
State of the Art
Project Deliverable D5.1

Tommaso Cucinotta, Giuseppe Lipari, Dario Faggioli,
Fabio Checconi and Sunil Kumar (SSSA)

Rui Aguiar, João Paulo Barraca, Bruno Santos and Javad Zarrin (IT)
Jan Kuper and Christiaan Baaij (UT)
Lutz Schubert and Hans-Martin Kreuz (USTUTT-HLRS)
Vincent Gramoli (EPFL)

Due date: 31/07/2010
Delivery date: 31/07/2010

This work is partially funded by the
European Commission under

FP7-ICT-2009.8.1, GA no. 248465

(c) 2010-2012 by the S(o)OS consortium
This work is licensed under the Creative Commons Attribution 3.0

License.
To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Version History

Version Date Change Author
0.1 10/03/10 First TOC Tommaso Cucinotta

Lutz Schubert
0.2 04/05/10 Merged UT, HLRS and SSSA contributions Tommaso Cucinotta
0.3 31/05/10 Integrated SSSA, UT, IT, HLRS contributions Tommaso Cucinotta
0.4 03/06/10 Added preliminary introduction and section

on scheduling and synchronization
Tommaso Cucinotta

0.5 08/06/10 Merged further contributions Tommaso Cucinotta
0.5.1 12/06/10 Merged contributions from UT, IT, HLRS

and SSSA
Tommaso Cucinotta

0.6 15/06/10 Merged HLRS comments and EPFL
contribution on Transactional Memory

Tommaso Cucinotta

0.7 19/06/10 Refined SSSA contribution on hardware
interconnects, merged SSSA section on
protection levels and HLRS contribution on
compilers

Tommaso Cucinotta

0.8 20/06/10 Merged refined HLRS contribution on
compilers, recovered SSSA contribution on
locking

Tommaso Cucinotta

0.9 17/07/10 Merged reviewers comments Tommaso Cucinotta
0.A 22/07/10 Merged references fixes and further minor

contributions
Tommaso Cucinotta

1.0 28/07/10 Merged HLRS fixes of formatting issues. Tommaso Cucinotta

EXECUTIVE SUMMARY

This document provides an overview of the current state of the art in both industrial practice
and academic research in the areas of parallel and massively parallel systems, as well as
the support for such platforms at the Operating System (OS) and programming levels. From
the survey presented in this document, it is evident that most of the existing work
undertakes an incremental approach, in which new OS features, kernel architecture and
programming models build mainly upon existing and widely used technologies. Only a few
of the presented works try to rethink and redesign from scratch the software stack that is
needed in order to exploit parallelism to the degree that will be available on future
computing many-core platforms. From the perspective of the S(o)OS project, the latter ones
are the approaches that need to be more deeply investigated. In fact, the research that will
be carried out in the project will move along such innovative directions of action.

The problem of such long-term approaches thereby consist mainly in the dynamic
development, making long-term assessments uncertain and hence risky. Such short-term
and long-term developments are discussed in more detail in D5.2 “Definition of Future
Requirements” [86]. Accordingly, D5.1 and D5.2 together form the basis over which the
research undertaken in the context of the S(o)OS project will further investigate.

This document constitutes the output of the S(o)OS Project Tasks T2.1, T3.1, T4.1 and T5.1
on “State of the Art Assessment”.

iv | P a g e D5.1 State of the Art S (o) O S

v | P a g e D5.1 State of the Art S (o) O S

TABLE OF CONTENTS

EXECUTIVE SUMMARY...IV

TABLE OF CONTENTS...VI

LIST OF FIGURES...VIII

LIST OF TABLES..IX

ABBREVIATIONS...X

I. INTRODUCTION...12

1. ORGANIZATION OF THIS DOCUMENT...13

II. HARDWARE AND PROCESSOR ARCHITECTURES...................................14

1. PROCESSOR AND ISA MODELS..15
1.A) GENERAL-PURPOSE PROCESSORS PRINCIPLES..15
1.B) DIGITAL SIGNAL PROCESSORS AND CONFIGURABLE PROCESSORS........................15
1.C) OPERATION MODES...17

2. MULTI CORES AND MULTI PROCESSORS...19
3. ON-CHIP INTERCONNECTS..21

3.A) SCALABILITY AND FUTURE COMPUTING TECHNOLOGY......................................21
4. HIGH-PERFORMANCE COMPUTING..24

4.A) SUPERCOMPUTER ARCHITECTURES..25
5. MEMORY ARCHITECTURES...27
6. SUMMARY...28

III. PROTOCOLS: COMMUNICATION CONTROL MODELS............................31

1. INTERCONNECTION NETWORKS..31
2. COMMUNICATION PROTOCOLS (SW LAYER) ..33
3. COMMUNICATION INTERFACES (API)...34

IV. OPERATING SYSTEMS..37

1. OPERATING SYSTEM KERNEL MODELS...37
1.A) MICROKERNELS...37
1.B) SINGLE-SYSTEM IMAGE..38
1.C) OPERATING SYSTEMS FOR MULTIPLE/MANY CORES..39
1.D) OPERATING SYSTEMS FOR GRIDS..42
1.E) OPERATING SYSTEMS FOR HPC...43

2. SCHEDULING...45
2.A) REAL-TIME SCHEDULING..45

vi | P a g e D5.1 State of the Art S (o) O S

3. SYNCHRONISATION..48
4. SYNCHRONISATION AND SCHEDULING...50

4.A) SHARED RESOURCES PROTOCOLS IN REAL-TIME SCHEDULING...........................50
5. VIRTUALIZATION...54
6. RUN-TIME SUPPORT AND MIDDLEWARE..55

V. PARALLEL AND DISTRIBUTED PROGRAMMING MODELS.......................58

1. COMMON PROGRAMMING MODELS...58
1.A) PROCESS- OR THREAD-BASED PARALLELISM..58
1.B) DISTRIBUTED PROGRAMMING...60

2. HPC PROGRAMMING MODELS...61
3. TRANSACTIONAL MEMORY..63
4. COMPILERS..64

VI. BENCHMARKING..68

VII. CONCLUSIONS..70

REFERENCES..71

vii | P a g e D5.1 State of the Art S (o) O S

LIST OF FIGURES

FIGURE 1: CPU PROTECTION MODES AND POSSIBLE TRANSITIONS...18
FIGURE 2: CISCO VNI FORECASTS 64 EXABYTES PER MONTH OF IP TRAFFIC IN 2014.......................................31

viii | P a g e D5.1 State of the Art S (o) O S

LIST OF TABLES

TABLE 1: MAIN CHARACTERISTICS OF COMMONLY USED TOPOLOGIES...22
TABLE 2: SUMMARY OF COMPUTING HARDWARE ARCHITECTURES...29
TABLE 3: SUMMARY OF MULTIPROCESSOR SYSTEMS BASED ON CARD COMPUTING UNITS...30

ix | P a g e D5.1 State of the Art S (o) O S

ABBREVIATIONS

Abbreviation Description

AD Analog Devices
AES Advanced Encryption Standard
AHT Augmented Hypercube Torus
ALU Arithmetic Logic Units
API Application Programming Interface
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Instruction Processor
CAF Co-Array Fortran
ccNUMA Cache Coherent NUMA
CFS Completely Fair Scheduler
CISC Complex Instruction Set Computer
CPLD Complex Programmable Logic Devices
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DFF Delay Flip-Flop
DMA Direct Memory Access
DOR Dimension-Ordered-Routing
DPCP Dynamic Priority Ceiling Protocol
DSP digital signal processors
DTM decoupled transactional memory
DWDM Dense Wavelength Division Multiplexing
EDF earliest deadline first
FIF First-In First-Out
FP Fixed Priority
FPGA Field Programmable Gate Array
FUTEX Fast Userspace muTEX
GP-GPU General-Purpose Graphics Processing Unit
GPP General-Purpose Processor
GPU Graphics Processing Unit
HIP Host Identity Protocols
HPC High Performance Computing
IPC interprocess communication
ISA Instruction-Set Architecture
IXS Internode Crossbar Switches
JiT Just-in-Time (Compiler)
LUT Lookup Table
MINLP Mixed-Integer Non-Linear Programming
MMX Intel single-instruction multiple-data extensions
MPCP Multiprocessor Priority Ceiling Protocol
MPI Message-Passing Interface
MSRP Multi-processor Stack Resource Policy
Mux Multiplexer
NoRMA No-Remote-Memory-Access
NRE Non-Recurring Engineering
NUCA Non-Uniform Cache Architecture
NUMA Non-Uniform Memory Access
OAM Operations Administration and Maintenance
OS Operating System
OSI Open Systems Interconnection (Reference Model)
PCP Priority Ceiling Protocol

x | P a g e D5.1 State of the Art S (o) O S

PGAS Partitioned Global Address Space
PI Priority Inheritance
POSIX Portable Operating System Interface
PPE Power Processing Element
QoS Quality of Service
QPI Quick Path Interconnect
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RR Round-Robin
RTOS Real-Time Operating System
S(o)OS Service-oriented Operating System(s)
SCC Single-Chip Cloud Computing
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SMP Symmetric Multiprocessors
SMT Simultaneous Multi-Threading
SoC System-on-Chip
SPE Synergistic Processing Element
SRAM Static Random Access Memories
SRP Stack resource Policy
SSE Intel Streaming SIMD Extensions
SSI Single-System Image
STM Software Transactional Memory
TDMA Time-Division Multiple Access
TI Texas Instruments
TLB Translation Lookaside Buffer
TM Transactional Memory
UMA Uniform Memory Access
UPC Unified Parallel C
VIA Vertical Interconnect Access
VLIW Very Long Instruction Word
WS-BPEL Web Services Business Process Execution Language

xi | P a g e D5.1 State of the Art S (o) O S

I. INTRODUCTION

Computing systems are experiencing nowadays a complete paradigm shift. On
the old-fashioned single-processor platforms, sequential programming used to
constitute an easy and effective way of coding applications, and parallelism was
used merely to easily realise independent or loosely coupled components. True
parallel and distributed programming used to constitute a domain reserved to
only a relatively small number of programmers dealing with high-performance
computing (HPC) systems. However, recently multi-core systems, such as the
Core i7 by Intel or the Phenom by AMD, have become the de-facto standard for
personal computing, from laptops to desktop computers. Multi-core processors
are being increasingly used in the embedded domain as well. Furthermore, in the
context of servers, it is more and more common to see multi-processor and
multi-core systems realising up to 8 - 12 cores. The according process just
continues: already experimental multi-core processors, such as the Polaris by
Intel, reach up to 80 cores and specialised processors, such as the Azul Vega, go
up to 54 cores, yet the mass market commercial exploitation of these processors
will still take a few years. Along that line, high-performance and massively
parallel systems are undergoing a tremendous architectural shift that promises
to move towards an unimaginable number of interconnected cores and other
hardware elements such as local memory/cache elements, within the same chip.
As a consequence, in the short future parallel and distributed programming
paradigms need to become more and more widespread and known across the
whole base of (software and hardware) developers, comprising not only the high-
performance computing domain, but also the general-purpose one. Furthermore,
even in the HPC domain itself, hardware makers foresee a steep increase in the
level of parallelism.
However, the entire ensemble constituting the software stack of nowadays
computing systems, comprising Operating Systems, programming languages,
libraries and middleware, are still too much influenced by the former non-
concurrent era, and are slow at adapting to the new scenario. Commercial
development is thereby constrained by the demand to maintain downward
compatibility which typically implies that only incremental, rather than
disruptive, evolutionary steps can be taken. Vendors are scared by the risk that
too large steps along the development of software could imply too much
(resource) effort to maintain exactly this compatibility and that implicitly they
could loose customers.
The S(o)OS project aims at exactly such a disruptive step to investigate on how
the elements of the software stack need to be re-engineered in order to cope
with the increasingly available parallelism in the hardware platforms of
tomorrow. The S(o)OS project investigates on how hardware and software can
come closer together to increase efficiency whilst maintaining a maximum
degree of flexibility and adaptability. The attention is strongly focused on the
Operating System level, as this level builds the major interface between
hardware and software and thus is crucial for these goals [4].
In order to undertake the necessary research on such challenging themes, it is of
course necessary to have a comprehensive overview of the current status of the
industrial practices and research efforts, as well as of the academic research
activities, recently developed in the context of parallel, distributed and massively
parallel systems.

2 | P a g e D5.1 State of the Art S (o) O S

The purpose of this document is to provide a comprehensive state of the art on
these topics, starting from the hardware domain, and moving across the overall
software stack built on top of it, comprising Operating Systems, programming
languages and paradigms, and middleware components. This document thereby
primarily focuses on developments and research results that have shown wider
acceptance and uptake, rather than being purely experimental in nature. This
aims not only to reduce the size of the document, but mostly to reflect the solid
existing basis for future development.
More experimental research results and – coupled to this – the long and short
term trends that are represented by this research are assessed through project
deliverable D5.2 “Definition of Future Requirements” [86], which represents the
developments to be expected in the future, with an impact on future software
stacks and the ways of dealing with applications and systems.

1. ORGANIZATION OF THIS DOCUMENT

This document is organized as follows. In Chapter II. we present a survey of
hardware architectures, comprising details about processor and instruction-set
architecture models, specifics of multi-core and many-core systems, memory
architectures and support at the compiler level. In Chapter III. we provide a
survey of protocols in distributed computing systems, with a focus on
communications and control models for distributed, massively parallel and highly
scalable systems. In Chapter IV. we examine various models of Operating
Systems for parallel computing machines, along with a few important recent
works in the area of OS support for massively parallel systems. In Chapter V. we
address the specifics of the high-performance computing domain, from the
hardware architecture to the programming paradigm perspectives. In Chapter VI.
we present related work in the area of use cases, benchmarks and applications
for anticipated future Operating System architectures. Finally, we conclude this
document with a set of general considerations in Chapter VII. .

3 | P a g e D5.1 State of the Art S (o) O S

II. HARDWARE AND PROCESSOR ARCHITECTURES

This chapter investigates the current status in the layer underlying the software
stack, i.e. on the hardware level of current computing platforms. This comprises
in particular processors, interconnects and memory architectures in the different
range of usage settings and application domains. These have an impact on what
is required from a system and where and how much resources can be vested into
their production – the most typical example for this difference consists in the
High Performance Computing vs. the Mobile Computing areas:
The HPC area focuses in particular on efficiency and high-performance
interconnects at an accordingly high cost. It is not unusual in this domain to
develop an individual strand of processors, which often serves as a prototype for
new processor architectures in the more mainstream models. See for example
the Knights Ferry1 by Intel. On the other side of the spectrum, the mobile devices
domain focuses particularly on minimal size and energy consumption with price
being an important factor due to the mass-market demand for mobile devices.
Accordingly, processors in this domain typically show comparatively little
performance and weak interconnects, but a good energy to performance ratio.
The current era of computing has reached petascale, i.e., 1015 operations per
second, and the first approaches towards exascale (1018 operations per second)
are already planned. To make this happen, we have to think about a new
paradigm of computing that is not only in the direction of software parallelism
but also in the one of hardware infrastructure parallelism.
In order to meet the computing requirements of nowadays' applications, one has
to scale the computing infrastructure so as to reduce the processing times, thus
keep feasibility of the computations. Various techniques are proposed to improve
in particular the performance, efficiency and throughput of processing and
memory units. Major ones are:
• silicone designers are putting more and more transistors in a single chip;
• chip designers are putting more and more cores on a single chip;
• various inter-connecting networks are being created for multiple cores in the

chip;
• interconnections among computing units are being improved as well, both on

the side of memory hierarchies and of the Input/Output sub-system;
• software developers are building applications which are split into multiple

logical processes that can be mapped onto the physical available topology
(cores, processors).

There are various challenges involved in increasing the scalability of the
hardware infrastructure – these includes, among others:
• number of cores / microarchitecture: how many cores in which configuration

provide the best scaling capabilities for the various types of applications;
• interconnection of multicores: which kind of connectivity between cores and

processors is required;
• performance versus reliability: to which degree can the one be sacrificed for

the benefit of the other?
• Quality-of-Service (QoS): how to preserve timing and QoS requirements of

increasingly complex and parallel applications;

1 More information is available at: http://www.techspot.com/news/39138-intel-announces-
50core-knights-corner-hpc-processor.html.

4 | P a g e D5.1 State of the Art S (o) O S

http://www.techspot.com/news/39138-intel-announces-50core-knights-corner-hpc-processor.html
http://www.techspot.com/news/39138-intel-announces-50core-knights-corner-hpc-processor.html

• energy consumption vs. performance: how to increase performance without
hitting the power wall and even achieving a low power consumption.

In the following, a non-exhaustive description is made of the main mechanisms
adopted so far by hardware vendors for tackling the just mentioned challenges.
First, the discussion focuses on increasing performance of traditional single-
processor systems, then it switches to the multi-core and multi-processor
domain, ending in the area of nework-on-a-chip (NoC) and HPC systems.

1. PROCESSOR AND ISA MODELS

This section discusses the state of the art of processor architectures and
Instruction-Set Architecture (ISA) models, with a particular focus on the
consumer market, i.e., general purposes processors that can be found in high-
end desktops, laptops and embedded/mobile devices. This includes specialised
processor types which can often be found in the embedded computing domain,
such as reconfigurable and digital signal processors.

1.A) GENERAL-PURPOSE PROCESSORS PRINCIPLES

State of the art general purpose processors (GPPs), particularly found in desktop
machines, but also in large scale clusters, such as the Intel Nehalem
architecture, are Reduced Instruction Set Computer (RISC) machines that have
decoding mechanisms for their Complex Instruction Set Computer (CISC) x86
Instruction Set Architecture (ISA). To achieve a high average-case performance,
GPPs include (multiple levels of) cache(s) to hide memory latency (see also
section II. 5.). To increase the instruction level parallelism (ILP) and increase
execution of sequential computation in general, these architectures employ
multiple optimisation techniques, including out-of-order execution, (super)
pipelining, superscalar data paths and (speculative) branch prediction [199]. In
order to exploit the potential data-level parallelism in especially audio/video
applications, most GPPs include special Single-Instruction Multiple-Data (SIMD)
execution units and registers [199]. These GPPs also increase task-level
parallelism by issuing and executing concurrent threads on their (superscalar)
data paths, a feature called Simultaneous Multi-Threading (SMT) [200]. Besides
SIMD execution units, the latest intel GPPs also include accelerators for
cryptography routines [201] such as the Advanced Encryption Standard (AES).
Low-power GPPs, such as the ARM Cortex [202], are also pipelined, superscalar
machines, and also have branch prediction to increase execution of sequential
computations. Instructions are however scheduled in order. Like the high-
performance GPPs, the low-power GPPs also employ caches to hide memory
latencies. SIMD execution units for the the ARM Cortex line are optional.

1.B) DIGITAL SIGNAL PROCESSORS AND
CONFIGURABLE PROCESSORS

Digital signal processors (DSPs) and Configurable processors are typically
employed in the embedded and signal processing domain, including radar, video
and audio applications. Traditional DSPs had specialised data-paths so that
computations relevant to signal processing (such as Multiply-Accumulate and bit-
shifting for division) could be executed in a single cycle. This meant that they
were generally running on a lower clock speed as compared to GPPs, achieving a
lower average-case performance for generic applications. However, for signal
processing applications, the total execution time is several times lower. From the
software stack point of view, the specialised data-path also means that the

5 | P a g e D5.1 State of the Art S (o) O S

compiler needs to group computations in a certain way to make effective use of
this data-path.
The latest conventional digital signal processors (DSPs) by companies like Texas
Instruments (TI) and Analog Devices (AD) are mostly Very Long Instruction Word
(VLIW) machines, employing 2 or more parallel data-paths, with (modified)
Harvard memory architectures [203][204][205]. Same as for the traditional
DSPs, compilers for these new VLIW machines needs to group computations to
make effective use of the parallel data-paths. While AD seems to be moving
away from pure VLIW machines with the introduction of their “general-purpose”
DSP called the BlackFin [206], TI usually combines their latest C6x series with an
ARM GPP on a System-on-Chip (SoC), as is the case for their successful OMAP
SoC [207].
Like the DSPs, configurable processors are typically employed in the (streaming)
signal processing domain. Like the DSPs, they run at lower clock speeds than
GPPs, meaning they have a lower average-case performance for generic
applications, but perform considerately better for the application they are
configured for. Configurable processors can be categorized over two dimensions:
design-time vs. run-time and coarse-grain vs. fine-grain. In design-time
configurable processors architectures, parts of the die can be specified/designed
for a specific application (domain); after fabrication this configuration can no
longer be changed.

DESIGN-TIME COARSE-GRAIN CONFIGURABLE PROCESSORS
Architectures recently emerged on the DSP market are the Xtensa [208]
architecture of Tensilica, and the HiveX [209] platform from Silicon Hive. Both
architectures fall within the class of design-time reconfigurable machines. The
default Xtensa ISA is a RISC architecture and employs VLIW encoding. The
instruction set can be increased or decreased depending on the application
requirements, thus making a deployed Xtensa architecture actually an
Application-Specific Instruction Processor (ASIP). Reducing the instruction set has
the potential to save on the memory needed to store the reduced-size code, and
maybe even lower power dissipation. Silicon Hive processors consist of a VLIW
data-path, where the individual function units are Vector/SIMD execution units.
The function units, register files, I/O interfaces are adapted to the needs of the
application code, allowing a Silicon Hive processor to be very specifically tailored
to the needs of a specific application.

DESIGN-TIME FINE-GRAIN CONFIGURABLE PROCESSORS
To bridge the gap between Field Programmable Gate Arrays (FPGAs) and (cell-
based) Application Specific Integrated Circuits (ASICs), many ASIC manufacturers
and start-ups have developed some form of structured/platform ASICs. These
structured ASICs have a predefined, and pre-produced silicon layout for many
types of logic. These silicon cells range from complete IPs to the silicon parts of
their fully routed ASIC cell siblings. The idea is that only the metal layer is
customized/created for the custom routing of the cells, thereby reducing the
Non-Recurring Engineering (NRE) costs immensely. The different companies use
different techniques, ranging from adding Vertical Interconnect Access (VIA) to
existing metal layers to adding completely new metal layers on top of existing
(metal) layers. Another technique used by FPGA developers is using anti-fuses
for the configuration of the devices: a high current is applied to a dielectric
turning it into a short circuit, a process that is irreversible. While these N-phase
methods of fabricating a die are much cheaper than fabricating a low-volume

6 | P a g e D5.1 State of the Art S (o) O S

ASIC directly from silicon, they are not cost-effective for the high-volume
production of GPPs.

RUN-TIME COARSE-GRAIN RECONFIGURABLE PROCESSORS
Run-time coarse-grain reconfigurable processors usually employ an array of
word-level processing elements, such as multipliers and Arithmetic Logic Units
(ALUs). The programmable interconnection between the elements can be
configured at run-time to create the desired signal flow; the elements
themselves can be configured to execute specific operations. Coarse-grained
architectures require less configuration than fine-grained architectures and
therefore their configuration time is many orders of magnitude shorter (a few
mili-seconds vs. several seconds). In some cases the configuration will result in a
fixed functionality for the entire processor, no longer requiring it to fetch
instructions every cycle, and basically turning the reconfigurable processor into
an ASIC. Word-level algorithms within the intended algorithm domain, such as a
Fast-Fourier Transform (FFT), can be executed very efficiently on coarse-grained
reconfigurable architectures. However, fine-grained algorithms (manipulating 4
bits or less) execute inefficiently on these coarse-grained architectures.
Examples of reconfigurable architectures include the Montium2 [210] and the
PACT XPP3 [211].

RUN-TIME RECONFIGURABLE PROCESSORS
In fine-grained reconfigurable architectures the functionality of the hardware is
specified at the bit-level and the programmable interconnect is manipulated as
individual wires. The fine-grained flexibility comes at the cost of additional silicon
and this overhead hampers the performance of word-level algorithms. Fine-
grained architectures allow for manipulations at the bit-level. They are very
efficient for complex bit-oriented computations or bit-level masking, shuffling
and filtering (such as those used in encryption operations). Fine-grained
architectures include FPGAs and Complex Programmable Logic Devices (CPLDs),
where the traditional difference between the two architectures is that FPGAs use
blocks comprising of a Lookup Table (LUT), Multiplexer (Mux) and Delay Flip-Flop
(DFF) [212], whereas a CPLD uses the Sea of Gates (e.g., sum of products) to
define its logic. There are many configuration mediums for these devices,
ranging from Static Random Access Memories (SRAMs) where the devices have
to be programmed every time they are powered on, over Flash memories where
the configuration data is retained even when the device is switched off, to anti-
fuses where the configuration becomes permanent [213].

1.C) OPERATION MODES

Modern computer architectures provide protected modes of operation that,
together with other hardware mechanisms like memory protection, interrupt
handling, etc. are commonly exploited by Operating Systems to efficiently
implement multiprogramming (see also section IV. 1. on Operating System
Models). The basic need covered by the protected mode of operation is isolating
the Operating System from user applications, thus protecting it from unwanted
voluntary or involuntary user influences and interferences.
The implementation of these modes varies a lot among the various CPU
architectures available on the market. The common trait the various types of

2 More information is available at: http://www.recoresystems.com/index.php?
option=com_content&task=view&id=73&Itemid=168.

3 More information is available at: http://www.pactxpp.com/.

7 | P a g e D5.1 State of the Art S (o) O S

http://www.pactxpp.com/
http://www.recoresystems.com/index.php?option=com_content&task=view&id=73&Itemid=168
http://www.recoresystems.com/index.php?option=com_content&task=view&id=73&Itemid=168

implementation share is the support for multiple operating modes, with the
system behaving differently depending on the active operating mode. At least
two operating modes are usually supported:
• User mode: the CPU executes program code under various restrictions, e.g.,

on the instructions of the ISA that can be executed, the operands they may
use, the registers they can access, etc.

• System mode: most of the restrictions to which user mode is subject are no
longer in place, and the program code being executed has full control over
the CPU. Some of the restrictions imposed to user mode operation can be
configured from system mode.

The protection mechanisms of the CPUs provide also control over the transitions
between the operating modes, ensuring their security. Some architectures also
support the distinction between two additional modes used to enhance the
support of virtualization:
• Host or Hypervisor mode: the CPU executes regularly and can control what

operations are exactly allowed while in guest mode.
• Guest mode: the CPU executes a virtualized copy of itself, emulating

efficiently the execution of its own instruction set in hardware and resorting
back to hypervisor mode when the emulation cannot be done in hardware by
the CPU itself (e.g., in case it requires access to I/O devices).

Figure 1 shows the transitions between the CPU modes in the case of x86 CPUs:

These transitions need to be considered in modern OS kernel designs as they
introduce a new kind of context-switch. The typical CPU allows for the following
transitions between operating modes (cf. Figure 1):

• From user to system mode:
• Software interrupts (e.g., system calls), where the user code explicitly

asks for a service from the operating system with the hardware taking
care of switching mode safely. For example, in the case of x86 CPUs
the hardware switches to a system stack to avoid the user forcing the
system to access unwanted memory regions.

• Hardware interrupts or exceptions, generally handled in system mode,
using a protection mode switch similar to the one used for system
calls.

• From system to user mode:
• End of interrupt: the hardware usually provides a mechanism to the

operating system to resume user mode operation once the interrupt
handling is over.

• Explicit request by system code: for example in the x86 architecture
this is done simulating in software the end of an interrupt.

• From hypervisor to guest mode:

8 | P a g e D5.1 State of the Art S (o) O S

Figure 1: CPU protection modes and possible
transitions.

User
Mode

User
Mode

Guest ModeGuest Mode

Guest User
Mode

Guest User
Mode

Guest System
Mode

Guest System
Mode

System ModeSystem Mode

• Explicit request by system code, usually with a special instruction.
• From guest to hypervisor mode:

• Hardware interrupts.
• Hypercalls: the equivalent of system calls, but with the guest

Operating System, with the awareness of being a guest OS, requesting
directly and explicitly a service provided by the virtualization
hypervisor (or host Operating System), implemented using special
instructions.

• Hypervisor exits: whenever the CPU is not able to continue emulation
in guest mode, it asks for assistance from the hypervisor Operating
System. For example, consider a write to an I/O port: the CPU in guest
mode can be configured to immediately return to hypervisor mode, to
let the hypervisor code handle the write emulating the device
associated to the port, or to handle a protection error if the guest was
not supposed to access the port.

• From guest user to guest system mode:
• System calls: since the CPU emulates its own behavior on a parallel set

of registers while in guest mode, the same sequence of actions used to
implement system calls in user mode is emulated in guest mode, and
provokes a switch to guest system mode.

• From guest system to guest user mode:
• Returning from system calls.

Interrupts delivered to the guest Operating System need a special mention. They
are generated by the hypervisor kernel (unless direct hardware access is allowed
to guest mode) and there is hardware support to propagate them to guest mode.

Memory protection is tightly coupled with protected modes of operation. The
usual memory protection mechanisms, like segmentation and pagination, and its
simplified forms used in embedded processors, which usually implement a
software-managed Translation Lookaside Buffer (TLB), allow for distinct access
rights to code being executed in system and in user mode. To improve the
performance in guest mode, recent processors provide nested page tables,
creating one more level of indirection in the address translation path inside the
CPU: the addresses generated while in guest mode are translated using the page
tables configured in guest mode, and the result of the translation is a guest
linear address, which is then resolved using the host translation mechanisms. In
this way the guest Operating System is free to modify its own page tables
without assistance from the host Operating System. Instead, without the support
for nested page tables, each time the guest OS needs to modify its page
mappings, the host OS needs to be informed. Without this kind of hardware
support, the hypervisor needs to use more expensive emulation techniques,
where the host OS needs to track all the write-accesses of the guest OS to its
own page tables.

2. MULTI CORES AND MULTI PROCESSORS

Processor manufacturers have gone very far away from the traditional
architecture of the processor, in which the chip used to contain a single Central
Processing Unit (CPU). From the time when they started to integrate the cache
memory elements into the chip for boosting performance, nowadays processors
mimic more and more the System-on-a-Chip (SoC) paradigm typical of the

9 | P a g e D5.1 State of the Art S (o) O S

embedded domain, in which a multitude of heterogeneous hardware components
are all integrated in the same chip.
As explained above, modern CPUs already possess a certain level of internal
parallelism, with multiple ALUs, several pipeline stages of execution, vectorial
instructions (e.g., with such SIMD extensions as MMX and SSE). Some Intel
processors also parallelise the phase of instruction fetch, with the Hyper-
Threading4 technology, with which two fetching stages can independently feed a
CPU pipeline in parallel emulating the presence of two CPUs. However, the
performance of each hyper-threaded CPU depends on the workload imposed on
the internal pipeline elements by both concurrent flows of execution.
Many modern processors embed multiple “cores” within the same chip - full-
featured CPUs which are capable of executing independently from one another,
hierarchies of cache memories, interrupt controllers, timers and other
peripherals. Also, the complexity of the new chips and the growing requirements
in terms of computational power (cf. [86]) led to novel paradigms of
interconnection among the various hardware components within the chip (and
within the system), mainly driven by the need for increasing the level of
parallelism in communications. This led to an increasing trend in abandoning the
traditional “interconnection bus” concept in favour of Network-on-a-Chip (NoC)
interconnection solutions, in which hardware elements communicate with each
other by means of packets (similar to how networking among systems used to
do), whilst proper routing elements are responsible for delivering these packets
to their destination.
Modern GPPs are implemented as homogeneous multi-core processors, including
the Intel Core-line, the AMD Phenom-line and the IBM Power series. Not only are
these GPPs homogeneous, the cores within these CPUs are also symmetric, in
the sense that they have the same single-threaded performance. The above
architectures fall under the multi-core paradigm, i.e., parallel “fat” serial cores,
that are effectively independent computing units with communication
capabilities. There are also architectures that follow the many-core paradigm. In
a many-core architecture the processing units are basically small, highly coupled
cores where a workload is typically distributed over many of these cores. Such
architectures can be found for example in graphics processing units (GPUs).
The same architectures are also used for General-Purpose Graphics Processing
Units (GP-GPUs), in which all the vector cores are used for general computations,
instead of being merely capable of performing 3D rendering operations. Some
GPU architectures, such as the Nvidia GT200, have even double-precision
floating-point operations within the ALUs of their vector cores [190], especially
for scientific computations (3D rendering requires only single-precision floating-
point operations) [191][192][214]. Some GPUs are available as special boards
especially made for GP-GPU processing, as these boards do not even have a
video output [215].
Switching to heterogeneous systems, the IBM CellBE is an example of an
heterogeneous multi-core GPP deployed for HPC purposes. The Cell includes a
single PowerPC core (GPP) and 8 Vector cores, called Synergistic Processing
Elements (SPEs). The lacking success of the Cell could be taken as an indicator
against the validity of heterogeneous multi-core architectures. However, the
major issues relate to the fact that the processor has high manufacturing costs
and it is difficult to code when using current programming models. This currently

4 More information is available at: http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm.

10 | P a g e D5.1 State of the Art S (o) O S

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

makes the Cell mostly of interest for specific application areas (note that the
Roadrunner by IBM hosts a combination of Opteron and Cell processors [160]).
Intel Core-line of processors use Point-to-Point links between the cores, where for
example IBM latest Power processor uses a hybrid ring and crossbar. The IBM
CellBE uses multiple rings to communicate between the SPEs and the GPP. As on-
chip interconnects is such a broad topic it is covered in more detail in the next
section (Section 3.).

3. ON-CHIP INTERCONNECTS

3.A) SCALABILITY AND FUTURE COMPUTING
TECHNOLOGY

The current era of computing has reached petascale, i.e., 1015 operations per
second, and the first approaches towards exascale (1018 operations per second)
are already planned. To make this happen, we have to think about a new
paradigm of computing that is not only in the direction of software parallelism
but also in the one of hardware infrastructure parallelism.
Peta- and Exa- scale computing architectures are moving towards multiple cores
per chip. This kind of chip architecture has to address two main aspects:
computation and communication. As the core count increases, the
interconnection of cores becomes a more challenging task. We can address the
problem at three different levels:
• physical infrastructure;
• communication paradigm;
• software/OS level.

PHYSICAL INFRASTRUCTURE
A good interconnection mechanism determines the efficient execution of an
application or set of applications, based on the required computation and
communication needs. In single core processors, most components are
connected by a hybrid bus topology. But, as the core count increases, one has to
think about not only the interconnection of the components inside a single core,
but also the interconnection of multiple cores. So an efficient physical topology
for multi-core architectures is needed. Up to now, designs are restricted to two-
dimensional (2D) topologies, which are best for small-scale systems, but recent
advancements in three-dimensional (3D) integrated technology [222][223] will
open a new paradigm for design (see also [86]). There are various
interconnection mechanisms studies and/or proposals for multiple-cores
architectures. Every mechanism has its own advantages and disadvantages. The
major performance metrics are: topology regularity, network diameter5, bisection
bandwidth6, and power consumption.
In Table 1 we report a summary of commonly used topologies, along with their
main characteristics, in terms of the just mentioned metrics, as a function of the
number of interconnected elements [235].

5 The diameter of network is defined as the maximum (over all node pairs) length of the
shortest path between any pair of nodes.

6 Divide a network of N nodes into two sub-networks of N/2 nodes. Then, the bisection
bandwidth is the minimum possible bandwidth between these two groups.

11 | P a g e D5.1 State of the Art S (o) O S

Type of

Topology

Number of

nodes

Degre

e

Diamete

r

Bisection

bandwidth

Bus k k 2 1

nD Mesh kn 2n n(k-1) kn-1

Ring k 2 k/2 2

nD Torus kn 2n nk/2 2kn-1

nD Hypercube 2n 2n n 2n-1

Crossbar k2 + 2k 4 2 (k+1) k

Binary tree 2k - 1 3 2 (k-1) 1

Fat tree Depends on actual structure

Butterfly (k + 1) 2k 4 2k 2k

Table 1: Main characteristics of commonly used topologies.

There are various other hybrid interconnection mechanisms proposed in the
literature, like Augmented Hypercube Torus (AHT) [216], Torus Fusion (Tofu)
[217], Flattened Butterfly Topology [218], Express Cube [219], etc.

COMMUNICATION PARADIGM
The communication paradigm specifies how cores communicate with each other.
Here, major challenges are flow control and routing:

Flow-control

There are two possible levels at which flow control is realised: switch-to-switch
and end-to-end. Flow-control at the switch-to-switch level mainly depends on
switching and buffer management techniques.
Switching techniques are important because they specify when a routing
decision has to be made. In a network-based system, there are two types of
switching techniques: packet switching and circuit switching. Given that major
constraints in silicon are area and power, it is advised to use as few buffers as
possible at the network switch and router levels.
Circuit switching is suitable for communications with QoS guarantees because
the required link resources are reserved for the entire lifetime of a particular
communication and no arbitration is needed [220]. So, it provides very fast
communication when needed by the application, but it limits the possibilities of
time-sharing of the links across multiple communications. Circuit switching can
be combined with Time-Division Multiple Access (TDMA) to provide more sharing
connections. Nostrum [225][226] and Æthereal [224] are examples of this
scheme.
Packet switching techniques fall into four main categories:
• Store & Forward – incoming packets are stored first, then they are forwarded

to next hop.
• Wormhole switching – each packet is divided into flits (small chunks), which

are sent one by one to the intermediate router; the router stores and
processes the header flit first, then it forwards it to the next hop and the
other flits just follow the path taken by the header flit.

• Virtual-Cut-Through – each packet is divided into flits and sent one by one to
the intermediate router; the router stores all the flits in a buffer, then, after
the routing decision, forwards them to the next hop.

12 | P a g e D5.1 State of the Art S (o) O S

• Virtual circuits/channels – it is similar to circuit switching, in the sense that
the connection is established before any packets are transferred, and that
packets are delivered in order.

Each one of the above schemes has advantages and disadvantages. For
example, Store & Forward and Virtual-Cut-Through need the routers to have a
buffer-size sufficient for storing an entire packet, while Wormhole switching does
not. Finally, in virtual circuits/channels the buffer size requirements are also
high.
Among all the packet switching techniques, Wormhole switching seems to be the
most suitable for fast computing, because of its lower latency and limited buffer
requirements. For QoS-sensitive systems, we can combine virtual circuit packet
switching with TDMA.
The performance of a switching technique also depends on channel buffer
management between routers to avoid channel buffer overflow. There are two
major techniques: Go-and-Stop (or on/off) control and Credit-based control.
In Go-and-Stop control, the receiver router sends a stop signal to the sender
router if the buffer is full. When the available buffer size rises again above a
preset threshold and/or the size of a packet, then the receiver router sends a go
signal to the sender router.
In Credit-based control, the receiver router sends credits (indicating the available
receive buffer size) to the sender router when some buffer is available. Then, the
sender router sends packets up to the available credits (buffer size).
In addition to the switch-to-switch level, we can control the flow between the
source router and the destination router by adjusting the injection traffic rate on
and end-to-end basis. There are two popular techniques: Injection Limitation and
ACK/NACK flow control.
Injection Limitation – in this case, the sending router suppresses the traffic rate
to saturation load, which can be statically or dynamically defined.
ACK/NACK flow control – as soon as a packet is received by the destination
router, it is explicitly acknowledged by a ACK packet (or NACK, in case of
problems).

Routing algorithm

The routing problem becomes more and more relevant as the number of cores
increases. The goal of a routing algorithm is to distribute traffic evenly among
the paths supplied by the network topology, so as to avoid deadlock and
minimize contention, thus improving network latency and throughput.
Based on the application requirement, routing paths may be adaptive or
deterministic, and multi-path or single-path. There are various algorithms which
have been proposed, but the most commonly used ones are Dimension-Ordered-
Routing (DOR) and Turn-Model routing.
In DOR, by looking at the distance vector between the sender and the
destination, a message is forwarded first in the lower dimension, then in the
other one. DOR uniformly distributes minimal paths between all pair of nodes
[229].
In Turn-Model routing, the packet has two choices in each router: proceed on the
same direction or turn in the other direction, based on the availability of the path
or link [230][231].

Quality-of-Service

Quality-of-Service guarantees in communication networks, i.e., predictable and
ensured delivery latency and throughput, constitutes also an important issue.

13 | P a g e D5.1 State of the Art S (o) O S

Interconnect networks are constrained by on-chip bandwidth, or the number of
available communication channels over the link. These are allocated based on
traffic requirements (latency critical, data stream, best effort). Therefore, there is
a need for proper network resources allocation and scheduling algorithms in
order to support QoS.
As discussed for the switching techniques, circuit switching provides the best
solution for resources allocation or QoS [220] and virtual circuit/channel packet
switching with TDMA also provides a partial solution for this [221]. But, in both
cases, resources are allocated to either short time slots (TDMA based) or during
the entire lifetime of a connection (circuit switching). But these are not optimized
for worst-case situations. Therefore, several dynamic resources allocation
schemes have been proposed in the literature [234].

SOFTWARE/OS LEVEL
The goal of this level is to define the access method to the hardware platform by
the applications. This can be done based on computation and communication
requirements, which may be automatically inferred by the OS by means of
proper heuristics, like the ones commonly found in GPOSes for discriminating
between batch and interactive processes, or more advanced ones [274][275].
Also, applications may explicitly communicate their resource requirements by
using proper APIs [81]. Anyway, the OS and/or application has to deal with
application mapping, communication and task scheduling.
The goal of application mapping is to map a set of processor-cores to a specified
application in an optimised manner (software-hardware mapping). In multi-core
systems, the hardware topology is pre-configured, so we will have to map and
schedule applications and their communications on the available hardware
resources. Given some knowledge on the application components and their
computing and communication requirements, we end up with a graph mapping
problem, where the application-level graph needs to be properly mapped to the
available physical level topology. These approaches may be based on an a-priori
characterisation of the application requirements and an off-line optimisation
process [227][228]. However, this is not appropriate for dynamic real-time
applications with strongly varying workloads. For this class of applications, online
dynamic mapping is more appropriate, where the cores to applications mapping
may be dynamically varied depending on the actually imposed workload on the
various subsystems [232][233].
For communication and task scheduling, based on available communication
infrastructure and communication requirement it is possible to use various
scheduling schemes (see Section IV. 2. for details).

4. HIGH-PERFORMANCE COMPUTING

High Performance Computing (HPC) is always considered a “role model” for
many-core systems due to the essential similarity of the architecture and hence
the means to develop programs for it. At the same time, the many-core
movement leads to a sudden boost of scale in high performance computing
without essentially increasing the requirements or costs. Whilst the degree of
mutual influence between many-core PCs and HPC will be discussed elsewhere
[86], this chapter focuses in particular on providing an overview over the past
and present approaches in high performance computing, including programming
models to realise distributed and parallel applications.

14 | P a g e D5.1 State of the Art S (o) O S

Since the topic is vast in itself, we restrict ourselves to the main issues of
relevance for the S(o)OS project. We thereby assume the reader already has
basic knowledge in the area, and specifically that he/she is familiar with the
concepts found in [157][158][159].
High Performance Computing is often confused with Grid and Cloud computing
due to the fact that all these areas investigate into distributed computing.
However, the degree of connectivity and the type of scale differs enormously
between these three systems:
Cloud Computing has the weakest relationship with high performance
computing, as its main focus is on ensuring accessibility of data and/or services
hosted within the cloud infrastructure by scaling these instances. Implicitly, scale
in Cloud systems must be regarded as “horizontal” where instances of data and
code are replicated to increase availability [95]. Whilst this is particularly useful
for data and service hosts, such as eBay, Amazon, etc., it does have little or no
impact on scalable systems acting on “vertical” scale (i.e., where the actual
application is split into multiple processes or threads that jointly contribute to the
application functionality). Recently there have been more and more references
to the so-called “HPC Clouds” [96][97][98], yet they either focus on making small
parallel machines (in the order of 8 cores in the case of the Amazon EC27)
available, or provide access to thousands of cores in an almost unconnected
fashion, similar to Compute Grids (see below), as for example in the case of Plura
Processing8.
Grids or “the Grid” [99] generally refer to a set of machines that can be used
either as compute units (Compute Grids [100][101]), or to access given services
(Virtual Organisations [102][103] or eBusiness Grids [104]). Grids primarily
provide unlinked or weakly linked capabilities that can be used for
embarrassingly parallel tasks, but not for typical HPC, strongly linked parallel
execution. Usage of the Grid for such tasks is closely related to peer-to-peer
computing, such as Folding@home9. HPC Grids on the other hand do expose
access to supercomputers and manage job-based scheduling across the HPC
units in the grid – the grid itself does not realise the computing capabilities.
Notably, Grids can theoretically scale vertically and horizontally, depending on
usage, but all communication is Internet based and accordingly slow (weak
linkage).
Supercomputers are “computers that are at the frontline of current processing
capacity, particularly speed of calculation”10. However, a supercomputer is not
necessarily a parallel machine, but any machine that offers enough
computational power. Typically a so high computation power is realised
nowadays by linking multiple compute units with high-bandwidth, low-latency
connections – we will use the term in this sense in the context of this document.

4.A) SUPERCOMPUTER ARCHITECTURES

In supercomputers, communication is key to achieve high performance [105]
[106][107]. This does not only relate to the network connectivity between nodes,
but also to communication on all levels and between any kind of resource in the
system (between cores, between processors, towards the cache, any I/O, etc.).
Current petaflop machines have more than 100.000 compute cores in a full
cluster of over 10-20 units that consist each of approximately 15 racks or towers.

7 Amazon Elastic Cloud Computing - http://aws.amazon.com/ec2/
8 Plura Processing, LP; A Creeris Company - http://www.pluraprocessing.com/
9 More information is available at: http://folding.stanford.edu/.
10 More information is available at: http://en.wikipedia.org/wiki/Supercomputer.

15 | P a g e D5.1 State of the Art S (o) O S

http://en.wikipedia.org/wiki/Supercomputer
http://folding.stanford.edu/
http://www.pluraprocessing.com/
http://aws.amazon.com/ec2/

Each rack or tower hosts roughly 12 nodes, which again may have any number
of CPUs between 6 and 16, which in turn currently may have 2-4 cores (general
purpose) or 8 vector pipelines. It is important to highlight that there is a strong
hierarchical structure of the architecture which implies different performance of
the interconnects. The fastest connection is realised at the level of core-to-cache
and core-to-core, with bandwidths in the order of 19,2 GB/s and latencies of 5.6
ns. The slowest one is between units, e.g., by the use of Infiniband with a
bandwidth of 12GB/s and a latency of nearly 1 ms11.
As a consequence, one of the major challenges for software development
consists in distributing and segmenting the code and data in a fashion that any
access beyond the immediate cache is reduced to a minimum, and that tightly
interacting components are not deployed too far away from each other, in the
underlying physical topology. This implies that the code structure needs to
match as much as possible with the system architecture. However, hardly any
programming language, nor any hardware mechanism does support this specific
feature, thus typically all communication is treated equally on the programming
level and the slowest connectivity will decide over the overall latencies.
Communication and synchronisation is currently still supported from the
hardware side by means of a (virtually) shared memory, i.e., hardware
coherency support (e.g., by using the Quick Path Interconnect protocol by
Intel, see below). Coherency thereby means that all processes (or threads) have
access to the same memory content – as we shall see, this does not imply that
all memories have the same state. The simplest approach to shared data
consists in actually physically sharing the memory or cache across multiple (all)
compute units in a parallel machine. While such a uniform memory access (UMA)
between the nodes and clusters would be ideal for programming purposes
(leaving the latency issue aside), it is far from realistic. In fact, in order to reduce
costs with the increasing need for scalability, it is more feasible to distribute
memory so that each compute unit hosts its own cache and/or local memory.
Therefore, the reality is that there is a non-uniform memory access (NUMA)
between processors, nodes and clusters. This means that data (and processing)
will have to be distributed according to the locality of the computation, otherwise
the processor would mostly be waiting for its data.
Coherency in these cases can be achieved in two ways: either by allowing access
to remote cache and memory blocks (“NUMA: Non-Uniform Memory
Architecture”), or by actually maintaining the same state in all memory instances
(“ccNUMA: cache-coherent NUMA”). Both approaches come at the cost of
increased data access latency where the slowest memory connectivity restricts
the overall speed [108][109][111].
In large scale clusters it is therefore more typical to have different types of
shared memories on different hierarchical levels of the system, e.g., between
processors on a single node, but not across nodes etc. [109][110].
Note that, with the advent of multi-core processors, NUMA has also become the
reality within processors, where the access to a core local cache is 2-4 times
faster than accessing the cache of a neighbouring core. In systems with No-
Remote-Memory-Access (NoRMA), memories belonging to other nodes or clusters
can not be accessed directly at all. In this case, the software (application or
Operating System) has to ensure consistency of data across processes or
threads. This obviously increases complexity for the developer, because such

11 All figures depend on usage and configuration.

16 | P a g e D5.1 State of the Art S (o) O S

devices need to be programmed using some type of message-passing protocol,
such as MPI12.
Cache organisation determines the data throughput of the processor and in
particular modern vector machines, such as the NEC SX-8, used a proprietary
memory bank structure to reduce access latency (odd-strides and stride 2 being
best for access) which is not identical to the one in the NEX SX-9 (where stride-1
is best) this obviously requires more adaptations on the programmer's side
[111]. So far, most cluster machines are homogeneous in nature, i.e., the
processors incorporate identical cores and all processors across the system are
identical. However, modern day systems, such as the IBM Road Runner, show a
clear trend towards heterogeneity, incorporating graphic cards on a node level,
as well as heterogeneous cores on a processor level. In the HPC domain [113],
the organisation clearly reflects the typical usage area, so that the processor and
cache layout is close to the algorithmic maps [112][114] – a circumstance that
can not be employed in desktop PCs as they try to address a large usage scope.

5. MEMORY ARCHITECTURES

High-Performance GPPs use multiple levels of cache(s) to hide the memory
latency of the main memory. As cache misses cause a core to stall (5-6 cycles for
L1 cache miss, 50+ for L3 cache miss) for a significant part of its operation,
cache misses are the biggest performance problem for CPUs. So the main
problem for distributed applications is to find the right segmentation of code and
data to minimise cache misses.
The first level of cache (L1 cache) is always private per core, L2 caches and
higher may however be shared among cores in a processor. The highest-level
cache (e.g. L3 in Intel Nehalem) is the cache that sits between the processor and
the RAM memory – sometimes the RAM is therefore referred to as the highest-
level cache. Typically the higher-level cache is also slower in being accessed due
to manufacturing reasons, with the RAM always being the slowest memory (note
that modern hierarchical views also consider hard drives and other storage
devices as higher order memories [109]). In addition to being slower, access to
higher-level cache is also delayed due to the hierarchical organisation of the
cache: all access to higher levels are routed via all their lower levels (hence the
“hierarchy” of the structure). For example, a L2 cache access has to first go
through the L1 cache before being handed over to the L2. This means that the
access is delayed further by a factor proportional to the level of the cache being
accessed [116].
Some architectures (mostly DSPs) employ some type of Harvard memory
architecture, where there is no cache at all, but local memories for both code
and data.
The simplest approach to programming parallel applications consists in a shared-
memory approach, where each process can easily access data and state across
all other processes (see also section V. on programming models). Due to the
organisation of multi-core processors, the only effectively shared memory is the
RAM, which is at the same time the slowest. In most common desktop
applications, shared memory is not even required (as the code is strictly
sequential). In order to achieve a shared-memory like behaviour, the caches of
different cores need to be kept coherent. Cache-coherency for most multi-core
GPPs are implemented in HW in the form of a protocol (as opposed to physically
sharing the memory). Cache coherency thereby needs to be distinguished from

12 More information is available at: http://www.mpi-forum.org/.

17 | P a g e D5.1 State of the Art S (o) O S

http://www.mpi-forum.org/

shared memory insofar as it does not exactly allow for accessing a remote
cache, but ensures that basically all (coherent) caches have the same state.
Remote access could lead to deadlocks if no specific care is taken to avoid that,
which again may lead to major delays. Intel for example employs the MESIF
protocol on top of the “Quick Path Interconnect” (QPI) bus since its Intel Core i7-
9xx processor (2008). This protocol does not so much aim at constant
consistency across all caches, but it verifies the consistency of a specific memory
location at access time. The basic essence of the protocol consists in asking all
other cores whether the information is still up-to-date or has been invalidated by
any other core, in which case the datum will be overwritten prior to being made
available to the querying process. Not only does this require additional steps (3-4
hops, depending on the situation) which delay the memory access even further,
it also diminishes the potentially available cache if it were shared between the
consistent cores. Nonetheless, the QPI approach is still slightly faster than other
coherency protocols [117]. In order to reduce the delays, such protocols base on
the assumption that the cache is fully interconnected (so as to avoid further
delays by routing steps). With the growing scale of multi-core processors, this
assumption is however not feasible in the long run (see D5.2 [86] for details).
RAM is typically only accessible via a dedicated core (there is only one memory
controller), however, newer architectures have a memory controller per core. To
access other devices, Direct Memory Access (DMA) is used, where the DMA
controller transfers data between the RAM and the device. The CellBE also uses
DMA to transfer data between the main memory and the local memories of each
SPE.
DSPs usually employ some type of Harvard memory architecture, where the local
memory falls within a different address range than the larger main memory. The
SPEs on the Cell on the other hand only have direct access to their local memory,
and data from the main memory can only be acquired through DMA transfers.

6. SUMMARY

We can categorize the (current) computing hardware architectures as follows:
multicore on a single chip or on computing card with multicore chip, multi socket
or multiple chip on single board and network of systems or super computer.
Table 2 summarises general-purpose in-chip multi-core and many-core systems,
a.k.a., Chip Multiprocessor (CMP). This table shows the comparison between
some of the recent CMP systems with processor properties like architectural,
memory and power consumption. We can conclude that industry is going
towards the direction of multi-core tile based systems, currently following 2D
topologies but in future we may find 3D based chip multi-core system also.

18 | P a g e D5.1 State of the Art S (o) O S

Intel TeraFlop Intel SCC Sony, Toshiba, IBM cell Sun UltraSPARC T2 Sun UltraSPARC T3 UT Austin TRIPS Intel Larrabee Cavium octeon cn6880 Tilera TILE64

Type CPU CPU CPU CPU CPU CPU CPU/GPU hybrid NPU NPU

ISA X86 x86 Power SPARC SPARC EDGE x86 MIPS

Micro
architecture

in-order VLIW 2 way In-order CPU,
RISC, 2 way In-order
128-B SIMD SPU

RICS, SIMD RICS, SIMD SIMD 2 way In-order, 4
way SMT, 512-B
SIMD

RISC, SIMD RICS, 3-way
VLIW

Technology 65nm 45nm 90nm 65nm 45nm 130nm IBM ASIC 32nm 90nm 90nm

Number of
core

80 48 1 CPU(PPE)
8 SPU(SPE) SIMD

8 16 2 Upto 48 32 cnMIPS II core 64

Operating
frequency

3.2GHz - 5.7GHz - 3.2GHz - 4GHz 1.6GHz 1.67GHz 533MHz 2 GHz 1.5 GHz on each core 866MHz

Data width 32bit 32bit 128 bit 128 bit 64 bit 32 bit 64bit 64 bit 32 bit

Interconnect 8x10
2D mesh

2D Torus Ring Crossbar Crossbar 4x10 2d mesh Ring crossbar 8x8 grid 2D mesh

Bi-Section Bw 320GB/s 256GB/s 195GB/s - - 64GB/s - - 240GB/s

Switching Wormhole Wormhole Pipe-lined Circuit Circuit switching Circuit switching Wormhole - - Wormhole

Flow-control On/Off Stall/Go Credit-based Handshaking Credit-based Credit-based - - Credit-based

Routing Sourcing Routing
(DOR)

DOR , odd-even
Turn Model

Shortest-path Board level routing Board level routing DOR Ring based routing - DOR

Number of
Threads

- - 2 on PPE
8 on SPE

64 8 per core
(8 x 16)

4 4-way interleaved
multi-threading /core

- -

L1 cache 3KB I-cache,
2KB D-cache

16KB I-cache,
16KB D-cache

32KB I-cache,
32KB D-cache

16KB I-cache,
8 KB D-cache

32KB I-cache,
16 KB D-cache

64KB I-cache,
32KB D-cache

32KB I-cache,
32KB D-cache

37KB I-cache,
32KB D-cache

8KB I-cache,
8KB D-cache

L2 cache 256kb 512kb 4MB 6MB 1MB 4MB 4MB shared 64KB

L3 cache/
other cache

16kb massage
passing buffer
(shared), total 384kb

256kb scratchpad
memory (Local Store)

- - - - - Abstractly all on
chip cache

Memory
model

Message-passing Message-passing Shared-memory Shared-memory Shared-memory Shared-memory Shared-memory - shared memory
and user-level
message passing

Cache
coherence
UMA/NUMA

Directory based
cache coherent
shared-memory

Software based
cache coherent
shared-memory

NONE MESI
SNUCA

2 coherence plane No hardware based,
Non-Uniform
(NUCA) L2 Cache

Broadcast - -

Development
environment

- - IBM Cell Broadband
Engine SDK
C/C++ compiler

- - TRIPS compiler
based on C and
FORTRAN

C/C++ Compiler
OCTEON (CDK) C
compiler

Tilera MDE
Eclipse based, c
compiler

TLB - - - - - 16 I / 16 D - 64 I / 64 D 8 I / 16 D

Power - 25W - 125W 92W 72 – 123 W - 36W - 95W 15-20W

Table 2: Summary of computing hardware architectures.

Table 3 summarises multiprocessor systems based on Card Computing Units, where
the multiple computing units are seen by the OS similar to an expansion card (or
peripheral).

NVIDIA Tesla
C2050/C2070

ATI Radeon HD 5970 Cisco QuantumFlow ClearSpeed CSX700

Type GP-GPU card computing
unit

GP-GPU card computing
unit

NPU Numerical Computation
Unit

Process Technology 40nm 40 nm 90nm IBM 90nm

Number of core 512 CUDA core or
Stream processors (16
Stream multi-processors
and 32 core per Stream
multi-processors)

3200 Stream Processing
Units (160 SIMD unit &
20 Stream Processing
Units per SMID unit)

40 4-way-threaded (160
total) CPU cores called
Packet Processing
Engines (PPE) 32-bit
RISC core

1 core (96 Processing
Element), RISC, Array
SIMD per chip

Micro architecture CUDA TeraScale 2 Unified
Processing Architecture

-

Operating frequency 1.25GHz to 1.4GHz 725 MHz 900MHz 250MHz

Double-Precision
Operations per seconds
(Gflops)

515 515 - 96

Single-Precision
Operations per seconds
(Gflops)

1030 4620 - 96

Interconnect Infiband - - ClearConnect (Hybrid)

L1 cache 64 KB shared per SM - - 8KB I-cache,
4KB D-cache

L2 cache 768KB shared - - 2x 128kb shared

Memory 3GB/6GB 2GB Shared memory - 1 Gb of
memory to support
128,000 queues and 40
Mb of content-
addressable memory
(TCAM)

Memory clock speed 1.5GHz 4.0 GHz

Memory bandwidth 144Gbps 256.0 Gbps 100Gbps

Memory bus width 384 bit 512 bit

Memory Interface GDDR5 GDDR5 DDR2

Memory model Shared memory - Shared-memory

Cache coherence

Development
environment

NVIDIA nexes IDE ATI Stream SDK ClearSpeed SDK Eclipse
based

Compiler support C, C++, FORTRAN,
OpenCL, JAVA, Pyton

OpenCL C

Address Space 64 Bit 64-bit Virtual
48-bit physical

QoS Priority based

Power 190W to 225W 51W to 294W 9W

Comment Concurrent Kernel
Execution

Table 3: Summary of multiprocessor systems based on Card Computing Units.

III. PROTOCOLS: COMMUNICATION CONTROL MODELS

This chapter overviews research literature in the field of communications and control
models for distributed, massively parallel and highly scalable systems. In the context of
the S(o)OS project, we plan to leverage general concepts from the world of distributed
computing, like scalable mechanisms for load distribution and balancing, services
localisation by means of publishing/subscribing mechanisms, etc., in the context of
massively parallel systems, even within the chip. However, the necessary differences
need to be properly accounted for, because the mechanisms used for communications
within the chip, and among different chips on the same system, and the implied
latency and throughput figures, are tremendously different as compared to standard
networking stacks.

1. INTERCONNECTION NETWORKS

In standard networks two of the core aspects constantly under improvement are
bandwidth and latency. Current research is focused on the improvement of these
aspects by enhancing the underlying technology or by making protocols more efficient,
thus decreasing overhead and maximising utility. Even so, bandwidth improves much
faster than latency [32], frequently faster than a system can cope with, especially in IP,
fibre based, transport networks. In these networks, traffic demand increases very
rapidly, doubling every two years (see Figure 2).

Current state of the art optical communication devices transmit at a rate of 100
Pb/s/km using a DWDM (Dense Wavelength Division Multiplexing) deployment of 155
lambdas at 100 Gbs each [29] and over 7000 km. Still, this number only shows up to
where technology can be pushed, and it does not refer to real deployments (at least
not for transport or HPC networks), because bandwidth between hosts is limited by
protocols and controlling electronic equipment.
Most high speed interconnects are based either on copper or optical technology, using
point to point connections. The fastest deployments reserved for research purposes as
the Internet2, GEANT or CERN. Optical technology was elected for long distance
interconnects due to factors such as its low attenuation and distortion, high capacity,
low price and raw material availability (now fibre deployment is more cost effective

Figure 2: Cisco VNI Forecasts 64 Exabytes per Month of IP Traffic in 2014

than copper [30]), and the immunity to electromagnetic interference (or TEMPEST style
eavesdropping). Future prospects plan to bring optical technologies into chips, highly
increasing integration as well as power efficiency and performance. Considering that
the limits of optical technologies are still not reached, we expect bandwidth to increase
continuously, while trying to follow demand. Still, for tightly coupled deployments such
as HPC environments, copper technologies such as the ones used by Infiniband or
Ethernet are pretty much standard.
A more important factor for tightly coupled distributed systems, such as parallel
applications, is latency [31]. The higher the latency, the more time is wasted sitting
idle, thus hurting overall performance and efficiency in resource usage. With the
increase in bandwidth, latency has decreased over time, however network latency is
still very far from the latency found between system components. Moreover, the
increase in bandwidth requirements is flanked by the need for lower latencies, as
systems have synchronization points more frequently. Increasing the bandwidth may
not be enough for some classes of applications, but unfortunately some systems with
higher bandwidth may present also higher latency figures [31]. Still, considering the
overall relation stating that a bandwidth improvement in a technology, generally
implies a latency reduction (e.g. Ethernet), after systems start operating at the same
speed magnitude as the bandwidth provided by their interconnection network, the
latency issue returns, and over time, latency is lagging [32]. This is particularly
relevant in the HPC environment where even the low latency of less than 1.5 us
provided by Infiniband [37] is a point where improvements are much desired. The only
way to actually minimize latency is by optimising algorithms and overall systems.
Infiniband allows up to 1.5 us due to high coupling of the communication stack, and
strong hardware support. More importantly, Infiniband designers opted for solutions
which effectively minimise latency independently of the provided bandwidth, such as
cut-through switching, switch fabrics, or serial links.
In more conventional networks, such as Ethernet or DSL, the major aspects are
bandwidth, and simplicity, or Operations Administration and Maintenance (OAM)
functionalities. In particular it is commonly agreed between authors that the lack of
OAM functionality is a major limitation for Ethernet [38]. Latency, while being an
existing issue, is not a critical problem as applications are designed to take into
consideration high delay between end points.
In order to reduce latency and improve useful bandwidth (at a reasonable cost,
depending on requirements and purpose), several different protocols are used,
following a layered approach. Between cores, state of the art systems use HyperPath or
QuickPath Interconnect [34], inter-processor communications use IXS (Internode
Crossbar Switches), in HPC environments Infiniband [37] provides connectivity between
nodes, and Ethernet typically connects hosts. Over the Internet, IP is the dominant
protocol, and it is used over a multitude of technologies.
Beside the potential capabilities of each technology, it is also relevant how systems are
interconnected (i.e., the communication topology): traditional home networks make
use of either the Bus (such as in 802.11 or 802.3 10Base2) or Star (such as in Ethernet
XBaseT) configurations, however these are not optimal for high performance or low
latency systems. Instead they favour cost and ease of deployment. One particularly
bad example of system configuration, in relation to latency, is the ring model where
each node connects to two of their neighbours, forming a circle. Message flow between
two nodes must traverse all intermediate nodes, making latency critical communication
only possible between direct neighbours. One benefit of this topology is that, if the
detailed topology is known, latency (although high) between two hosts can be

predicted. Data-centers for Grids, Clouds and HPC are currently driven by inter-
networking topologies much different from their counterparts used in Local Area
Networks. In this world, designs maximising bandwidth while keeping latency at its
lowest value are desired, and we find Hypercube, N dimensional Mesh, Torus, Dragonfly
[33]. Each topology has its advantages, in terms of latency, bandwidth, cost and
predictability. The Flattened Butterfly [39] improves the existing topologies, by
proposing the use of high-radix routers to reduce network diameter, while improving
throughput in 50% for multi-core designs. Moreover, the authors show that routing can
have negligible impact in latency, and the design can actually reduce it by 28%.
Communication between software or hardware agents must take into consideration the
actual topology, so that parallelism provides the highest possible performance. Several
authors already identified the relevancy of this aspect, showing the impact of cross
layer adaptation in order to maximise performance [35]. In the context of S(o)OS, we
must follow the same approach and make code distribution and parallel execution
aware of the underlying topology. In the case that topology information is not directly
available, the same can be inferred by quantifying the latency of the multiple links, as
it is shown in [36].

2. COMMUNICATION PROTOCOLS (SW LAYER)
At the software layer, protocols are much more complex than the ones addressed in
the previous section such as Infiniband or Ethernet. This arises from the fact that they
are closer to application and business model concepts, providing a much richer set of
functionality. They are mostly driven by the TCP/IP or OSI protocol stacks. These
approaches consider that protocols are in layers, where each layer makes use of the
functionality provided at the lower layers. Typically no two layers provide the same
functionality, but because of the multiple possible combination of layers, redundancy
and replication of functionality may occur.
Applications reside at the upper layers and exchange data units which differ from
application to application. Initially most applications were designed on top of the UDP
or TCP layers (or even IP!), but nowadays several common layers, such as HTTP and SIP
[41] are shared by many applications. IPv4 is the common protocol driving today and
future networks as all services are provided on top of it, with IPv6 following it and
allowing for the major deployments required for the Internet of Things. However, as
some authors recently suggest [47], transition to IPv6 may not be so soft due to the
way operating systems are implemented, and the actual implementation of the
protocol may result in lower throughput and higher resource consumption for IPv6.
Many applications, in particular time-sensitive ones, need to have a notion of the
available latency and bandwidth in order to deliver services to users and are designed
in order to cope with this. Conversely, the further down the protocol layer, the more the
protocols are specialised to the characteristics of the local communication
environment. Moreover, many applications require to have a detailed knowledge of the
underlying transport path and adapt content accordingly [40]. Vertical interoperability
is however not easy as the protocol stack relies on a closed layered model, not allowing
much access besides to the neighbour layers, and cross-layer optimizations requires
particular care. Mostly because some short-cuts can change the expected behaviour of
a protocol and break compliance. This makes high level integration of devices for
parallel execution more unrealistic, in particular under synchronization critical
conditions.
Another protocol highly relevant for a distributed operating systems is 9P. As the name
suggests, 9P was created for Plan9, the prototype operating system developed by Bell

labs. Started in 1985, it suffered several refinements with 9P2000 [46] being the latest
version. The innovation of 9P consists in a protocol oriented towards a distributed
operating system, which allows to distribute filesystems, devices and applications in a
grid, however in a transparent manner. That way, resources are used in a way
independent of their actual location. It supports locking, client-side caching, secure
authentication and even internationalisation. The Inferno Operating System [49]
(developed by Via Nuova Holdings) continued research in the 9P protocol, but
extending it to more useful scenarios. One important aspect was the support for
heterogeneous hardware platforms, through the use of a virtualisation technology (DIS)
and a type-safe, C alike language named Limbo. Recent work around this protocol is
present in XCPU2, proposed by Lonkov et al. [50]. The authors propose a system
allowing users to compose the environment of remote cluster nodes so as to match
local resources, creating the illusion that the cluster is a seamless extension of the
local machine, much facilitating development and debugging.

SERVICE DISCOVERY PROTOCOLS
Service discovery protocols (SDPs) consist of two groups: protocols that focus on
services (such as AppleTalk), and the ones which concentrate on devices (such as
DHCP). The activities in SDPs include three main tasks: how to find services; how to
publish services; how to use services. Generally UDDI, WSDL, SOAP [51] have been
used to implement the mentioned activities in various SDPs. The mechanism of service
discovery and advertisement constitutes distributed services or centralized services,
AppleTalk, NetBIOS/SMB [52], IPX that were designed following local network (not IP
based) features and decentralized discovery (Distributed Service Discovery). UPNP [53]
[54] and SLP [55] present distributed solutions to operate in a local scope as well as
searching for services in a global scope. This is achieved by exploiting extensions of
existing standards (DNS) that enable remote service discovery. The traditional SDPs
have weakness in supporting a simple and reliable way to configure and browse
services over IP networks. However, to overcome these challenges the next
generations of distributed service discovery solutions (zeroconfig SDPs) [56] have been
emerged recently. The main advantage of zeroconfig SDPs is their adaptation to
various heterogeneous network structures. IPv4 Link-Local Addressing, Multicast DNS,
Bonjour [57] and DNS Service Discovery [58] are examples of zeroconfig SDPs. Bonjour
is an open source distributed service discovery which is submitted by Apple to IETF as a
standard. It enables automatic IP configuration, translating name to IP and service
discovery without using DHCP server, DNS server and Directory.

3. COMMUNICATION INTERFACES (API)
There is a close relationship between programming models, tools and the protocol
stack. Applications communicate using Berkeley Sockets alike interfaces which vary
according to the tools, programming model and environment. These interfaces are
exposed to applications by means of libraries which are agnostic of the underlying
infrastructure and connect end-points using either UDP or TCP connections (here we
focus on distributed systems – see Chapter V. later for programming models for
parallel multi-processor and multi-core systems). One underlying limitation of this API is
that connections are maintained between IP addresses. In reality what matters to
communication is not the actual location but the identity of the hosts. Identifier to
locator decoupling is an aspect pursued since a long time such as using HIP [42], but its
support is still lacking in current operating systems. Interestingly in the work developed
by Khurri et al [48], it is shown that HIP (which makes use of cryptographic functions)

can be successfully implemented in highly constrained devices such as Symbian OS cell
phones. Decoupling allows communication to be performed between entities
independently of where they are located, as well as IP mobility and session
transference, while maintaining active sessions. One way which could be argued to
achieve this is by using DNS, however DNS latency is in the order of hours to days,
making it unsuitable for today’s scenarios.
On top of the socket API, several other APIs provide additional functionality, as well as
richer interfaces – for example, related to multi-core and parallel designs, the Message
Passing Interface (MPI. The first version (1.0) was released in 1994 rapidly becoming a
standard, with version 2.2 released in September 2009 [43]. Research for parallel
systems also adopted MPI and is now focused on improving it [44][45]. This
specification provides miscellaneous methods such as point-to-point message passing,
collection or group communication, process topology and many others. Its specification
was created as being language agnostic and has bindings to several languages such as
C, C++ or Fortran-95. Many of the basic design principles of MPI can be used in a
distributed operating system such as message passing, avoiding memory-to-memory
copies, reliable communication between hosts, offload processing to dedicated co-
processors (in particular communication), and more importantly platform and hardware
agnosticism.
The communication API provided by modern operating systems support both blocking
and non-blocking mechanisms. In the latter we have non-blocking synchronous or
asynchronous I/O. A blocking interface means that it does not return until the operation
is completed, thus preventing a caller to perform other activities. Alternatively,
additional threads could be created, but its a limited and expensive resource. By
contrast, non-blocking I/O interfaces return without blocking even if the operation is not
completed, thus allowing for a more efficient use of threads. Currently, there are two
design approaches to develop high-performance concurrent applications that are
scalable13, in particular server applications, using non-blocking I/O: the reactor pattern
[59] and the proactor pattern [60]. This mechanisms rely on an event demultiplexer, an
object that dispatches events from various sources to the appropriate handlers (or
callbacks).
The reactor pattern involves non-blocking synchronous I/O. The event multiplexer waits
for events that indicate when an object, such as a file or socket, is ready for a read or
write operation. The demultiplexer dispatches the event to the appropriate handler that
is responsible for performing the actual read or write. Then the handler can handle the
completion of the operation and may renew interest in I/O events.
The proactor pattern, on the other hand, involves asynchronous I/O. A caller issues a
read or write on an object and supplies a completion handler. The operating system
handles the operation asynchronously and queues a completion event, which is then
dispatched by the demultiplexer to the appropriate handler. The handler manages the
completion of the operation and may start new asynchronous operations.
By comparison, the proactor pattern has some advantages over the reactor pattern:
• it is easier to write an application, since it relies on the operating system to fully

handle the I/O;
• the operating system completion queue handles multiple threads and their

concurrency, thus making more efficient use of threads;
• provides better portability, since it can be emulated efficiently on top of the reactor

pattern.

13 More information is available at http://msdn.microsoft.com/en-us/magazine/cc302334.aspx and
http://www.kegel.com/c10k.html.

http://www.kegel.com/c10k.html
http://msdn.microsoft.com/en-us/magazine/cc302334.aspx

Most UNIX like operating systems support14 the reactor pattern, while support for the
proactor pattern can be found on Windows NT15 based operating systems and Solaris16.
Libraries, such as ACE17 and Boost.ASIO18, provide a unified proactor API for a wide
range of operating systems. The former library also provides a reactor API. On the
other hand, Linux supports asynchronous I/O by means of an implementation19 of the
POSIX asynchronous I/O API20.

14 POSIX select(), poll() and variants like epoll() and kqueue().
15 More information is available at: http://msdn.microsoft.com/en-us/magazine/aa365198.aspx
16 More information is available at: http://developers.sun.com/solaris/articles/event_completion.html
17 More information is available at: http://www.cs.wustl.edu/~schmidt/ACE.html
18 More information is available at: http://think-async.com/Asio/
19 More information is available at: http://lwn.net/Articles/94566/.
20 More information at: http://www.gnu.org/software/libc/manual/html_node/Asynchronous-I_002fO.html.

http://www.gnu.org/software/libc/manual/html_node/Asynchronous-I_002fO.html
http://lwn.net/Articles/94566/
http://think-async.com/Asio/
http://www.cs.wustl.edu/~schmidt/ACE.html
http://developers.sun.com/solaris/articles/event_completion.html
http://msdn.microsoft.com/en-us/magazine/aa365198.aspx

IV. OPERATING SYSTEMS

This chapter overviews research literature in the area of Operating Systems models
which is relevant for the S(o)OS Project. The works surveyed in this chapter constitute a
snapshot of the current OS kernel architecture models, with a strong focus on the
support for highly and massively parallel systems. These constitute the point of
departure from which the research in the context of the S(o)OS project will be carried
out.

1. OPERATING SYSTEM KERNEL MODELS

Various models of Operating Systems and kernels have been proposed in the literature.
In what follows, an overview of the most significant works related to the S(o)OS project
is provided.

1.A) MICROKERNELS

Microkernels have been proposed in the research literature as an alternative to
monolithic kernels [26][90][94]. In this architecture, a small code base provides
essential services, such as physical memory management and protection, interrupt
handling and task scheduling. This code (the microkernel) is the only one that executes
with full privileges in the processor, whilst most of the classical services provided by a
monolithic operating system, like network protocols, I/O device drivers, file systems,
virtual memory management, are provided by special server processes running in user-
space. In this way, the operating system is extremely modular, robust and secure. Only
a small set of essential services is always present in the kernel, while all other services
are optionally implemented as processes. In microkernel based OSes, all services
interact with each other and with applications through message passing.
Also, the robustness and security of the OS is highly increased, because misbehaviour
of a device driver, either malicious or accidental (due to common bugs), can only cause
the malfunctioning of the corresponding OS subsystem and cannot cause the crash of
the entire OS. Conversely, in a monolithic OS, every kernel-level device driver,
developed in the hurry to support the latest (and widely sold) piece of hardware, may
potentially crash the entire system.
Several microkernel architectures have been proposed in the research literature, most
notably the Minix system by A. Tanenbaum Group21 and the L4 family of microkernels
[26]. However, such architectures did not have a great success in commercial OSes,
mainly because of the performance penalties due to interprocess communication (IPC)
mechanisms on single processor systems with memory protection.
It should be noted that most of the research on microkernels is focused on two aspects:
security and use as hypervisor for running multiple virtual machines on the same
hardware platform. Unfortunately, only a few researchers have investigated the
performance and scalability of microkernels on multicore systems. In L4 [26], the basic
IPC mechanism is designed to be highly optimised for uni-processors: the send()
primitive hands off its time-slice to the server process without involving a call to the
scheduler. In this way, the overhead of message-passing reduces to two contexts
switches per IPC operation. However, such optimisations are not possible in multi-
processor systems, because sending a message involves an inter-processor interrupt
and a call to the scheduler, while the sender is forced to wait for the message reception

21 More information is available at: http://www.minix3.org

http://www.minix3.org/

before continuing. Moreover, microkernels still have the problem of some internal
shared data structure between cores, namely for interrupt forwarding and virtual
memory. It is not clear how these data structures are handled in a multicore
environment.
Uhlig [90] presented an adaptive mechanism for sharing data structures between
microkernels running on different cores, which is a combination of coarse and fine
locking and Remote Procedure Call (RPC). Locks can be enabled or disabled at run-time
depending on the sharing profile presented by the application with an appropriate API.
Also, remote resources (for example on a NUMA machine, resource residing on a
memory with a longer access time) are treated differently from local resources. Uhlig
reports examples for the Virtual Memory management. The idea is interesting, however
the results depend on the specific hardware platform thus cannot be easily generalised
to other architectures.
The use of microkernel based OSes has been investigated also in the domain of
supercomputing on multi-processor systems, like happened with the Amoeba [92],
Mach [94] and Chorus [93] OSes. These investigations were born from the observation
that monolithic OSes used to carry on lot of unneeded functionality on each and every
node of a parallel machine, introducing unneeded overheads. Also, the standard
communication primitives used on traditional OSes used to be highly inefficient in the
context of a multi-processor machine. On the other hand, the approach typical of the
HPC domain used to consist in not having a real OS, but rather a small run-time
environment provided in the form of libraries. This was too minimalistic and used to
lack potentially useful capabilities. So, the adoption of a microkernel based OS was
considered a good trade-off between these worlds [91].
A few commercial operating systems were inspired by the microkernel architecture.
Windows NT borrowed some of the ideas from the microkernel environment [27],
however NT should be considered a “hybrid” between a monolithic kernel and a
microkernel. Also, the Mac OS-X kernel, a.k.a., XNU, derives from the fusion of the
Mach and FreeBSD kernels. However, only some kernel-level primitives and paradigms
of Mach were kept, whilst the microkernel architecture has been basically dropped.
QNX Neutrino [28] is a Real-Time Operating System with a structure similar to a
microkernel, however, some of the essential scheduling services (like the pthread
interface, mutexes and semaphores) are implemented directly by the kernel for
efficiency reasons. The market of Neutrino (mainly embedded systems and networking
systems like high speed routers) pushed the development of the multicore support
early on, thus Neutrino was one of the first RTOSes to be available on embedded
multicore platforms.
OSE22 is another microkernel-based RTOS. OSE was developed by ENEA, a spin-off of
Ericsson AB. In OSE, real-time tasks are implemented as processes that communicate
among them mainly through message passing paradigm. Since memory protection is
enforced between processes, the OSE kernel is known for its fault-tolerant and high
availability features, and it is widespread in telecommunication applications.

1.B) SINGLE-SYSTEM IMAGE

Single-System Image (SSI) Operating Systems have been designed in the context of
cluster computing, for the purpose of making the usability and programmability of
clusters easy. An SSI OS gives the application programmer the illusion that a cluster is
a single computing system with a higher performance. The programmer writes parallel
applications composed of many processes which communicate to each other by means
of standard IPC mechanisms. Actually, the OS is capable of seamlessly distributing the

22 More information is available at: http://www.enea.com.

http://www.enea.com/

workload over a distributed set of homogeneous machines interconnected by a
network, migrating applications and data as required in order to make an efficient use
of the underlying physical resources.
Key features of a SSI OS comprise: migration of processes and threads, load balancing
strategies, global distributed shared-memory, management of the cluster possibly
supporting dynamic node addition, fault-tolerance, checkpointing and high availability
capabilities, scalable distributed File-System and high-performance networking
primitives, special security features needed to manage users, groups and permissions
in the cluster.
The SSI Operating System concept has been implemented for example in Kerrighed
[13], openMosix23 (initially based on MOSIX [15], the project was officially closed in
2008) and OpenSSI24. All of them constitute variants of Linux, which add to the kernel
the fundamental lacking features. A comparison among these approaches can be found
for example in [14].
SSI systems aim to realise high-performance computing clusters preserving a “local”
programming model that is unaware of the actual distribution of the load within the
network. This allows parallel applications initially thought for multi-processor (or multi-
core) systems to easily take advantage of the additional computing resources made
available across the network, without any need to explicitly code the distribution logic.
While being one of the main advantages of this kind of systems, it also constitutes its
very limitation. The actually obtainable performance speed-up depends strongly on the
communication patterns among the processes composing an application. However, the
assumptions of the programmer about locality of data and processes are subverted
when the application is deployed in an SSI cluster. The interaction overheads (now
implying networking latencies) may sometimes nullify the potential advantages due to
the increased available overall computing power, unless the application is carefully
coded considering the deployment environment. This kind of problems may be
mitigated by proper monitoring and migration strategies at the SSI kernel level, e.g., by
trying to keep those processes which interact too frequently on the same machine .

1.C) OPERATING SYSTEMS FOR MULTIPLE/MANY CORES

Research on multiprocessor operating systems is active since a long time, much before
the multi-core paradigm became so successful. Two broad classes of kernel
organisation have been proposed by Lauer and Needham [156]: message-based and
procedure-based approaches. In a procedure-based kernel, there is no fundamental
distinction between a process in user space and kernel activities: each process
performs kernel operations via system calls, and kernel resources are represented by
shared data structures between processes. Conversely, in a message-based kernel,
each major kernel resource is handled by a separate kernel process, and typical kernel
operations require message exchanges. The procedure-based approach closely mimics
the hardware organisation of Symmetric Multiprocessors (SMP) with Uniform Memory
Access (UMA): this is the basic organisation underlying monolithic kernels. The
message-based approach closely mimics the hardware organisation of a distributed
memory multicomputer, and this is the basic organisation of microkernels. As noted by
Chaves et al. [155], the choice between procedure-based and message-based
structures has a pervasive impact on the rest of the operating system than any other
single design decision. The authors then compare two different approaches to kernel-
kernel communication in a NUMA machine without cache coherency: remote memory
access versus remote invocation. In the first case, access to shared resources is

23 More information is available at: http://www.openmosix.org.
24 More information is available at: http://www.openssi.org.

http://www.openssi.org/
http://www.openmosix.org/

performed by accessing remote memory using a remote locking mechanism; in the
second case, it is achieved through invoking an operation on the remote node. The
work is outdated, because of the advances in hardware architectures, however, some
of the basic findings are of general validity: in particular, remove invocation is
preferable for long operations, while remote memory access is preferable for short
critical sections.
Many different papers [155][156] have insisted on the tension between lock-based
communication and synchronisation versus remote invocation. Depending on the
underlying hardware architecture and on the different structure of the operating
system, and depending on the requirements of the applications (performance, security,
scalability, etc.) sometimes the lock-based approach seems to be the most appropriate,
sometimes the remote-invocation approach proves to be the best approach.
Andrew Baumann et al. recently proposed an OS model called Multikernel [9] which is
largely inspired by the message-based organisation described above: each single
processor and even core inside a processor can be seen as a node of a distributed
system. One of the basic principles Multikernel relies upon is the absence of shared
kernel-level data structures. Each core runs a kernel instance which is independent
from the other cores. The various kernel instances communicate with each other by
means of message passing and RPC-like interactions. All kernel-level information and
status data that needs to be shared among multiple cores is therefore replicated
between them, and kept synchronised by explicit protocols. This way all
communications among cores and processors need to be explicitly coded, and this
naturally leads to asynchronous communication patterns, largely used in distributed
systems, which enhance the possibility for the system to parallelise and pipeline
activities, rather than having cores stall waiting for implicit cache coherence protocols
run by the underlying hardware. Interestingly, in the Multikernel view, the fact that the
OS does not rely on shared data does not preclude applications to be developed with a
shared memory paradigm.
Also, Multikernel envisions a hardware-neutral OS model, where for example the part of
a CPU driver in charge of handling the communications between different cores, may
actually take advantage of available low-level information about the cores topology and
their interconnection infrastructure. For example, different hardware-level mechanisms
may be exploited in order to send messages among cores sharing a L3 cache, as
compared to the ones needed to send messages among cores that do not share such a
cache, or reside on different processors (e.g., multi-cast trees, so well-known in the
domain of distributed systems).
The Multikernel model has been implemented as of now as the Barrelfish25 prototype,
and preliminary measurements seem to be promising, especially on the side of
scalability of certain critical operations involving all the cores (e.g., TLB shootdown).
However, the experimental results available so far are to be considered as preliminary,
in particular since many of the aspects addressed by the Multikernel concept have not
been realised as yet, due to technological problems (such as the hardware
independence etc.).
Yuan et al. proposed GenerOS [16], a variation of the Linux kernel explicitly addressing
heterogeneous multi-core systems. In GenerOS, the cache contention on the same core
due to different types of activities going on within a system is reduced by means of
partitioning the activities among the available cores. Specifically, the GenerOS kernel
envisions a partitioning of the available cores into three types: application cores,
dedicated to running applications and specifically exclusively user-space code; kernel
cores dedicated to running exclusively the kernel-space part of the system calls

25 More information is available at the URL: http://www.barrelfish.org.

http://www.barrelfish.org/

invoked by the applications; interrupt cores dedicated to servicing interrupt requests.
This kind of partitioning of activity type into separate cores is made available through a
set of modifications to the kernel that allow system calls to execute on a core different
from the application core invoking the functionality. Also, kernel cores run one or more
kernel servers. Each kernel server is dedicated to one or more system calls, it waits
continuously for requests of that particular set of system calls from the application
cores, and serializes their execution by means of the so called “slim scheduler”,
avoiding any need for context switches among requests from different applications.
The fact that kernel-space code is handed over to different cores than the ones where
the main applications code is running, together with the serialisation of kernel-space
system call executions by the kernel servers, causes a decrease of the contention in
accessing the cache, when compared with a plain Linux system, as shown by the
experimental results performed by the authors. However, the serialisation of system
calls execution is somewhat against the current trend in the Linux kernel: from the
ancient ages in which the kernel-space code was non-preemptible, in recent years a lot
of effort has been dedicated just for increasing preemptibility of kernel code, which is
well-known to reduce latencies and improve responsiveness of the system. Even if the
presence of multiple cores may mitigate such problem, the situation is not expected to
be tremendously different when high workloads are in place with a nearly saturated
system. Therefore, more investigations would be needed in order to understand what is
the impact of the proposed OS model on various application classes, especially on
interactive and real-time ones. An issue of the GenerOS model is constituted by the
proper OS configuration in terms of balancing among the various types of cores, as well
as the number of kernel servers and how system calls are distributed across them. In
the initial prototype, the authors used a static configuration, but they also observed
that this is one of the troublesome to be faced in their proposed OS model.
Boyd-Wickizer et al. proposed Corey [21], an Operating System designed from scratch
around the need for allowing applications to make an efficient use of massively parallel
and multi-core hardware. The authors highlight that kernel-level shared data structures
may cause unneeded overheads when accessed from multiple cores, even when the
applications that are being run would not need to share any data. For example, process
and file descriptor tables are potentially at risk of being contended among multiple
cores, even when the applications running on them are accessing independent
processes and files. Therefore, it is proposed to delegate the responsibility to decide
what is shared across which cores as much as possible to the application. This is done
via a specialised API allowing applications to define and control three main elements:
shares are areas of scope either local to a core or global for a set of identifiers; address
ranges are memory segments explicitly assigned to shares; kernel cores are cores
dedicated to the execution of kernel code, i.e., interrupt handlers and the kernel-side
part of system calls (which are handed over from the application cores to the kernel
cores). Experimental results seem promising, in that a reduction of the overheads due
to contentions on kernel-level data structures is achievable, at the cost of a little
complexity for the application developer, who needs to properly set-up shares and
address ranges.
Wentzlaff and Agarwal proposed the Factored Operating Systems (fos) [22], an OS
model that builds on concepts taken from the distributed computing world, in order to
reduce contention on kernel-level shared data structures. Specifically, the fos
architecture foresees the partitioning of cores between applications and kernel
services. Each kernel service is implemented by one or more specialised servers that
run on kernel cores, and bits of service-based computing are reused for allowing each

kernel service in distributing its workload to the available kernel servers, similarly to
load-balancing techniques in web servers. The fos Operating System is still under
development, and it is being entirely redesigned from scratch, based on a microkernel
structure, where the concept of relegating OS functionality within specialised servers
that communicate by message-passing mechanisms to each other and to applications
is already in place. Also, in fos, each kernel core runs a single kernel server that
enqueues requests in an input queue and services them in a serialised, non-
preemptible way. This removes (in the opinion of the authors of this approach) the
need for having traditional temporal scheduling of kernel cores. Actually, it is foreseen
to have a form of cooperative scheduling, by which a kernel core, while serving a
request, can yield explicitly the core so that it can serve other requests, while it waits
for some device and/or other kernel servers to respond. The way kernel servers service
applications requests is planned to be based on stateless protocols, so that subsequent
requests of the same application can be potentially handed over to different kernel
servers for a better load distribution across kernel cores.
Interesting investigations in this area have also been carried out by Schubert et al. [1]
[2][3][4]. These are summarised in D5.2 [86], as they are at the foundation of the
research proposed in the context of the S(o)OS project itself.
All of the above mentioned approaches to the (re-)engineering of the OS kernel model
for dealing with massively parallel systems are of utmost interest for the purposes of
the S(o)OS project. However, these approaches are at a quite preliminary and
conceptual stage, with only some of them having experimental prototype
implementations. Therefore, these do not constitute consolidated approaches proved
to be industrially viable, feasible and understandable for a wide audience. More
research needs to be performed on this side, addressing scalability, efficiency and
programmability issues for all of the sub-components of an OS kernel, and investigating
on the achievable trade-offs between overall system and individual applications
performance and responsiveness.

1.D) OPERATING SYSTEMS FOR GRIDS

Proposals have appeared in the literature for Operating Systems specifically targeted at
supporting GRID systems. For example, Padala and Wilson proposed [10] a GRID OS
that has the goal of providing a minimum set of services which are common to all GRID
middleware infrastructures, still building on a traditional OS like Linux with as few
changes as possible (in fact, additional features required at the kernel level are
provided through Linux loadable kernel modules). The core functionality that needs to
be added to the OS, according to the authors, is: high-performance I/O and networking,
for example relying on copy-free communication primitives and fine-tuning of network
stack parameters such as the TCP/IP window size; communication primitives with a
better support for such mechanisms as MPI; resource management features allowing
for resource discovery, allocation, monitoring; process management capabilities
supporting for example global identifiers for processes, which may be used in the
mentioned communication primitives for distributed IPC. The point that is made by the
authors, and validated by the presented experimental results, is that implementing
such services merely at the middleware level, outside the kernel, as commonly done in
existing GRID middleware solutions, constitutes a bottleneck in the potentially
achievable performance.
More recently, Puri and Abbas conceptualized [11] a GRID OS aimed to support GRID
applications, by means of embedding within the OS itself such capabilities as: fault-
tolerance and check-pointing, transparent access to distributed resources in a location-

independent fashion, load balancing by means of migration of processes and
virtualization, and scalability. However, the paper remains at a very abstract level, and
it does not discuss practical implications of the envisioned architecture, such as what is
required to be supported at the kernel level and what can be delegated to the OS
middleware.
The XtreemOS European Project26 produced XtreemOS [17], a variation of the Linux OS
enhanced with Grid capabilities. The XtreemOS extensions to Linux include: LinuxSSI, a
single-system image version of Linux based on Kerrighed [13] which allows to register
into the XtreemOS Grid a cluster of systems virtually seen as a single, more powerful
machine; XtreemFS [18], a networked file-system supporting automatic replication and
high-availability of data; process checkpointing; a middleware for management of Grid
nodes and submission of tasks; XOSAGA [20], an application-level API for Grid
applications which constitutes an implementation of the abstract language-
independent SAGA [19] specification, with some XtreemOS specific extensions.
Starting from release 10.4, the Mac OS-X Operating System embeds a simple Grid
management middleware called Xgrid [12], which is immediately available on all
installations of the OS, if the corresponding service is activated. Xgrid has a three-tier
architecture: clients submit jobs to controllers, which in turn hand them over to agents
for the actual processing. Clients may submit jobs to the Grid by means of either a
command-line tool, or a dedicated API which is part of the OS foundations API. In order
to share large amounts of data among Grid tasks, it is possible to use one of the
available distributed filesystems, such as NFS. Xgrid is targeted to an easy set-up of
Grids with no strong requirements on the number of interconnected nodes and
complexity of the submitted jobs. For example, only linear workflows are supported,
whereas for more complex Grid settings one can install on the OS one of the other
more complex Grid management middleware solutions. Mac OS-X 10.5 introduced
Xgrid 2, with some enhancements on the job scheduling decisions, such as the so
called Scoreboard, i.e., a customizable scoring script that may be provided by clients in
order to drive the decisions made by controllers about what agent nodes to choose
when multiple ones are available. The script may base its score on the availability of
particular capabilities of the agent node, or the connection/connectivity conditions, etc.
This is useful for increasing the performance of the deployed applications.

1.E) OPERATING SYSTEMS FOR HPC
As detailed in section V. on high performance computing, in classical cluster systems,
each processor (in the sense of smallest compute unit) hosts its own operating system
environment. HPC jobs typically run on the system in an exclusive way, in order to
achieve maximum performance. This means that the respective execution environment
does not have to deal with scheduling issues, scale management etc. Essentially, the
operating system therefore primarily serves the same purpose as a virtualisation
system, i.e. it abstracts from the underlying hardware and deals with I/O of the system,
in particular for accessing shared resources and communication between threads,
respectively processes. This means implicitly that many of the functions in a general
purpose operating system are obsolete for HPC usage and can (should) be removed
from the kernel, in order not to produce unnecessary overhead.
As noted, it is thereby of particular relevance for efficient parallel computing that the
specific characteristics of the hardware are exploited to their maximum potential, such
as the memory architecture of the systems. Therefore, the operating system is
typically specifically adapted to the environment, so as to reduce performance loss due
to misalignment.

26 More information is available at: http://www.xtreemos.eu.

http://www.xtreemos.eu/

Essentially, most HPC providers therefore reduce the operating system to an essential
minimum and adapt the kernel to the specific environment. Obviously, Linux is the
primary choice in such cases, due to its open source nature. Microsoft Windows and
even Apple Mac OS-X have been demonstrated to work for HPC clusters, too27, yet their
performance and the overhead for adaptation typically does not fulfill the expectations
– as such, there are for example 475 Linux / UNIX based systems on the Top 500 28 list
(in which systems are ranked by their performance on the LINPACK Benchmark [87]
[88]), but only 5 Windows based ones (and none for Mac OS-X)29. With the increasing
heterogeneity and hence divergence between supercomputer setups and at the same
time the growing scale of affordable high performance machines, it is likely that this
distribution will change slightly in the near future (see D5.2 for details).
Currently, the most widely used Linux distributions are probably30 :
Red Hat Linux31 and SUSE Linux Enterprise32 are widely used33 mainly due to the range
of system architectures they support (namely: x86 32 & 64 bit, Itanium IA-64, PowerPC
32 & 64 bit), even though official Red Hat Linux releases are comparatively rare (latest
official release was in 2003).
The Scientific Linux34 distribution is typically preferred over the Red Hat distribution,
which is 100% compatible with Red Hat Linux. As opposed to the Red Hat version,
Scientific Linux however is available for free and adaptations to individual systems are
maintained by the community rather than by Red Hat. Even though reliability is
decreased this way, the distribution adapts quicker to new systems. Scientific Linux
supports the following architectures: x86 32 & 64 bit, Itanium IA-64.
CentOS35 is another popular Linux distribution which bases on Red Hat Linux and is
available free of charge. Like Scientific Linux it is mainly maintained by the community,
yet the latest versions only support the x86 architectures thus making it less
interesting in the future. At the time of writing, 7 machines in the top 500 made use of
CentOS.
Even UNIX based operating systems are still in use on HPC clusters, as they
generally scale quite well. With a few exceptions, they are mostly commercially
distributed which makes them less attractive than Linux in particular in academic
circles. The number of UNIX systems in the top 500 basically decreases, with the
particular exception of AIX which ships with the IBM machines and supports in
particular the PowerPC and the IA-64 architecture, making it attractive for the
according clusters.
Though Lameter claims that Linux scales well enough for future large scale platforms
[118], it must be noted that this is mostly true for the number of processes but not the
number of processors [119][9]. The authors furthermore claim that due to messaging
overhead, a microkernel approach is not a feasible alternative to Linux, yet as Barham
et al. could show, the messaging approach scales better than the Linux monolithic
structure [9].

27 More information is available at: http://hpc.sourceforge.net/.
28 More information is available at: http://www.top500.org/.
29 More information is available at: http://www.top500.org/stats/list/35/osfam.
30 More information is available at: http://www.clusterbuilder.org/software/operating-system.php.
31 More information is available at: http://www.redhat.com .
32 More information is available at: http://www.novell.com/linux .
33 At the time of writing this, 18 machines in the top 500 use either distribution.
34 More information is available at: http://www.scientificlinux.org .
35 More information is available at: http://www.centos.org .

http://www.centos.org/
http://www.centos.org/
http://www.scientificlinux.org/
http://www.scientificlinux.org/
http://www.novell.com/linux/
http://www.novell.com/linux/
http://www.redhat.com/
http://www.redhat.com/
http://www.clusterbuilder.org/software/operating-system.php
http://www.top500.org/stats/list/35/osfam
http://www.top500.org/
http://hpc.sourceforge.net/

2. SCHEDULING

One of the core features of an Operating System is its ability to multiplex the access to
the available physical resources to multiple processes/threads that run at the same
time onto the system. Some resources may be managed in an exclusive way, i.e., only
one application at a time is granted access to it. Other resources, and particularly
processor(s) and disks, are managed in a shared way, so that the competing
applications alternate in accessing the resource(s) according to some scheduling
policy. For the CPU, General-Purpose OSes usually provide Round-Robin based
scheduling, where the ready tasks alternate each other after a certain time-slice which
may be fixed or dynamically changing. GPOSes have usually scheduling policies
designed so as to achieve a high overall system throughput, and to serve processes on
a Best-Effort (BE) basis, i.e., no guarantees can be provided to the individual
applications. On the other hand, Real-Time OSes have usually scheduling policies which
are capable of providing precise scheduling guarantees to the competing applications.
To this purpose, RTOSes undertake an admission-control phase, in which a new process
is accepted into the system only if its timing requirements may be fulfilled, and the
ones of the already accepted processes are not disrupted.

2.A) REAL-TIME SCHEDULING

The traditional real-time scheduling research area focuses mainly on hard real-time
systems, where deadlines are considered to be critical, in the sense that deadline
misses cannot be tolerated, because they lead to the complete system failure and
possible catastrophic consequences (i.e. losses of life).
However, real-time theory and methodologies are gaining applicability in the field of
soft real-time systems, where applications possess precise timing and performance
requirements, but occasional failures in meeting them may be easily tolerated by the
system, causing a graceful degradation in the quality of the provided service.
The real-time literature on soft real-time technologies for General purpose operating
systems (GPOSes) is growing, and two major research branches to mention, with some
relevance for the IRMOS project, are those relative to: multiprocessor scheduling, soft
real-time scheduling, QoS control in distributed real-time applications and adaptive QoS
control, detailed below.

SCHEDULING REAL-TIME TASK SETS ON MULTIPROCESSOR PLATFORMS
Even if the concept of multiprocessing has always been present in the real-time
community, only recently it is receiving a significant attention, thanks to the increasing
industrial interest in such platforms, and their consequent increasing availability. While
the scheduling problem for uni-processor systems has been widely investigated for
decades, producing a considerable variety of publications and applications, there are
still many open problems regarding the “schedulability” analysis of multiprocessor
systems. As pointed out by Liu in his seminal paper [193]: “few of the results obtained
for a single processor generalise directly to the multiple processor case: bringing in
additional processors adds a new dimension to the scheduling problem”.
Unfortunately, predicting the behaviour of a multiprocessor system requires in many
cases a considerable computing effort. To simplify the analysis, it is often necessary to
introduce pessimistic assumptions. This is particularly needed when modelling globally
scheduled multiprocessor systems, in which the cost of migrating a task from a
processor to another can significantly vary over time. The presence of caches and the
frequency of memory accesses have a significant influence on the worst-case timely
parameters that characterize the system. To bind the variability of these parameters,

often real-time literature focuses on platforms with multiple processors but with no
caches, or whose cache miss delays are known. Also, the cost of preemption and
migration on multi-processor systems is a very important issue that still needs to be
properly considered in real-time methodologies. Some research in the domain of
hardware architectures moves towards partially mitigating such issues. Recently, a few
architectures have been proposed that limit penalties associated to migration and
cache misses, for example the MPCore by ARM. Some researchers have recently
proposed hardware implementations of some parts of the operating system, allowing
one to reduce the scheduling penalties of multiprocessor platforms [236].

SCHEDULING ON MULTIPROCESSOR
When deciding which kind of scheduler to adopt in a multiple processor system, there
are two main options: partitioned scheduling and global scheduling:

Partitioned scheduling

In a partitioned scheduler, there are multiple ready queues, one for each processor in
the system, and it is possible to leave a processor in idle state even when there are
ready tasks needing to be executed. Each queue is managed according to (well-known)
uni-processor scheduling algorithms, and task migration is not allowed. The placement
of tasks among the available processors is a critical step. The problem of optimally
dividing the workload among the various queues, so that the computing resources be
well utilised, is analogous to the bin-packing problem, which is known to be NP-hard in
the strong sense [237][238]. This complexity is typically avoided using sub-optimal
solutions provided by polynomial and pseudo-polynomial time heuristics. Example of
policies used for this purpose are First Fit, Best Fit, Next Fit, First Fit with decreasing
utilizations, etc. [241][242][243][244].
Partitioned scheduling is commonly used in real-life multi-processor systems, due to
the fact that overheads due to continuous synchronisation and contention among cores
typical of global scheduling are avoided, and that it allows for analysing a system
similarly to what can be done in a distributed system with various single-processor
elements.

Global scheduling

For task sets with highly varying computational requirements, instead of wasting
computational power by repeatedly invoking complex load-balancing algorithms, it is
better to use a global scheduler. This way, tasks are extracted from a single system-
wide queue and scheduled onto the available processors. The load is thus intrinsically
balanced, since no processor is idled as long as there is a ready task in the global
queue.
A class of algorithms, called Pfair schedulers [245], is able to ensure that the full
processing capacity can be used, but unfortunately at the cost of a potentially large
run-time overhead. Migrative and non-migrative algorithms have been proposed
modifying well-known solutions adopted for the single processor case and extending
them to deal with the various anomalies [269] that arise on a parallel computing
platform.
Complications in using a global scheduler mainly relate to the cost of inter-processor
migration, and to the kernel overhead due to the necessary synchronisation among the
processors for the purpose of enforcing a global scheduling strategy. Even if there are
mechanisms that can reduce the migration cost, it could nevertheless cause a
significant schedulability loss when tasks have a large associated context (i.e. data

overhead). Therefore, the effectiveness of a global scheduler is rather dependent on
the application characteristics and on the architecture in use.

Hybrid schedulers

In addition to the above classes, there are also intermediate solutions, like hybrid- and
restricted-migration schedulers. A hybrid-migration scheduler [250] limits the number
of processors among which a task can migrate, in order to limit the number of caches
in which the task image is present. This way, fewer cache misses are expected, and the
cost of migration and context changes is lower. This method is more flexible than a
rigid partitioning algorithm without migration, and it is particularly indicated for
systems with a high number of processors (with tens of CPUs), where moving a task
from a computing unit to a distant one would imply significant overheads.
A restricted-migration scheduler instead allows for task migrations, but only at job
boundaries, i.e., before a job starts to be executed or at the end of its execution. In this
way, the amount of information that must be transferred while migrating a task from
one processor to another is likely to be less than the full migration case [251]. A similar
method consists in using a global scheduler with preemptions disabled: this way, once
a job starts executing on a CPU, it is not possible to preempt it until the end of
execution, so that migration can never take place [252]. However, note that non-
preemptable systems can incur in significant schedulability losses, due to potential
delays caused by long chunks of code that can execute without being interrupted.

Soft real-time scheduling

Different scheduling algorithms have been proposed to support the specific needs of
soft real-time applications. A first important class approximates the Generalized
Processor Sharing concept of a fluid flow allocation, in which each application using the
resource marks a progress proportional to its weight. Among the algorithms of this
class, we can cite Proportional Share [260] and Pfair [245]. Similar are the underlying
principles of a family of algorithms known as Resource Reservation schedulers [262]. In
the Resource Kernels project [262], the resource reservation approach has been
successfully applied to different types of resources (including disk and network). Also, it
is noteworthy to mention that the current scheduler in the main-stream Linux kernel,
known as Completely Fair Scheduler (CFS), is basically a variation of the Proportional-
Share idea. The Resource Reservation framework has been adapted to partitioned
multiprocessor systems in [258] and [259] for the Constant Bandwidth Server (CBS)
and the Total Bandwidth Server (TBS) algorithms, respectively.

Design of distributed real-time applications

The problem of designing scheduling parameters for distributed real-time applications
has received a constant attention in the past few years. In [264], the authors introduce
a notion of transaction for real-time databases characterized by periodicity and end-to-
end constraints and propose a methodology to identify periods and deadlines of
intermediate tasks. A similar approach is taken in [265], in which activation periods of
the intermediate tasks that comply with end-to-end real-time requirements are
synthesized by an optimization problem. In [266], the same idea is applied to soft real-
time applications. In this case the authors use performance analysis techniques to
decide the bandwidth allocated to each task that attain a maximum latency and a
minimum average throughput for the chain of computation.
Concerning modelling of timing requirements of real-time applications, usually models
similar to synchronous data-flow networks [267] are used. As shown in [268],
synchronous data flow networks lend themselves to an effective code generation

process, in which an offline schedule is synthesized that minimizes the code length and
the buffer size. The models used in [270], [271] and [272] are also a special cases of
synchronous data-flow, but, due to the inherently distributed and dynamic nature of
the considered applications, the aim is not an optimized offline scheduling of activities,
but rather an efficient on-line (run-time) scheduling mechanism. Finally, in [273] the
problem of optimum deployment, over a physical heterogeneous network, of
distributed real-time applications with computing and networking requirements subject
to end-to-end response-time constraints is tackled by introducing a formalisation in
terms of a Mixed-Integer Non-Linear Programming optimisation program. The authors
propose both a deterministic and a probabilistic formalisation of the problem, with
various possible optimisation goals. Once solved, the solution not only provides
information about where to deploy the various real-time components, but it also
provides the scheduling parameters to be used for configuring the local real-time
schedulers over the CPUs, and the bandwidth figures to be reserved over the physical
links.
In the context of the S(o)OS project, complex real-time applications may have several
threads spread over multiple cores and processors within a many-core system. The
problem of how to exactly perform the deployment of the various threads may be
inspired to the above mentioned research works. However, for scalability reasons,
distributed approaches in which sub-optimum solutions are found with a collaborative
set of computations carried out by more cores/processors should be favoured over
centralised approaches which may easily turn out to be infeasible on large scale
systems.

3. SYNCHRONISATION

Synchronisation is an essential problem of concurrent programming, and it has
received a great attention from the research community. The problems of concurrent
access and of providing a consistent view of shared data structures can be solved in
different ways, depending on the abstraction level and on the basic organization of the
operating system and programming paradigm. The basic properties that correct
concurrent programs must possess were described by Herlihy and Wing [165], and
solutions have been proposed both for shared-memory and message-passing.

SHARED-MEMORY
In the shared-memory paradigm all processors can access the same memory, uniformly
(UMA machines) or non uniformly (NUMA machines). In the following, we abstract from
low-level mechanisms for providing shared-memory, as long as all the processors have
a consistent and coherent view of the memory.
The basic mechanism to guarantee mutual exclusion is to use locks. In its basic form,
every shared data structure can be associated with a a lock, which is just a Boolean
variable that can be false (meaning that no process is accessing it) or true, meaning
that a process is accessing it, so the other have to wait for the previous process to
complete. Locks are usually implemented using special atomic operations, like test-
and-set, fetch-and-store or compare-and-swap. A lot of work has been done to improve
the basic locking mechanism. Mellor-Crummey and Scott [168] solved the problem of
reducing contention on the shared bus by using separate spin variables for each
processor on which each core performed busy waiting. Their solution, called MCS locks
from the names of the authors, also resolves the typical problems with fairness and
starvation under high contention scenarios. Many papers have proposed improvements
on this basic mechanism, e.g., to introduce time-out [169], to reactively change the

lock behaviour [170], to balance overhead vs. latency using a mixed coarse-grain/fine-
grain locking strategy [171].
Higher level concurrency control objects (e.g., semaphores) are built on top of low-level
locks. The main difference is that when the resource is busy, a low level lock performs
a busy wait (spin-lock) while a high level object will block the process and invoke the
scheduler. Of course, this second option has a substantially higher overhead, as it
involves a scheduler call and one context switch. Moreover, waking up requires an
inter-process interrupt. Depending on the contention level, and on the duration of the
critical section, it may be more convenient to perform non preemptive busy waiting or
to block the process. Mukherjee and Schwan [175] proposed an adaptive locking
protocol, that chooses which method to use (blocking or busy waiting) depending on
the characteristics of the application (e.g., the typical duration of critical sections).
A different approach consists in making a local copy of the data structure (or of part of
it), modify it, and later try to commit the changes in the global copy without disrupting
the linearisability property [165]. This class of approaches is usually referred to as lock-
free or non-blocking or wait-free [166]. In general, wait-free techniques are much more
difficult to program than lock-based techniques, hence they are rarely implemented in
actual systems; also, the commit phase may fail, and in such a case the operation
needs to be repeated one or more times until the commit succeeds. Under high
contention, it is difficult to bound the execution time of the operation. However, many
wait-free algorithms have been proposed for common data structures, like priority
queues [173], or stacks [174]. Transactional memory has been proposed as a
hardware-level support for wait-free mechanisms [167]: the idea is to provide simple
hardware mechanisms to support the implementation of wait-free algorithms.
For data structures where reading is more frequent than writing/updating, special
mechanisms have been proposed to reduce contention, such as the Read-Copy Update
(RCU) mechanism [172], widely adopted within the Linux kernel for accessing critical
shared lists. With RCU, readers are allowed to just read (and walk through) the
common shared list elements without any synchronisation; a writer modifies the list by
atomically manipulating pointers so as to insert new items in the list or delete existing
ones. In the latter case, one or more readers possibly accessing the deleted element
will keep seeing the element, which can only be discarded at specific instants (called
quiescent states) when no process is reading or writing it (e.g., idle instants, scheduler
calls, etc.).
Which locking mechanism is more adequate? McKenney [181] provides a comparison of
several techniques in the form of patterns, from different points of view: latency,
memory bandwidth, memory size, granularity, fairness and read-write ratio. There is no
clear winning strategy and every mechanism has its advantages and disadvantages. A
similar comparison has been carried out by Anderson [162].

MESSAGE-PASSING
In the message-passing paradigm, each resource is assigned a server thread which
exclusively performs operations on the data structures of the resource. Mutual
exclusion is thus guaranteed by the fact that only one thread has exclusive access to
data. Other threads (clients) must request the operation by issuing a remote invocation
via an IPC. This organisation mimics distributed systems where nodes do not share
memory. The MPI interface [176] is based on this paradigm.
From the point of view of the kernel in multiprocessor systems, it is worth comparing
the performance of message-passing vs. shared memory communication. Chavez et al.
[163] perform a comparison of shared-memory communication based on spin-locks vs.
remote invocation in a NUMA multiprocessor architecture. Another comparison has

been proposed by Chandra et al. [180]. They highlight that the server can be
implemented as an interrupt handler or as a thread. In the first case the overhead is
minimal, however the implementation is more difficult as an interrupt handler is not
subject to the kernel scheduler and cannot block. In the second case, the overhead is
larger but the advantage is that the implementation is easier. Performance is highly
dependent on the underlying hardware structure, memory hierarchy (UMA or NUMA,
presence of cache coherency, etc.), however it can be generally said that message
passing is more adequate for long critical operations on processors with high memory
access delay, while shared memory is preferable on short critical section on local data
structures. It is important to underlying that if two servers on two different resources
are executed on the same node, their operations will be serialized, and this in some
case may be an unnecessary restriction of parallelism. On the other hand, it is worth
noticing that providing lock-based access to remote memory may be expensive and
unnecessarily increase the level of contention.
Clearly, it is possible to mix shared memory locking and remote invocation [178][179].
Recently, Uhlig [177] proposed to use IPC or shared memory locking depending on the
locality of the data structure with respect to the current node, and to use an adaptive
locking mechanism depending on the level of contention.

4. SYNCHRONISATION AND SCHEDULING

When multiple tasks need to access a shared resource or data structure, they need to
synchronise each other, in order to avoid performing the access at the same time. The
basic synchronisation means is constituted by a binary semaphore, which, if already
taken, causes the process attempting to acquire the lock to be suspended by the
scheduler, and be woken up later when the lock owner exits the critical section.
However, a great research effort has been done in two very important domains: in the
literature of real-time scheduling, it is important to ensure that the amount of time a
process has to wait before acquiring a lock may be some how kept under control; also,
in multi-processor and multi-core scheduling, if the acquired resource is held by a task
on another processor, and the critical section is expected to be very short (like it
happens quite often in the kernel of an OS), then suspending the current task and
performing a context-switch might lead to unnecessary overheads, whilst other policies
may be more convenient (e.g., spin-locking). Interestingly, the PREEMPT_RT branch of
the Linux kernel has an option [276] for turning (almost) every spin-lock primitive used
inside the kernel into a mutex.
In the following, we summarise the most important research works on these topics:

4.A) SHARED RESOURCES PROTOCOLS IN REAL-TIME
SCHEDULING

There are well-known efficient protocols to arbitrate the exclusive access to shared
resources for real-time task sets scheduled on a single processor platform: Priority
Inheritance (PI), Priority Ceiling Protocol (PCP) [253], Dynamic Priority Ceiling Protocol
(DPCP) [254] and Stack resource Policy (SRP) [255]. Each one of these protocols allows
for solving the “priority-inversion” problem, that takes place when a task is blocked by
a lower priority one at the beginning of a critical section accessing a shared resource.
The SRP ensures that a task can never be blocked once it started executing. This
minimises the number of context switches, allows all tasks to be executed on a single
stack, and prevents deadlocks.
The problem of designing shared resource protocols for real-time systems scheduled on
more than one processor has been analysed in different papers. Most of them [66][67]

[69][68][76] are extensions of well-known approaches that have been developed for
uniprocessor systems. Others, instead, mandate that each short global critical section
be executed non-preemptively, reducing the occurrence of remote blocking [74][75],
i.e., a task that blocks in the attempt to lock a global resource which is already locked
by another task running on a different processor. We will hereafter summarise the main
characteristics of these solutions, distinguishing between solutions for partitioned and
global scheduling. Global schedulers have a single system-wide queue from which
tasks are extracted to be scheduled on the available processors. Note that, with a
global scheduler, a task might be preempted by a higher priority job, and later resume
its execution on a different processor. This process is called migration of the task. With
a partitioned scheduler, instead, tasks are statically assigned to processors, so that
they are bound to execute on that processor and cannot migrate.

PROTOCOLS FOR PARTITIONED SCHEDULING
Adaptations of the above policies for partitioned multiprocessor real-time environments
are given by the Multiprocessor PCP proposed by Rajkumar et al. in [256], and by the
MSRP protocol proposed by Gai et al. in [257]. The Multiprocessor PCP is basically an
extension to partitioned systems of the uniprocessor Priority Ceiling Protocol (PCP) [65]
[66]. Since each global resource is controlled by one particular processor, the solution
proposed in [66] is not so suitable for shared-memory multiprocessors. For this reason,
an improved MPCP version [67] was proposed. According to this policy, local resources
– i.e., resources that are shared only within tasks assigned to one specific processor –
are arbitrated using the classic uniprocessor PCP. Global critical sections – accessing
resources that are shared among more than one processor – are executed at a priority
higher than any non-critical section of code. This allows for reducing the remote
blocking experienced by the system, making it a function of critical sections only.
Whenever a task cannot lock a global resource because it is locked by a different task,
the task is blocked and it is inserted in a prioritized queue, using the normal priority as
the key for the queue insertion. When the lock is released, the highest priority task in
the queue can acquire the lock. Since a task is suspended whenever it is blocked on a
shared resource, lower priority tasks can execute and lock some other shared
resources. When the blocked task resumes execution, it might experience additional
blocking due to the (global or local) shared resources meanwhile accessed by lower
priority tasks. The blocking factors to be accounted for are therefore multiple and can
be significantly large. Moreover, deadlock conditions are possible in case of nested
critical sections unless a proper ordering of the lock operations is used.
To avoid these problems, an alternative approach is to prohibit lower priority tasks to
lock any resource while a higher priority task is blocked in the same processor.
Alternatively, the blocked task might busy wait until resource access is granted again,
forbidding the execution of lower priority tasks. However, even if the blocking factors
are significantly reduced, both approaches introduce some inefficiency, in that the
processor is left unused whenever a high priority task is blocked on a global resource,
increasing the interference on lower priority tasks. Schedulability tests and partitioning
algorithms for MPCP with suspension and busy wait have been recently presented in
[68].
Extensions of MPCP for partitioned EDF scheduling have been proposed by Chen and
Tripathi [69]. Global critical sections were executed non-preemptively and they were
not allowed to be nested with local critical sections. However, their method is valid only
for the more restrictive periodic task model, and not for the sporadic one.

Among busy-waiting approaches, Gai et al. presented [70] the Multi-processor Stack
Resource Policy (MSRP), generalizing to multi-processor systems the SRP protocol [71].
Global critical sections are executed non-preemptively, and access to global resources
is implemented with FIFO-based spin-locks: tasks that are waiting for a global resource
insert their requests on a global FIFO queue, without surrendering the processor until
the resource is granted. To avoid deadlocks, global critical sections cannot be nested. A
less efficient solution based on SRP for partitioned EDF scheduling has been proposed
by Lopez et al. [72], assigning to the same processor all tasks sharing the same
resource.

PROTOCOLS FOR GLOBAL SCHEDULING
The problem of mutually exclusive access to shared resources for global scheduling
algorithms has only recently been analysed [73][74][75][76]. Devi et al. proposed [74]
a straightforward modification to the global EDF scheduler, with a locking protocol
based on the non-preemptive execution of global critical sections and with FIFO-based
wait queues. Holman and Anderson designed locking protocols for Pfair schedulers
[73]. Block et al. implemented the FMLP protocol [75], validating it for different
scheduling strategies, namely, partitioned EDF, global EDF, and Pfair scheduling. Short
critical sections are handled using spin-locks with FIFO-based wait queues, while long
critical sections are arbitrated using a priority inheritance protocol similar to PCP [65]
[66]. In all of the above approaches, the problem of accessing nested shared resources
is either avoided – forbidding the nesting of critical sections – or it is solved by limiting
the degree of locking parallelism – i.e., protecting nested critical sections with group
locks. Very recently, Easwaran and Andersson proposed [76] two different protocols for
the arbitration of the access to shared resources in multiprocessor systems globally
scheduled with Fixed Priority. The first one (PIP) is a generalization to global scheduling
of the Priority Inheritance Protocol [65][66]. The second one (P-PCP) implements a
tunable trade-off between PIP and a ceiling-based protocol that limits the number of
times a job can be blocked by lower priority tasks. In the same paper, schedulability
tests based on response time analysis were presented for both protocols.

SHARED RESOURCES PROTOCOL IN THE LINUX KERNEL
The design criteria and performance metrics mainly adopted by Linux kernel
developers is overall system throughput and fairness. However, although real-time
behaviour and predictability have not been a primary concern until now, Linux embeds
a few features that are commonly included in real-time kernels, and the
synchronization sub-system does not constitute an exception to that.
In a Linux system, support for mutual exclusive access to shared memory areas is
provided at both kernel and user level. In the latter case, this is achieved by means of
system libraries (e.g., the glibc library). From the real-time analysis point of view, this
means that the well-known phenomenon of Priority Inversion may occur, in such a
system. However, the Linux kernel embeds some precautions against it, as detailed
below.

Synchronisation inside the kernel: mutexes and RT-mutexes

Inside the kernel, critical sections can be protected mainly by spinlocks, mutexes and
RT-mutexes. There are other means of regulating the access to sensible code, such as
read-writer locks, RCU approaches, and some others, but describing them in details is
out of the scope of this document.
Spinlock Spinlocks are busy-waiting, non-preemptable locks typically used for
protecting small code sections of critical kernel paths. Being non-preemptable makes

them real-time safe to some extent – since the Non-Preemptive Protocol (NPP) is a
known priority inversion control technique. However, a code section protected by a
spinlock is required to be very short, to not “sleep” or block on any other lock and to
not invoke any other code that does such.
Mutexes Mutexes are binary semaphores, and they are quite widespread, protecting
many of the critical sections inside the kernel. Their use is subject to almost no
limitation, but they do not deal with priority inversion avoidance.
RT-mutexes RT-mutexes are mutexes with support for Priority Inheritance (PI), i.e.,
the owner of a RT-mutex inherits dynamically the priority of the task with highest
priority blocked on the same rt-mutex, if such priority is higher.
In the Linux implementation of PI, the concept of pending ownership is supported as a
performance optimization to allow uninterrupted workflow of a (high priority) task
repeatedly locking and releasing the RT-mutex.
When an rt-mutex is released, the highest priority waiting task is woken-up and
assigned its /pending ownership/, i.e., it becomes the pending owner of that rt-mutex.
Hence, it will try to lock the mutex as soon as it is scheduled. If nothing happens
between these instants, the pending owner will be able to lock the rt-mutex, becoming
its effective owner.
However, it might happen that some other task – very likely with a higher priority –
tries to lock the rt-mutex before the woken-up task is scheduled again. In that case, the
priority of the newcomer and of the pending owner are checked, and the lock will be
granted to the higher priority one.
RT-mutexes are optimised for fast path operations, i.e., both acquiring and releasing
them reduces to a cmpxchg instruction (atomic compare and exchange, nowadays
supported by most of the available hardware architectures) in the uncontended case.
If the RT-mutex is contended (the so-called slow path), locking means: if the RT-mutex
has not an owner but it has got a pending owner it can be locked only if the priority of
the pending owner is lower than the one of the locking task; if the RT-mutex has an
owner or stealing the pending ownership failed, the locking task is blocked and the
priority of the RT-mutex owner is updated accordingly.
Conversely, unlocking of a contended RT-mutex means: wake up the blocked task with
highest priority and give him the pending ownership of the RT-mutex; update the
priority of the unlocking task accordingly.
In mainline Linux, the only subsystem which uses RT-mutexes is the futex interface,
used to offer to user space application locking and synchronization mechanisms as
required by the POSIX standard [78], which include priority inheritance and priority
protection (more on this later).
On the other hand, in PREEMPT_RT – a patch maintained by a small developer group
led by Ingo Molnar, with the aim of making the kernel suitable for very low latency and
real-time applications – things are quite different: In fact, when this patch is applied,
most of the spinlocks and mutexes are turned into RT-mutex. Since this enormously
shortens the duration of in-kernel non-preemptable sections and enforces priority
inversion avoidance, this might negatively impact the overall system throughput, but it
also reduces the performance and predictability gap between Linux and classical real-
time kernels available in industry or academia by far.
In order to allow for atomic management of core kernel-level data structures, small
regions of code still exist where preemption is not allowed, and thus they are still dealt
with by means of classical spinlocks.

Synchronisation support for user-space: futexes

In order to provide user-space application developers with mutual exclusion and
synchronization primitives the standard system (e.g., POSIX) libraries need some
support from the kernel. One way in Linux is Fast Userspace muTEXes (futexes):
They consist of aligned in-memory integer values that can be shared between different
tasks (mainly threads, but also processes). Such values can be incremented and
decremented by atomic operations directly from user-space, while the kernel is only
involved when a contended case requires arbitration and some task has to fall asleep.
This means that synchronization mechanisms implemented on top of futexes are very
fast and efficient, at least in the fast path. A futex slow path is instead implemented by
means of a specific system call which includes a parameter to indicate what kind of
operation the caller wants to perform, such as: FUTEX_WAIT, FUTEX_WAKE,
FUTEX_REQUEUE, FUTEX_FD and also FUTEX_LOCK_PI and FUTEX_UNLOCK_PI, which rely
on RT-mutexes to handle the contended case with priority inheritance in place.

Synchronisation in user-space

Since POSIX 1003.1 1995 the so-called Pthreads API includes locking operations, to
achieve mutual exclusive access to shared data, such as pthread_mutex_lock and
pthread_mutex_unlock, and synchronization operations, to wait on events and
conditions such as pthread_cond_wait, pthread_cond_timedwait,
pthread_cond_signal and pthread_cond_broadcast.
Interestingly, in the API, mutexes may be enriched at creation time with such
“protocols” as PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT. In the former case,
PI-aware futex operations are used inside the library implementation, in the latter one
normal futex operations are utilized, and when a task locks a PRIO_PROTECT-ed mutex,
it starts executing at the higher between its priority and the priority ceilings of all the
mutexes it owns, regardless of whether there are or not other tasks blocked on any of
these mutexes. Such behaviour is implemented inside the library without involving the
kernel.

5. VIRTUALIZATION

There are many possible approaches to virtualisation that differ by a number of
technical details related to how hardware and peripherals are emulated, whether the
guest Operating System is aware or not of running in a virtualisation environment
(a.k.a., para-virtualisation and full-virtualisation, respectively), and if they exploit
special capabilities of modern CPU architectures designed specifically for virtualisation.
There are also attempts to virtualize by creating, within a single OS, multiple
“namespaces” or “containers” that are capable of isolating multiple sets of processes
from each other - however such an approach looses the capability to have multiple
OSes hosted on the same hardware. All of these approaches deal in different ways with
virtualization at the various levels (e.g., special CPU instructions and processor
privilege levels, networking adapters virtualization, disk access virtualization, etc...).
Therefore, they exhibit different overheads and different achievable computation and
I/O performance figures of the guest machine(s). A full description of the approaches is
out of the scope of this deliverable, and can be found for example in [79], [82], [83]
and [85] (an interesting survey [84] also exists that dates back to 1974).

The various existing virtualization layers (a.k.a., Virtual Machine Monitors), exhibit a
range of availability and licensing options, from completely open-source and free-of-
charge use, to completely commercial. A non-exhaustive list may be the following36:
• Xen, by Citrix Systems;
• Kernel-based Virtual Machine (KVM), a project currently founded by Qumranet, a

technology start up now owned by Red Hat;
• VirtualBox, by Sun;
• VMware Workstation, by VMware Inc.;
• VirtualPC, by Microsoft;
• coLinux;
• QEMU;
• User-Mode Linux (UML);
• OpenVZ / Vservers for Linux (OS-level Virtualization).

6. RUN-TIME SUPPORT AND MIDDLEWARE

Common desktop machines have to run multiple applications locally in a concurrent
(time-sharing) fashion – as opposed to that, distributed systems, in particular high
performance computers, are typically focused on executing specific application types
with a high degree of communication. Whilst the desktop landscape is expected to
change in the near future (see Deliverable D5.2 [86]), currently the actual execution
environment of the individual areas differ considerably (see also section IV.).
The set of support services which are described in what follows may be either available
as additional services that build on top of the Operating System, or they may be more
tightly integrated with the Operating System core services and kernel, as it is also
evident from the above discussion about specific types/models of OS proposed in
various application contexts.

CLOUD SYSTEMS
In cloud systems, one must distinguish between the type of service offered:
infrastructure (IaaS), platform (PaaS) or software (SaaS). In the latter two cases, the
environment focuses on providing one specific service (type) and the according run-
time support typically consists of an execution engine (such as the Google Docs App37)
that is available on all systems. Main task therefore consists in distributed data
management which poses different requirements on consistency management and
transportation. There are no standard solutions though: for example, Amazon relies on
eventual consistency, eBay executes a plain merge, data is replicated in the
background etc. [95][194]. Due to the specialisation, the system can focus on a subset
of requirements and find appropriate solutions.
Of more interest in this context are the general purpose goals pursued by
Infrastructure as a Service providers, such as Amazon EC238, Microsoft Live39 etc. They
are either realised through virtualisation engines or middleware components (Amazon
EC2, OpenNebula40) or using their own dedicated operating system (MS Azure41, Google
Android42). Each compute instance thereby is effectively a full blown server system with
the full instance of the operating system / engine / image running (cf. Grid)

36 An impressive comparison chart among features of nearly 50 existing virtualization layers may be
found on Wikipedia at the URL: http://en.wikipedia.org/wiki/Comparison_of_virtual_machines.

37 More information is available at: http://code.google.com/appengine/docs/whatisgoogleappengine.html.
38 More information is available at: http://aws.amazon.com/ec2/.
39 More information is available at: http://www.live.com.
40 More information is available at: http://www.opennebula.org/.
41 More information is available at: http://www.microsoft.com/windowsazure/.
42 More information is available at: http://www.android.com/.

http://www.android.com/
http://www.microsoft.com/windowsazure/
http://www.opennebula.org/
http://www.live.com/
http://aws.amazon.com/ec2/
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://en.wikipedia.org/wiki/Comparison_of_virtual_machines

GRID(S)
Similar to cloud systems, most Grid environments provide their own middleware
(Globus Toolkit 443, gLite44 etc.) which is sometimes embedded in the operating system
(ExtreemOS45, .NET Framework46). Effectively each endpoint (Grid node) hosts its own
full-fledged grid system that deals with communication and instance management. As
opposed to clouds, Grids are mostly general purpose oriented – accordingly, the focus
of existing middleware and frameworks rests on standard interfaces and
communication support, rather than efficiency. The respective frameworks do scale
comparatively well with respect to communication efficiency, but only to a limited
degree with respect to instances, as they expect at least one full instance to be
available per node.
Scheduling in both grids and clouds relies on a more or less centralized instance
responsible for the respective service in order to ensure manageability. There are some
approaches towards distributed scheduling [120] which however do not have to
consider consistency across instances, so that the scheduling really just deals with a
“scale-out on demand”. For further information see e.g. [195][196][197][198]

HIGH PERFORMANCE COMPUTING
Current HPC usage takes a special position in the field of computing: with its focus
primarily on efficiency, HPC jobs do generally not concurrently share resources. In
other words, processes run exclusively on their respective computing environment
(core) and across multiple compute units, only one such job has to be executed.
Implicitly, the environment has comparatively simple scheduling and hardly any time-
sharing tasks to perform.
With the classical HPC infrastructure, consisting of multiple single-core processors,
each compute unit had sufficient cache available to host a full environment including
the relevant code and data, so that only little memory swaps (and hence
communication overhead) occurred. With the multi-core systems, resources are shared
per processor, so that additional overhead builds up which is currently not catered for
in the systems.
The environment is accordingly very bare-bone and offers little capabilities additional
to abstracting the hardware and managing system calls. It is generally expected that
the developer in some way has to cater for data segmentation, code distribution,
concurrency and consistency etc. as there are no other processes running at the same
time. In most cases, however, the according capabilities are actually build and provided
by the compiler (cf. Programming Models).
Both compiler and execution environment are therefore explicitly adapted to the
(hardware) environment they are running on, to make the most use of the
communication and setup specifics. Higher-level details, such as memory layout
generally need to be respected by the developer too, though, in order to achieve
maximum performance. According effort is vested into converting the operating
system (typically Linux) and the compilers front-end (mostly building up on LLVM) to
the environment.
The heterogeneity of new cluster systems poses according problems.
Summary:

• Most scale and heterogeneity management takes place on the middleware layer
• Middlewares and frameworks are too inefficient for HPC usage

43 More information is available at: http://www.globus.org.
44 More information is available at: http://glite.web.cern.ch/glite/.
45 More information is available at: http://www.xtreemos.eu/.
46 More information is available at: http://msdn.microsoft.com/netframework/.

http://msdn.microsoft.com/netframework/
http://www.xtreemos.eu/
http://glite.web.cern.ch/glite/
http://www.globus.org/

• Cache limitations and system heterogeneity make “one environment per unit”
impossible

• Much effort is vested into adaptation of the run-time support to the respective
system

V. PARALLEL AND DISTRIBUTED PROGRAMMING MODELS

Optimum exploitation of parallelism in applications – in particular when efficiency is
crucial – is an NP hard problem [61][62][63] and therefore generally requires an
experienced human user to execute the according parallelisation tasks. Before the
introduction of multi-core processors back in 2006, parallel development was mostly
restricted to users of supercomputers (parallel clusters), as they were the only ones to
draw benefits from this approach. Accordingly, parallel and the more common
(sequential) programming models diverged slightly: with the latter looking in particular
at simplicity, parallel models aimed particularly at efficiency to make the most of the
system capabilities.
Recently, multi-core computing are also omnipresent in the domain of home computing
(nowadays it is becoming increasingly difficult to buy a single-core machine).
Therefore, in the world of common programming models that need to be at reach of
most developers, parallelism is becoming an increasingly important issue.
Unfortunately, when adding parallelism to an application, a number of issues arise
which need to be properly addressed, in order to preserve a correct operation of the
program. These range from how to properly split the functionality across concurrently
running threads, to how to properly synchronize them for accessing shared data
structures and to how to avoid race conditions and deadlocks.

1. COMMON PROGRAMMING MODELS

Compared to parallel programming, sequential programming models have made quick
progress and adapted perfectly to the mixed needs of developers, hardware and
operating system, so that now most programs are fairly portable and easy to learn,
whilst they show performance suitable to the environment needs – obviously, higher
efficiency comes at the cost of complexity and higher portability at the cost of
efficiency. We will spare the reader a detailed overview over the most relevant current
languages, such as C/C++, Java, C#, etc. So far there have been little efforts though to
seriously take over parallel concepts into the common programming language world –
mostly for the problem of maintaining simplicity whilst supporting parallelism.

1.A) PROCESS- OR THREAD-BASED PARALLELISM

The most classical approaches to dealing with parallelism in common development
consists in splitting the program up into individual threads that exchange data with
each other at dedicated communication points. Multiple libraries extend common
languages (mostly C) with such low-level capabilities for dealing with parallelism. Most
of them build up on the POSIX standard [78] which embeds a set of well-known UNIX
library calls for the C language for coding parallelism by means of multiple processes
(e.g., by using the fork() system call) and synchronisation mechanisms (such as
signals, semaphores and FIFOs). However, multiple processes have different virtual
memory spaces, what forces the programmer to use message-passing among
processes, or shared-memory segments in memory (e.g., shmget() and shmat()
system calls of the same standard), both suboptimal solutions. In the context of a
single parallel application, multiprocessing is deprecated in favour of multithreading,
largely supported by nowadays Operating Systems, where multiple concurrent threads
of execution share the same memory space and the context switch among threads is
lighter than among processes.

For example, POSIX Threads constitutes a library allowing C programs to manage
multiple threads of parallelism and manage synchronisation among them. The concept
of threads is already well known and will therefore not be elaborated here. For more
details, check out Barney's tutorial [89]. Pure thread-building is however fairly
complicated and therefore in contradiction with maintaining simplicity in common
programming languages. Many efforts building up on this principle therefore exploit the
object-orientation capacities of C++ allowing to instantiate objects as threads and
supporting their communication through dedicated libraries – this is for example the
case in KAAPI47. Many more modern languages natively incorporate threading for
parallelism and synchronisation, being designed for a higher level of programming
abstraction - this is for example the case for Java and C# from the .NET framework.
The main problem with pure threading support consists in the comparatively weak fine-
tuning and alignment to the infrastructure: they produce substantial messaging and
protocol overheads, as well as leading to delays due to misalignment of communication
between threads.
Due to the high degree of complexity to actually split up a task in potential threads that
actually exploit the multi-core environment - many libraries and extensions therefore
build up on these capabilities by incorporating higher-order functionality that can be
parallelised by the compiler (e.g. Intel's TBB48) or at run-time (in particular Microsoft
Parallel Extensions and the Java Concurrency Utilities). This also allows the framework
to take more care of thread alignments according to predefined templates.
Microsoft Parallel Extensions49 introduce so-called “tasks” as a concept similar to
threads that act in particular on database queries and according loops by splitting the
query into tasks according to the size of the loop. By using a task manager, these
thread-like instances can be spread out across the infrastructure according to
availability. Obviously, the performance gain depends on their individual work load as
opposed to the messages they have to exchange – short, small tasks will obviously not
be very beneficial.
The developer can even write his / her own tasks by explicitly initiating and executing
them, much like threads. The main difference being that .NET lends from the influence
of functional programming in its development, so that tasks are actually closer to
lambda operators and can be treated accordingly50. As will be discussed in more detail
in D5.2 in the context of development trends in programming languages, the functional
(declarative) approach towards programming benefits from parallelism which
procedural (imperative) approaches have more difficulties with (see e.g. [121][122]). It
should be noted in this context that still less people make use of declarative than of
imperative programming languages 51,52, non-regarding these advantages – this may
change once parallel programming finds more common usage.
Similarly, in the Java domain the Concurrency Utilities53 provides thread
management features to Java. As opposed to their .NET counterpart, the concurrency
utilities primarily deal with the user-initiated declaration, instantiation and execution of
threads and does not aim at automatic scaling support, for example in the case of
database queries. Accordingly, the programming effort is comparatively higher, as the
developer has to ensure proper synchronisation and coordination.
Whilst the average efficiency achieved through these extensions will exceed the one by
pure thread management for the average developer (not used to parallelism), they at

47 Kernel for Adaptative, Asynchronous Parallel and Interactive programming - http://kaapi.gforge.inria.fr/
48 Threading Building Blocks - http://software.intel.com/en-us/intel-tbb/
49 More information is available at: http://msdn.microsoft.com/concurrency
50 More information is available at: http://msdn.microsoft.com/en-us/library/bb397687.aspx.
51 More information is available at: http://www.devtopics.com/most-popular-programming-languages/
52 More information is available at: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
53 More information is available at: http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/overview.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.devtopics.com/most-popular-programming-languages/
http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/concurrency
http://software.intel.com/en-us/intel-tbb/

the same time restrict usage to specific, typical parallelisable functions, which are not
always employed in the average application. What is more, with little (to no) expertise
by the developer, there is a high risk of over using these functions in cases where the
implicit messaging overhead will exceed the parallelisation benefit, e.g. for large loops
over small operations etc.
Frequent attempts are therefore directed at semi-automatic parallelisation which will
maintain the maximum of sequentiality and simplicity – however, as noted, automatic
parallelisation is NP hard and therefore not generally the best approach towards
covering the efficiency issue.
On a related note, one of the languages with a good native support for concurrency
and synchronisation is the Ada language [277]. However, Ada is generally used in the
context of embedded and real-time applications, thus it lacks a powerful and rich run-
time support such as found in modern development environments.

1.B) DISTRIBUTED PROGRAMMING

Recently, with the advancements in Web Services and Service-Oriented Architectures,
standard messaging has become widespread as a basis for distributed (as opposed to
parallel) computing, being greatly advanced and simplified for the user. Since the
introduction of the Grid and the success of Web Services, many commercial and
community based enhancements to common programming models have been
developed that enable the user to communicate with remote service instances via
automated, standard-based messaging (see also sections IV. 1.d) and in particular IV.
6.). The basic idea behind (web-based) distributed programs is more related to
dynamically linked libraries than to parallel threads and / or processes, but can be
exploited in a similar fashion, taking the additional communication overhead (typically
SOAP based) and latency (Ethernet) into consideration.
Given the interconnect problems, distributed, service-oriented environments can in
particular be exploited to “outsource” tasks that local resources cannot provide for, i.e.
employing remote resources following the principles of utility computing. This has been
extensively researched (and actually employed) in the context of so-called “Virtual
Organisations” (see e.g. [102][103][182]). In these cases, each participant in the
collaborative environment will provide (host and execute) one ore multiple tasks in the
form of services that can be invoked remotely. In its most basic form, a workflow
defines the order of tasks to be executed, i.e. services to be invoked – this can
essentially be regarded as a higher level algorithm or program logic. A typical
description logic to this end is WS-BPEL (Web Services Business Process Execution
Language) [183].
Obviously, such workflows can incorporate parallel steps where multiple services are
invoked at the same time, i.e. follow parallel strands. The classical business process
specification does not foresee full distribution and hence no direct communication
between individual services, so that the workflow engine host (typically the user) will
act as an intermediary for all communication. Notably, there are concepts for full
distribution of the workflow to separate participants, thus allowing direct
communication (see e.g. [184]) – however, there is very little uptake of these
approaches, mostly due to the lack of control and supervision.
A business process of this kind therefore shows principal similarity with a threaded
application in so far, as any process can effectively be represented by a workflow. With
the basic idea behind the Grid being the dynamic outsourcing of tasks and potentially
even migration of code on the fly, the approach can principally be used to dynamically
scale out an application, thus distributing the actual logic and executing it in parallel.

This requires an according platform in the respective environments, respectively pre-
installation of the logic and invocation on the fly. There are multiple approaches along
that line, ranging from higher level extensions, such as Parallel C#54 to enabling HPC
parallel programming models such as MPI over the Ethernet (see e.g. [185][186][188])
– see also section V. 2. on HPC programming models below.
The main problem with distributed programming models as opposed to parallel
programming concepts consists in the implicit latency between communication
endpoints, which is generally much higher in the environments for distributed program
execution, as in those for parallel execution. Typically, the prior acts over the internet,
whilst the latter requires Infiniband or higher (see also section II. 4.). Due to these
communication constraints, distributed computing deals more with separate tasks with
little communication dependencies between them. In its simplest form, a distributed
process consists of a sequence of individual tasks that each gather input from a
preceding task and pass it on to the next.
Accordingly, the main point to this type of environment is not so much efficiency in
light of communication and synchronisation, but work offloading. It can thereby exploit
the specific capabilities of services and / or resources as they are available – this
means that specific characteristics of the overall process can be addressed on task-
level in this environment [103][187] (see also service discovery protocols in section III.
2.).

2. HPC PROGRAMMING MODELS

As the programming model is only as efficient as the underlying compiler, compilers for
parallel programming are typically extremely specialised to the underlying hardware -
they typically look for specific patterns in the code that are best suited to the system
characteristics (e.g., for loop unrollment).
Over time, in particular the compilers improved more and more through community
effort – therefore, as a general rule, “older” programming models typically lead to
better performance figures than more modern ones, for even though newer ones
typically address outstanding issues and potentially are better suited for modern
hardware architectures, they still do not compete with the years of experience in
development of the “classical” languages.
Accordingly, programming languages in the HPC domain change only very rarely and
the typical “maintenance” duration of a language is more than 10 years – i.e. the
community will use almost solely a specific programming language for almost 10 years,
before new models are considered. During this time, the new models are adopted by
compiler developers and experienced developers who provide the necessary support
for the language.
So far, MPI and OpenMP on top of C have been the prevalent programming models in
High Performance Computing with some remainders of Fortran still being notable.
Notably, these languages are effectively parallel extensions to the original
programming language, so that e.g. Fortran has been extended with explicit parallel
elements that indicate functions that essentially show no dependencies and can hence
be executed in parallel [123]. Along the same line, MPI and OpenMP extensions exist
for both C and Fortran.
As has been noted, the primary problem of parallel programming consists in controlling
synchronisation and message exchange which not only takes away most of the
performance if not done accurately, but which also poses the most problems to the
developers: in classical shared memory architectures or where cache is maintained

54 More information is available at: http://www.parallelcsharp.com/.

http://www.parallelcsharp.com/

coherent by the hardware (like in Intel current multi-core processors), synchronisation
maintenance effectively means locking memory until the synchronisation point, after
which concurrent access is again allowed. Obviously, this may cause deadlocks and
inconsistency if not programmed carefully, but the developer does not actually have to
cater for how the memory is updated to achieve coherency. In large distributed
clusters, this means however that the system needs to provide some hardware support
to maintain (distributed) coherency.
The Open Multi-Processing (OpenMP)55 programming interface originated in 1997
and it relies strongly on the fact that the system provides some form of shared
memory. It provides the means to decompose the work very much like programming
threads, so that, e.g., a loop can be unrolled into parallel threads. OpenMP does not
support the decomposition of data and offers little (to no) control to the user in this
direction, which often causes problems when mapping the code and data structure to
the system, so that efficiency can be seriously affected. Since messaging is implicit,
OpenMP may produce overheads that affect in particular small loops [124][125]. As
opposed to MPI though, OpenMP (like most shared-memory models) allow easier
transfer of serial code to the parallel environment.
The Message Passing Interface (MPI)56 model (originated 1992) builds on
distributed memory machines where communication between threads / processes has
to occur by exchanging messages. MPI itself just specifies the operations to exchange
messages synchronously and asynchronously between the parallel instances in
different forms (broadcast, scatter etc.) It does not standardise the actual message
format or links to one specific implementation, so that system-specific capabilities and
restrictions can be employed by the compiler.
Over time, MPI has accumulated additional features that go beyond just message
passing – whilst these operations suit experts' needs, it makes the standard very
difficult to master for beginners. In fact, it requires a lot of experience to achieve
efficient load balancing and reduce the messaging overhead [124]. As will be discussed
in more detail below, programming MPI is also not very intuitive to the average user,
and it is generally more difficult to port serial code to MPI [124]. Also, MPI is quite
difficult to debug, even with the support of tools such as MARMOT [126]. Performance
of MPI is directly affected by the communication model of the system and the message
overhead produced by inexperienced programmers – in shared memory models, MPI
generally shows bad performance compared to OpenMP due to this overhead [127].
Due to the specifics of OpenMP (shared-memory) and MPI (message-based), it is not
unusual to actually employ a hybrid programming approach, where OpenMP is
employed in a local shared memory environment (cores) and MPI to pass data over the
network (nodes).
Both MPI and OpenMP are still the most used programming language in HPC, non-
regarding their age (more than 10 years at the time of writing this). More recently
(since roughly 2003) an alternative programming standard has emerged: Partitioned
Global Address Space (PGAS)57 which essentially exposes a “virtually” shared global
memory that allows access from and across all threads / processes. It essentially
partitions a global address space and assigns it to individual compute units where
essentially threads (cf. Pthreads) are executed – obviously, access to local blocks is
fastest, but the threads are allowed to access remote memory too, where the compiler
has to take care of how remote access (message passing or shared memory) is
realised.

55 More information is available at: http://openmp.org/wp/.
56 More information is available at: http://www.mcs.anl.gov/research/projects/mpi/.
57 More information is available at: http://pgas.org/.

http://pgas.org/
http://www.mcs.anl.gov/research/projects/mpi/
http://openmp.org/wp/

PGAS is still in progress, even though the first implementations appeared more than 5
years ago. The Fortran implementation (CAF – Co-Array Fortran58) shows best
performance so far, even comparable to MPI [128] – this is again due to the fact that
there is more knowledge in the efficient parallelisation of Fortran than in other
languages, e.g., in C. Accordingly, C (UPC – Unified Parallel C59) implementations (such
as by the Berkeley University60 or HP61) (still) show worse performance than CAF [129].
We will discuss PGAS again in the context of development trends (D5.2).

3. TRANSACTIONAL MEMORY

Transactional Memory (TM) has recently been proposed as a parallel programming
paradigm to take benefit from modern multicore architectures. In contrast to traditional
paradigms like lock-based techniques, TM uses speculative execution of transactions
for simplicity reasons: semantics is preserved under transaction composition.
The power of the TM paradigm is twofold. First it lies in its abstract nature: no need to
know the internals of shared object implementations - it suffices to delimit any critical
sequence of shared object accesses using transactional boundaries. This avoids the
most common difficulties related to parallel programming known as data race
detections, deadlocks, livelocks.
Second, the code produced using TM is straightforwardly extensible: there is no need
to break existing code abstractions and one can reuse a parallel library without
modifying it or precluding concurrency. For instance, a TM- based set abstraction that
is implemented from a binary tree data structure can be enriched to provide a
collection abstraction without compromising atomicity or parallelism.
Besides making code development scalable, the adoption of TM thus makes parallel
programming simple enough for average programmers and ensures reusability of
parallel software components as libraries.
The idea of the transactional memory (TM) originally comes from [147] before a
hardware [144] and a software implementations were proposed [154]. More recently,
other hardware transactional memories have been suggested [137][150] but keep
being limited by the existing physical constraints, like the cache size. Attempts to cope
with these issues exist [132][133][152], however, software extensions seem necessary
to keep the appealing simplicity of the TM and to face heterogeneity of future
architectures.
Operating systems for many-core architectures, as investigated in the S(o)OS project,
will have to face the inherent parallelism available on the chip, considering both
communications among cores through shared-memory , and communications among
machines through message-passing. First, we discuss the achievements in the context
of shared memory architectures (STMs), second we present the recent achievements in
the context of message passing (DTMs).

STMS
The first purely software TM (STM) [154] considered that the locations accessed by a
transaction were known prior to its execution. In order to support dynamic transactions
where the transaction control flow could depend on the value returned by the latter
memory access, alternative software TMs have naturally been proposed [142][146].
Whereas these TM implementations relied only on locks and universal primitives to

58 More information is available at: http://www.co-array.org/.
59 More information is available at: http://upc.gwu.edu/.
60 More information is available at: http://upc.lbl.gov/download/index.shtml.
61 More information is available at:

http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801?
ciid=a53e82a454348110VgnVCM100000275d6e10RCRD.

http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801?ciid=a53e82a454348110VgnVCM100000275d6e10RCRD
http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801?ciid=a53e82a454348110VgnVCM100000275d6e10RCRD
http://upc.lbl.gov/download/index.shtml
http://upc.gwu.edu/
http://www.co-array.org/

synchronize concurrent transactions, new time-based TMs were proposed to improve
performance by validating a transaction depending on the time instants at which it
could commit [138][139][140][153].
Yet, some parallel programs tuned by expert programmers could reach higher
concurrency than the traditional transactional model shared by all these “easy to
program with” TMs. Consequently, several research work [141][143][145][148][151]
extended the classical transactional model in order to account for the semantics of the
application and increase concurrency. Nesting models [151][143] consider high-level
operations as nested transactions, so that they can either commit or abort (and roll-
back) only subparts of a transaction. Transactional boosting [145] and coarse-grained
transactions [148] benefit from commutativity of application-level operations to avoid
false-conflicts and enhance concurrency.
Only very recently, have new TM implementations shown better results than usual
synchronization techniques [141][135] by relaxing consistency at read/write levels
while retaining programming simplicity. We believe that the upcoming challenge is to
integrate these TM mechanisms with future communication-aware DTMs without
impacting on their efficiency.

DTMS
Several DTM implementations have recently been proposed to run on clusters. In [149]
the authors present a DTM that uses speculation to execute the distributed
transactions issued by one node as well as transactions running on a single node. Their
approach exploits a conflict-aware scheduler that spreads the transactional request so
that update transactions are executed by some master node locally, and read-only
ones are executed on slave nodes. This limits the invalidation of read-only transactions
as they can return an old snapshot without requiring slave nodes to maintain multiple
versions. In contrast, the update transactions create a local transactional memory copy
at the master node to buffer updates that remain invisible during the transaction
execution. Upon commit, the update transaction acquires a global lock on the cluster
and sends its modifications (as a “diff” between the two copies) to the other nodes of
the system. After reception of the acknowledgement of all other nodes, the transaction
can commit.
In [134] the authors have identified the existing transactional memory designs that are
well-suited for clusters where the memory access time is non-uniform among the
nodes. Among these designs, they confirmed the need for a node to acknowledge a
transaction from a distant node prior to effectively applying its changes locally - as
noticed in [149], this allows the distant transaction to commit early. In addition, they
identified that making a read visible to other nodes (by for instance using concurrent-
readers/exclusive-writer locks) and deferred updates (where all updates are bufferized
until commit-time) can perform well when remote operations dominate the latency. D2
STM [136] aims at bringing fault-tolerance to the existing cluster-based STMs. Instead
of acquiring a global lock on the cluster, D2 STM uses an atomic broadcast primitive
that ensures the serialization of commits among concurrent transactions.
Tomorrow’s many-core architectures will have to support highly scalable services that
neither rely on atomic broadcast nor on centralized control.

4. COMPILERS

Programming languages hardly ever act directly upon the hardware – instead a
compiler has to translate the language into hardware instructions first. Since every
infrastructure has its own specifics regarding instruction set, but also, more

importantly, regarding strengths and weaknesses in most cases it is the compiler that
performs a major task in optimizing the code for the specific platform. There are
multiple optimization techniques employed by different compilers, ranging from
exploitation of memory hierarchies and operation reordering to identification of typical
functions and analysis of code dependencies [189]. As such, for example the Intel
compiler employs three main methods for optimisation:
(1) in the profile-guided optimization (PGO) method, the compiler is provided with the
results from a test run of the code with a selected input set (a profile) – this information
can be used to identify frequently executed program code. The compiler typically uses
this data to reorder the blocks, thus reducing cache misses . Notably, the
representative input sets have to be provided by the user – if the actually used data
leads to different code behaviour, profile-guided optimization may actually reduce code
performance (this method is employed by Intel, GCC, Microsoft Visual C++).
(2) High-level optimizations (HLO) actually imply a set of optimization techniques
performed on the source-code (or an intermediary higher-level code, cf. below). This
includes steps such as loop unrollment, loop fusion etc. Due to the high degree of
complexity [189], the according analysis may take most of the compilation time and
the actual gain is highly dependent on the executing architecture, restricting the
portability of the code (even on this higher level)
(3) Similarly, interprocedural optimization (IPO) steps actually incorporate a set of
techniques but on a broader code scope than (2), i.e. these steps try to analyze the
whole program. In particular, the IPO strategies tries to reduce or eliminate recurring
procedures by inlining the respective code, thus reducing overhead for branching and
potential memory swaps. This technique typically also includes elimination of unused
code and parameters etc. These sets of techniques are typical for most C compilers
and can be found e.g. in GNU GCC, Intel Compiler and Microsoft's C compiler.
There are overall more than 60 well-known compiler optimization strategies, which
shall not all be listed here – for a more comprehensive overview over all strategies,
please refer to Wikipedia62,63. We can thereby specifically distinguish between
hardware-specific and general optimisation strategies, whereas the latter (such as IPO
and partially HLO) focus on steps that improve (or should improve) the execution
performance non-regarding the platform on which the code is running, and hardware-
specific strategies (such as PGO and some HLO) utilize specific characteristics of the
hardware (such as rd-length in vector processors) for reducing unnecessary steps and
delays in the code. Obviously, the latter reduce portability of the code enormously.
Generally, the lower the level of the programming language, the more hardware-bound
the according code – e.g. C is less hardware-specific than Assembly code. Most modern
programming languages build up on existing ones, such as C# basing on C++ and
parts of Java. It is therefore not unusual for a compiler to traverse down this hierarchy
when compiling the source code, thus producing intermediary versions which become
increasingly hardware-specific. Many modern compilers build on this principle, thus
employing compiler logic and knowledge that has already been build up in “older”
languages (such as C and Fortran). Typically, this means that the compiler actually
executes multiple passes (multi-pass compiler) in order to convert the source code
into respective “lower-level” languages and execute the according compilation on the
respective code.
In such cases, most passes perform so-called “source-to-source” compilation steps,
where actually no machine code is generated, but only a conversion takes place, where
e.g. higher-level specific commands which integrate multiple commands from a lower-

62 More information is available at: http://en.wikipedia.org/wiki/Compiler_optimization.
63 More information is available at: http://en.wikipedia.org/wiki/Category:Compiler_optimizations.

http://en.wikipedia.org/wiki/Category:Compiler_optimizations
http://en.wikipedia.org/wiki/Compiler_optimization

level language are converted into their according representative in that respective
language. This step may also involve according high-level optimisation steps that are
particular to the source language. The final step in such a hierarchical compilation
approach always consists in producing the actual machine code.
Notably, we also speak of “multi-pass” compilation when the compiler produces
assembly code right away but passes over the code multiple times in order to
iteratively improve performance, identify dependencies etc. As opposed to that, a
“single-pass” compiler generates the (final) assembly in a single pass over the source
code. Whilst single pass compilers show much compilation speeds (as they only have to
execute transformation once), they also typically generate less optimal code, as some
optimisation points can only be identified after one pass annotating of the code.
The other major compiler technology next to the ones described above consist in Just-
in-Time (JiT) Compilers.. The basic idea behind these types of compilers consist in
executing the actual conversion of the code at the moment of actual execution.
Typically this applies to a whole code block at once, though in the worst case this could
be applied to one command at a time – in these cases we speak of “ Interpreters” or
“Virtual Machines” though. In the context of this document, we treat them as special
cases of JiT compilers, as the implications from this distinction are of little relevance in
this context, even though we can note that interpreters and virtual machines typically
show much lower performance.
In theory, JiT compilers are very similar to interpreters insofar as they translate a
function the moment it is invoked, yet with the performance advantage that e.g loops
do not need to recompile (interpret) the according set of operations every time, but
only with the first iteration. According to this approach, the compilation would unload
once it is removed from the memory – in other words, the compilation is not persistent.
Obviously, this approach increases portability significantly, since hardware-specific
optimisation and adaptation tasks are performed only at program execution time, and
thus only once the code is actually in the according environment. However, even
though this means in principle that more hardware-specific optimisation steps can be
executed, the impact from the constant recompilation has a major performance
impact. As already noted above, optimised compilation takes up a lot of time, in
particular if IPO steps are executed that have to analyse the whole overall program
structure.
In order to improve performance and reduce the recompilation effort, most JiT
compilers take a hybrid approach, in which they create an intermediary code in a first
transformation step, similar to source-to-source conversion in a multi-pass compiler
(see above). More time can thus be vested into this first pass, with a focus on holistic
optimization steps, such as pursued by the IPO steps, which take up most of the
compile time. At the same time, this intermediary code still shows a maximum degree
of portability and platform-independence, as the according steps are mostly performed
in the last compiler steps (cf above).
Microsoft has improved the JiT technology with its release of the .NET framework and in
particular the C# programming language significantly: the .NET framework generates a
memory map at first invocation, keeping frequently used sections in cache, thus
reducing overhead for recompilation and memory swaps [161].
Some compilers support programming model extensions dedicated to writing parallel
applications, where the main issues are segmentation, distribution and catering for
communication. There are different approaches to this end (see also Section V. 2.):
with MPI, the programmer needs to focus on the communications between the
application components and threads; with PGAS, the programmer may rely on a

shared-memory abstraction and process threads; with StarSS, the focus is on the
definition of data dependencies; with OpenMP, the programmer may pretend to
program sequentially, but he/she may add special directives along the code, instructing
the compiler on how to create automatically the parallelisation logic; etc. All these
extensions still require the programmer to define the details relating to parallelism.
Even though data and code segmentation are an important part of the performance on
multi-core systems, there are currently no compilers or programming models that
understand such annotations (for code and data distribution) effectively.
Finally, it is worth mentioning that, for those languages that support native language-
level extensions for parallel programming, the compiler has the responsibility to
generate the logic for handling multiple flows of control (usually creating new threads)
and the synchronisation among them (for example, the a native support for
concurrency and synchronisation is present in the Ada language, and partially present
in the Java language). However, usually the language-level constructs for parallel
programming aim to be simple to use and to be understood by the programmer, thus
rarely they manage to provide the programmer with optimum and extremely efficient
solutions. For example, language-level constructs usually do not include optimised
read-write locks or other sophisticated locking strategies.

VI. BENCHMARKING

In order to estimate the performance of a system, direct measurements are typically
not possible: too much depends on the actual usage and system load under stress. This
is particularly true for computational performance, where typically reference
applications are used as a means of performance indicator. In the following we will
provide a quick overview over the main benchmarks used for estimating performance
and their usefulness for the S(o)OS purposes.

HIGH PERFORMANCE COMPUTING
The “Top 500”64 ranks high performance machines according to their performance –
there is a general agreement, that any machine within the Top 500 list may thus safely
be called a “supercomputer” (cf. section II. 4. on High Performance Computers). The
performance rating is achieved through usage of an Linpack adaptation for distributed-
memory computers (HPLinpack) – a reference implementation (HPL) existing by Jack
Dongarra et al. [23]. HPL essentially solves random dense linear systems with double
precision on the distributed machines. It bases on MPI and a set of predefined libraries
(BLAS or VSIPL) to perform a set of calculations and then assess the execution time.
Even though it is often claimed that the order in the top 500 would not be affected by
replacing the benchmark with another one, the results are clearly affected by the
vendor-specific matrix-matrix operations which can thus be tuned for better
performance on the Linpack benchmark. Whilst it is only fair that the vendor can make
use of specific capabilities of the machine that only he knows (cf. Section II. 4.), it
nonetheless means that the test is not objective (which it effectively cannot be).
Furthermore Linpack is making strong use of broadcasts rather than explicit
synchronisation points. Overall, Linpack focuses on specific mathematical functions
which essentially drive a 100% processor load, but tells little about the mixed
functionality requirements of typical applications, in particular from the more common
areas, such as home usage (cf. D5.2)
Alternative benchmarking approaches are examined amongst others by the PRACE
project65 in order to reflect the actual usage patterns better and thus provide more
meaningful performance figures. At the time of writing this, the PRACE project has only
identified a set of relevant applications and no specific means of benchmarking though.

GENERAL COMPUTING BENCHMARKS
The Standard Performance Evaluation Corporation66 provides a standardised set of
benchmarks for specific hardware and computation aspects, such as the SPEC CPU2006
benchmark set67 that tests the CPU performance for integer and double-precision
floating point operations. The set of benchmarks do therefore not cover the full
capability requirements of typical applications, but are particularly used for hardware
developers and testers.
In order to provide usage-wide benchmark results, the most typical approach consists
in agreeing on reference applications and comparing their specific characteristics
against each other in different environments. The most common benchmarks following
this direction are 3dMark [24] and PCMark [25] from Futuremark Corporation – both
benchmarks effectively implement default applications in the area of graphics (3dMark)

64 More information is available at: http://www.top500.org.
65 Partnership for Advanced Computing in Europe - http://www.prace-project.eu/
66 More information is available at: http://www.spec.org.
67 More information is available at: http://www.spec.org/cpu2006/.

http://www.spec.org/cpu2006/
http://www.spec.org/
http://www.prace-project.eu/
http://www.top500.org/

and home usage (PCMark) and compare the execution performance with other (known)
system results. The resulting performance indicators are effectively relative and thus
only meaningful, if the user is able to interpret them in comparison to different
hardware settings.
As discussed in more detail in D5.2, the actual system requirements per application
differ strongly according to the usage area – this is most visible in gaming versus office
applications, but can also be noted in stream editing etc. No benchmark can address
these differences equally – instead it will break down the overall requirements into a
set of sub-features, such as average I/O access etc. PCMark introduced so-called test
suites that reflect specific consumer behaviour, which combine the specific sub-
features accordingly [25] - this provides a more meaningful performance indicator
within the respective usage area.
Notably, since Windows Vista, Microsoft provides a reduced performance benchmark
based on essential test parameters (memory access latency, floating point calculations
per second etc.) - the according data is not representative for distributed (parallel)
computing, but particularly useful for games, which partially already indicate their
system requirements through this performance score.

CONCLUSIONS
Applications have different requirements towards the system, depending on their
respective tasks and functional structure – as such, games require in particular high
graphics throughput and use the CPU mostly for physics calculations; video and
streaming applications require transcoding capabilities etc. (please refer to D5.2 for
details). The performance of an application is therefore basing on the combined
performance of the respective features needed in executing the processes. This follows
the same principles as Amdahl's law [130]: speed-up of a distributed application in a
parallel environment is determined by the ratio of the application parallel and serial
aspects to the system parallel and serial capabilities; for the general application this
means that its performance is determined by the ratio of the application algorithms to
the system capabilities to support these algorithms.
Benchmark tests therefore do not necessarily have to be executed on the full
application, but on its essential functional aspects. FutureMark identified aspects such
as data encryption, data compression, video transcoding etc. as core test features [25]
which leave the execution and implementation of the according features completely to
the operating system. In the context of High Performance Computing, (cf. also section
II. 4.), Asanovic et al. have identified the so-called 13 dwarfs as being the essential
algorithmic kernels putting the actual performance demand on distributed and parallel
computing [131]. There is, however, no benchmark suite explicitly dedicated to these
dwarfs.
Note that in the specific context of S(o)OS, that does not aim at an implementation of a
single full fledged operating system, but in particular at evaluating essential aspects of
future highly scalable operating systems, no full benchmark suite is applicable. Instead,
the benchmark must be capable of evaluating the influence of these approaches (such
as a scheduling protocol) on to principle application execution. The benchmark(s) must
therefore follow a line similar to PCMark and the 13 dwarfs and compare the effect of
different algorithms on the respective core features (dwarfs or tests) – for example the
impact of the scheduling protocols on parallel audio transcoding etc.

VII. CONCLUSIONS

In this document, a survey has been presented over the current state of the art in both
industrial practice and academic research in the areas of parallel and massively
parallel systems, and the support for such platforms at the Operating System and
programming levels. From the presented discussion, it is clear that software
development, both from the Operating System and from the application-level
programming perspectives, struggles at following the hardware trends in the areas of
massively parallel and distributing computing. The tera-scale future computing
platforms of tomorrow, along with the envisioned developments in the areas of
interconnection capabilities, parallelism level and application distribution, are going to
constitute a challenging scenario for future ICT development. Methodologies for
developing software need to be accordingly adapted to the new evolving scenario,
starting from a re-engineering process that encompasses the entire software stack in a
holistic way: from the foundations of Operating Systems kernel model and middleware
services, to application-level software infrastructures and parallel programming
paradigms. Only this rethinking of the software stack will allow for the needed
departure from the classical sequential programming paradigms for moving towards
novel distributed and parallel programming techniques on a large scale, in order to
achieve an efficient use of the resources that will be available to the applications in the
future. This deliverable, along with D5.2 “Definition of Future Requirements” [86],
highlights the motivations underpinning the research that is being undertaken in the
context of the S(o)OS project, and it serves as a basis over which the S(o)OS future
investigations will be carried out.

REFERENCES

[1] L. Schubert, A. Kipp, B. Koller, and S. Wesner, "Service Oriented Operating
Systems: Future Workspaces," IEEE Wireless Communications, vol. 16, 2009, pp.
42-50.

[2] L. Schubert and A. Kipp, "Principles of Service Oriented Operating Systems,"
Networks for Grid Applications, Second International Conference, GridNets 2008,
P. Vicat-Blanc Primet, T. Kudoh, and J. Mambretti, Springer, 2009, pp. 56-69.

[3] L. Schubert, A. Kipp, and S. Wesner, "Above the Clouds: From Grids to Service-
oriented Operating Systems," Towards the Future Internet - A European
Research Perspective, G. Tselentis, J. Domingue, A. Galis, A. Gavras, D.
Hausheer, S. Krco, V. Lotz, and T. Zahariadis, Amsterdam: IOS Press, 2009, pp.
238 – 249.

[4] L. Schubert, S. Wesner, A. Kipp, and A. Arenas, "Self-Managed Microkernels:
From Clouds Towards Resource Fabrics," In Proceedings of the First International
Conference on Cloud Computing, Munich, 2009.

[5] Intel, 'Intel White Paper. An Introduction to the Intel® QuickPath Interconnect'.
http://www.intel.com/technology/quickpath/introduction.pdf (2009)

[6] Lameter, C.: Extreme High Performance Computing or Why Microkernels Suck, in
'Proceedings of the Linux Symposium'. (2007)

[7] Jeffrey Dean and Sanjay Ghemawat, MapReduce: simplified data processing on
large clusters, Commun. ACM, Vol. 51 n.1, pp107-113, Jan 2008, issn 0001-0782

[8] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, The Google file system,
Proceedings of the 19th ACM symposium on Operating systems principles (SOSP
2003), pp29-43, isbn 1-58113-757-5

[9] Andrew Baumann et al., The Multikernel: a new OS architecture for scalable
multicore systems, SOSP 2009

[10] Pradeep Padala, Joseph N. Wilson, GridOS: Operating System Services for Grid
Architectures, Proceedings of the International Conference on High-Performance
Computing (HiPC 2003), FIXME

[11] Sanjeev Puri, Qamas Abbas, Grid Operating System: Making Dynamic Virtual
Services in Organizations

[12] Hamid Hussain-Khan, Olivier Michielin, Xgrid, a “just do it” grid solution for non
IT's, EMBnet.news, Vol. 11, Issue 3, September 2005

[13] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, David
Margery, Jean-Yves Berthou, Isaac D. Scherson, Kerrighed and Data Parallelism:
Cluster Computing on Single System Image Operating Systems, 6th IEEE
International Conference on Cluster Computing, pp. 277-286, San Diego,
California, September 2004

[14] Renaud Lottiaux, Benoit Boissinot, Pascal Gallard, Geoffroy Vallée, Christine
Morin, OpenMosix, OpenSSI and Kerrighed: A Comparative Study, INRIA
Technical Report N.5399, November 2004

[15] Amnon Barak, Shai Guday, Richard Wheeler, The MOSIX Distributed Operating
System, Load Balancing for UNIX, Lecture Notes in Computer Science, Vol. 672,
Springer-Verlag, 1993

[16] Qingbo Yuan, Jianbo Zhao, Mingyu Chen, Ninghui Sun, GenerOS: An Asymmetric
Operating System Kernel for Multi-core Systems, IEEE International Parallel &
Distributed Processing Symposium, Atlanta, USA, April 2010

[17] Christine Morin, Jerome Gallard, Yvon Jogou, Pierre Riteau, Clouds: a New
Playground for the XtreemOS Grid Operating System

[18] Felix Hupfeld, Toni Cortes, Bjoern Kolbeck, Jan Stender, Erich Focht, Matthias
Hess, Jesus Malo, Honathan Marti, Eugenio Cesario, The XtreemFS architecture –
a case for object-based file system in Grids

[19] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer,
Gregor von Laszewski, Craig Lee, Andre Merzky, Hrabri Rajic, John Shalf, SAGA:
A Simple API for Grid Applications. High-level application programming on the
Grid , Computational Methods in Science and Technology, 12(1), 7-20, 2006.
Online at: http://wiki.cct.lsu.edu/saga/.

[20] XtreemOS Project Deliverable D3.1.6 : Second Prototype of XtreemOS Runtime
Engine , Version 1.0.3, January 5th, 2009

[21] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,
Zheng Zhang, Corey: An Operating System for Many Cores, 8th USENIX
Symposium on Operating Systems Design and Implementation

[22] David Wentzlaff and Anant Agarwal, Factored Operating Systems (fos): The Case
for a Scalable Operating System for Multicores, ACM SIGOPS Operating System
Review: Special Issue on the Interaction among the OS, Compilers, and Multicore
Processors, April 2009

[23] Petitet, A.; Whaley, R.C.; Dongarra, J. & Cleary, A.: HPL - A Portable
Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers. Innovative Computing Laboratory (2008). Available at:
http://www.netlib.org/benchmark/hpl/

[24] Korpi-Anttila, J.; Aalto, T.; Haapasalo, J.; Sjöholm, J.; Pietilä, K. & Kerminen, A.:
3DMark Vantage Whitepaper, Rev. 2. Futuremark Corporation (2008). Available
at: http://www.futuremark.
com/pressroom/companypdfs/3DMark_Vantage_Whitepaper_v100_Rev2.pdf?m=v

[25] N. Renqvist and P. Timonen. PCMark Vantage Whitepaper, V1.0. Futuremark
Corporation, 2007. Available on-line at:
www.futuremark.com/pressroom/companypdfs/PCMark_Vantage_ Whitepaper_v1.0_(PDF)

[26] Jochen Liedtke "On µ-Kernel Construction". Proc. 15th ACM symposium on
Operating Systems Principles (SOSP), December 1995, pp. 237–250.

[27] Microsoft TechNet, “Windows NT 4.0 Workstation Architecture”,
http://technet.microsoft.com/en-us/library/cc749980.aspx

[28] QNX Software Systems, “The QNX Neutrino Microkernel”,
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/kernel.html

[29] Alcatel-Lucent Bell Labs announces new optical transmission reocrd and breaks
100 Petabit per second kilometre barrier, September 28 2009, Paris, Press
release.

[30] Jensen, M.; Nielsen, R.H.; Madsen, O.B.; , "Comparison of Cost for Different
Coverage Scenarios between Copper and Fiber Access Networks," Advanced
Communication Technology, 2006. ICACT 2006. The 8th International
Conference , vol.3, no., pp.2015-2018, 20-22 Feb. 2006

[31] Gordon Haff, “Latency Matters”, Research Note, Illuminata, Inc, September
2002.

[32] David Patterson, “Why Latency Lags Bandwidth and What it Means to
Computing”, High Performance Embedded Computing (HPEC 2004), Invited Talk,
October 2004

[33] William J. Dally, “From Hypercubes to Dragonflies, a short history of
interconnect”, IAA workshop, July 2008.

[34] Intel QuickPath Architecture, May 2010, available on-line at:
www.intel.com/technology/quickpath/whitepaper.pdf.

[35] Hao Yu; I-Hsin Chung; Jose Moreira; , "Topology Mapping for Blue Gene/L
Supercomputer," SC 2006 Conference, Proceedings of the ACM/IEEE , vol., no.,
pp.52-52, Nov. 2006

[36] J. Lawrence and Xin Yuan, "An MPI tool for automatically discovering the switch
level topologies of Ethernet clusters," IEEE International Symposium on Parallel
and Distributed Processing (IPDPS 2008), pp.1-8, 14-18 April 2008

[37] Infiniband Trade Association, http://www.infinibandta.org, as in May 2010
[38] Meddeb, A., "Why ethernet WAN transport?," Communications Magazine, IEEE ,

vol.43, no.11, pp. 136- 141, Nov. 2005

http://www.infinibandta.org/
http://www.intel.com/technology/quickpath/whitepaper.pdf
http://technet.microsoft.com/en-us/library/cc749980.aspx
http://wiki.cct.lsu.edu/saga/

[39] Kim, J.; Balfour, J.; Dally, W.J.; , "Flattened Butterfly Topology for On-Chip
Networks," Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM
International Symposium on , vol., no., pp.172-182, 1-5 Dec. 2007

[40] Ksentini, A.; , "Enhancing VoWLAN service through adaptive voice coder,"
Computers and Communications, 2009. ISCC 2009. IEEE Symposium on , vol.,
no., pp.673-678, 5-8 July 2009

[41] Rosenberg et al, SIP: Session Initiation Protocol, RFC3261
[42] Moskowitz et al, Host Identity Protocol, RFC 5201
[43] MPI: A Message-Passing Interface Standard, version 2.2, Message Passing

Interface Forum, September 4, 2009
[44] Chi Zhang; Xin Yuan; Srinivasan, Ashok; , "Processor affinity and MPI

performance on SMP-CMP clusters," Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on , vol., no.,
pp.1-8, 19-23 April 2010

[45] Walters, J.P.; Chaudhary, V.; , "Replication-Based Fault Tolerance for MPI
Applications," Parallel and Distributed Systems, IEEE Transactions on, vol.20,
no.7, pp.997-1010, July 2009

[46] Plan 9 Remote Resource Protocol, 9p2000 http://ericvh.github.com/9p-
rfc/rfc9p2000.html, May 2010.

[47] Narayan, S.; Peng Shang; Na Fan; , "Network performance evaluation of Internet
Protocols IPv4 and IPv6 on operating systems," Wireless and Optical
Communications Networks, 2009. WOCN '09. IFIP International Conference on ,
vol., no., pp.1-5, 28-30 April 2009

[48] Khurri, A.; Kuptsov, D.; Gurtov, A.; , "Performance of Host Identity Protocol on
Symbian OS," Communications, 2009. ICC '09. IEEE International Conference on ,
vol., no., pp.1-6, 14-18 June 2009

[49] A compact operating system for building cross-platform distributed systems,
http://www.vitanuova.com/inferno/, as of May 2010

[50] Ionkov, L.; Van Hensbergen, E.; , "XCPU2 distributed seamless desktop
extension," Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE
International Conference on , vol., no., pp.1-9, Aug. 31 2009-Sept. 4 2009

[51] Eric Newcomer, “Understanding Web services: XML, WSDL, SOAP, and UDDI”,
Addison Wesley , ISBN-10: 0201750813 , 2002

[52] The NetBios Guide, http://www.netbiosguide.com/, as in July 2010
[53] Gsottberger, Y., Shi, X., Stromberg, G., Sturm, T.F., and Weber, W., Embedding

low-cost wireless sensors into universal plug and play environments. In Wireless
Sensor Networks. First European Workshop, EWSN 2004. Proceedings. (Lecture
Notes in Comput. Sci. Vol.2920), pp. 291 - 306, 2004.

[54] Universal Plug and Play Forum, Universal Plug and Play Device Architecture, v.
0.91, http://www.upnp.org, Mar. 2000.

[55] C. Bettstetter and C. Renner, “A Comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol”, Proceedings of the Sixth
EUNICE Open European Summer School: Innovative Internet Applications,
EUNICE 2000, Twente, Netherlands, September, 2000.

[56] Cheshire, S. and Steinberg, D. Zero Configuration Networking: The Definitive
Guide. O’Reilly Associates, ISBN 0596101007, December, 2005.

[57] Apple Inc, Bonjour in Mac OS X, http://www.apple.com/macosx/features/bonjour/,
as in July 2010

[58] Stuart Cheshire, Marc Krochmal, Internet-Draft: "DNS-Based Service Discovery,"
8 March 2010, Apple Inc. http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt,
(June 2010).

[59] Schmidt, Douglas C.: “Reactor: An Object Behavioral Pattern for Concurrent
Event Demultiplexing and Event Handler Dispatching”, Pattern Languages of
Program Design, Addison-Wesley, 529–545, Eds: Coplien, James O., and Schmidt,
Douglas C., 1995

[60] Pyarali, Irfan, Harrison, Tim, Schmidt, Douglas C., and Jordan, Thomas D.:
“Proactor - An Architectural Pattern for Demultiplexing and Dispatching Handlers

http://www.apple.com/macosx/features/bonjour/
http://www.netbiosguide.com/
http://www.vitanuova.com/inferno/
http://ericvh.github.com/9p-rfc/rfc9p2000.html
http://ericvh.github.com/9p-rfc/rfc9p2000.html

for Asynchronous Events”, The 4th Pattern Languages of Programming
Conference, September 1997

[61] Koulamas, C.P., 1996. Scheduling two parallel semi-automatic machines to
minimize machine interference. Computers and Operations Research 23 10, pp.
945–956.

[62] Scalable Computing: Practice and Experience. Scientific international journal for
parallel and distributed computing. Published as Parallel and Distributed
Computing Practices (ISSN 1097-2803), Vol. 4 No. 2, 2001, Book review

[63] Finding Least Constrained Plans and Optimal Parallel Executions is Harder than
We Thought (1994) , by Christer Backstrom, Christer Backstrom, In Proc. 2nd
European Workshop on Planning, 1993.

[64] R. Rajkumar, L. Sha, and J. Lehoczky, Real-time synchronization protocols for
multiprocessors, in Proceedings of the Ninth IEEE Real-Time Systems
Symposium, pp. 259--269, IEEE, 1988.

[65] L. Sha, R. Rajkumar, and J. P. Lehoczky, Priority inheritance protocols: An
approach to real-time synchronization, IEEE Transactions on Computers, vol. 39,
no. 9, pp. 1175--1185, 1990.

[66] R. Rajkumar, Synchronization In Real-Time Systems -- A Priority Inheritance
Approach. Boston: Kluwer Academic Publishers, 1991.

[67] R. Rajkumar, Real-time synchronization protocols for shared memory
multiprocessors, in Proceedings of the International Conference on Distributed
Computing Systems, pp. 116--123, 1990.

[68] K. Lakshmanan, D. de Niz, and R. Rajkumar, Coordinated task scheduling,
allocation and synchronization on multiprocessors, in Proceedings of IEEE Real-
Time Systems Symposium, Washington, DC, USA, 2009.

[69] C. M. Chen and S. K. Tripathi, Multiprocessor priority ceiling based protocols,
tech. rep., College Park, MD, USA, 1994.

[70] P. Gai, G. Lipari, and M. di Natale, Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-a-chip, in Proceedings of the
IEEE Real-Time Systems Symposium, IEEE Computer Society Press, December
2001.

[71] T. P. Baker, Stack-based scheduling of real-time processes, Real-Time Systems:
The International Journal of Time-Critical Computing, vol. 3, 1991.

[72] J. M. Lopez, J. L. Diaz, and D. F. Garcia, Utilization bounds for EDF scheduling on
real-time multiprocessor systems, Real-Time Systems: The International Journal
of Time-Critical Computing, vol. 28, no. 1, pp. 39--68, 2004.

[73] P. Holman and J. H. Anderson, Locking under pfair scheduling, ACM Trans.
Comput. Syst., vol. 24, no. 2, pp. 140--174, 2006.

[74] U. C. Devi, H. Leontyev, and J. H. Anderson, Efficient synchronization under
global edf scheduling on multiprocessors, in ECRTS '06: Proceedings of the 18th
Euromicro Conference on Real-Time Systems, Washington, DC, USA, pp. 75--84,
2006.

[75] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson, A flexible real-
time locking protocol for multiprocessors, in RTCSA '07: Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, Washington, DC, USA, pp. 47--56, 2007.

[76] A. Easwaran and B. Andersson, Resource sharing in global fixed-priority
preemptive multiprocessor scheduling, in Proceedings of IEEE Real-Time
Systems Symposium, Washington, DC, USA, 2009.

[77] Dario Faggioli, Antonio Mancina, Fabio Checconi, Giuseppe Lipari, Design and
Implementation of a POSIX Compliant Sporadic Server for the Linux Kernel, 10th

Real-Time Linux Workshop, Colotlán, Jalisco, Mexico, Oct, 29th – Nov, 1st, 2008

[78] IEEE Standard for Information Technology – Portable Operating System Interface
(POSIX), IEEE Std 1003.1, 2004 Edition. Available online at:
http://www.opengroup.org/onlinepubs/009695399

[79] Ian Pratt, XEN and the Art of Virtualization, 2006
[80] Framework for Real-Time embedded Systems based on Contracts (FRESCOR),

European Project No. FP6/2005/IST/5-034026, http://www.frescor.org.
[81] Michael González Harbour and Miguel Tellería de Esteban . Architecture and

contract model for integrated resources II . FRESCOR Deliverable D-AC2v2 .
2008.

[82] Virtualization Overview, VMWare Whitepaper, available at the URL:
http://www.vmware.com/pdf/virtualization.pdf.

[83] Windows Server Virtualization – An Overview, Microsoft Corporation, May 2006,
http://download.microsoft.com/download/3/2/2/32212eab-a431-4cd4-8567-
cf951b1322de/Virtualization.doc.

[84] Robert P. Goldberg, Survey of Virtual Machine Research, IEEE Computer
Magazine, 7(6):34—45, 1974

[85] Keith Adams, A comparison of software and hardware techniques for x86
virtualization, in Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XII), pg. 2—13, October 21st – 25th, 2006, San Jose, California, USA

[86] S(o)OS Project Deliverable – D5.2 Definition of Future Requirements, July 2010
[87] J. Dongarra, J. Bunch, C. Moler and G. W. Stewart, LINPACK Users Guide, SIAM,

Philadelphia, PA, 1979.
[88] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, HPL - A Portable Implementation

of the High-Performance Linpack Benchmark for Distributed-Memory Computers,
September 2008

[89] Blaise Barney, POSIX Threads Programming, Lawrence Livermore National
Laboratory, available on-line: https://computing.llnl.gov/tutorials/pthreads

[90] Volkmar Uhlig, “The mechanics of in-kernel synchronization for a scalable
microkernel,” Operating Systems Review, 41:4, 2007, pp 49-58

[91] Andrew S. Tanenbaum, A Comparison of Three Microkernels, Journal of
Supercomputing, Vol. 9, 1995

[92] Andrew S. Tanenbaum, M. Frans Kaashoek, Robbert Van Renesse, Henri E. Bal.
The Amoeba Distributed Operating System – A Status Report. Computer
Communications, Vol. 14, pp.324–335, 1991

[93] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F.
Herrmann, C. Kaiser, S. Langlois, P. Léonard, W. Neuhauser. Overview of the
CHORUS Distributed Operating Systems. Computing Systems Vol. 1, pp-39–69,
1991

[94] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron,
Alessandro Forin, David Golub, Michael Jones. “Mach: A System Software
kernel,” Proceedings of the 34th Computer Society International Conference
(COMPCON 89), February 1989

[95] L. Schubert, K. Jeffery, B. Neidecker-Lutz, and others, "The Future of Cloud
Computing," 2010. Available at: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-
report-final.pdf

[96] C.G. Willard, A. Snell, L. Segervall, “Cloud Computing Opportunities in HPC”, HPC
Wire 2009. Available at:
http://www.hpcwire.com/specialfeatures/cloud_computing/features/Cloud-
Computing-Opportunities-in-HPC-68773637.html

[97] HPC Wire, “Special Feature: HPC in the Cloud”, 2010. Available at:
http://www.hpcwire.com/specialfeatures/cloud_computing/

[98] W. Gentzsch, “Grids or Clouds for HPC?”, HPC Wire 2009. Available at:
http://www.hpcwire.com/specialfeatures/cloud_computing/features/Grids-or-
Clouds-for-HPC-67796917.html

[99] I. Foster, C. Kesselman, “The grid: blueprint for a new computing infrastructure”,
Elsevier, 2004

http://www.hpcwire.com/specialfeatures/cloud_computing/features/Grids-or-Clouds-for-HPC-67796917.html
http://www.hpcwire.com/specialfeatures/cloud_computing/features/Grids-or-Clouds-for-HPC-67796917.html
http://www.hpcwire.com/specialfeatures/cloud_computing/
http://www.hpcwire.com/specialfeatures/cloud_computing/features/Cloud-Computing-Opportunities-in-HPC-68773637.html
http://www.hpcwire.com/specialfeatures/cloud_computing/features/Cloud-Computing-Opportunities-in-HPC-68773637.html
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
https://computing.llnl.gov/tutorials/pthreads
http://download.microsoft.com/download/3/2/2/32212eab-a431-4cd4-8567-cf951b1322de/Virtualization.doc
http://download.microsoft.com/download/3/2/2/32212eab-a431-4cd4-8567-cf951b1322de/Virtualization.doc
http://www.vmware.com/pdf/virtualization.pdf
http://www.frescor.org/
http://www.opengroup.org/onlinepubs/009695399

[100] F. Berman, G.C. Fox, A.J.G. Hey (eds), “Grid computing: making the global
infrastructure a reality”, Wiley, 2003

[101] R. Buyya, M. Baker (eds), “Grid Computing – GRID 2000”, In: Lecture Notes in
Computer Science, Springer, 2000

[102] Saabeel, W., Verduijn, T.M., Hagdorn, L., Kumar, K. “A model of virtual
organisation: a structure and process perspective.” In: Electronic Journal of
Organizational Virtualness, 2002. Available at: http://www.virtual-
organization.net

[103] L. Schubert, S. Wesner, and T. Dimitrakos, "Secure and Dynamic Virtual
Organizations for Business," Collaborative Product and Service Life Cycle
Management for a Sustainable World - Proceedings of th 15th ISPE International
Conference on Concurrent Engineering (CE2008), P. Cunningham and M.
Cunningham, IOS Press, 2005.

[104] J. Haller, L. Schubert, and S. Wesner, "Private Business Infrastructures in a VO
Environment," Exploiting the Knowledge Economy: Issues, Applications, Case
Studies, P. Cunningham and M. Cunningham, IOS Press, 2006, pp. 1064-1071.

[105] G. Mateescu, “Overcoming the processor communication overhead in MPI
applications,” In: Proceedings of the 2007 Spring Simulation Multiconference -
Volume 2, 2007

[106] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, R. Rooholamini, “An Empirical Study of
Hyper-Threading in High Performance Computing Clusters,” Linux Clusters: The
HPC Revolution – Technical Paper, 2002. Available at:
http://www.democritos.it/activities/IT-MC/cluster_revolution_2002/

[107] P.H. Worley, “Impact of Communication Protocol on Performance,” Oak Ridge
National Laboratory, 1999. Available at:
http://www.ornl.gov/~webworks/cpr/v823/rpt/104898.pdf

[108] F. Putrya, “On-chip interconnect impact on the performance of multicore
processors with NUMA architecture,” European-Russian Semiconductor
Technology Conference 2009 on Networking. Available at: http://www.eu-
ru.info/index-Dateien/ERSTC2009_PDF/Session6/ERSTC2009_Session6_
MIET_Putrya.pdf

[109] X. Du , X. Zhang , Z. Zhu, “Memory Hierarchy Considerations for Cost-Effective
Cluster Computing,” IEEE Transactions on Computers, Vol. 49, 2000

[110] B. Barney, “Introduction to Parallel Computing,” Online publication, available at:
https://computing.llnl.gov/tutorials/parallel_comp/

[111] M. Müller, “SPEC OpenMP Benchmarks on Four Generations of NEC SX Parallel
Vector Systems”, In: OpenMP Shared Memory Parallel Programming, Vol
4315/2008, pp. 145-152, Springer, 2008

[112] K. H. Tsoi, W. Luk, “Axel: A Heterogeneous Cluster with FPGAs and GPUs,” In:
Proceedings of the 18th Annual ACM/SIGDA international Symposium on Field
Programmable Gate Arrays (Monterey, California, USA, February 21 - 23, 2010).
FPGA '10. ACM, New York: 2010

[113] E. Focht, “Heterogeneous Clusters With OSCAR: Infrastructure,” In: Proceedings
of the 4th Annual OSCAR Symposium, 2006. Available at:
http://www.csm.ornl.gov/oscar06/proceedings/

[114] J. Hill, M. Bull, A. Simpson, “Identification and Categorisation of Applications and
Initial Benchmarks Suite,” Partnership for Advanced Computing in Europe
(PRACE). Available at: http://www.prace-project.eu/documents/PRACE-
Applications.pdf

[115] J. Matthews, S. Trika, D. Hensgen, R. Coulson, K. Grimsrud, “Intel® Turbo
Memory: Nonvolatile disk caches in the storage hierarchy of mainstream
computer systems,” In: Trans. Storage 4, 2, 2008

[116] U. Drepper, “What Every Programmer Should Know About Memory,” Online
publication, 2007. Available at:
http://people.redhat.com/drepper/cpumemory.pdf

[117] D. Hackenberg, D, Molka, W.E. Nagel, “Comparing cache architectures and
coherency protocols on x86-64 multicore SMP systems,” In: Proceedings of the

http://people.redhat.com/drepper/cpumemory.pdf
http://www.prace-project.eu/documents/PRACE-Applications.pdf
http://www.prace-project.eu/documents/PRACE-Applications.pdf
http://www.csm.ornl.gov/oscar06/proceedings/
https://computing.llnl.gov/tutorials/parallel_comp/
http://www.ornl.gov/~webworks/cpr/v823/rpt/104898.pdf
http://www.democritos.it/activities/IT-MC/cluster_revolution_2002/
http://www.virtual-organization.net/
http://www.virtual-organization.net/

42nd Annual IEEE/ACM international Symposium on Microarchitecture (New York,
New York, December 12 - 16, 2009). MICRO 42. ACM, New York: 2009

[118] C. Lameter, “Extreme High Performance Computing or Why Microkernels Suck,”
In: Proceedings of the Linux Symposium, 2007. Available at:
http://kernel.org/pub/linux/kernel/people/christoph/ols2007/performnce-vs-
microkernel-paper.pdf

[119] L. Schubert, S. Wesner, A. Kipp, and A. Arenas, "Self-Managed Microkernels:
From Clouds Towards Resource Fabrics," In Proceedings of the First International
Conference on Cloud Computing, Munich: 2009.

[120] Z. Dadan, W. Xieqin, J. Ningkang, J, “Distributed Scheduling Extension on
Hadoop,” In: Proceedings of the 1st international Conference on Cloud
Computing (Beijing, China, December 01 - 04, 2009). Lecture Notes In Computer
Science, vol. 5931. Springer-Verlag, Berlin: 2009

[121] Z. Budimlic, A.M. Chandramowlishwaran, K. Knobe, G.N. Lowney, V. Sarkar, V., L.
Treggiari, “Declarative aspects of memory management in the concurrent
collections parallel programming model,” In: Proceedings of the 4th Workshop
on Declarative Aspects of Multicore Programming (Savannah, GA, USA, January
20 - 20, 2009). ACM, New York: 2009

[122] G. Blelloch, N. Glew (eds.), “DAMP '07: Proceedings of the 2007 workshop on
Declarative aspects of multicore programming”, ACM, New York: 2007

[123] J. Rei, “The Advantages of Fortran 90,” In: Computing, Vol. 48, p. 219-238.
Springer, New York: 1992

[124] L.A. Smith, “Mixed Mode MPI / OpenMP Programming,” Online publication.
Available at: http://www.cslab.ntua.gr/courses/pps/files/Mixed_Mode_MPI-
OpenMP_Programming-Tutorial.pdf

[125] G. Jost, H. Jin, D. an Mey, F.F. Hatay, “Comparing the OpenMP, MPI, and Hybrid
Programming Paradigms on an SMP Cluster”, NAS Technical Report NAS-03-019,
November 2003. Available at:
http://www.nas.nasa.gov/News/Techreports/2003/PDF/nas-03-019.pdf

[126] B. Krammer, K. Bidmon, M.S. Müller, M.M. Resch, “MARMOT: An MPI Analysis and
Checking Tool,” In: Proceedings of Parallel Computing 2003, PARALLEL
COMPUTING: Software Technology, Algorithms, Architectures & Applications, pp.
493-500. Elsevier, 2004.

[127] B. Vanvoorst, S. Seidel, “Comparison of MPI implementations on a shared
memory machine,” In: Proceedings of the 15th IPDPS 2000 Workshops on
Parallel and Distributed Processing, pp. 847-854. Springer, 2000.

[128] J.K.Reid, J. M. Rasmussen, P. C. Hansen, “The LINPACK Benchmark in Co-Array
Fortran,” Online. Available at:
http://www2.imm.dtu.dk/documents/ftp/tr00/tr14_00.pdf

[129] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi, A.
Mohanty, Y. Yao, D. Chavarrıa-Miranda, “An Evaluation of Global Address Space
Languages: Co-Array Fortran and Unified Parallel C,” In: Proceedings of the
Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, New York: 2005

[130] G. Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities,” in: AFIPS Conference Proceedings (30), pp. 483–485.
1967. Available at: http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf.

[131] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick, “The Landscape of
Parallel Computing Research: A View from Berkeley”, EECS Department -
University of California, Berkeley, Technical Report No. UCB/EECS-2006-183,
2006. Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.pdf

[132] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded transactional memory. In HPCA ’05.

[133] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A.
Wood. Tokentm: Efficient execution of large transactions with hardware
transactional memory. In ISCA ’08.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www2.imm.dtu.dk/documents/ftp/tr00/tr14_00.pdf
http://www.nas.nasa.gov/News/Techreports/2003/PDF/nas-03-019.pdf

[134] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software
transactional memory for large scale clusters. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 247–258, New York, NY, USA, 2008. ACM.

[135] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
Transactional predication: High performance concurrent sets and maps for STM.
In PODC ’10: Proceedings of the 29th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, 2010.

[136] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Lu ́ Rodrigues. ıs D2STM:
Dependable distributed software transactional memory. In PRDC ’09:
Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing, pages 307–313, 2009.

[137] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a
commercial hardware transactional memory implementation. In ASPLOS ’09.

[138] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06:
Proceedings of the 20th International Symposium on Distributed Computing,
September 2006.

[139] Aleksandar Dragojevi ́ , Rachid Guerraoui, and Michal Kapalka. Stretching
transactional memory. In PLDI ’09: Proceedings of the ACM SIGPLAN 2009
Conference on Programming Language Design and Implementation, 2009.

[140] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning
of word-based software transactional memory. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2008.

[141] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transactions. In
Proceedings of the 23rd International Symposum on Distributed Computing
(DISC’09), volume 5805 of LNCS, pages 93–107. Springer-Verlag, Sep 2009.

[142] Tim Harris and Keir Fraser. Language support for lightweight transactions. In
Object-Oriented Programming, Systems, Languages, and Applications, pages
388–402. Oct 2003.

[143] Tim Harris and Srdjan Stipi ́ . Abstract nested transactions. In The 2nd ACM
SIGPLAN Workshop on Transactional Computing, 2007.

[144] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the Twentieth Annual International
Symposium on Computer Architecture, 1993.

[145] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology for
highly-concurrent transactional objects. In PPoPP ’07: Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2008.

[146] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.
Software transactional memory for dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 92–101, New York, NY, USA, 2003. ACM.

[147] Thomas F. Knight. An architecture for mostly functional languages. In
Proceedings of ACM Lisp and Functional Programming Conference, pages 500–
519. Aug 1986.

[148] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. Coarse-grained
transactions. SIGPLAN Not., 45(1):19–30, 2010.

[149] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting
distributed version concurrency in a transactional memory cluster. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 198–208, New York, NY, USA, 2006. ACM.

[150] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. Logtm: Log-based transactional memory. In HPCA ’06.

[151] J. Eliot B. Moss. Open nested transactions: Semantics and support. In Workshop
on Memory Performance Issues (WMPI 2006), February 2006.

[152] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory.
In ISCA ’05.

[153] Torvald Riegel, Pascal Felber, and Christof Fetzer. A Lazy Snapshot Algorithm
with Eager Validation. In DISC ’06: Proceedings of the 20th International
Symposium on Distributed Computing, pages 284–298, September 2006.

[154] Nir Shavit and Dan Touitou. Software transactional memory. In Proc. Of the 12th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
204–213, 1995.

[155] Eliseu M. Chaves Jr., Prakash Das, Thomas J. LeBlanc, Brian D. Marsh, Michael L.
Scott, “Kernel-Kernel communication in a shared-memory multiprocessor”,
Concurrency - Practice and Experience, 5:3, 1993, pp. 171-191

[156] H.C. Lauer and R.M. Needham, “On the Duality of Operating System Structures”,
ACM SIGOPS Operating System Review 13:2 (April 1979), pp. 3-19

[157] K. Dowd , C. Severance, “High Performance Computing (RISC Architectures,
Optimization & Benchmarks,” O'Reilly , 1998

[158] G. Hager, G. Wellein, “Introduction to High Performance Computing for Scientists
and Engineers”, CRC Press, 2010

[159] A. Grama , G. Karypis, V. Kumar, A. Gupta, “Introduction to Parallel Computing”,
Addison Wesley, 2003

[160] K. Koch, "Roadrunner Platform Overview," Roadrunner technical seminar series,
2008. Available at: http://www.lanl.gov/orgs/hpc/roadrunner/pdfs/Koch%20-
%20Roadrunner%20Overview/RR%20Seminar%20-%20System%20Overview.pdf

[161] J. Mayo, "C# Unleashed," Sams Publishing, 2001
[162] [And90] Anderson, T.E. “The performance of spin lock alternatives for shared-

memory multiprocessors”, IEEE Transactions on Parallel and Distributed
Systems, 1:1, pp. 6-16, 1990

[163] [Chav93] Eliseu M. Chaves Jr., Prakash Das, Thomas J. LeBlanc, Brian D. Marsh,
Michael L. Scott, “Kernel-Kernel communication in a shared-memory
multiprocessor”, Concurrency - Practice and Experience, 5:3, 1993, pp. 171-191

[164] [Lauer79] H.C. Lauer and R.M. Needham, “On the Duality of Operating System
Structures”, ACM SIGOPS Operating System Review 13:2 (April 1979), pp. 3-19

[165] [Her90] M.P. Herlihy, and J.M. Wing “Linearizability: A correctness condition for
concurrent objects”, ACM Transactions on Programming Languages and Systems
(TOPLAS), 12:3, pp. 463-492, 1990

[166] [Her91] M. Herlihy, “Wait-free synchronization,” ACM Transactions on
Programming
Languages and Systems, vol. 11, no. 1, pp. 124–149, Jan. 1991.

[167] [Her93] Herlihy, M. and Moss, J.E.B., “Transactional memory: Architectural
support for lock-free data structures”, Proceedings of the 20th ACM annual
international Symposium on Computer Architecture, 1993.

[168] [Mell91] J.M. Mellor-Crummey, M.L. Scott, “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors”, ACM Transactions on
Computing Systems, 9:1, 1991, pp. 21-65

[169] [Scott] M.L. Scott, W.N. Scherer “Scalable queue-based spin locks with timeout”,
Proceedings of the eighth ACM SIGPLAN symposium on Principles and Practices
of Parallel Programming, 2001

[170] [Lim94] Lim, B.H. and Agarwal, A. “Reactive synchronization algorithms for
multiprocessors”, Proceedings of the 6th International conference on
Architectural Support for Programming Languages and Operating Systems, 1994

[171] [Unrau] R.C. Unrau, O. Krieger, B. Gamsa, M. Stumm, “Experiences with locking
in a NUMA multiprocessor operating system kernel”, OSDI, pp. 139-152, 1994

[172] [McKen98] P.E. McKenney, and J.D. Slingwine, “Read-copy update: Using
execution history to solve concurrency problems”, Parallel and Distributed
Computing and Systems, pp 509-518, 1998

[173] [Sun05] Sundell, H. and Tsigas, P. “Fast and lock-free concurrent priority queues
for multi-thread systems”, Journal of Parallel and Distributed Computing, 65:5,
pp. 609-627, 2005, Elsevier

[174] [Hen09] Hendler, D. and Shavit, N. and Yerushalmi, L. “A scalable lock-free stack
algorithm” Journal of Parallel and Distributed Computing, 2009, Elsevier

http://www.lanl.gov/orgs/hpc/roadrunner/pdfs/Koch%20-%20Roadrunner%20Overview/RR%20Seminar%20-%20System%20Overview.pdf
http://www.lanl.gov/orgs/hpc/roadrunner/pdfs/Koch%20-%20Roadrunner%20Overview/RR%20Seminar%20-%20System%20Overview.pdf

[175] [Muk93] Mukherjee, B. and Schwan, K. “Improving performance by use of
adaptive objects: Experimentation with a configurable multiprocessor thread
package”, Proc. of the Second International Symposium on High Performance
Distributed Computing (HPDC-2), pp 59-66, 1993

[176] [MPI] Gropp, W. and Lusk, E. and Doss, N. and Skjellum, A. “A high-performance,
portable implementation of the MPI message passing interface standard”,
Parallel Computing, 22:6, pp. 789—828, 1996, Elsevier

[177] Uhlig, V., “The mechanics of in-kernel synchronization for a scalable
microkernel”, ACM SIGOPS Operating Systems Review, 41:4, 2007

[178] Kranz, D. and Johnson, K. and Agarwal, A. and Kubiatowicz, J. and Lim, B.H.
“Integrating message-passing and shared-memory: early experience”, ACM
SIGPLAN Notices, 28:7, 1993

[179] Heinlein, J. and Gharachorloo, K. and Dresser, S. and Gupta, A. “Integration of
message passing and shared memory in the Stanford FLASH multiprocessor”,
Proceedings of the sixth international conference on Architectural support for
programming languages and operating systems, 1994

[180] Chandra, S. and Larus, J.R. and Rogers, A., “Where is time spent in message-
passing and shared-memory programs?”, Proceedings of the sixth international
conference on Architectural support for programming languages and operating
systems, pp. 61—73, 1994

[181] McKenney, P.E., “Selecting locking primitives for parallel programs,”
Communications of ACM, vol. 39, pp. 75—81, 1996

[182] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid - Enabling
Scalable Virtual Organizations,” International Journal of Supercomputer
Applications, vol. 15, 2001, p. 2001.

[183] OASIS, “Web Services Business Process Execution Language Version 2.0”, 2007
– available at http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[184] P. Muth, D. Wodtke, J. Weissenfels, A.K. Dittrich, and G. Weikum, “From
Centralized Workflow Specification to Distributed WorkflowExecution,” Journal of
Intelligent Information Systems, vol. 10, 1998, pp. 159-184.

[185] Masaki Tatezono, Naoya Maruyama and Satoshi Matsuoka , “ Making Wide-Area,
Multi-site MPI Feasible Using Xen VM”, in: Lecture Notes in Computer Science,
Frontiers of High Performance Computing and Networking – ISPA 2006
Workshops, 2006

[186] S. Lakshminarayanan, S. S. Ghosh and N. Balakrishnan , “ Implementation of MPI
over HTTP “, in: Lecture Notes in Computer Science, High-Performance
Computing and Networking

[187] M.D. Wilson, L. Schubert, and A.E. Arenas, "The TrustCoM Framework V4," 2007.
Available at: http://www.eu-trustcom.com/trustcom/wp-
content/uploads/2007/08/D63_trustcom_framework.zip

[188] E. Gabriel, M. Resch, T. Beisel, and R. Keller, “Distributed Computing in a
Heterogeneous Computing Environment,” Proceedings of the 5th European
PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Springer-Verlag, 1998, pp. 180-187.

[189] K. Kennedy, R. Allen, “Optimizing Compilers for Modern Architectures: A
Dependence-based Approach,” Morgan Kaufmann, 2001

[190] NVIDIA, “NVIDIA’s Next Generation CUDA TM Compute Architecture: FERMI”,
NVIDIA Corporation Whitepaper, 2009. Available at:
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf

[191] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K. Skadron, “A
performance study of general-purpose applications on graphics processors using
CUDA,” Journal of Parallel and Distributed Computing, vol. 68, Oct. 2008, pp.
1370-1380.

[192] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E.
Phillips, Yao Zhang, and V. Volkov, “Parallel Computing Experiences with CUDA,”
Micro, IEEE, vol. 28, 2008, pp. 13-27.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[193] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment,” J. ACM, vol. 20, 1973, pp. 46-61.

[194] W. Vogel, “Eventually Consistent – Revisited,” online publication – available at:
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

[195] A. Kipp, S. Wesner, L. Schubert, R. Piotter, H. Schwichtenberg, C. Thomson, and
E. Karanastasis, "A new approach for classifying Grids," 2007, p. 13.

[196] M.D. Wilson, L. Schubert, and A.E. Arenas, "The TrustCoM Framework V4," 2007.
[197] L. Schubert, S. Wesner, and T. Dimitrakos, "Secure and Dynamic Virtual

Organizations for Business," Exploiting the Knowledge Economy: Issues,
Applications, Case Studies, P. Cunningham and M. Cunningham, IOS Press, 2005.

[198] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid - Enabling
Scalable Virtual Organizations,” International Journal of Supercomputer
Applications, vol. 15, 2001, p. 2001.

[199] Hennessy, J.L and Patterson, D.A., “Computer Architecture: A Quantitative
Approach, 4th Edition”, Morgan Kaufmann, ISBN-10: 0123704901, 2006

[200] Intel, “Intel Core i7-800 Processor Series and the Intel Core i5-700 Processor
Series, Based on Intel Microarchitecture (Nehalem)”
http://download.intel.com/products/processor/corei7/319724.pdf

[201] Intel, “Intel Advanced Encryption Standard (AES) Instruction Set – Rev 3”
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-
instructions-set/

[202] ARM, “The ARM Cortex-A9 Processors”
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

[203] Texas Instruments, “TMS320C6713B Floating-point digital signal processors”
http://focus.ti.com/lit/ds/symlink/tms320c6713b.pdf

[204] Texas Instruments, “TMS320C6452 Digital Signal Processor”
http://focus.ti.com/lit/ds/symlink/tms320c6713b.pdf

[205] Analog Devices, “TigerSHARC Embedded Processor”
http://www.analog.com/static/imported-files/data_sheets/ADSP_TS201S.pdf

[206] Analog Devices, “Getting Started with ” http://www.analog.com/static/imported-
files/tech_docs/GettingStartedwithBlackfinProcessors.pdf

[207] Texas Instruments, “OMAP 4 mobile applications platform”
http://focus.ti.com/lit/ml/swpt034/swpt034.pdf

[208] Tensilica, “Xtensa Architecture and Performance”
http://www.tensilica.com/products/literature-docs/white-papers/xtensa-
architecture.htm

[209] Burns, G.F. and Jacobs, M. and Lindwer, M. and Vandewiele, B., “Silicon Hive's
Scalable and Modular Architecture Template for High-Performance Multi-core
Systems” http://www.siliconhive.com/Flex/Site/Download.aspx?ID=1856

[210] Heysters, P.M. and Rauwerda, G.K. and Smit, L.T., “A Flexible, Low Power, High
Performance DSP IP Core for Programmable System-on-a-Chip” In the
proceedings of IP/SOC 2005

[211] PACT, XPP-III Processor Overview – White Paper,
http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf

[212] Cosoroaba, A. and Frederic, R. (Xilinx), “Achieving Higher System Performance
with the Virtex-5 Family of FPGAs”, White Paper: Virtex-5 Family of FPGAs,
http://www.xilinx.com/support/documentation/white_papers/wp245.pdf

[213] Actel, “Design Security in Nonvolatile Flash and Antifuse FPGAs”
http://www.actel.com/documents/DesignSecurity_WP.pdf

[214] NVIDIA, “NVIDIA's Next Generation CUDA Compute Architecture: Fermi”,
Whitepaper,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf

[215] NVIDIA, “NVIDIA Tesla – GPU Computing Technical Brief”,
http://www.nvidia.com/docs/IO/43395/tesla_technical_brief.pdf

[216] Abachi, H. and Walker, A. 1996. Network Expandability and Cost Analysis of
Torus, Hypercube and Tree Multi-Processor Systems. In Proceedings of the 28th

http://www.actel.com/documents/DesignSecurity_WP.pdf
http://www.xilinx.com/support/documentation/white_papers/wp245.pdf
http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf
http://www.siliconhive.com/Flex/Site/Download.aspx?ID=1856
http://www.tensilica.com/products/literature-docs/white-papers/xtensa-architecture.htm
http://www.tensilica.com/products/literature-docs/white-papers/xtensa-architecture.htm
http://focus.ti.com/lit/ml/swpt034/swpt034.pdf
http://www.analog.com/static/imported-files/tech_docs/GettingStartedwithBlackfinProcessors.pdf
http://www.analog.com/static/imported-files/tech_docs/GettingStartedwithBlackfinProcessors.pdf
http://www.analog.com/static/imported-files/data_sheets/ADSP_TS201S.pdf
http://focus.ti.com/lit/ds/symlink/tms320c6713b.pdf
http://focus.ti.com/lit/ds/symlink/tms320c6713b.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://download.intel.com/products/processor/corei7/319724.pdf
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

Southeastern Symposium on System theory (SSST '96) (March 31 - April 02,
1996). SSST. IEEE Computer Society, Washington, DC, 426.

[217] Ajima, Y., Sumimoto, S., and Shimizu, T. 2009. Tofu: A 6D Mesh/Torus
Interconnect for Exascale Computers. Computer 42, 11 (Nov. 2009), 36-40.

[218] im, J., Balfour, J., and Dally, W. 2007. Flattened Butterfly Topology for On-Chip
Networks. In Proceedings of the 40th Annual IEEE/ACM international Symposium
on Microarchitecture (December 01 - 05, 2007). International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 172-182.

[219] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu, "Express Cube
Topologies for On-Chip Interconnects" Proceedings of the 15th International
Symposium on High-Performance Computer Architecture (HPCA), pages 163-
174, Raleigh, NC, February 2009.

[220] Berejuck, M. D. and Zeferino, C. A. 2009. Adding mechanisms for QoS to a
network-on-chip. In Proceedings of the 22nd Annual Symposium on integrated
Circuits and System Design: Chip on the Dunes (Natal, Brazil, August 31 -
September 03, 2009). SBCCI '09. ACM, New York, NY, 1-6.

[221] Bjerregaard, T. and Mahadevan, S. 2006. A survey of research and practices of
Network-on-chip. ACM Comput. Surv. 38, 1 (Jun. 2006)

[222] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat. 3-d ics: A novel chip design for
improving deep-submicrometer interconnect performance and systems-on-chip
integration. Proc. IEEE, 89(5):602- 633, May 2001.

[223] Weldezion, A. Y., Grange, M., Pamunuwa, D., Lu, Z., Jantsch, A., Weerasekera, R.,
and Tenhunen, H. 2009. Scalability of network-on-chip communication
architecture for 3-D meshes. In Proceedings of the 2009 3rd ACM/IEEE
international Symposium on Networks-on-Chip (May 10 - 13, 2009). NOCS. IEEE
Computer Society, Washington, DC, 114-123.

[224] Goossens, K., Dielissen, J., and Radulescu, A. 2005. Æthereal Network on Chip:
Concepts, Architectures, and Implementations. IEEE Des. Test 22, 5 (Sep. 2005)

[225] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg, K. Tiensyrjä
and A. Hemani, “A network on chip architecture and design methodology,” in
Proceedings of IEEE Computer Society Annual Symposium on VLSI, April 2002,
pp. 105–112.

[226] M. Millberg, E. Nilsson, R. Thid and A. Jantsch,“Guaranteed bandwidth using
looped contain- ers in temporally disjoint networks within the nostrum network-
on-chip,” in Proceedings of IEEE Design, Automation and Testing in Europe
Conference (DATE), 2004, pp. 890–895.

[227] Chen, W. and Gehringer, E. F. 1988. A graph-oriented mapping strategy for a
hypercube. In Proceedings of the Third Conference on Hypercube Concurrent
Computers and Applications: Architecture, Software, Computer Systems, and
General Issues - Volume 1 (Pasadena, California, United States, January 19 - 20,
1988). G. Fox, Ed. C3P. ACM, New York, NY, 200-209.

[228] Gaurav Kumar Singh, Mythri Alle, Keshavan Vardarajan, S K Nandy, 2010.
“Ranjani Narayan A Generic Graph-Oriented Mapping Strategy for a Honeycomb
Topology,” International Journal of Computer Applications, Number 21 - Article
17

[229] Montanana, J. M., Koibuchi, M., Matsutani, H., and Amano, H. 2009. Balanced
Dimension-Order Routing for k-ary n-cubes. In Proceedings of the 2009
international Conference on Parallel Processing Workshops (September 22 - 25,
2009). ICPPW. IEEE Computer Society, Washington.

[230] Chiu, G. 2000. The Odd-Even Turn Model for Adaptive Routing. IEEE Trans.
Parallel Distrib. Syst. 11, 7 (Jul. 2000), 729-738.

[231] Xie, L. and Xu, D. 2009. The Two-Level-Turn-Model Fault-Tolerant Routing
Scheme in Tori with Convex and Concave Faults. In Proceedings of the 2009
Sixth international Conference on information Technology: New Generations
(April 27 - 29, 2009). ITNG. IEEE Computer Society, Washington, DC

[232] Chou, C. and Marculescu, R. 2007. Incremental run-time application mapping for
homogeneous NoCs with multiple voltage levels. In Proceedings of the 5th
IEEE/ACM international Conference on Hardware/Software Codesign and System

Synthesis (Salzburg, Austria, September 30 - October 03, 2007). CODES+ISSS
'07. ACM, New York, NY.

[233] C. L. Chou, U. Y. Ogras, R. Marculescu, "Energy- and Performance-Aware
Incremental Mapping for Networks-on-Chip with Multiple Voltage Levels", in IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 10, Oct. 2008, pp. 1866-1879.

[234] Chen-Ling Chou; Marculescu, R., "User-Aware Dynamic Task Allocation in
Networks-on-Chip", Design, Automation and Test in Europe, 2008. DATE '08,
Page(s): 1232 – 1237

[235] D. N. Jayasimha, B. Zafar, Y. Hoskote, “On-Chip Interconnection Networks: Why
They are Different and How to Compare Them”, Intel, 2006.

[236] J. Starner, J. Adomat, J. Furunas and L. Lindh. Real-Time Scheduling Co-Processor
in Hardware for Single and Multiprocessor Systems. Proc. Of the 22nd

EUROMICRO Conference, 1996, Los Alamitos, CA, USA.
[237] P. Kuacharoen, M. Shalan, and V. Mooney, A configurable hardware scheduler for

real-time systems, Proceedings of the International Conference on Engineering
of Reconfigurable Systems and Algorithms, Jun 2003, pp. 96–101.

[238] N.C. Audsley and K. Bletsas, Fixed priority timing analysis of real-time systems
with limited parallelism, Proceedings of the IEEE Euromicro Conference on Real
Time Systems (Catania, Italy), IEEE, Jul 2004.

[239] M. Garey and D. Johnson, Computers and intractability : a guide to the theory of
NP-completeness, W. H. Freeman and company, NY, 1979.

[240] J. Leung and J. Whitehead, On the complexity of fixed-priority scheduling of
periodic, real-time tasks, Performance Evaluation 2 (1982), 237–250.

[241] S. K. Dhall and C. L. Liu, On a real-time scheduling problem, Operations
Research 26 (1978), 127–140.

[242] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, New strategies for assigning real-
time tasks to multiprocessor systems, IEEE Transactions on Computers 44
(1995), no. 12, 1429–1442.

[243] S. Lauzac, R. Melhem, and D. Mosse, An improved rate-monotonic admission
control and its application, IEEE Transactions on Computers 58 (2003), no. 3.

[244] J. M. Lopez, J. L. Diaz, and D. F. Garcia, Utilization bounds for EDF scheduling on
real-time multiprocessor systems, Real-Time Systems: The International Journal
of Time-Critical Computing 28 (2004), no. 1, 39–68.

[245] Sanjoy Baruah, Neil Cohen, Greg Plaxton, and Donald Varvel, Proportionate
progress: A notion of fairness in resource allocation, 1996

[246] Michele Cirinei and Theodor P. Baker, Edzl scheduling analysis, ECRTS (Pisa,
Italy), July 2007.

[247] Anand Srinivasan and Sanjoy Baruah, Deadline-based scheduling of periodic task
systems on multiprocessors, Information Processing Letters 84 (2002), no. 2, 93–
98.

[248] New schedulability tests for real-time tasks sets scheduled by deadline
monotonic on multiprocessors, Proceedings of the 9th International Conference
on Principles of Distributed Systems (Pisa, Italy), IEEE Computer Society Press,
December 2005.

[249] Bj¨orn Andersson and Eduardo Tovar, Multiprocessor scheduling with few pre-
emptions., RTCSA, 2006, pp. 322–334.

[250] John M. Calandrino, James H. Anderson, and Dan P. Baumberger, A hybrid real-
time scheduling approach for large-scale multicore platforms, Proceedings of the
Euromicro Conference on Real-Time Systems (Pisa), 2007.

[251] Sanjoy Baruah and John Carpenter, Multiprocessor fixed-priority scheduling with
restricted interprocessor migrations, Journal of Embedded Computing (2005)

[252] Sanjoy K. Baruah. The non-preemptive scheduling of periodic tasks upon
multiprocessors, Real-Time Systems: The International Journal of Time-Critical
Computing. February 2006.

[253] Priority inheritance protocols: An approach to real-time synchronization - Sha,
Rajkumar et al. – 1990

http://citeseer.ist.psu.edu/context/1541/0

[254] Dynamic priority ceilings: A concurrency control protocol for real-time systems -
[Min-Ih Chen and Kwei-Jay Lin] – 1990

[255] Stack-based scheduling of real-time processes - Baker – 1991
[256] Synchronization in multiple processor systems (context) - Rajkumar – 1991
[257] Minimizing Memory Utilization of Real-Time Task Sets in Single and Multi-

Processor Systems-on-a-chip - Paolo Gai, Giuseppe Lipari, Marco Di Natale –
2001

[258] Sanjoy Baruah, Giuseppe Lipari, "Executing aperiodic jobs in a multiprocessor
constant-bandwidth server implementation", Euromicro Conference on Real-
Time Systems (ECRTS 04), Catania (Italy), June 2004

[259] S. Baruah and G. Lipari, "A Multiprocessor implementation of the Total
Bandwidth Server", International Parallel and Distributed Processing Symposium
(IPPDS 04), Santa Fe', April 2004

[260] Ian Stoica and Hussein Abdel-Wahab and Kevin Jeffay and Sanjoy, K.
Baruah and Johannes E. Gehrke and C. Greg Plaxton, A Proportional Share
Resource Allocation Algorithm for Real-Time, Time-Shared Systems, Proceedings
of the IEEE Real-Time Systems Symposium, Dec. 1996

[261] S.K. Baruah and N.K. Cohen and C.G. Plaxton and D.A. Varvel, Proportionate
Progress: A Notion of Fairness in Resource Allocation, Algorithmica, 1996

[262] Raj Rajkumar and Kanaka Juvva and Anastasio Molano and Shuichi Oikawa,
Resource Kernels: A Resource-Centric Approach to Real-Time and Multimedia
Systems, Proceedings of the SPIE/ACM Conference on Multimedia Computing
and Networking, January 1998

[263] Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications in Hard
Real-Time Systems, Proceedings of the IEEE Real-Time Systems Symposium,
December 1998, Madrid, Spain

[264] Neil C. Audsley and Alan Burns and Mike F. Richardson and Andy J. Wellings,
Data Consistency in Hard Real-Time Systems, Informatica (Slovenia), Vol. 19 n.2,
1995

[265] Gerber, R. and Seongsoo Hong and Saksena, M., Guaranteeing real-time
requirements with resource-based calibration of periodic processes, IEEE
Transactions on Software Engineering, Jul 1995

[266] Dong-In Kang and Richard Gerber and Manas Saksena, Parametric Design
Synthesis of Distributed Embedded Systems, IEEE Trans. Computers, Vol. 49,
n.11, 2000

[267] Walid A. Najjar and Edward A. Lee and Guang R. Gao, Advances in the dataflow
computational model, Parallel Computing, Vol. 25 n. 13-14, 1999

[268] Shuvra S. Battacharyya and Edward A. Lee and Praveen K. Murthy, Software
Synthesis from Dataflow Graphs, Kluwer Academic Publishers, 1996

[269] Björn Andersson and Jan Jonsson. Preemptive Multiprocessor Scheduling
Anomalies. International Parallel and Distributed Processing Symposium. Fort
Lauderdale, California, April 2002.

[270] L. Palopoli and T. Cucinotta, Feedback scheduling for pipelines of tasks, Proc. of
10th conference on Hybrid Systems Computation and Control 2007 (HSCC07),
April 2007, Pisa, Italy

[271] Tommaso Cucinotta, Luigi Palopoli, "QoS Control for Pipelines of Tasks Using
Multiple Resources," IEEE Transactions on Computers, Vol. 53, No. 3, pp. 416--
430, March 2010, IEEE Computer Society Digital Library

[272] Steve Goddard and Kevin Jeffay, Managing Latency and Buffer Requirements. in
Processing Graph Chains Computing Journal, Vol.44 n. 6, 2001.

[273] Kleopatra Kostanteli, Dimosthenis Kyriazis, Theodora Varvarigou, Tommaso
Cucinotta, Gaetano Anastasi, "Real-time guarantees in flexible advance
reservations," in Proceedings of the 2nd IEEE International Workshop on Real-
Time Service-Oriented Architecture and Applications (RTSOAA 2009), Seattle,
Washington, July 2009.

http://retis.sssup.it/~tommaso/publications/RTSOAA-2009-AdvanceReservation.pdf
http://retis.sssup.it/~tommaso/publications/RTSOAA-2009-AdvanceReservation.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2009.116
http://doi.ieeecomputersociety.org/10.1109/TC.2009.116
http://citeseer.ist.psu.edu/context/1909731/0
http://citeseer.ist.psu.edu/context/5879/0

[274] Tommaso Cucinotta, Fabio Checconi, Luca Abeni, Luigi Palopoli "Self-tuning
Schedulers for Legacy Real-Time Applications," in Proceedings of the 5th ACM
European Conference on Computer Systems (EuroSys 2010), Paris, April 2010.

[275] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan and J. Eliot B. Moss .
Redline: First Class Support for Interactivity in Commodity Operating Systems .
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2008). San Diego, December 2008.

[276] Paul McKenney. “A realtime preemption overview”. Available on-line at:
http://lwn.net/Articles/146861/.

[277] Abraham Silberschatz. On the synchronization mechanism of the ADA language.
ACM SIGPLAN Notices, Vol. 16, No. 2, pp. 96 – 103. 1981.

http://lwn.net/Articles/146861/
http://retis.sssup.it/~tommaso/publications/EuroSys-2010.pdf
http://retis.sssup.it/~tommaso/publications/EuroSys-2010.pdf

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	I. Introduction
	1. Organization of this document

	II. Hardware and Processor Architectures
	1. Processor and ISA Models
	1.a) General-Purpose Processors Principles
	1.b) Digital Signal Processors and Configurable Processors
	Design-time CoArSE-grain configurable processors
	Design-time fine-grain configurable processors
	Run-time coarse-grain reconfigurable processors
	Run-time reconfigurable processors

	1.c) Operation Modes

	2. Multi Cores and Multi Processors
	3. On-Chip Interconnects
	3.a) Scalability and Future Computing Technology
	Physical Infrastructure
	Communication paradigm
	Flow-control
	Routing algorithm
	Quality-of-Service

	Software/OS level

	4. High-Performance Computing
	4.a) Supercomputer Architectures

	5. Memory Architectures
	6. Summary

	III. Protocols: Communication Control Models
	1. Interconnection Networks
	2. Communication Protocols (SW Layer)
	Service Discovery Protocols

	3. Communication Interfaces (API)

	IV. Operating Systems
	1. Operating System Kernel Models
	1.a) Microkernels
	1.b) Single-System Image
	1.c) Operating Systems for Multiple/Many Cores
	1.d) Operating Systems for GRIDs
	1.e) Operating Systems for HPC

	2. Scheduling
	2.a) Real-Time Scheduling
	Scheduling real-time task sets on multiprocessor platforms
	Scheduling on Multiprocessor
	Partitioned scheduling
	Global scheduling
	Hybrid schedulers
	Soft real-time scheduling
	Design of distributed real-time applications

	3. Synchronisation
	SHARED-memory
	MESSAGE-PASSING

	4. Synchronisation and Scheduling
	4.a) Shared Resources Protocols in Real-Time Scheduling
	Protocols for partitioned scheduling
	Protocols for global scheduling
	Shared resources protocol in the Linux kernel
	Synchronisation inside the kernel: mutexes and RT-mutexes
	Synchronisation support for user-space: futexes
	Synchronisation in user-space

	5. Virtualization
	6. Run-Time Support and Middleware
	Cloud Systems
	Grid(s)
	High Performance Computing

	V. Parallel and Distributed Programming Models
	1. Common Programming Models
	1.a) Process- or Thread-Based Parallelism
	1.b) Distributed Programming

	2. HPC Programming Models
	3. Transactional Memory
	STMs
	DTMs

	4. Compilers

	VI. Benchmarking
	High Performance Computing
	General Computing Benchmarks
	Conclusions

	VII. Conclusions
	References

