of  cores  in  the  same  or  different  processors  (i.e.,  in  the  case  of  an  SSI-enabled 

distributed kernel);

• a whole many-core processor, or a whole physical system;

• multiple physically separated systems interconnected through networking adapters. 

Clearly,  the  OS  component  realising  the  scheduling  functionality  may  possess  various  different 

architectures, in the above cases. For example, for temporally scheduling tasks on the same core, 

the scheduler needs to reside on the same core and operate very quickly. For load-balancing the 

workload among a cluster  of  cores,  the scheduler  needs  to  be distributed over  the cores to be 

scheduled, and it will not operate too frequently, due to the inherent overheads in the core to core 

communications. Furthermore, for load-balancing among processors and cores of multiple physical 

systems  interconnected  via  networking  adapters,  the  scheduler  will  mainly  be  realised  at  a 

middleware  level,  and  exploit  hierarchical  arrangement  of  scheduler  and  sub-schedulers  as 

appropriate, possibly resembling the physical topology of the distributed network.

The target  cores  over  which  scheduling  entities  may  be  deployed  are,  from  the  viewpoint  of  a 

scheduler with a precise scope:

• either homogeneous, if all the resources in the scheduler scope are symmetric; 

• or heterogeneous, if they are not.

Other key tunable characteristics of a scheduler are:

• whether or not the scheduler is  preemptive,  i.e., it allows the currently executing entity to be 

interrupted for executing another (more urgent/important) entity; in non-preemptive mode, it 

is responsibility of the thread itself  to invoke explicitly the scheduler in order to allow other 

threads to execute, if and when needed;

• whether or not the scheduler is fair,  i.e., it allocates (temporally  and/or spatially) computing 

power to segments, threads, processes, applications, users in a (possibly weighted) fair way.

In order to operate correctly, a scheduler needs to have available a number of essential information:

• some meta-data about the resources in its scope (i.e., their provided capabilities);

• some  meta-data  about  the  requirements  of  the  scheduling  entities  to  deploy  (required 

capabilities);

• some way to (efficiently) match required capabilities and provided ones (limiting a scheduler 

scope may help in making such operation more efficient). 

In  future  many-core  systems,  it  is  envisaged  that  the  scheduling  decisions  will  be  possibly 

undertaken:

• by the hardware (e.g., what done by GPGPUs) 

• by the OS;

• by properly designed middleware, in a limited fashion; 

• by the application (see next point), in a limited fashion.

The scheduler behaviour can be controlled up to a certain degree through proper APIs:

• applications can drive the deployment logic  (where and when I  want my threads to run),  if 

(expert) developers really want/need it;

• applications  can  discriminate  among  the  relative  importance  of  various  threads  (or  of 

applications):

• either through priorities;

• or through relative weights (i.e., weighted fair scheduling).
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Some  (expert)  developers  might  want  to  exploit  such  capabilities  to  customise  the  scheduling 

behavior. For example, as an extreme, we might have finely-tuned code that has been optimised to 

be executed on a given hardware: nearly all scheduling decisions have been pre-investigated and 

tuned by the developer; the OS is just instructed to obey to the developer-supplied scheduling and 

deployment decisions. On the other hand, it is expected that most of the developers will not deal 

with such sophisticated capabilities, and therefore most developers will actually rely on the OS self-

adaptation mechanisms for most of the scheduling decisions.

We focus on this last case, which constitutes the most interesting and challenging one from an OS 

perspective. Scheduling decisions not specified/constrained by the applications/developers are left 

to the OS, according to:

• the configured scope/system-wide goal, or “cost” to optimise (see below);

• possible  specific  goals  provided  by  the  application(s),  for  example  satisfying  certain  precise 

timing requirements (as needed for RT workloads).

Furthermore, in order to allow the scheduler to dynamically act and re-act, the OS needs:

• a way for understanding which deployment decision is better (see possible goals as mentioned 

above); this is normally achieved on the basis  of the defined “cost” function that drives the 

scheduler logics;

• a way to predict the performance speed-up (e.g., in terms of execution time and/or throughput 

of a code section or application) due to changing scheduling decisions.

5.A) PERFORMANCE PREDICTION

The  prediction  of  the  performance  of  specific  code segments,  or  application  threads,  or  whole 

processes or applications, may be helped by reusing monitoring data coming from past observations 

of the same code over the past. However, it is rarely achievable to have a comprehensive set of such 

past data, encompassing the high variety of possible run-time conditions that may arise.  On one 

hand,  application-level  parameters,  such  as the  resolution of  a  video streaming  application,  will 

highly influence the performance experienced by the same code segment. On the other hand, even 

when operating on the same data set, software will behave differently if deployed on heterogeneous 

processing  units.  Finally,  due to interferences  on the in-chip shared resources,  such as the NoC 

interconnect in tile-based systems,  independent applications running on different cores may still 

affect each other on the performance side.

One possible way to deal with this problem is through the use of proper mathematical models, that 

may help in assessing (even roughly) what is the expected performance of a code segment under 

certain run-time conditions which have not been observed/monitored yet.

Therefore,  critical  challenges  for  S(o)OS  scheduling,  and  particularly  for  deployment  and  load-

balancing decisions, are:

• performance prediction in presence of heterogeneous computing; 

• performance prediction in presence of heterogeneous NoC latencies; 

• performance  prediction  in  presence  of  multiple  values  of  application-level  parameters 

influencing the performance.

The second point is further detailed in the experimental results detailed next.

5.B) EXECUTION TIMES ON TILE-BASED SYSTEMS

In order to highlight one of the critical issues in programming future many-core systems, namely the 

variability of the execution times in tile-based architectures, we performed a set of experiments on 

the Intel Single-chip Cloud Computer. This is a 48-core Intel Architecture many-core experimental 

processor prototype chip, mainly built to study many-core CPUs, their architectures and the possible 
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techniques to program them. The 48 cores on the SCC are based on the Intel P54C processor, and 

are distributed in 24 tiles, with two cores per tile. As shown in Figure 19, the tiles are interconnected 

by an on-die two-dimensional 6-by-4 mesh network using Direction-Ordered Routing (DOR). The chip 

has four memory controllers (labelled in Figure 19 as MC0, … MC3) each capable of addressing 16GB 

of external memory and, thus, a total of 64GB of globally shared (but incoherent) memory. Each tile 

has a small  fast  local memory as well  (16KB,  8KB per  core),  referred to as the Message-Passing 

Buffer (MPB), that can be accessed by all cores on the chip, and which is mapped to a new memory 

type needed to support message passing. Each P54C core has also L1 (16KB for data and 16KB for 

instruction) and L2 (256KB) cache memories. Cache coherency is not supported, so each core needs 

to explicitly flush cache lines, in order to actually share memory with the other cores.

The  default  software  set-up  on  the  Intel  SCC  has  a  modified  version  of  Linux  by  Intel,  with  a 

completely distributed kernel where each core runs its own instance of a single-processor Linux OS. 

Also, it includes a user-space library, called RCCE, which can be used to access special features of the 

chip, such as fast core to core message passing primitives (these do not involve the OS kernel to 

operate). Alternatively, core to core communications via the special message-passing local memory 

can be realised by exploiting a special driver built into the kernel that allows to see a virtual network 

interface on each core OS, so that each core can communicate with each other core via standard 

networking primitives (e.g., TCP/IP).

We performed a set  of latency  measurement experiments  to  determine the latency  involved  in 

network-on-a-chip accesses to local message buffers and off-die private memory. We used the RCCE 

library routines for synchronisation and message passing. Note that, for all the experiments reported 

below,  the  traffic  within  the  NoC  was  almost  completely  under  the  control  of  our  profiling 

application, thus we posed ourselves in the most predictable conditions.

Network-on-Chip Latency

The NoC latency  was  determined  by  measuring  the  round-trip time for  sending a  message and 

replying to it, using the RCCE library, between each pair of cores.

The 3D graph in Figure 20 reports on the Z axis the round-trip times of sending a 32 byte message 

packet 100,000 times from core 0 to each other core, whose tile coordinates are reported on the X 

and Y axis.

Comparing also with the other collected round-trip times, obtained using each other core as source, 

we can conclude that, as expected due to the DOR routing, message-passing round-trip times are in 

a linear relationship with the routing distance between the communicating cores.  Note that the 
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Figure 19: Layout of the 24-tiles mesh network within the Intel SCC chip. Cores have IDs  

increasing along the X tile coordinate, then the Y coordinate, e.g., Tile (0, 0) includes cores 0  

and 1, Tile (5, 0) cores 10 and 11 and Tile (5, 3) includes cores 46 and 47.
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RCCE primitives for sending data through the  MPB do not use merely the MPB memory itself, but 

they need to read/write the data to send/receive from another application-supplied buffer which 

needs  to  be  allocated  in  the  main  off-chip  memory.  This  means  that,  in  theory,  the  times  for 

performing data transmissions across cores via the RCCE message-passing primitives do not include 

merely  the time for exchanging data through the MPB,  but also some access times to the main 

memory. However, in the case of this experiment, such data was so small that it fitted entirely into 

the cache, so the access times towards the main memory affected in a negligible way the outcome 

of our measurements.

Off-chip memory access latency

The access to off-chip memory by the core pass through the NoC and are routed to the appropriate 

edge tile depending on which physical memory bank the required byte resides on.

We performed an experiment allocating pages from each of the four banks of off-chip memory and 

measuring the time to read and write from/to these pages from each core. The results are shown in 

Figure 21, where the top pictures refer to accessing the first memory controller (MC0), whilst the 

bottom ones refer to accesses towards the third memory controller (MC2). Note that, while the first  

and second memory controllers are attached in the chip close to the corner tiles with coordinates (0, 

0) and (5, 0), the closest tiles to the third and fourth controllers are not the corner tiles on the last Y 

coordinate (Y=3), but rather the two border tiles on Y=2, i.e., the tiles with coordinates (0, 2) and (5, 

2). This is why, in Figure 21.(b), the minimum-time edge is located along Y=2, and not Y=3.

Summarising, we can conclude that the access times for the off-chip memory is again, as expected, 

linearly dependent on the routing distance between the tile of the core performing the access and 

the memory controller where the target memory locations reside. This is also highlighted in Figure

22,  where  the same  access  times  (average values  among all  the cores)  to  the  off-chip  memory 
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(a)

(b) (c)

Figure 20: Times for: (a) round-trip message-passing between the first core and each other core; (b) read 

times from core 11 to each other core's MPB buffer; (c) write times from core 11 to each other core's MPB  

buffer.



reported above have been plotted as a function of the routing distance between the accessing core 

tile, and the target memory controller.

Loaded Conditions

As stated, the above experiments have been conducted under very predictable conditions, in which 

the NoC in the chip was (almost) merely affected by the traffic imposed by each core separately. 
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(a)

(b)

Figure 21: Times for reading (left pictures) and writing (right pictures) 1MB from/to the off-chip memory 

from each core (coordinates on X and Y axes), when the memory pages are allocated in the first (a) and third  

(b) memory controllers.

Figure 22: Read (top) and write (bottom) times as a function of the routing 

distance between each core and the target memory controller.



However, in a realistic scenario, the cores will be injecting packets into the NoC at the same time, 

causing variability of the memory access times of each other.

In order to highlight this phenomenon, we built an experimental scenario making use of a synthetic 

pipelined application exploiting the full set of available 48 cores in the chip, in order to process data 

coming from some source in chunks. The idea is that, as a data chunk becomes available, instead of 

applying all the needed computations on a single core, the first core only applies a subset of the 

needed computations, then it passes the data to the next core in the pipeline for further processing, 

and so on for all the 48 cores. This has the advantage that the first core becomes much earlier ready 

to process the next data chunk, as compared to having to apply the full set of computations, i.e., a 

pipelined  implementation  is  able  to  increase  its  throughput  in  terms  of  processed  chunks  per 

second. However, the latency of the application will depend on how much time it takes for each 

single data chunk to traverse the whole set of computations made by all the pipeline stages.

Of  course,  our  application  is  synthetic  and  a  real  one  will  hardly  be  capable  of  splitting  the 

computations in exactly  48 quite balanced operations.  However,  we wanted to experiment  with 

what happens when the whole set of available cores is imposing traffic on the NoC, so we used a 

single 48-stages pipelined application to this purpose.

The experimental results obtained on the Intel SCC are reported in Figure 23, where we report on 

the X axis the progressive identifier of the processed chunk, and on the Y axis the processing time as 

experienced by 3 out of the 48 computing stages.

Note that, at the beginning of the experiment, the pipeline is idle, whilst as the experiment proceeds 

the pipeline fills more and more, thus there are more and more stages working concurrently, up to a 

point in which the pipeline is completely filled. Later, close to the end of the experiment, the source 

does not provide data chunks to process any more, so the pipeline stages gradually go back to the 

idle mode, starting from the first stages and going towards the last ones.

As it can be seen, the first pipeline stage, deployed on core 0 (red curve in Figure 23), experiences 

growing execution times during the transitory as the pipeline fills up, due to the increasing traffic 

imposed on the NoC by the other pipeline stages that gradually “wake-up”. This continues up to the 

“steady-state” condition, where the execution time remains constant, till the last processed chunk, 

during  which  still  we  have  a  completely  fully  operational  pipeline.  For  the  last  pipeline  stage, 

deployed on core 47 (blue curve in Figure 23), the execution times behave exactly in the dual way, 

i.e., they are constant from the first processed chunk, that reaches the stage when the pipeline is 
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Figure 23: Execution times in the first, 23rd and 47th stages of the pipeline, as experienced  

on the various chunks processed through the pipeline, in the uncached shared memory case.



already fully operational, then they gradually decrease close to the end of the experiment, while the 

pipeline gradually goes idle. An intermediate stage like the one deployed on core 23 (green curve in 

Figure 23) experiences both behaviours.

The above measured data were relative to a pipeline using uncached shared memory for accessing 

the data, so the interferences among the various cores were particularly amplified.

In  Figure 24, the same figures are reported for the case in which the pipeline stages were using a 

cached  shared-memory  implementation.  As  can  be  seen,  the  general  trend  in  execution  time 

variability follows a similar pattern to the previous case. However, the variability is greatly reduced, 

thanks to the mediation of the cache in accessing the memory. Still, we can see that the execution 

times can potentially  double,  when switching from an empty network-on-a-chip  to a  completely 

loaded one (in the previous case, the first stage was undergoing a multiplication by 6 of its own 

execution time).  However,  the exact  inflation factor  is of course highly depending on the actual 

pattern of access to the memory of the various tasks, as well as on how much the traffic imposed on 

the NoC by the various cores overlap with each other, in their path towards the memory controllers.

5.C) DEPLOYING TASKS IN TILE-BASED SYSTEMS

As  highlighted  with  the  experiments  above,  tile-based  systems  exhibit  different  communication 

latencies  depending  on  the  routing  distance  between  communicating  cores.  In  the  synthetic 

pipelined  application  described  above,  we  played  with  a  few  deployment  options,  in  order  to 

evaluate the impact of the deployment logics on the performance of the application.

First,  we considered a trivial  (or careless) deployment of the 48 pipeline stages to the 48 cores, 

placing the pipeline stages over cores in order of progressive core ID (i.e., the first stage on core 0,  

the last one on core 47).

Then, we considered a smarter deployment aimed at reducing core to core latencies.  Therefore, 

looking at  Figure 1, we deployed the pipeline in a snake-like fashion starting from the bottom-left 

towards the bottom-right tile, then proceeding from right to left on the Y=1 tiles, then again from 

left to right, etc. Precisely, the used cores ordering was: 0, 1, 2, …, 10, 11, 23, 22, …, 13, 12, 24, 25, …, 

34, 35, 47, 46, …, 38, 37, 36.
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Figure 24: Execution times in various stages of the pipeline, as experienced on the various chunks  

processed through the pipeline, in the cached shared memory case. Cores 0 and 47 show generally higher 

times since these cores additionally have the task of reading data from input buffers into the pipeline and 

of writing data from the pipeline into the output buffer.



We considered a pipeline processing an entirely available data-set of various sizes (1, 2, 4 and 8 MB),  

in chunks of a fixed size of 256KB, and we measured the execution time of the experiment under the 

2  deployment  options  just  described.  Also,  each  experiment  was  repeated  using  cached 

computations in private memory and core to core communications based on the RCCE message-

passing primitives,  and using directly  shared cached memory so as to avoid the unneeded extra 

copies of data. Results are reported in the table below. As it can be seen, the advantages coming 

from a proper deployment of the application onto the system are merely noticeable with the private 

memory  implementation,  with  a  speed-up below 0.21%,  however  they are  substantial  with  the 

shared cached memory implementation, with a speed-up between 6% and 10,2%.

Data Size

(MB)

Private memory Shared cached memory

Trivial Smart Trivial Smart

1 3.678 3.670 0.920 0.868

2 4.155 4.151 1.256 1.143

4 5.128 5.117 2.252 2.042

8 7.060 7.054 4.745 4.313

5.D) CODE DISTRIBUTION COSTS AND CRITERIA

In all distributed execution, we pursue some quality-related goals with the execution. As such, in 

most  HPC  cases  the  primary  concern  is  performance,  i.e.  to  achieve  the  maximum  amount  of 

operations in minimum time - this does not necessarily imply that each segment must execute to 

maximum performance. On the other hand, in real-time scenarios, the primary concern relates to 

meeting the time-constraint of the execution, whereas this can either apply to individual segments / 

functions of the code, or even to the overall behaviour of the application as a whole. Notably, HPC 

applications can be considered a specific type of time-constrained use case,  where timing should 

generally be reduced to a minimum.

Furthermore, for distributed real-time applications, the stated scheduling goal of the application is 

to respect its temporal constraints, that may be expressed in form of:

• end-to-end deadline(s): more paths may be associated with e2e deadlines, if desired; 

• throughput  at  the  various  communication  (virtual)  links  among  the  application  DFG 

components.

Differently  from  the  HPC  use-case,  target  figures  for  such  metrics  are  clearly  identified  by  the 

application developer, and/or communicated by the application to the OS, so that the latter may 

know quite well when the currently employed scheduling and distribution decisions are fulfilling the 

application requirements (or what deviations are being experienced).

The according goals need to be maintained and addressed at the OS execution runtime, i.e. need to 

be mapped to application specific criteria. As S(o)OS is not investigating into program optimisation 

per se, the primary concern here relates to the assignment of appropriate resources so as to meet 

these goals. In the most general case, the OS needs to identify the resources that allow for the best 

execution of the respective code segments.  This may involve code adaptation so as to make the 

most  of  the  available  resources.  Following  this  general  case,  the  main  task  is  to  find  for  each  

segment the resources that are best suited for the respective code behaviour.

More specifically, however, the individual segments stand in a specific relationship to the overall 

quality criteria, that may not imply a direct one-to-one mapping. For example, a parallel thread with 

shorter runtime than any other thread to be executed at the same time is not performance critical. 

Also, if a thread has to wait for an input from another thread, it may adjust its execution time to this 

other thread rather than to maximum performance. Similarly, timing constraints may only apply to 
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certain subsections, of which again some segments are "optional", so that the constraints only need 

to be applied to the according segments.  These differences need to be taken into account when 

selecting the appropriate resource and performing the code adaptation task.

A general  solution consists  in making all  segments  execute at maximum performance.  We must 

however assume that:

• not enough resources of all required types are available - in fact there may be certain resources 

that the same application (or multiple applications in fact) compete over (this is generally true 

for limited resources in the system, such as I/O devices);

• multiple options are available for any given segment, i.e. that the segment is not restricted to a 

specific resource type but can be executed in different resources at different costs. Note that 

I/O  resources  such  as  keyboard  or  monitor  form  exceptions  to  this  rule,  but  they  are  not 

considered "executing" resources.

It is noteworthy to mention that scheduling operates in tight relationship with the segmentation 

process of the Code Analysis and Segmentation OS component. This may dynamically parallelise a 

sequential  piece  of  code,  identifying code segments  to be  deployed somewhere  else.  However, 

whether or not it is worth to activate the corresponding scheduling/deployment option needs to be 

carefully evaluated, depending on the expected migration cost associated with the operation. The 

process  can  be  simplified  by  exploiting  hierarchical  "encapsulation"  of  criteria  and  system 

performances, so as to allow for an iterative mapping approach.

MIGRATION & "LIVE COST"

A  special  case  of  comparing  the  deployment  options  consists  in  runtime  re-adaptation  and/or 

migration. Migration is principally only necessary if the quality criteria are not met by the current 

scheduling  and deployment  scenario.  In  particular  for  HPC  applications,  this  can  be  considered 

generally the case if there is a chance that the performance can be improved with a different code  

distribution - implicitly, the cost for redistribution needs to be assessed whenever:

• new resources have been added that have not been assessed yet (or which combination with 

existing resources may lead to changes);

• new resources have been identified;

• new information about the resources is available;

• the current  execution "quality"  is  lower  than the  expected  quality (i.e.  the  assessment  was 

wrong or not enough information was available at the time);

• more information about the requirements of the code is available.

During live  analysis  the  cost  for  code transformation  and migration has to  be considered  as an 

additional impact factor on the overall quality - in particular with respect to time: depending on the 

situation, the execution may have to be halted (or some form of live migration might be possible) in 

order to adapt the according segment(s) and move it/them to the new destinations. If none of the 

respective segments are active at the time and will not be needed during migration time, the re-

adaptation can occur in the background. It is likely, however, that the according segments will be 

required  in  some  form  during  the  adaptation  and  migration  process,  thus  reducing  the  overall 

performance and hence the time-related quality criteria. There may also be segments that would 

benefit from migration to another platform but which have little impact on the overall performance, 

e.g.  if they are only executed once (or one more time),  so that the overhead for adaptation and 

migration exceeds the gain. 

The  main  question  to  be  answered  prior  to  migration  is  hence  whether  the  (potential)  loss  in 

performance  (introduced  by  the  according  overhead)  is  outweighed  by  the  performance  boost 

introduced in the new environment.
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COST ASSESSMENT

In both live migration and offline analysis, we hence require some information about the general 

execution  performance  with  respect  to  the  specified  quality  criteria,  so  as  to  compare  the 

distribution options with one another and thus form a selection.

In addition to that, live migration requires that the cost for migration is assessed so as to respect this 

information in the redistribution consideration. In other words, to estimate whether redistribution is 

worth execution in the first instance. 

Generally  we assume that cost analysis can be executed in the background, i.e. that the analysis 

itself does not affect the execution behaviour. However, this heavily depends on the frequency by 

which such analysis is conducted and its accuracy (influencing the amount of collected data, as well 

as the associated overheads).

EXECUTION COST

The primary concern consists in estimating the relationship between selected environment and its 

impact on the code execution performance. There are two major obstacles to this issue: 

• the runtime behaviour of a given code segment is very difficult (to impossible) to assess. This is 

partially due to the impact of data specific behaviour that e.g. determines the size of a loop 

within the segment;

• the relationship between hardware and execution performance is generally unknown.

Even though most processors are specifically generated for a specific type of code behaviour, 

this does not imply that a general statement about execution performance for any given code 

can be made. 

To overcome these obstacles, there are multiple general approaches which we could use to give 

indicators (rather than concrete values): 

• worst-case performance:  taken from the  real-time domain,  it  is  possible  to  give  worst-case 

performance estimations for specific code types. This does not provide information about the 

execution time experienced most of the times, or on the average;

• algorithmic  kernels:  if  the  code  "function"  can  be  classified,  some  general  execution 

performance observations on specific hardware types can be made. This can be refined further 

with runtime monitoring information (data specific behaviour may impact on this estimation);

• profiling: assess the code execution time on basis of historical data. Whilst this respects data 

specific behaviour, it requires that the code has been monitored for quite some time; it also 

does not provide information about code execution performance on unknown platforms;

• code  annotation:  next  to  automated  information,  the  developer  can  provide  additional 

information that can help assessing execution time. This includes in particular identification of 

kernel types (i.e. algorithmic behaviour) and data space limitations (I.e. indication of the general 

data behaviour, thus providing information about the expected number of loops).

Note that the primary focus of these criteria rests on performance / execution time, as from the 

general project objectives.

USING COST INFORMATION 

As detailed in the context of code analysis and segmentation, the expected execution time per code 

segment  will  be  used  for  selecting  the  best  destination  platform,  but  also  for  supporting  the 

distribution and "parallelisation" decision. 

The general process involves comparing all potential options in terms of destination resources and 

parallel execution. The selection will base on the best match of the criteria against the calculated 

expected behaviour. By exploiting natural constraints and the dependency graph generated during 

the analysis, the according search space can be reduced significantly.
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COST FACTORS 

The following is just an initial list of criteria that participate in specifying the overall execution cost - 

here particularly related to execution time: 

• latency 

• bandwidth 

• dependencies 

• clock rate / fops 

• pipeline 

• specific code requirements towards hardware 

• cache size 

• vectorisation 

• precision

These will be further refined in the second phase of the project.

MIGRATION COST 

For  live  migration,  it  is  insufficient  to  "just"  identify  a  better  distribution  /  adaptation  to  the 

platform, as the migration and adjustment process may delay the overall  execution more than is 

gained by this re-adaptation. In other words, even though the code may run faster, the total time is 

even higher, i.e., the job effectively runs slower. Even worse, it may happen under certain conditions 

that the OS may decide to constantly shift the code, thus never actually executing it.

Thus, effectively, the live migration should only be executed if the gain is higher than the cost, or in 

other  words,  if  the  sped-up  gained  by  the  adaptation  is  way  higher  than  the  total  impact  of 

migration  in  terms  of  delay.  This  includes  direct  delays  (stopping  the  process,  recompiling  it  if 

necessary, setting up the destination and migrating the process + context into the destination), as 

well as indirect ones (delays in communicating with the process, delays in synchronisation etc, i.e., 

wait time). As already discussed in the context of cost assessment in general above, these costs and 

in particular their indirect part is difficult to gather.

In  general  we  can  formulate  that  migration  should  take  place  if  the  remaining  execution  time 

unchanged is far greater than the remaining execution time adapted plus the adaptation time.

This is still an approximation for multiple reasons: 

• multiple segments may be in the middle of execution during adaptation;

• adaptation time does not only affect the respective segments, but also all dependencies - this 

must be encoded in the "indirect" adaptation time of dependent segments.

5.E) REQUIRED OS COMPONENTS

The set of OS components/modules required by the Scheduler component can be listed as follows:

• I/O (network and/or disk) for accessing data; 

• interrupt management (for I/O); 

• process/thread management 

• IPC communications: 

• in-chip IPC 

• off-chip IPC 

• in-chip scheduler 

• off-chip scheduler 

• dynamic load balancer 

• performance predictor/mapper for heterogeneous hardware 

• performance monitoring 
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• resources saturation-level monitoring 

• code migration 

• location-independent access to application data (SSI-like) 

Run-time interactions application<->OS are needed to: 

• retrieve data if not readily available, i.e., loading from disk or remote storage, or fetching from a 

non-reachable memory area - are asynchronous interfaces useful ?

• buffer management (copy-less/copy-free I/O & networking stacks) 

• dynamically scale out (and in, in case it is needed): a proper interface should allow one or more 

application threads to  split  the in-progress computations into more segments/threads to be 

(re-)deployed in a parallel fashion, or to group more segments/threads into a sequential fashion 

if the previous splitting is causing too overhead 

• understanding whether or not the application is suffering of "unbalancing problems" (i.e., if the 

application spin-waits, it may be hard for the OS to understand it is waiting for another thread 

to provide the output) 

Additionally, for RT applications, the OS needs to provide additional capabilities:

• time management functionality;

• timers management functionality;

• temporal scheduling (if a single application thread activated periodically cannot saturate a core, 

it is worth to pack more of them on the same core).

As stated, further run-time interactions application<->OS are needed to understand whether or not 

the  application  timing  constraints  are  being  fulfilled  (i.e.,  the  OS  may  just  have  no  clue  about 

whether or not a deadline was missed).

6. IN-CHIP COMMUNICATIONS

On  a  tile-based  many-core  system,  we  foresee  a  number  of  possible  communication  and 

synchronisation mechanisms among cores:

1. if there are subsets of cores sharing a coherent view of the memory, for example cores within 

the same tile, then we foresee the use of a single OS instance for such a small number of cores, 

and the standard communication and synchronisation mechanisms as available on nowadays 

OSes will work among them; however, for cores crossing the memory-coherency boundaries, 

we will be in one of the following other cases;

2. if there is a fast local memory, for example within the tiles, then it will be exploited to realise 

fast core to core communication primitives;

3. if cores are sharing a global, but non-coherent, view of the main memory, then it is possible to 

share  memory  buffers  across  cores  simply  by  passing  pointers;  the  mediation  of  a  cache 

memory in accessing the globally shared memory means that the program needs to explicitly 

flush and invalidate the cache (either the whole cache, or the affected/needed lines), in order to 

ensure “manually” a coherent view of the memory. For example, after having filled a buffer, 

before sending the pointer to the receiver core, the sender core must flush any pending writes. 

Similarly, before reading the data, the receiver needs to ensure the corresponding cache lines 

are invalidated. An alternative may also be the one to disable the cache, in order to ensure that 

the main memory properly reflects the applied changes to a memory region by a core towards 

the other cores.

For  example,  the  prototype  Intel  SCC  platform  by  Intel  allows  for  the  above  communication 

mechanisms 2 and 3,  but not  1. Indeed,  the two cores in each tile  have independent and non-

coherent caches.  However,  a local memory within  each tile,  referred to as the Message-Passing 

Buffer (MPB), allows for fast core to core communications. These are made available to application 
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developers through a set of primitives that directly exploit the MPB from the user-space, without 

intermediation of the kernel.  Actually, a kernel-level driver allows also for using the MPB memory 

for  realising  fast  TCP/IP  virtual  networking  communications  among  cores,  even  though  the 

performance is expected to be greatly reduced in such a case. Finally, on the Intel SCC all of the 

cores have a global but non-coherent view of the whole memory available across the chip, including 

both the main memory and the local MPB buffers in each tile. This allows for exchanging large data 

segments  across  cores  by  simply  sending  pointers  in  shared  memory  around,  ensuring  proper 

flushing and invalidation of  the involved  cache  memories.  Also,  the fast  MPB primitives  can be 

exploited for sending these pointers, realising very efficient communications.

A comprehensive evaluation of the mentioned communication mechanisms over  the Intel  SCC is 

under way, and it will be presented in a future evaluation deliverable. It is worth to mention that, 

also thanks to our interactions with the Intel support teams, it was possible to identify further bugs 

in the kernel-level drivers supporting cache flushing, which have been fixed only recently6.

7. COMPONENT-BASED ASYNCHRONOUS 

KERNEL

The  component-based  asynchronous  kernel  is  framework  for  implementing  components  for 

distributed  operation  and  interaction  among  cores,  the  system  is  treated  as  a  loosely  coupled 

system, components can be migrated among cores or even machines. Another fundamental feature 

is the asynchronous pattern, which is fundamental in a network environment. The objective is to 

present a framework to implement components in a transparent way to the user without concern 

with message passing and to enable migration in loosely coupled system (e.g.:  cloud computing). 

From  the  point  of  view  of  an  application  the  component-based  model  is  transparent  to  the 

application.

PROVIDED FUNCTIONALITY

• components can be moved across cores, nodes, machines.

• components can interact using message-passing.

• components are abstract, allowing heterogeneous implementations.

• components can interact in a location-independent fashion.

• components can represent processes, threads, files, devices, etc.

• component interfaces are asynchronous.

7.A) MOTIVATION

We consider future many-core systems as a network of independent cores with no cache coherence 

or even memory sharing at certain levels. We also expect this systems to be  heterogeneous. In a 

network system, cores interface with each other using message passing. However, this can lead to 

cumbersome  programming  patterns,  where  the  user  has  to  explicitly  program  with  messages 

instead  of  method  calls.  We  intend  to  use  abstract  component  interfaces,  making  the 

implementation transparent to the user. Thus, a component instance can have:

• a generic implementation,

• a special purpose hardware implementation,

• an implementation for message passing when it is required to interface with another core.

Networks are naturally asynchronous,  i.e., sending a message may require a reply, and the sender 

will have to wait for it. Thus, an non blocking model is fundamental to avoid the overhead of context 

switch of a blocking model. However, operating systems have been programmed using sequential 

6 Fore more information, refer to: http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=195.
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(synchronous) language patterns. Asynchronous methods calls take a completion handler (function 

object or lambda) to invoked when the operation completes, this can happen immediately or later. 

No  assumptions  can  be  made  has  to  when  the  completion  handler  is  executed,  it  will  be 

asynchronously.  We argue that a fully  asynchronous kernel  which does not block should be the 

principle of an operating system for future many-core systems, which have embraced a network 

approach in order to scale.

7.B) REQUIRED OS COMPONENTS

The component-based kernel is a framework to implement kernel components. However, it requires 

some components on its own to provide a working solution. The provided asynchronous interface 

requires  low-level  support  from  asynchronous  primitives.  The  abstraction  provided  by  the 

framework allows for communication using message-passing and for the migration of component 

instances,  including  data  managed  by  a  component  (e.g.,  an  address  space).  This  requires  a 

communication  component  to  provide  an  abstraction  over  different  mediums  and  levels  of 

communication,  and  to  support  optimal  communication,  i.e.,  to  exploit  the  capabilities  of 

communication medium. Finally, a component manager is required to manage component instances 

lifetime and migration.

ASYNCHRONOUS SUPPORT PRIMITIVES

The async primitive provides low level support  for asynchronous completion handlers. This primitive 

contains  a  stack  for  storing  completion  handlers  and  the  required  mechanism  to  dequeue  the 

completions handlers and execute them. When an asynchronous method is called,  a completion 

handler function object is passed as an argument. The completion function object is stored in the 

async primitive stack, it is called when the operation completes with the result of the operation.

The async primitive can be put in wait state which allows it to referenced latter. An asynchronous 

read operation in hard disk would take a considerable amount of time in terms of CPU processing. 

Thus the async primitive would be put in wait state and a reference to it would be stored by hard 

disk driver to be reference latter. The function would return immediately allowing for other things to 

be processed. When the issued hard disk operation completes an interrupt is generated, the hard 

disk  driver  would  then  use  the  stored  reference  for  the  async primitive  and  notify  it  of  the 

completion which results in the invocation of the completion handlers.

COMPONENT COMMUNICATION MODULE

Kernel components need to communicate at various levels and different mediums, it also needs to 

exploit  the  capabilities  of  each  medium  in  order  to  use  the  most  optimal  communication 

mechanism. Thus a “network interface” abstraction must offer several communication mechanism 

which take into account the communication requirements and characteristics summarised below.

The following is a list of possible communication levels:

• core → communication among cores within the same chip.

• chip → communication among cores of different chips/dyes, but same board/chip.

• node → communication among cores located on separate boards.

• rack → communication among cores located on separate racks.

• grid → communication among cores located on separate computers, but same network.

Depending on the communication level characteristics and capabilities, several mechanisms can be 

exploited:

• Shared memory (with or without cache coherence)

• DMA
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• Lazy  Copy  (move  data  to  a  memory  location  that  offers  lower  latency  or  exploit  the  core 

memory management unit to lazy copy in a safe manner)

• Compression (can reduce latency and overhead, e.g. over Ethernet links)

The best communication mechanism will depend on the requirements and characteristics of a given 

scenario:

• message passing

• object migration

• address space migration, copy/cloning

For example, message passing should be short in size, packet oriented, require very low latency and 

guaranteed delivery. On the other hand, for address space migration it's a fixed page size, it may not 

necessarily need a guaranteed delivery as the system can always reissue the request when it actually 

touches the page in question.

One  of  the  requirements  for  kernel  communication  model  is  location  independent  addressing. 

However,  this  is  handled  at  higher  level.  Thus  at  this  level  addressing  is  handled  with  physical 

addresses.  The  “network  interface”  should  be  able  to  handle  unicast,  anycast,  multicast  and 

broadcast addressing schemes.

COMPONENT MANAGER

The component  manager  is  responsible  to  manage the component  instances:  lifetime,  creation, 

destruction and migration. Each component exposes a type information that allows the component 

manager to allocate memory for the component instance, select the implementation, construct the 

instance and destruct it when its lifetime ends. The type information also provide an handler for 

message-passing support, to handle a component specific message. A component type information 

also  exposes  information  that  provides  the  component  manager  a  clear  view  of  resource 

dependencies between the threads of a process for migration purposes.

The lifetime of an instance is managed with a reference count, the reference count keeps track of 

local and remote references.

7.C) IMPACT ON OTHER OS COMPONENTS

The  component-based  asynchronous  kernel  is  a  framework  for  the  kernel  components 

implementation, thus it has an (indirect) impact in all components. 

8. TRANSACTIONAL MEMORY

8.A) KERNEL-LEVEL TRANSACTIONS

The isolated nature of transactions requires to combine them with locks to support network I/O in a 

large scale system. Hence the system should provide additional guarantees like strong atomicity, 

which requires the non-transactional accesses to be serialised with respect to transactional accesses. 

A preliminary work, TxLinux [3], considered the combination of locks and hardware transactions into 

a cooperative transactional spinlock, (cxpsinlock), that presents promising results with the MetaTM 

hardware transactional memory system. The idea is that a transaction that executes an I/O, restarts 

and switches to a pessimistic mode by acquiring a lock and entering a critical section before issuing 

the I/O. The scheduler and the HTM are tuned to nearly eliminate priority and policy inversion. More 

recently, TxOS [2] has been proposed as a transaction-based OS that provides transactions at the 

system level, but that can be nested inside user-level transactions. 
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8.B) MODULARITY IN LOCKING SCHEMES

Existing  purely  lock-based  systems  suffer  from  the  lack  of  modularity  of  locks  and  their  great 

complexity.  In  one comprehensive  study  on Linux bugs  [9],  346  of  1025 bugs  (34%)  are due to 

synchronisation while another study [10] found 4 confirmed and 8 unconfirmed deadlock bugs in the 

Linux kernel v2.5.

Deadlock bugs are inherent to using fine-grain locks in various modules. These locks consist protect 

smaller regions of memory than coarse-grain locks, hence being less prone to false-conflicts and 

enabling  higher  concurrency  between  concurrently  contending  threads.  Nevertheless,  their 

multiplicity tends to lead to deadlocks: two threads waiting to acquire the lock owned by the other.

An example of  deadlock may happen if  for example  when renaming a  file  to  file3 to  file4 

while another rename in the opposite order. Consider the Google File System (GFS) that locks files 

(parent file first and child file second) on the pathname using fine-grain read/write locks to modify 

them [5].

read_lock (/dir)

write_lock (/dir/file1)

update file1

unlock (/dir/file1)

unlock (/dir)

read_lock (/dir)

write_lock (/dir/file2)

update file2

unlock (/dir/file2)

unlock (/dir)

modifying file1 modifying file2

This result would lead to a deadlock if the first rename from file3 to file4 by removing file3 

and  inserting  file4 while  the  second  rename  remove  file4  before  inserting  file3.  This 

scenario indicates the modularity limitations of GFS as any other module locking a file should respect 

the order in which any file of the same level must be protected, in other modules.

root

/   \

dir1 dir2

/      \

file1  •  file2

root

/   \

dir1 dir2

/      \

file1  •  file2

renaming file2 into file1 renaming file2 into file1

In contrast, transactions are deadlock-free thanks to their ability to abort. They do not wait when 

encountering an already acquired lock, but rather abort and roll-back by releasing all the locks.

8.C) FILE SYSTEM USE-CASE: I/O AND SYSCALLS  

PROBLEMS AND SOLUTIONS 

The systems calls are generally atomic and isolated from the rest of the systems and the evolving 

needs of user always require the system to provide more complex services. I/O and system calls are 

different.  While a transaction may create a new file,  the kernel data structures (sys call) may be 

updated  without  necessarily  the  disk  to  be  written  (I/O).  FreeBSD has  adopted  soft  update 

transactions to allow a  rename(x,y) to run concurrently with a  rename(y,x).  This  concurrency  is 

necessary to batch multiple  FS update into a single disk write.  Typically, this  avoids re-writing a 

single block several time to disk---as in the case in the BSD Fast File System (4.2BSD)---even though 

the block must be guaranteed to be written after all its predecessors are safely on disk. However, 

this is  not yet failure atomic and thus fault-tolerant: the disk is not guaranteed to recover from a 

failure as the resulting state may not be consistent. 

WAFL file system ensures that an old bunch of file system data gets updated atomically by recording 

them in a tree structure whose root is updated in a single step. The Berkley LFS and Sprite LFS are 

log-structuring file systems that write all filesystem data in a continuous stream, the log. Although it 
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makes information retrieval more complicated, it is easy to mark the point in the log up to which 

data have been committed and stored and it benefits from consecutive writes without disk seeks. 

Finally, journalling (i.e., log enhanced) FS keep old and new versions of incomplete updates on the 

disk. Only after commit, the new version is copied back to the original location, as in the Linux ext3 

file-system.

MetaTM uses an eager version management while TxOS uses lazy version management. In other 

words, MetaTM stores new values in place and the old value is copied into an undo log, whereas 

TxOS uses shadow copy of kernel objects redirecting all accesses of the current transaction to the 

created shadow copy. This shadow copy plays the role of a redo-log that records all changes before 

they get  reported  the  current  kernel  object  get  replaced by  this  shadow copy.  Thanks  to redo-

logging  and  the  I/O  buffers  to  defer  to  I/O  execution  to  the  commit-time  of  the  transaction. 

Concurrent  transactional  accesses  to  the  kernel  object  are  detected  using  extra  metadata 

information associated to each kernel object. 

8.D) APPLICATION USE-CASE: REAL-TIME STREAMING  

APPLICATION 

The  transaction  abstraction  plays  an  important  role  in  the  design  of  a  real-time  streaming 

applications. Priority-inversion, which consists of a higher priority thread waiting for a lower priority 

thread,  is  a  common problem in  lock-based system that require complex priority inheritance to 

ensure that a blocking thread gets temporarily the priority of the thread it blocks. 

TM embeds contention management that remedy this issue by ensuring that among two conflicting 

transactions  that  is  provided  the  higher  priority  wins.  However,  most  of  the  TM  contention 

managers relies on fixed priorities like timestamps taken at the beginning of a transaction to let the 

older  transaction resumes,  hence it  is  difficult  to adapt  such priorities during the course of  the 

transaction. For the sake of QoS, a task with a high priority should avoid using its recent timestamp 

as its priority and should rather exploit the priority assigned by the OS scheduler. 

A  more  subtle  problem,  often  referred  to  as  the  policy  inversion  problem,  stems  from  the 

combination of real-time tasks with non-real-time tasks in the same OS.  Real-time tasks are not 

simply considered as tasks with a higher priority than non-real-time tasks,  the real-time task will 

always be scheduled  before any other  non-real-time tasks.  The policy  inversion problem can be 

avoided  only  if  the  contention  manager  is  aware  of  the  task  policies  (in  addition  to  the  task 

priorities). For real-time task, one could reasonably considered that the priorities and policies are 

assigned at the granularity of transactions, so that neither the policy nor the priority changes in the 

course of the transaction.

8.E) RELATIONS WITH OTHER COMPONENTS

Scheduler The  transactional  memory  may  be  given  information  from  the  scheduler 

component in order to evaluate the policy and priorities of transactions. It can 

also give in return information about critical  tasks that have been aborted a 

large  number  of  time  reaching  a  threshold  indicating  that  other  conflicting 

transaction must abort in favor of the current one.

Messaging To  achieve  scalability  of  transactions,  the  transactional  memory  component 

should  call  the  messaging  component  to  emulate  read  and  writes  through 

message-passing.  This  is  for  example  a  requirement  for  our  Distributed 

Transactional Memory.

Resource 

Discovery

The transactional memory component should be aware of the component in 

order  to  back-off  a  transaction  instead  of  re-starting  it  right  after  and 

overloading the available resources.

89 | P a g e D5.3 First OS Architecture S ( o ) O S



9. SPECULATIVE EXECUTION

Speculative Execution, or Speculative Access to Memory (SAM), refers to the execution of parts of an 

application out of the logical sequential order, that means, before the execution of the conditional 

operations  and  the  resolution  of  the  data  dependencies.  It  is  a  technique  for  eliminating 

performance  bottlenecks  imposed  by  control  flow,  or  unresolved  data  dependencies  by  static 

analysis. In this chapter the implications, consequences and requirements of implementing SAM as 

an OS service are described.

9.A) MOTIVATION

Computing  industry  relied  on  increasing  the  clock  frequency  and  on  uniprocessor  architectural 

enhancements to improve performance. The situation has changed nowadays, small  architectural 

improvements continue, but power an thermal issues have made the approach of increasing clock 

frequency non feasible any more.  Semiconductor fabrics  continue developing the manufacturing 

technology and according to  the still  valid  Moore's  law,  the  number of  transistor  per  unit  area 

double  every  few  months.  Processors  designers  use  the  additional  transistor  density  to  place 

multiple cores in the same die. This creates a situation in which only multi-threaded applications will 

take advantage of the new available resources and increase performance. To be able to produce 

parallel programs is the main concern of the new multicore era [18].

Many applications exhibit  irregular access to memory,  a complex control flow and dynamic loop 

limits  [21].  Normal  code parallelisation and optimisation need to take a pessimistic  approach to 

guarantee correctness of execution due to data and control dependencies. Being able to resolve and 

remove data dependencies in run-time can dramatically improve parallelisation. SAM can potentially 

widen  the  scope  of  single  threaded  applications  that  can  be  parallelised  by  resolving  data 

dependencies at run-time that otherwise would prevent parallelism from being extracted. SAM is a 

parallelisation technique that is applied to regions of code that might contain a great amount of 

parallelism  but  cannot  be statically  proven  to  preserve  the  sequential  behaviour  under  parallel 

execution. Speculative worker threads execute code out of the sequential order even when these 

may contain a true data dependencies. The master thread keeps the correct sequence of state and 

control flow. While the speculative worker threads, may consume and produce "dirty" values, that is 

the reason it is necessary to track the inter threads dependencies and memory accesses to revert to 

a safe point and restart the computation when a dependency violation happens.

We  are  going  to  analyse  the  means  that  are  necessary  in  the  OS  architecture  for  SAM  to  be 

implemented  and  work  correctly.  We  will  describe  the  minimum  OS  functionality  needed  and 

optional functionality, that if not strictly necessary, simplifies the implementation and/or improve 

the  execution  performance.  This  information  will  be  obtained  from  two  different  SAM 

implementation perspectives; as an OS module, and as an independent user-space library.

9.B) MINIMUM SET OF FUNCTIONALITY THE OS MUST  

PROVIDE

PARALLEL EXECUTION MODEL 

For SAM to be implemented, as an OS module, or as an user-space library, the OS must provide with 

at least a model of parallel execution with communication between the different parallel execution 

units. These can be:

• Shared  memory  (Threads): In  this  model  the  concurrent  components  share  the  memory 

address space. The communication is done by altering the components of the shared memory 

locations and requires some kind of locking mechanism for coordination.

90 | P a g e D5.3 First OS Architecture S ( o ) O S



• Message passing (Processes): In this model the concurrent components do not have a shared 

memory address space, so they have to communicate sending messages to each other (sockets, 

pipes, Transactional Memory...). Reasoning with message-passing model is usually easier than 

with memory shared models, which leads to less errors while programming.

Both  models  can  be  used  for  implementing  an  speculative  execution  service,  although  the 

programming  implications  of  using  threads  or  processes  parallelisation  affect  the  design  and 

implementations  of  the  programs.  At  the  same  time  they  have  different  performance 

characteristics: the memory and task switching overhead is lower in a message passing system, but 

the overhead of message passing itself is greater than for a procedure call. These differences are 

often overwhelmed by other performance factors [22].

Minimum Functionality

For enabling speculative execution, the parallel programming language must provide a minimum set 

of functionalities,  independently of which of both, shared memory or message passing models is 

used. At least this operations are needed:

• Creation: A way to create the speculative threads/processes and set up their initial parameters 

and environment.

• Join: A speculative thread/process must wait for the sequential execution controller to accept 

its memory changes and merge them before finishing and destroying its private environment.

• Communication: Some mean for communicating data between the running processes/threads 

is  needed,  to  propagate the new calculated values  that were  not  set  up at  the moment  of 

creating the process/thread. Although this is not an strictly necessary functionality, almost all 

programs will have to share data (if they were not sharing data then there would not be data 

dependencies, and speculative execution would not be needed).

VIRTUAL FILE SYSTEM

A Virtual File System (VFS) is an abstraction layer on top of the different file systems loaded on the 

running system. It allows user applications to access the storage devices in a uniform way, at the 

same time it allows to simulate storage devices (like RAM-disk) and to modify a file many times and 

only  write  it  once  in  the storage device,  after  confirmation  the data  is  not  going  to  be further 

modified.

A VFS is needed for the OS to provide speculative writing to files (as the file read/write operations 

might be part of the speculative execution). For this it would be needed to take snapshots of the 

files, copy the "virtual file" and the file descriptors in a process/thread should point to the different 

versions of the "virtual files" accordingly. When speculative writing is accepted, then finally it should 

be written to disk (or the non-speculative VFS).

It  is  not  impossible  but  it  is  difficult  to  make  other  kind  of  I/O  devices  support  speculative 

operations. It  depends on the possibility of making snapshots,  rolling back and to reproduce the 

result of I/O operations.

9.C) OPTIONAL EXTENSION 

Previously  were described the set of  functionalities needed for SAM to be implemented but we 

should also consider other OS functionalities that not being strictly  necessary would simplify the 

complexity of the implementation as well as improving the performance. It must be also clarified 

that some of them are needed, but that can be implemented using the minimal OS functionalities 

when not directly provided by the OS.

PARALLEL EXECUTION MODEL

Optional functionality for the parallel execution model:
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• Cancel: Kill  a  process/thread  without  accepting  any  changes,  and  without  being  restarted 

automatically;

• Pause: Suspend the execution of a process/thread till a resume command is sent;

• Resume: Continue the execution of a process/thread that has been previously paused;

• Restart: Start the execution of the process/thread from the beginning (equivalent to cancel and 

create with the same initial parameters);

• Checkpoint  creation: Create  a  copy  of  the  status  of  the  execution  of  the  process/thread 

(parameters, private environment...) to be able to roll back in case a data dependency violation 

is detected;

• Roll back: Roll back a process/thread to a previously created checkpoint when there was a data 

dependency violation;

• Priority: A way to prioritize some process/thread over others, giving the speculative segments 

priorities according to the logical sequential execution  reduces the data dependency violations 

and the roll backs;

• Execution synchronisation means: like mutexes/semaphores/... in shared memory model (for 

synchronizing and coordinating the access to shared resources or block a process/thread when 

it is clear a data dependency will happen), or blocking messages/barriers in the message passing 

model.

VIRTUAL MEMORY

Optional Virtual Memory management functionalities, depending on the parallel execution model:

• For a shared memory model:

• Ability  to  create  partial  private  thread  environments,  this  means  to  stop  sharing  a 

memory  region  (memory  page)  so  that  the  modifications  by  each  thread  do  not 

interfere with the others

• Memory  page  versioning:  make  snapshot  (copy)  of  a  set  of  memory  addresses  (or 

pages), to be able to roll back

• Merge memory pages: Speculative threads work on their private environment,  when 

their  work  is  accepted  their  environment  must  be  merged  to  the  sequential  non-

speculative  execution,  joining memory  regions  with  same  virtual  addresses  that  are 

mapped to different hardware addresses

• For a message passing model:

• Memory page exchange: to speed up sending memory regions by message passing

• Memory  page  versioning:  make  snapshot  (copy)  of  a  set  of  memory  addresses  (or 

pages), to be able to roll back

• Variable Merging: Merge variables that represent the same data element in different 

speculative  environments,  but  that  might  be  mapped  to  different  virtual  memory 

addresses.

SPECULATIVE FILE SYSTEM 

Extra functionalities for the Speculative VFS:

• Partial  "virtual"  copy  of  a  file  segment:  big  files  might  cause  to  overuse  the  system  main 

memory  as  many  full  copies  of  this  file  might  be  in  memory  (one  for  each  speculative 

process/thread), so the VFS should divide the files into regions  – pages – (similar to the system 

memory), and only keep copies of the chunks of the file that are being modified

• For  speculative  operation on distributed file  systems the OS should be modified  to  support 

communication of changes to other instances of the OS accessing the same files.
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9.D) AUTOMATIC SAM

In many cases we will want to execute speculatively an application, but the programmer did not use 

any annotations or  library/system calls.  Then we can enable automatic  speculative  execution to 

extract the possible parallelism. This speculative parallelism can be obtained mainly from:

• Code Segmentation: Often many segments extracted by the code analyser  can be executed 

speculatively;

• Loops: Start the execution of the next iteration of the loop when the current one has not finish 

executing. Works better in loops with regular structures, and long execution time. Usually there 

are nested loops, so the speculation can be done in different levels, inner and outer loops;

• Branches: Start executing different branches simultaneously till it is clear which is the correct 

one.

Profiling  and complex  estimations  will  help  to  improve the  results  of  the speculative  execution 

scheduling/partitioning performed by the static analyser [20][21].

9.E) CODE DEVELOPMENT

Depending  on  the  SAM  implementation  and  the  OS  services  available,  there  are  different 

possibilities on how the programmer, user and/or the system itself, can speculatively execute the 

code.  This  means  if  it  should  be  enabled  or  not,  which  segments  of  code  should  execute 

speculatively and to which degree.

There are different  programming models that can be used in the implementation depending on 

what the OS provides and what the programmer wants to achieve:

• Annotations: The  programmer  can write  annotations  for  expanding  code,  giving  indications 

about the behaviour of the program that can not be guess by static analysis. This can help – 

through the compiler – the code segmentation analyser, the scheduler and the OS in general, to 

decide which parts to execute speculatively under specific circumstances.

• Library Functions calls: Direct  calls to the speculative library,  the programmer decide when, 

how and what to execute speculatively,  not giving the OS to decide on how the speculative 

execution should behave.

• OS System calls: The application requests a service from an operating system's kernel that it 

does not normally have permission to run. This is similar to library function calls, but in this case 

SAM is implemented in-kernel, and not as a user-space system library.

• Automatic Speculation: The system decides automatically to execute speculatively some parts 

of the application as described in Section V. 9.d) .

Nevertheless,  in  all  cases,  the  OS  can  decide  to  not  enable  speculative  execution,  or  start  the 

number of speculative threads that it considers suitable according to the resources available and the 

other applications that are being executed.

9.F) INTERACTION WITH OTHER OS MODULES

SAM has effect on other modules:

• Scheduler: In  general,  scheduling  affects  the  performance  as  it  controls  the  use  of  the 

computing resources, having a direct impact on the throughput and latency of the applications 

[19].  In  particular,  a  good  speculative  scheduling  algorithm  can  result  in  significant 

improvements  in  performance  as  compared  to  scheduling  without  taking  in  account  the 

speculative execution because it should give higher priority to the non-speculative parts and 

applications. At the same time the speculative segments should be prioritised according to their 

possible data dependencies, this means that if a segment A can affect segment B, then segment 

A should have a higher scheduling priority than B, minimizing the number of data dependency 

violations.
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• Transactional Memory: The shared memory implementation of SAM could be build on top of 

TM,  using  TM as  the  mechanism  for  controlling  the  concurrency,  obtaining  all  the  benefits 

delivered by TM.

• Code analyser & Segmentation: How the code analyser decides to segment the code influences 

the speculative execution. When the speculative execution is realised without the support of 

the  programmer  it  will  rely  on  the  segmentation  done  by  the  code  analyser,  executing 

speculatively (some, all or none) of the code segments.

9.G) SAM HARDWARE SUPPORT ASSISTED BY THE OS

The support for hardware-level speculative execution can be added to current processor, with some 

modifications that affect mainly the MMU (Memory Management Unit), the caches behaviour and 

the cache coherency system [23]. This support consists in adding to the hardware the ability to keep 

speculative  memory  state  separate  from  non-speculative  state,  a  mechanism  for  committing 

speculative state under the control of the OS, a method of detecting data hazards (RAW – Read After 

Write dependencies) and flushing the speculative state, and a mechanism for notifying the OS when 

a hazard is detected so that recovery can take place.
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VI. OS ARCHITECTURE

Whilst the individual modules / components and algorithms address the specific requirements posed 

towards a distributed execution framework such as envisaged by S(o)OS (see Chapter III. and [52]), it 

does not implicitly form an operating system as a whole. As has already been discussed in detail in 

chapter  IV.  ,  there  is  no  concrete  deployment  architecture  of  the  operating  system,  due to  its 

modular and service-based approach, which principally allows that any module may be deployed any 

number of times on different resources in the infrastructure.

However, as has also been discussed, in order to actually enable distributed functioning of the OS as 

a whole, certain capabilities need to be available at specific times in order to provide the (implicitly) 

needed functionality. It is for example insufficient to simply host the memory management related 

components onto each resource,  assuming that this would enable a distributed memory system. 

Instead,  for  the  actual  execution,  communication  support  needs  to  be  provided,  wherever  the 

request could / should leave e.g. the processor boundaries (assuming that cache is handled by the 

hardware). Accordingly, we can distinguish between:

1. Essential modules: include any components or modules that need to be on a resource (during a 

specific phase) in order to make that resource available and usable for the operating system in 

the first instance. For example, any resource needs to be identifiable and reachable. Note that 

this does not imply that ALL resources have to host the specific capabilities, depending on the 

hardware setup (e.g.  cores in a multi-core processor  are generally  visible without additional 

software support, and nodes only need to host external interconnect support once etc.).

2. Dependent  modules:  are  essential  for  a  specific  module  to  actually  enable  the  respective 

functionality. Besides for general  invocation dependencies,  in this case “dependency” means 

that the respective module needs to be co-located in the hosting environment and cannot be 

deployed in another location. One typical example is memory management, which is required 

by  almost  all  execution  engines,  but  not  e.g.  for  resource  discovery,  unless  under  specific 

circumstances.  Since  essential  modules  are  implicitly  dependent  modules,  these  will  not  be 

repeated in this context.

3. Floating modules: are independent from any other module in terms of location, i.e. they can be 

placed  on  any  resource  without  requiring  other  instances  (with  the  exception  of  essential 

modules). 

In  this  classification,  we  can  regard  essential  modules  as  the  underlying  “framework”,  and 

dependent and floating modules as components acting “on top” of the according functionality. This 

classification determines the segmentation and distribution restrictions of S(o)OS and implicitly form 

the base deployment model.

1. OS FUNCTIONALITY SETS

In  line  with  the  three  different  module  base  types,  the  operating  system  can  be  regarded  as 

“layered” in the sense of building up on basic capabilities. These layers do not imply obstructing of 

access to lower-level functionalities, but simply denote the dependencies as noted in the previous 

section.  In  other  words,  “lower”  layers  are  more  essential  than  “higher”  ones,  and  hence  that 

“higher” ones need to get access in some way to the “lower” capabilities (cf. Figure 25). 

With this distinction we can classify the lower layer as “essential” modules and the layer on top of it 

as formed by “dependent” and “floating” modules.  Components on an even higher level  can be 

regarded as “tools” that extend the OS capabilities with respect to the goals pursued by S(o)OS, but 

are not essential for the functioning of an OS themselves. It must be stressed here again that all 
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modules layer can access any component directly non-regarding the layer they are in. However, the 

“base” layers can also be abstracted away, thus becoming invisible to any higher-level layers. 

Effectively, applications can run on the  operating system in principally two modes: integrated and 

on-top. Integrated applications directly invoke the operating system capabilities to control and steer 

the  behaviour  on  low  level.  Accordingly,  integrated  applications  can  be  extended  OS  modules, 

drivers and highly-efficient and adapted applications. Since integrated applications are closer to the 

hardware they need to be specialised and thus lose their portability. Also they are generally more 

difficult  to develop as the OS support needs to be explicitly  identified and incorporated into the 

code, and hence is generally more error-prone.

For the average user, on-top application development is therefore recommendable. In this case, the 

application is unaware of the OS support and does not explicitly invoke the according functionalities. 

In other words, functions such as memory management are not explicitly invoked in the code, but 

implicitly used according to code behaviour. This implies automatic monitoring, segmentation and 

distribution. Notably, due to the flat hierarchy of S(o)OS, the application can mix the two models 

using according programming annotations.

Note  that  we  avoid  the  terminology  “user  space”  and  “kernel  space”  here  on  purpose,  as  the 

connotation of either principle implies aspects that are not in line with the principally flat modular 

structure of S(o)OS.

1.A) BASE OS CAPABILITY SETS

As can be seen from Figure 25, the level of essential modules is particularly formed by the general 

messaging related support of the operating system. As discussed, this is simply due to the fact that 

the OS is organised in a modular fashion that allows full distribution, but implicitly requires some 

means of communication across modules. Accordingly, communication modules are essential at any 

system boundary point. 

GENERAL MESSAGING

The messaging related components comprise all capabilities necessary to establish communication 

interconnects across any two resources. Depending on the code / OS relationship, this can cover all 

levels from inter-core communication over inter-processor, across nodes, racks, the internet etc.

Implicitly, messaging must  cater for different forms and protocols,  depending on communication 

level and system architecture. This ranges from shared memory over DMA to any network protocol.

As has been discussed multiple times, communication can be either explicit, i.e. directly invoked by 

the application, or implicit, in which case the OS also needs to detect what kind of communication 
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needs to be enacted, i.e. whether data needs to be retrieved, buffers need to be managed, streams 

handled, or even whole code blocks need to be distributed etc.

Components

Messaging support is comprised by the general Connection Manager and the supporting modules for 

the individual protocols, i.e. In-Chip Messaging, Inter-Processor Messaging, Networking:

• Connection Manager: establishes and maintains the connection

• In-Chip Messaging: enacts data exchange between units in a chip

• Inter-Processor Messaging: ensures messaging across processors

• Networking: can enact higher communication protocols

Deployment Indicators

As  the  connection  manager  identifies  the  right  protocols  and  endpoints,  it  forms  essential 

components in the deployment. Whenever distributed functionalities are involved, i.e. wherever the 

OS execution is not restricted to a single module in a single system, connection management is 

essential  for  the  respective  modules.  In  order  to  actually  enact  the  relevant  protocols,  the  OS 

configuration together with dependency data such as from concurrency analysis has to identify the 

right communication modules and deploy them with the connection manager.

OS MANAGEMENT

An additional functionality group, which does not appear in the figure though, relates to configuring 

and managing the OS instances themselves.  This component takes a hierarchically  higher stance 

than all other components and is relevant primarily to the main OS instance, thus not falling into any 

other category here.

Components

In order to manage the OS environment's setup and configuration, at least a management and a 

configuration  instance  are  needed.  Functionality-wise,  they  can  be  regarded  as  two  different 

instances of the same component, i.e. global and the local controllers.

• OS Configuration Manager

Deployment Indicators

Configuration management takes two different positions: configuration of the OS as a whole and 

therefore  management  of  the  distribution  and  deployment  of  modules,  as  well  as  their  local 

configuration. The local management position acts thereby mostly as an interface to requests from 

the global manager,  but can take local  decisions  in a hierarchical  fashion, too (cf.  chapter  IV.  ). 

Accordingly, at least one global management instance is required, that can take over full control 

over the infrastructure – however, in particular in hierarchical setups it is advisable to add further 

instances to reduce control overhead.

1.B) MAIN OS CAPABILITY SETS

The actual OS capabilities are formed by the groups that provide the essential  functionalities to 

enable distributed execution across the infrastructure. Even though messaging effectively belongs to 

this category too, it is exploited equally by the functionality sets in order to give the appearance of a 

single environment to the application (see discussion at the beginning of this chapter). 

To these sets belong the following functionality groups:

VIRTUAL MEMORY MANAGEMENT

Similar to messaging, virtual memory management takes a core position in OS execution, supporting 

all data access across the distributed infrastructure. It thereby builds completely upon the messaging 

97 | P a g e D5.3 First OS Architecture S ( o ) O S



capabilities, as was exemplified in section IV. 2.b)  - at least, whenever memory or data across the 

infrastructure needs to be accessed. (Virtual) Memory thereby needs to cater for all different types 

of storage access, ranging from local cache management, over RAM and local hard-drive to internet 

streams etc. From usage point of view, storage effectively needs only to be distinguished in terms of 

size, speed and persistence.

Memory management therefore provides all necessary means to hide state and data management 

details  from the application,  so  that  the developer  does  not  explicitly  has to  cater  for location, 

consistency etc. unless explicitly requested. 

Components

As virtual memory management integrates various types of storage, the set of components needs to 

provide  all  according  means  necessary  for  accessing  the  respective  storage.  Depending  on  the 

location of the storage, this may mean additional communication means, which need to be covered 

by the general messaging set. 

• Virtual Memory Manager: acts as the configuration and management interface that provides 

process-specific virtual address spaces and intercepts / handles data access requests.

• Cache Manager:  maintains  the  local  cache – this  includes principally  strategies  to  keep the 

cache alive under certain circumstances, as well as providing consistency management etc.

• Source Lookup:  maps the virtual address to the actual physical  memory,  respectively to the 

resource in the infrastructure

• Local Memory Manager: handles all local storage resources and their access information similar 

to the classical OS memory manager.

• File System Manager: manages the hard-drive organisation

• File Access Manager: exposes file access means, including streams and virtual storage.

Deployment Indicators

Virtual memory is essential for any application or process that handles data and does not want to 

run the risk of overwriting other process' memory space – this is particularly relevant for distributed 

execution cases.  Memory management  typically  has  a  hierarchically  higher  task  than the  actual 

memory access and thus can be deployed in different fashions, according to the distribution of the 

environment in the first instance, i.e. hierarchical, central, distributed etc. As opposed to that, actual 

memory access and management components are required locally according to the type of memory 

access and infrastructure.

EXECUTION MANAGEMENT

The  actual  code  layout  and  the  implicit  (and  explicit)  relationships  in  terms  of  state,  data  and 

communication  are  handled  by  execution  management  related  functionalities.  This  set  of 

components is responsible for ensuring that the distributed execution works correctly taking the 

additional information about code behaviour and restriction into consideration. This implies aspects 

such as scheduling,  code migration etc.  Execution management therefore interacts strongly with 

resource management and monitoring system in order  to supervise the status and load balance 

execution.  It  can  be  extended  with  additional  functionalities  through  the  sets  of  “tools”  which 

provide  dependency  information  etc.,  respectively  which  support  program  profiling  for  better 

distribution and load balancing.

Components

Execution support forms the major capabilities of an operating system – since performant, large-

scale  execution  is  of  main  relevance  for  S(o)OS,  this  group  circumscribes  most  of  the  relevant 

capabilities for S(o)OS. More specifically, this includes:
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• Dependency Manager:  maintains the dependencies between different code segments,  i.e. in 

particular what data is accessed from where & when etc.

• State Manager: keeps state across segments in a consistent state.

• Load Balancer: is responsible for distributing the workload evenly across the infrastructure, so 

as to maximise resource utilisation for execution performance 

• Code Migrator: can move code from one resource to another thereby calling support such as 

the code adapter to transform the code between different resource types

• Code Adapter:  transforms  the  code between  different  resource  (and potentially  ISA)  types. 

Supported by e.g. the binary code adapter

• Transactional Memory: supports consistency across resources, relates to state management

• Scheduler: manages the timing of the individual processes in the system.

Deployment Indicators

In order to be able to execute the code segments in the individual systems, at least part of execution 

support is required – in particular from the hierarchically higher management perspective that  is 

responsible  for  the  distribution  and  execution  of  the  application  as  a  whole,  non-regarding  its 

segmentation  and  distribution  across  the  infrastructure.  Higher  level  components,  such  as 

dependency management, load balancing and scheduling should generally be deployed at least once 

in  the  system  at  a  higher  hierarchical  level  than  average  code  execution.  Accordingly,  Code 

Migration and Code Adaptation are generally only required once in the whole system, though, as 

opposed to dependency management and scheduling,  they need not necessarily  be located at a 

central  instance,  as  long as  they are reachable  by the  latter.  Due to  their  nature,  transactional 

memory and state manager should principally be located closer to the code.

RESOURCE MANAGEMENT SYSTEM

In order to enact and manage a distributed system, the individual available resources need to be 

known  by  the  operating  system.  Again,  this  information  can  also  be  principally  employed  the 

application,  too,  if  resource  information  is  required,  or  specific  resources  are  required.  Here, 

resource management is passive and primarily  serves the purpose of identifying resources – and 

principally configuring them. Information related to their current state can be accessed via resource 

management, but is actually provided by the monitoring subsystem.

Components

This set covers two major functionalities: resource management and information provisioning:

• Resource  Manager:  is  responsible  for  handling  resources  for  the  distributed execution,  this 

includes configuring it, getting endpoint information etc.;

• Resource Discovery: discovers specific resources according to a query (regarding type, amount, 

characteristics etc.);

• Resource Information Provider: hosts and provides the resource description in a fashion that 

specific queries can be run over it;

• Resource  Description:  is  an  object  rather  than  a  functionality  as  such,  though  the  way  of 

implementation grants extensive tests (see section V. 3. );

• Resource Reservation: ensures that the resources required are available for the processes upon 

need.

Deployment Indicators

Resource  management  in  itself,  i.e. reservation  and  configuration  etc.  belong  to  the  general 

management  activities  of  an  operating  system  and  are  mandatory  for  handling  scaled, 

heterogeneous  environments.  The according capabilities  should  thus be placed at points central 

99 | P a g e D5.3 First OS Architecture S ( o ) O S



enough to manage the environment. As opposed to that, resource discovery can be initiated from 

any  point,  whilst  resource  information  provisioning  should  allow  unique  identification  of  the 

resource with queries from multiple different instances and should therefore ideally be co-located 

with the resource itself.

MONITORING SYSTEM

Accordingly, monitoring related components provide live status information about specific resources 

and are responsible for generating profiles out of this behaviour. In combination with the execution 

management system and additional “tools”, this profiling information can then be used to improve 

application  performance.  Typically,  monitoring  systems  also  serve  as  the  quality  of  service 

enactment points and can take immediate actions (such as informing the execution management 

system) under specific conditions

Components

The monitoring related functionalities are comprised not only of the actual system monitor itself, 

but also the related analysis tools that help to evaluate and profile the performance, as well as to 

give execution indicators under specific circumstances (“predictions”):

• Performance Predictor: assesses the potential behaviour of a given resource under a specific 

algorithm type – this can include profile data, as well as abstracted information.

• In-Depth Profiler: profiles the resource / application at execution time. The depth and detail of 

profiling may vary with different use cases and applications.

• QoS Controller: evaluates the system behaviour and takes immediate actions – may act as the 

interface for load balancers to identify workload.

• System Monitor: monitors the actual resource behaviour, e.g. WMI or NAGIOS.

Deployment Indicators

Monitoring is closely related to the resources it is executed on and thus generally has to be deployed 

on the same system(s) – similarly, profiling and controlling should be co-located nearby to reduce 

messaging. However, similar concerns for hierarchy and detail of messaging applies than in most 

other capability sets,  so that a more integrative view with  less amount of information could be 

deployed further away.

1.C) OS SUPPORTING CAPABILITY SETS

Finally, the highest-level of components or in this case “tools” relate to additional functionalities 

that extend the capabilities of S(o)OS without actually being required by the operating system as 

such. Generally, these tools support the analysis of an application with respect to its dependencies 

and hardware requirements and restrictions. In other words, capabilities that may either be directly 

provided in the source code itself,  i.e. through additional programming efforts, or may be reused 

from  previous  execution  runs  (cf.  Section  II.  5.  ).  While  these  capabilities  extend  usability  and 

programmability, they are not essential for the scalability and adaptability of the OS.

CONCURRENCY ANALYSER

The concurrency analysis related functions (also referred to as “code analysis and segmentation”) 

exploit the performance behaviour information gathered at runtime, in addition to static analysis 

mechanisms. The according information is used to identify the state and data dependencies, as well 

as potential means to adapt the code to the hardware for better performance.  Accordingly, the 

concurrency analyser builds strongly on the monitoring and resource identification capabilities.
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Components

Even though concurrency analysis per se is essentially an integrated functionality set, it nonetheless 

consists of individual components, that could in principal be distributed across the infrastructure. 

More importantly, the differentiation allows for different levels on the hierarchical distribution:

• Code Segmenter: executes the actual segmentation of code according to the hints provided by 

the  graph segmenter  and  on basis  of  the infrastructure  information.  This  includes  injecting 

commands for state maintenance, communication etc.

• Graph  Segmenter:  identifies  segments  of  the  dependency  graph,  so  as  to  reduce  the 

communication overhead and / or other criteria.

• Graph Generator: generates a dependency graph out of the online and offline code behaviour 

analysis.

• Code Analyser: analyses the dependencies in a given code in an online or offline fashion.

Deployment Indicators

In general, the concurrency analyser is a closed tool-set that acts directly on the (full) code, as the 

analysis and segmentation requires the full information set. However, as every code segment can be 

regarded and treated as a stand-alone process with dependencies to outside resources, the analysis 

can also be executed on individual segments. This is particularly sensible, if no detailed information 

is as yet available for a given code segment, but execution efficiency could already be improved by 

segmentation and distribution.

BINARY CODE ADAPTATION

Code adaptation related functionalities try to transfer the code form one destination platform to 

another. Whilst the developed modules particularly aim at binary transformation (i.e. from one ISA 

to  another),  the  general  functionality  of  this  component  set  relates  to  different  adaptation 

processes, depending on context (cf. section II. 5. ). 

Components

Similar to the concurrency analyser, the code adapter essentially acts as a full component. It can be 

differentiated into the following main components:

• DISTAE Adaptation: analyses the code for the right adaptation mechanisms

• DISTAE Compiler: (re)compiles the code for the new destination resource

• DISTAE Execution: executes the adaptation process

• DISTAE Data Standardisation: ensures data compatibility across platforms

Deployment Indicators

Just like the concurrency analyser, the code adaptation facility group is essentially a single tool set 

that acts on a single code segment to transfer it to another destination platform. However, it does 

not need to be centralised in the environment and can be added to the OS module deployment on 

time of need.

SPECULATIVE CODE EXECUTION

Speculative code execution capabilities actually relate to execution management, as they extend the 

parallel execution with means to ensure consistency and reliability, and trying to reduce the analysis 

overhead by allowing speculative parallelisation. Well-parallelised code however does not require 

these extensions any longer.
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Components

Speculative execution is circumscribed by a single component that takes over all roles per execution 

segment  –  further  subdivision  is  not  necessary,  as  the  rest  of  the  capabilities  are  provided  by 

execution and memory management:

• SAM:  monitors a  code execution  segment  / thread / process to detect  (and roll  back)  data 

consistency violations

Deployment Indicators

SAM provides an extension to the local code execution and should therefore be co-located with the 

respective segment, otherwise risking additional communication overhead.

2. OS COMPONENTS RELATIONSHIPS

Figure 25 already indicated how the individual set of components relate to each other in terms of 

functional dependencies,  i.e. which other sets are required by the functionalities of the modules. It 

can be noted that with exception of the higher- and lower-level component sets, that all other sets 

in some way relate to each other. It should not be concluded from this, though, that all modules are 

“dependent” on each other, let alone that they need to be co-hosted in the same location / on the 

same  resource.  Instead,  the  invocation  may  be  routed  using  the  communication  framework, 

depending on the dependency “strength”.

Figure 26 resolves the architecture overview presented in  Figure 25 by highlighting the individual 

functional components per set that contribute to providing the respective capabilities.  The figure 

also  depicts  the  relationships  between  the  individual  components  in  terms  of  invocations  and 

dependencies,  with  no  regards  to  the  direction  of  dependency,  i.e. which  components  invokes 

which.  Note that the figure does  not depict the exact  relationships of  components across  these 

functionality sets, but instead only indicates them as the touching boundaries of these sets. 

102 | P a g e D5.3 First OS Architecture S ( o ) O S



2.A) SUMMARY OF DEPENDENCIES

As the full dependency depiction would make the figure unreadable, we compile the relationships in 

form of a table (see  Table 3). The table is constructed in terms of “row invokes column”,  i.e. any 

module from the rows (e.g. “Resource Manager”) with an “X” at a specific column (such as “Load 

Balancer”) denotes that the former invokes the latter. An “(x)” in this context means that the specific 

relationship is still under discussion and may require further clarification in future iterations.

It  can be noted from table that no component or set of functionalities stands isolated from the 

whole OS, in which case the respective functionality would not be integrated, or even not required.
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VII. APPLICATION PROGRAMMING INTERFACE

In  this  section,  we summarise  preliminary  considerations and  thoughts about  issues  around the 

interface between S(o)OS and the applications.  The purpose of this chapter is not to provide an 

interface specification,  but rather to describe the key principles that we identified at the basis a 

concrete API design. Specifically, we focus on how to properly support at the API level (or generally 

at  the  application  interfacing/interaction  level)  the  particular  critical  S(o)OS  components  and 

capabilities that have been analysed and described in the preceding chapters. Indeed, in order to 

improve and in particularly steer the behaviour of the S(o)OS components, the user must be enabled 

to provide control “annotations” to the code, that the compiler, or more correctly the execution 

framework can exploit. This also enables experienced developers to exploit the S(o)OS features for 

specific capabilities, such as branching code for specific hardware types, or pre-segmenting the code 

for specific scaling behaviour.

Within  this  chapter  we  discuss  the  general  means  to  expose  application  behaviour  control 

mechanisms to the developer in the context of specific, S(o)OS-related aspects, namely parallelism, 

real-time behaviour and transactional memory.

1. PARALLELISM AND CONCURRENCY

As has been thoroughly discussed in the context of S(o)OS deliverable D5.1 “State of the Art” [33], 

there is currently no appropriate programming model that allows for specifying concurrency in the 

program  easily.  There  exist  attempts  such  as  StarSS  that  effectively  tries  to  specify  function 

interdependencies in the form of annotations that declare the input and output relationship with 

other functions. Though this is a promising means to identify and handle concurrency on this level, it 

does  not  help  in  actually  developing  highly  concurrent  and  thus  parallelisable  code,  but  only 

provides an additional means of conveying the developers' intentions with this respect.

Fundamental changes, such as moving to the functional paradigm, have proven even less successful 

over the years, non-regarding their potential for concurrency analysis (see also [33]). However, over 

recent  years  principles  of the functional programming paradigm were  (partially)  introduced into 

standard object-oriented programming languages (such as C#) to enrich their capabilities. As part of 

this  movement  it  could  be  noticed  that  simple  extensions  to  the  programming  model,  such  as 

replacing the for int loop with the foreach, which implicitly conveys aspects of concurrency 

in a form that can be easily taken up and understood by the developers. On the other hand, such 

extensions are only useful, if the compiler (or execution environment) can make appropriate use of 

them.

In the context of S(o)OS it is of primary interest which extensions are needed in order to supplement 

the  relevant  information  to steer  the execution  framework  to  take correct  decisions  upon data 

dependencies,  and implicitly  upon concurrency and parallelism. For the first  cycle,  this relates in 

particular to the code analysis and segmentation set of components, which are trying to identify the 

dependencies according to the code behaviour during execution:

1.A) INTERPRETING DATA SPECIFIC BEHAVIOUR

As has been noted multiple times, the major concern for appropriate analysis consists thereby in the 

data(in)dependent part of the code behaviour, which the analyser cannot assess appropriately. This 

leads to potential  misinterpretations in terms of strengths of dependencies,  and even to missed 

dependencies in the case of context-specific code branches. To improve the analyser's knowledge 
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about  data-specific  behaviour,  we  can  identify  –  amongst  others  –  the  following  additional 

information that help in interpreting the scope of impact:

• Ranges and sizes: variables typically are only used within certain perimeters given a context – 

however, these perimeters cannot be known by the compiler or the execution environment, as 

they  may  vary  depending  on  use.  Even  though  most  programming  languages  offer  a  wide 

variety of different types to allow more fine-grained distinctions, these are hardly ever used to 

this purpose due to the potential impact of wrong assignments. However, the developer can 

typically  specify  what  perimeters  variables,  arrays  and  memory  blocks  typically take,  thus 

allowing the environment to assess the general behaviour e.g. of loops, to identify the memory 

size to be generally reserved etc.

• Constant and dynamic property scope: Closely related to ranges and sizes, the scope of validity 

of a variable is difficult to assess – even though the analysis will  identify that the respective 

memory space is not overwritten during execution, this does not necessary imply that a code 

branch would not lead to this behaviour. Knowing the scope, the analyser can rearrange local 

variables to replace them with constants within the respective segment, or vice versa, identify 

the  domains  in  which  variables  should  not  be  treated  as  constants,  non-regarding  their 

behaviour during first iterations (e.g. initialisation runs).

• Complex  prefetching  and  synchronisation:  As  a  consequence  of  scope  and  perimeter  of 

parameters arises the issue of when and how to communicate data. The point of the analysis 

consists in identifying the hard communication points (“deadlines”) and thus implicitly the latest 

point of communication. Through overlaps, the earliest point can be restricted, but not clearly 

identified.  Along  with  the  information  on  perimeters,  clustering  communication  can  be 

attempted  to  reduce  communication  overhead.  However,  in  particular  in  loops  and  with 

dynamic  ranges  it  becomes  difficult  to  identify  communication  points  and  scope.  Through 

additional annotations, such as “prefetch vars x,y,z from here”, the analysis can be improved 

considerably.

1.B) IDENTIFYING CODE-DATA-RELATIONSHIPS

As the analyser's primary goal nonetheless consists in identifying the dependencies, we must at least 

consider how to improve and steer this behaviour – in particular where the developer for practical 

reasons wants the analyser to behave optimistic or pessimistic. In other words, the analyser may 

take  indications  for  dependencies  as  a  reason  to  trigger  segmentation  even  after  only  few 

occurrences (optimistic), or delay it due to incomplete information (pessimistic). 

In addition, whilst the few programming models that allow for concurrency exploitation focus on 

providing means for the developer to specify dependencies,  it is as important for the compiler / 

analysis to identify clear NON-dependencies, which may however not always be obvious. Therefore:

• Interpretation  controllers:  The  analyser's  and  segmenter's  behaviour  are  steered  by  the 

purpose of reducing the communication overhead and need for cache swaps. To this end, they 

watch the code behaviour  at runtime (“online analysis”)  or statically  analysis  the code itself 

(“offline  analysis”)  -  both information must  be incomplete  with respect  to the data specific 

behaviour  issues  (see  above).  Performance  can  be  improved  by  identifying  e.g.  when  no 

segmentation should take place (manipulating the dependency graph weights), or to hint out 

what  type  of  dependencies  to  look  for  /  prefer  (manipulating  the  interpretation  of  the 

dependency graph weights). For both purposes, the dependency graph should be exposed to 

the user, too.

• Pointing out non-dependencies: The level of indirection possible with modern languages makes 

it almost impossible for an analyser to fully identify relationships – specifically “pointers” either 

need  to  be  fully  simulated  for  offline  analysis  or  be  explicitly  exempted  from  data specific 
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behaviour  to  be  meaningful  in  the  online  analysis.  By  restricting  the  dependencies,  but  in 

particular the non-dependencies (effectively things such as the perimeter of pointers, the depth 

of arrays etc.), the analysis can be sped up. This is related to specifying the “analysis depth” for 

dependency identification and segmentation runs.

• Explicit  segmenting:  Related  to  the  scope  and  non-dependencies,  the  developer  may  also 

explicitly point out which part of the code belongs intrinsically together, therefore avoiding that 

the segmenter tries to break it  apart.  This  is particularly sensible in the context of resource 

restrictions as a type of scope delimiter (see below).

1.C) RESOURCE TYPE HELPERS

One of the most problematic tasks for analysis, segmentation and in particular adaptation consists in 

identifying  the most  appropriate  resource  type for  hosting the respective  code segment.  Again, 

aspects of data specific behaviour play an important role in this context, but also the user can (and 

may want) to restrict or indicate the best types of resource properties for a specific code. This way, 

the resource  queries during identification  can be directly  related to the identified and specified 

properties, reducing the risk of false identifications.

• Resource  properties  specification:  As  discussed  in  detail  in  the  sections  on  resource 

descriptions  and  resource  identification,  S(o)OS  can  trigger  queries  for  explicit  resource 

properties,  such as cache lines.  Implicitly,  we can also create queries for properties that are 

inherent  to  specific  resource  types,  such  as  vector  support.  These  queries  should  also  be 

exposed to the user to allow the developer to specify resource type hints given the specific type 

of  code,  e.g.  if  he  explicitly  wrote  vectorizable  code,  or  requires  streaming  properties.  In 

combination  with  scope  information  (i.e. which  segment  should  adhere  to  the  resource 

properties), this can also be exploited for layouting and segmentation purposes.

Note that S(o)OS will take user directives generally as “hints” and “indications”, rather than as strict 

constraints,  unless explicitly  specified.  For example,  the analyser  may segment code,  even if  the 

developer did not intend it, if all indicators point to performance benefits. This way, operation of the 

code is also granted if the indications are wrong (see e.g. section V. 9. ). 

2. REAL-TIME PROGRAMMING

Traditional  API  for  real-time  programming  on  embedded  platforms  are  centred  around  the 

fundamental concept that the parallelism structure of the application is known to the developer and 

enforced in the code. Therefore, these APIs allow applications to communicate to the OS what are 

the timing constraints of the various threads of execution (e.g., priorities, local individual deadlines, 

end-to-end deadlines, inter-arrival times, periodicity, etc.).

For example, the APIs designed in the context of the EU projects FIRST7 [34], OCERA8 [35][36] and 

FRESCOR9 [37] address a wide range of both hard and soft real-time applications in the context of 

embedded  (but  unfortunately  mainly  single-processor)  systems,  and  sometimes  they  address 

distributed systems as well.

However, when dealing with real-time programming on massively parallel hardware, a number of 

challenging  issues  show  up.  The first  one is  how to  identify  a  clear  deployment  layout  for  the 

application over the heterogeneous and massively parallel computing units, that may be appropriate 

for respecting the in-place timing constraints. In such a context, the number of threads to be created 

may depend on whether or not the underlying computing unit can perform vector operations and on 

7 Flexible Integrated Real-time Scheduling Technologies. EU Grant IST-2001-34140.
8 Open  Components  for  Embedded  Real-time  Applications.  EU  Grant  IST-2001-35102.  More  information  at: 

http://www.ocera.org/.
9 Framework  for  Real-time  Embedded  Systems  based  on  ContRacts.  EU  Grant  FP6/2005/IST/5-034026.  More 

information at: http://www.frescor.org.
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the size of the handled vector types,  on whether or not there is availability of GPU and GP-GPU 

hardware, etc.

A clear answer to this question calls in the loop various requirements which need to be reflected in 

the communication model and API between the application and the OS/kernel:

• it should be possible to profile the execution of code segments, in such a way that the collected 

profiling data can be exploited to predict the performance of the various deployment options (a 

similar  functionality  has  been  designed  as  the  QoS  DB  component  of  the  FRESCOR  QoS 

Management infrastructure [38], but with a task-level granularity, rather than a code-segment 

level one, and without considering heterogeneous multi-core platforms);

• whenever  possible,  the  OS  should  try  to  use  simple  common  models  for  predicting  the 

performance  of  a  parallelisable  code  segment  when  deployed  on  a  variable  number  of 

computing units; such a model may either be explicitly provided by the developer, or sometimes 

can be inferred by the gathered profiling data;

• it should be possible to reserve at run-time some of the available physical resources to one or 

more applications,  so as to  limit  undesired interferences  among independent  and unrelated 

applications;

• it should be possible to trigger corrective actions at run-time, so that the deployment logic can 

dynamically adapt its decisions based on the feedback provided on-line by the application.

Concerning the last point, the adaptive scheduling and adaptive reservations [39] which have been 

largely investigated in the real-time scheduling domain addressed mainly the adaptation at the level 

of  the  scheduling  parameters  for  a  single  task  for  uni-processor  systems,  but  this  needs  to  be 

extended to consider the parallelism degree on multi-processor and many-core systems.

Also,  the  dynamic  scale-out  capability  of  typical  cloud computing  infrastructures  [40] nowadays 

resembles this kind of adaptation, in that the number of resources occupied by the application is 

dynamically  increased  based  on  the  observed  response-times  obtained  for  the  users  requests. 

However,  such  mechanisms  are  designed  in  the  realm  of  loosely  coupled  components  that  can 

merely be replicated as much as needed, as opposed to the needs of a massively parallel real-time 

application that needs to provide as a whole a predictable performance (e.g., in terms of end-to-end 

response-time).

These issues will be investigated further in the second phase of S(o)OS.

3. TRANSACTIONAL MEMORY INTERFACE

Transactions are present in most existing OSes mostly for the sake of modularity and recovery. Such 

OSes have even introduced new syntactic sugar to address consistency needs [5,6,7]. The Google File 

System supports atomic append operation [5], Windows adopted support for transactions in NTFS 

and the Windows registry [6], and Apple supports atomic blocks in Grand Central Dispatch for Mac 

OS X 10.6 and iOS 4 [7].

In fact, transactional language constructs have to be exposed to permit the modular design of future 

OSes  in sub-components.  Recall  that  this  modularity  is  a  key  requirement  mentioned in Section 

FIXME.

Transactional memory can be used either in traditional development languages, by using particular 

libraries, or with some support by the programming language and compiler.

3.A) TM COMPREHENSIVE INTERFACE 

A transaction is a delimited block of code that is usually represented as a syntactically balanced 

open-close block. 
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Several compilers support transaction language constructs. For instance, there exist at least three 

compilers  that compiles transactions in C at the time of  writing:  the prototype DTMC10,  the TM 

branch of gcc11, and the Intel C++ STM compiler (icc)12.

For  the  sake  of  using  transactions,  the  interface  requires  two  transaction  delimiters  and  two 

memory accesses:

1. tx_start() is used to delimit the starting delimiter of the transaction. It can be alternatively 

replaced by the opening of a compound statement.

2. tx_commit() indicates the end of the transaction in the code.  It might also be replaced by a 

closing brackets indicating the end of the transaction.

3. All read accesses to shared memory locations within a transaction have to be replaced with 

tx_read(addr) calls.

4. All write accesses to shared memory locations have to be accessed with  tx_write(addr, 

val) calls.

This  basic  interface  has  been  extended  in  various  ways.  One  of  the  major   extension,  called 

transaction  polymorphism,  relies  on  parameterizing  the  tx_start(p) with  some  application 

semantic  hints  p which  allows  to  exploit  the  inherent  concurrency  of  the  application.  This 

concurrency  leads  to  scalability on  highly  contended  workloads.  Another  extension  targets 

robustness by supporting coordinated exception handling through the use of explicit  or exploiting 

failure-atomicity of transactions and redirecting the control flow if an inconsistent state is about to 

be reached within a transaction.

This instrumentation must be performed from previous step for all functions that are invoked from 

transactional blocks or other functions invoked from transactional blocks (recursively).  Below we 

describe how the instrumentation is done automatically by compilers.

3.B) TM REDUCED INTERFACE

Various languages  already support  transactions  meaning  that  TM accesses  can be automatically 

instrumented by the compiler. 

In addition to the GNU Compiler Collection and the Intel STM C/C++ production compilers, Glasgow 

Haskell Compiler provides support for transactions in Haskell. Multiverse offers support for TM in 

Java  and  has  been  used  in  Scala.  Fortress  supports  transactional  language  constructs  and  Pugs 

compiles and interpret transactions in Perl 6. The .NET Framework 4 supports software transactional 

memory. Multiple third-party programs allow also to support transactions in other languages, like 

STMlib for OCaml and Durus for Python.

In C, a transaction is simply delimited using the block __tm_atomic{ ... } while in

C++ a transaction is delimited by a __transaction{ ... } block where __transaction{} 

(or  equivalently  __transaction[[atomic]]{})  indicates  the  point  in  the  code where  the 

corresponding transaction tx_start should be called. The closing bracket } indicates the point in 

the code where the corresponding transaction commit should be called. Within this block, memory 

accesses are automatically  instrumented by the compiler  to call the transactional  tx_read and 

tx_write wrappers.

More  precisely,  the  binary  files  produced  by  the  compiler  call  a  dedicated  TM  runtime  library 

through an appropriate application binary interface (ABI) specified. This ABI is used for both C and 

C++ and has been optimised for the Linux OS and x86 architectures to reduce the overhead of the 

10  The Dresden TM Compiler: http://www.velox-project.eu/software/dtmc
11  The TM branch of the gcc compiler. http://www.velox-project.eu/software/gcc-tm
12  The  Intel  STM  C/C++  Compiler.  http://software.intel.com/en-us/articles/intel-c-stm-

compiler-prototype-edition/
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TM calls and to allow fast accesses to thread-specific metadata shared by existing TMs. We have 

evaluated the overhead induced by overinstrumentation of compilers in [11].

3.C) CONTENTION MANAGER INTERFACE

Concurrent  executions  are  inherently  unpredictable,  as mentioned  above,  and when  mixing  the 

transaction paradigm to real-time guarantee, one of the problems is that the developer should have 

some knowledge about how often a transactional block may need to be re-executed due to conflicts 

and failure of the commit, so as to properly consider that in the estimate of the execution time of a 

task.

With  locks,  the  problem  lies  in  estimating  the  blocking  time  before  being  granted  the  access 

protected  by  the  lock.  However  as  soon  as  all  necessary  are  granted,  the lock-based  execution 

becomes  more  predictable and its  duration can be evaluated,  as no interference can delay  the 

execution further. With transactions, the problem is the unpredictable number of restarts but the 

contention manager  is  a  useful  component  to  bound the  number restarts  for  allowing  a  higher 

priority or more urgent task to commit before others, i.e., an interaction between the scheduler and 

the TM runtime.

The interface requirements are as follows:

1. set_priority. This  can be set up using a  parametrised transaction delimiter  or can be 

done within the body of a transaction to provide dynamic priority.

2. set_policy. Similar to setting the priority, the policy is necessary to differentiate between 

the policy of tasks that might predominate over their priorities. It can be set up statically at the 

transaction starting delimiter or dynamically in the course of the transaction.
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VIII. CONCLUSIONS AND FUTURE WORK

In  this  document,  the initial  architecture was  sketched  out for novel  class of  operating  systems 

suitable for next-generation massively parallel and distributed platforms. The focus was on the main 

OS components that are being investigated in S(o)OS, and which constitute the critical OS core that 

is  responsible  for ensuring the fulfilment  of  the main  requirements  by the OS, as elaborated in 

Chapter III. .

1. GENERAL FUTURE WORK

The architecture description provided in this document is still preliminary and will be refined further 

in the upcoming deliverables,  till  the final OS architecture to be provided in the final deliverable 

D5.4.  Specifically,  it  will  be  noted  that  the  current  document  only  touches  upon  the  issues  of 

deployment,  as  well  as  dynamic  component  selection  for  the  purpose  of  readjusting  to  the 

destination platform and the infrastructure constraints. As elaborated in section IV. 2. , the service-

oriented nature of the operating system contradict with a strict deployment architecture – however, 

the constraints indicated by the relationship types between modules imply that the modules need to 

adhere  to  specific  deployment  rules  which  implicitly  impact  on  the  scaling  behaviour  of  the 

operating  system.  Similarly,  the  essential  processes  for  steering  deployment  and  component 

adjustment impact on the principle distribution and thus scalability and performance. 

This behaviour also impacts on the programming extensions exposed to the developer / user, which 

have been of secondary concern in this first iteration, as the individual components have only now 

been fully specified. The combination of the components as elaborated during this first cycle will 

provide information about how to expose such programming extensions,  whilst  the components 

themselves providing the manageable details – this however will have to be assessed and elaborated 

through evaluation first in order to specify the application scope and feasibility.

The  second  cycle  will  therefore  not  only  reassess  the  architectural  layout,  but  in  particular 

investigate further into control of the OS and exploitation of the capabilities from the user side.

2. COMPONENTS RELATED FUTURE WORK

The first cycle of integration and component assessment in terms of architecture has furthermore 

led  to  the  identification  of  component-specific  work  that  will  partially  be  addressed  by  the 

respective technical work packages (WP2-4) and by WP5 in particular where it relates to aspects of 

integration, OS design and programming extensions.

The following summarises the open tasks identified by WP5 for these individual components.

SPECULATIVE EXECUTION

The first  prototype has been developed using POSIX threads, and this provides a cache coherent 

with shared memory space. In the next steps it will be studied the implementation of speculative 

execution in non-shared memory address spaces. This will allow to run speculative programs with no 

cache coherence or even in different nodes. For this implementation it will also be studied the use of 

Transactional Memory.

BINARY CODE ADAPTATION ("DISTAE")

Currently the design is almost finished, and the development of the first prototype has to continue, 

having a first functional versions in a few weeks. After it, the number or targeted architectures on 

which the framework can run will be expanded, although it will depend on a python interpreter and 
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gcc  compiler.  The  second  step  will  be  to  increase  the  data  type  support,  because  of  the 

transformations and translations between different architectures at the current moment programs 

can be only be implemented with integers and floats. In the third step we will switch to transfer the 

executable  package with  RTL  code  instead  of  source  code,  to  accelerate  the  binary  adaptation 

without losing performance; RTL code is very low level, making it almost impossible to be human-

readable. On the last step we will try to expand the programming language support (by now it is just 

C) by offering the means that will simplify the inclusion of DISTAE support into other languages.

CODE ANALYSIS AND SEGMENTATION

The Code analysis related modules as fleshed out during the first iteration focused in particular on 

the concepts behind the means for extended profiling, so as to gather dependency and behavioural 

information.  This  data  will  then  be  used  for  segmentation  of  the  code  according  to  the 

environmental conditions. 

Whilst the first iteration already indicated the means to execute runtime profiling (or behaviour data 

gathering), it did not elaborate on this point in detail. Along the same line, the current architecture 

has a centralist flavour, where the code is analysed and adapted from a single point which executes 

the full code. Whilst a hierarchical deployment of this model could support this task, it will remain 

insufficient  with  respect  to  distributed maintenance of  the dependency information  and conflict 

resolution.  Accordingly,  the current  architecture tends towards supporting offline  analysis  rather 

than online analysis, or at least not with the degree of performance and scalability intended.

Next to algorithm verification and development, the second architecture phase will therefore focus 

on a distributed, run-time deployment version of the with Code Analysis and Segmentation related 

modules. The according architectural choices will furthermore be investigated with respect to their 

impact and integration with the other modules.

These  tasks  conform  in  particular  with  the  requirements  to  improve  performance  in  large-scale 

heterogeneous infrastructures, as in particular the data specific dependency / behaviour information 

can only be gathered efficiently at run-time. Execution should thereby not be restricted to a single 

processing instance, as this would seriously affect efficiency during analysis time, which, depending 

on code and data may last a long time. As a side-effect, information gathered at run-time can also be 

exploited for run-time adaptation (such as redistribution of code) – this supports not only dynamic 

environments better, but also allows iterative adjustment of the code execution to specific (new and 

unknown) platforms.

RESOURCE DISCOVERY

So far we have designed and implemented partial  resource discovery and matching in a COTSon 

simulated cluster  which supports scalability for multi-core/CPU systems.  In the next step we will 

deploy RD out of the simulator in a real many-core environment which includes physical and virtual 

nodes in different scales (scale up and scale out, many CPUs – many cores). After that, we will use 

COTSon and benchmarking tools for the purpose of experimental results evaluation. In the current 

architecture, RD uses a topology-aware approach in which each node has information about other 

nodes in vicinity. And also Anycast messaging based on hierarchical CDHT is used to explore network 

with homogeneous nodes.  In future steps  RD will be extended to support dynamic environment 

with frequent nodes join, leave and failure, therefore to achieve consistency and avoid discovering 

invalidated services, RD must be fault tolerant. To fulfil  the main requirements of RD, in the next 

phase,  we will  enhance RD to support heterogeneity of resources,  load balancing and quality of 

services.

To enable efficient resource discovery in dynamic distributed  environment,  Any cast mechanisms 

must be able to scatter  discovery  load to avoid overloading group members in the case of high 

demand for particular resource services in a certain part of the network.
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Currently we have implemented the following functionality:

Requirements Functionalities

Scalability,  Efficiency 
Support partial matching Any cast based messaging and querying 

mechanisms for homogeneous resources 

Scalability, 

Adaptiveness

Support hierarchical resource description by using hierarchical chord 

distributed hash tables

Adaptiveness, 

Scalability
Support adaptation with multi core/cpus environments

Consistency Topology-aware system which can support for static environment 

In the next phase we will  extend resource discovery to fulfill  the functionality and requirements 

shown in the table below:

Requirements Functionalities

Scalability
Support both of exact/partial matching for querying in dynamic 

environment including frequent node join, leave and failure

Scalability, 

Adaptiveness, 

Support scalability  and adaptation for many cores/cpus systems

Heterogenity Support heterogeneity of resources

Efficiency Support load balancing for servers that are offering same resources

RESOURCE DESCRIPTION

There are several OS modules that depend on the resource description module, including modules 

related to resource discovery and code segmentation and analysis. As (the ideas for) these modules 

were fleshed out independently there might be a mismatch between the information offered by the 

resource  description  module  and  the  information  required  by  the modules  that  depend on  the 

resource  description  information.  We  should  thus,  in  the  next  iteration,  analyse  the  exact 

requirements posed on the resource description component by other modules, and determine how 

and if  we can either  adapt  the  resource  description module,  or  the modules that depend on it. 

Additionally, we will investigate how to expose the information captured by the resource description 

module to other OS modules and/or arbitrary applications through an appropriate API.

SCHEDULING

In this document, we summarised the basic principles behind scheduling of entities in S(o)OS. These 

have been derived from the general high-level requirements posed on the OS, as well as concrete 

experiments performed on real prototype hardware (the Intel SCC), in which the major challenges to 

be  addressed  in  tile-based  architectures  have  been  experimentally  highlighted.  Particularly 

challenging is the task of keeping under control the execution time of code segments, as due to the 

fact that interferences at the interconnect-level among tasks will potentially cause great variations in 

the experienced execution times. Prediction of the execution time of threads is critical not only for 

RT applications, but also for HPC workloads. Indeed, it is at the basis of the decision about whether 

or not to migrate code segments, along with the prediction of migration overheads.

In the second phase of S(o)OS, we plan to develop concrete models of the execution time variability 

in the context of tile-based architectures. These will be leveraged for designing concrete scheduling 

strategies, that need to be evaluated on the basis of either experiments made on the Intel SCC again, 

or, on a wider scale, on the MCoreSim latency simulator we developed during the first phase [53]. 

This simulator needs still to be further expanded in functionality, in order to allow for performing 

such evaluations.
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TRANSACTIONAL MEMORY

The algorithm delivered in D4.2 of Distributed (message-passing)  Transactional Memory for  non-

cache coherent architecture is now up and running on the Single-chip Cloud Computer architecture 

and is currently being tested on micro-benchmarks, under the name Single-chip Cloud Transactional  

Memory (SC-TM). The current algorithm is already deadlock-free but in some cases transactions may 

restart an unbounded number of time due to the contention induced by concurrency. Our first next 

step  is  to  extend  the  SC-TM  to  integrate  a  distributed  scheduler  in  the  form  of  a  distributed 

contention manager  that  schedule  transactions  so  that  all  transactions  eventually  commit,  thus 

ensuring starvation-freedom. The goal is to monitor at runtime the dependencies that could not be 

derived prior to execution and to reschedule transactions to minimize such dependencies. We plan 

to validate experimentally starvation-freedom (and the absence of livelocks) on a bank application.

We also have implemented a Shared Memory Transactional Memory library implementation and we 

has  started  combining  it  with  the  Linux  scheduler  calls  to  give  a  higher  priority  to  pending 

transactions than new ones.  The next step is to integrate a dedicated scheduler able to cleverly 

schedule  transactions.  In  addition,  we  plan  to  investigate  the  integration  of  TM  in  a  real-time 

strategy game application to get a deeper understanding of the performance of TM in a many-core 

environment  when running a real concurrent application.
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