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EXECUTIVE SUMMARY

This document provides an overview of the current state of the art in both industrial practice 
and academic research in the areas of parallel and massively parallel systems, as well as 
the support for such platforms at the Operating System (OS) and programming levels. From 
the  survey  presented  in  this  document,  it  is  evident  that  most  of  the  existing  work 
undertakes an incremental  approach, in which new OS features,  kernel architecture and 
programming models build mainly upon existing and widely used technologies. Only a few 
of the presented works try to rethink and redesign from scratch the software stack that is 
needed  in  order  to  exploit  parallelism  to  the  degree  that  will  be  available  on  future 
computing many-core platforms. From the perspective of the S(o)OS project, the latter ones 
are the approaches that need to be more deeply investigated. In fact, the research that will  
be carried out in the project will move along such innovative directions of action.

The  problem  of  such  long-term  approaches  thereby  consist  mainly  in  the  dynamic 
development, making long-term assessments uncertain and hence risky. Such short-term 
and long-term developments  are  discussed in  more  detail  in  D5.2  “Definition  of  Future 
Requirements”  [86]. Accordingly,  D5.1 and D5.2 together form the basis over which the 
research undertaken in the context of the S(o)OS project will further investigate.

This document constitutes the output of the S(o)OS Project Tasks T2.1, T3.1, T4.1 and T5.1 
on “State of the Art Assessment”.
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I. INTRODUCTION

Computing systems are experiencing nowadays a complete paradigm shift. On 
the old-fashioned single-processor platforms,  sequential  programming used to 
constitute an easy and effective way of coding applications, and parallelism was 
used merely to easily realise independent or loosely coupled components. True 
parallel and distributed programming used to constitute a domain reserved to 
only a relatively small number of programmers dealing with high-performance 
computing (HPC) systems. However,  recently multi-core systems, such as the 
Core i7 by Intel or the Phenom by AMD, have become the de-facto standard for 
personal computing, from laptops to desktop computers. Multi-core processors 
are being increasingly used in the embedded domain as well. Furthermore, in the 
context  of  servers,  it  is  more and more common to  see multi-processor  and 
multi-core  systems  realising  up  to  8  -  12  cores.  The  according  process  just 
continues:  already experimental  multi-core processors,  such as the Polaris by 
Intel, reach up to 80 cores and specialised processors, such as the Azul Vega, go 
up to 54 cores, yet the mass market commercial exploitation of these processors 
will  still  take  a  few  years.  Along  that  line,  high-performance  and  massively 
parallel systems are undergoing a tremendous architectural shift that promises 
to move towards an unimaginable number of  interconnected cores and other 
hardware elements such as local memory/cache elements, within the same chip.
As  a  consequence,  in  the  short  future  parallel  and  distributed  programming 
paradigms need to become more and more widespread and known across the 
whole base of (software and hardware) developers, comprising not only the high-
performance computing domain, but also the general-purpose one. Furthermore, 
even in the HPC domain itself, hardware makers foresee a steep increase in the 
level of parallelism.
However,  the  entire  ensemble  constituting  the  software  stack  of  nowadays 
computing  systems,  comprising  Operating  Systems,  programming  languages, 
libraries  and  middleware,  are  still  too  much  influenced  by  the  former  non-
concurrent  era,  and  are  slow  at  adapting  to  the  new  scenario.  Commercial 
development  is  thereby  constrained  by  the  demand  to  maintain  downward 
compatibility  which  typically  implies  that  only  incremental,  rather  than 
disruptive, evolutionary steps can be taken. Vendors are scared by the risk that 
too  large  steps  along  the  development  of  software  could  imply  too  much 
(resource) effort to maintain exactly this compatibility and that implicitly they 
could loose customers.
The S(o)OS project aims at exactly such a disruptive step to investigate on how 
the elements of the software stack need to be re-engineered in order to cope 
with  the  increasingly  available  parallelism  in  the  hardware  platforms  of 
tomorrow. The S(o)OS project investigates on how hardware and software can 
come  closer  together  to  increase  efficiency  whilst  maintaining  a  maximum 
degree of flexibility and adaptability. The attention is strongly focused on the 
Operating  System  level,  as  this  level  builds  the  major  interface  between 
hardware and software and thus is crucial for these goals [4].
In order to undertake the necessary research on such challenging themes, it is of 
course necessary to have a comprehensive overview of the current status of the 
industrial  practices and research efforts,  as well  as of the academic research 
activities, recently developed in the context of parallel, distributed and massively 
parallel systems.
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The purpose of this document is to provide a comprehensive state of the art on 
these topics, starting from the hardware domain, and moving across the overall 
software stack built on top of it, comprising Operating Systems, programming 
languages and paradigms, and middleware components. This document thereby 
primarily focuses on developments and research results that have shown wider 
acceptance and uptake, rather than being purely experimental in nature. This 
aims not only to reduce the size of the document, but mostly to reflect the solid 
existing basis for future development.
More experimental research results and – coupled to this – the long and short 
term trends that are represented by this research are assessed through project 
deliverable D5.2 “Definition of Future Requirements” [86], which represents the 
developments to be expected in the future, with an impact on future software 
stacks and the ways of dealing with applications and systems.

1. ORGANIZATION OF THIS DOCUMENT

This document is organized as follows. In Chapter  II.   we present a survey of 
hardware architectures, comprising details about processor and instruction-set 
architecture  models,  specifics  of  multi-core  and  many-core  systems,  memory 
architectures and support  at  the compiler  level.  In Chapter  III.   we provide a 
survey  of  protocols  in  distributed  computing  systems,  with  a  focus  on 
communications and control models for distributed, massively parallel and highly 
scalable  systems.  In  Chapter  IV.   we  examine  various  models  of  Operating 
Systems for  parallel  computing  machines,  along with a few important  recent 
works in the area of OS support for massively parallel systems. In Chapter V.  we 
address  the  specifics  of  the  high-performance  computing  domain,  from  the 
hardware architecture to the programming paradigm perspectives. In Chapter VI.
we present related work in the area of use cases, benchmarks and applications 
for anticipated future Operating System architectures. Finally, we conclude this 
document with a set of general considerations in Chapter VII. .
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II. HARDWARE AND PROCESSOR ARCHITECTURES

This chapter investigates the current status in the layer underlying the software 
stack, i.e. on the hardware level of current computing platforms. This comprises 
in particular processors, interconnects and memory architectures in the different 
range of usage settings and application domains. These have an impact on what 
is required from a system and where and how much resources can be vested into 
their production – the most typical  example for this difference consists in the 
High Performance Computing vs. the Mobile Computing areas:
The  HPC  area  focuses  in  particular  on  efficiency  and  high-performance 
interconnects at an accordingly high cost.  It  is not unusual  in this domain to 
develop an individual strand of processors, which often serves as a prototype for 
new processor architectures in the more mainstream models. See for example 
the Knights Ferry1 by Intel. On the other side of the spectrum, the mobile devices 
domain focuses particularly on minimal size and energy consumption with price 
being an important factor due to the mass-market demand for mobile devices. 
Accordingly,  processors  in  this  domain  typically  show  comparatively  little 
performance and weak interconnects, but a good energy to performance ratio.
The current era of computing has reached petascale,  i.e., 1015 operations per 
second, and the first approaches towards exascale (1018 operations per second) 
are  already  planned.  To  make  this  happen,  we  have  to  think  about  a  new 
paradigm of computing that is not only in the direction of software parallelism 
but also in the one of hardware infrastructure parallelism.
In order to meet the computing requirements of nowadays' applications, one has 
to scale the computing infrastructure so as to reduce the processing times, thus 
keep feasibility of the computations. Various techniques are proposed to improve 
in  particular  the  performance,  efficiency  and  throughput  of  processing  and 
memory units. Major ones are:
• silicone designers are putting more and more transistors in a single chip;
• chip designers are putting more and more cores on a single chip;
• various inter-connecting networks are being created for multiple cores in the 

chip;
• interconnections among computing units are being improved as well, both on 

the side of memory hierarchies and of the Input/Output sub-system;
• software developers are building applications  which are split  into multiple 

logical processes that can be mapped onto the physical available topology 
(cores, processors).

There  are  various  challenges  involved  in  increasing  the  scalability  of  the 
hardware infrastructure – these includes, among others:
• number of cores / microarchitecture: how many cores in which configuration 

provide the best scaling capabilities for the various types of applications;
• interconnection of multicores: which kind of connectivity between cores and 

processors is required;
• performance versus reliability: to which degree can the one be sacrificed for 

the benefit of the other?
• Quality-of-Service (QoS): how to preserve timing and QoS requirements of 

increasingly complex and parallel applications;

1 More  information  is  available  at:  http://www.techspot.com/news/39138-intel-announces-
50core-knights-corner-hpc-processor.html.
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• energy consumption vs. performance: how to increase performance without 
hitting the power wall and even achieving a low power consumption.

In the following, a non-exhaustive description is made of the main mechanisms 
adopted so far by hardware vendors for tackling the just mentioned challenges. 
First,  the  discussion  focuses  on  increasing  performance  of  traditional  single-
processor  systems,  then  it  switches  to  the  multi-core  and  multi-processor 
domain, ending in the area of nework-on-a-chip (NoC) and HPC systems.

1. PROCESSOR AND ISA MODELS

This  section  discusses  the  state  of  the  art  of  processor  architectures  and 
Instruction-Set  Architecture  (ISA)  models,  with  a  particular  focus  on  the 
consumer market,  i.e., general purposes processors that can be found in high-
end desktops, laptops and embedded/mobile devices. This includes specialised 
processor types which can often be found in the embedded computing domain, 
such as reconfigurable and digital signal processors.

1.A) GENERAL-PURPOSE PROCESSORS PRINCIPLES

State of the art general purpose processors (GPPs), particularly found in desktop 
machines,  but  also  in  large  scale  clusters,  such  as  the  Intel  Nehalem 
architecture, are Reduced Instruction Set Computer (RISC) machines that have 
decoding mechanisms for  their  Complex Instruction  Set Computer  (CISC) x86 
Instruction Set Architecture (ISA). To achieve a high average-case performance, 
GPPs  include  (multiple  levels  of)  cache(s)  to  hide  memory  latency  (see  also 
section  II. 5.  ).  To increase the instruction level parallelism (ILP) and increase 
execution  of  sequential  computation  in  general,  these  architectures  employ 
multiple  optimisation  techniques,  including  out-of-order  execution,  (super) 
pipelining, superscalar data paths and (speculative) branch prediction  [199]. In 
order  to  exploit  the  potential  data-level  parallelism  in  especially  audio/video 
applications, most  GPPs include special Single-Instruction Multiple-Data (SIMD) 
execution  units  and  registers  [199].  These  GPPs  also  increase  task-level 
parallelism by issuing and executing concurrent threads on their (superscalar) 
data paths, a feature called Simultaneous Multi-Threading (SMT)  [200]. Besides 
SIMD  execution  units,  the  latest  intel  GPPs  also  include  accelerators  for 
cryptography routines [201] such as the Advanced Encryption Standard (AES).
Low-power GPPs, such as the ARM Cortex [202], are also pipelined, superscalar 
machines, and also have branch prediction to increase execution of sequential 
computations.  Instructions  are  however  scheduled  in  order.  Like  the  high-
performance  GPPs,  the  low-power  GPPs  also  employ  caches to  hide  memory 
latencies. SIMD execution units for the the ARM Cortex line are optional.

1.B) DIGITAL SIGNAL PROCESSORS AND 
CONFIGURABLE PROCESSORS

Digital  signal  processors  (DSPs)  and  Configurable  processors  are  typically 
employed in the embedded and signal processing domain, including radar, video 
and  audio  applications.  Traditional  DSPs  had  specialised  data-paths  so  that 
computations relevant to signal processing (such as Multiply-Accumulate and bit-
shifting for division) could be executed in a single cycle. This meant that they 
were generally running on a lower clock speed as compared to GPPs, achieving a 
lower  average-case performance  for  generic  applications.  However,  for  signal 
processing applications, the total execution time is several times lower. From the 
software  stack  point  of  view,  the  specialised  data-path  also  means  that  the 
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compiler needs to group computations in a certain way to make effective use of 
this data-path.
The latest conventional digital signal processors (DSPs) by companies like Texas 
Instruments (TI) and Analog Devices (AD) are mostly Very Long Instruction Word 
(VLIW)  machines,  employing  2  or  more  parallel  data-paths,  with  (modified) 
Harvard  memory  architectures [203][204][205].  Same  as  for  the  traditional 
DSPs, compilers for these new VLIW machines needs to group computations to 
make effective use of the parallel  data-paths.  While AD seems to be moving 
away from pure VLIW machines with the introduction of their “general-purpose” 
DSP called the BlackFin [206], TI usually combines their latest C6x series with an 
ARM GPP on a System-on-Chip (SoC), as is the case for their successful OMAP 
SoC [207].
Like the DSPs, configurable processors are typically employed in the (streaming) 
signal processing domain. Like the DSPs, they run at lower clock speeds than 
GPPs,  meaning  they  have  a  lower  average-case  performance  for  generic 
applications,  but  perform  considerately  better  for  the  application  they  are 
configured for. Configurable processors can be categorized over two dimensions: 
design-time  vs.  run-time  and  coarse-grain  vs.  fine-grain.  In  design-time 
configurable processors architectures, parts of the die can be specified/designed 
for  a  specific  application  (domain);  after  fabrication  this  configuration can no 
longer be changed.

DESIGN-TIME COARSE-GRAIN CONFIGURABLE PROCESSORS
Architectures  recently  emerged  on  the  DSP  market  are  the  Xtensa  [208] 
architecture of Tensilica, and the HiveX  [209] platform from Silicon Hive. Both 
architectures fall within the class of design-time reconfigurable machines. The 
default  Xtensa  ISA  is  a  RISC  architecture  and  employs  VLIW  encoding.  The 
instruction  set  can  be  increased  or  decreased  depending  on  the  application 
requirements,  thus  making  a  deployed  Xtensa  architecture  actually  an 
Application-Specific Instruction Processor (ASIP). Reducing the instruction set has 
the potential to save on the memory needed to store the reduced-size code, and 
maybe even lower power dissipation. Silicon Hive processors consist of a VLIW 
data-path, where the individual function units are Vector/SIMD execution units. 
The function units, register files, I/O interfaces are adapted to the needs of the 
application code, allowing a Silicon Hive processor to be very specifically tailored 
to the needs of a specific application.

DESIGN-TIME FINE-GRAIN CONFIGURABLE PROCESSORS
To bridge the gap between Field Programmable Gate Arrays (FPGAs) and (cell-
based) Application Specific Integrated Circuits (ASICs), many ASIC manufacturers 
and start-ups have developed some form of  structured/platform ASICs.  These 
structured ASICs have a predefined, and pre-produced silicon layout for many 
types of logic. These silicon cells range from complete IPs to the silicon parts of 
their  fully  routed ASIC  cell  siblings.  The idea  is  that  only  the  metal  layer  is 
customized/created for  the custom routing  of  the  cells,  thereby reducing  the 
Non-Recurring Engineering (NRE) costs immensely. The different companies use 
different techniques, ranging from adding Vertical Interconnect Access (VIA) to 
existing metal layers to adding completely new metal layers on top of existing 
(metal) layers. Another technique used by FPGA developers is using anti-fuses 
for  the  configuration  of  the devices:  a  high current  is  applied  to  a  dielectric 
turning it into a short circuit, a process that is irreversible. While these N-phase 
methods of fabricating a die are much cheaper than fabricating a low-volume 

6 | P a g e D5.1 State of the Art S ( o ) O S



ASIC  directly  from  silicon,  they  are  not  cost-effective  for  the  high-volume 
production of GPPs.

RUN-TIME COARSE-GRAIN RECONFIGURABLE PROCESSORS
Run-time  coarse-grain  reconfigurable  processors  usually  employ  an  array  of 
word-level processing elements, such as multipliers and Arithmetic Logic Units 
(ALUs).  The  programmable  interconnection  between  the  elements  can  be 
configured  at  run-time to  create  the  desired  signal  flow;  the  elements 
themselves can be  configured  to  execute  specific  operations.  Coarse-grained 
architectures  require  less  configuration  than  fine-grained  architectures  and 
therefore their configuration time is many orders of magnitude shorter (a few 
mili-seconds vs. several seconds). In some cases the configuration will result in a 
fixed  functionality  for  the  entire  processor,  no  longer  requiring  it  to  fetch 
instructions every cycle, and basically turning the reconfigurable processor into 
an ASIC. Word-level algorithms within the intended algorithm domain, such as a 
Fast-Fourier Transform (FFT), can be executed very efficiently on coarse-grained 
reconfigurable architectures. However, fine-grained algorithms (manipulating 4 
bits  or  less)  execute  inefficiently  on  these  coarse-grained  architectures. 
Examples  of  reconfigurable  architectures include the Montium2 [210] and the 
PACT XPP3 [211].

RUN-TIME RECONFIGURABLE PROCESSORS
In fine-grained reconfigurable architectures the functionality of  the hardware is 
specified at the bit-level and the programmable interconnect is manipulated as 
individual wires. The fine-grained flexibility comes at the cost of additional silicon 
and  this  overhead  hampers  the  performance  of  word-level  algorithms.  Fine-
grained  architectures  allow  for  manipulations  at  the  bit-level.  They  are  very 
efficient  for  complex bit-oriented computations  or  bit-level  masking,  shuffling 
and  filtering  (such  as  those  used  in  encryption  operations).  Fine-grained 
architectures include FPGAs and Complex Programmable Logic Devices (CPLDs), 
where the traditional difference between the two architectures is that FPGAs use 
blocks comprising of a Lookup Table (LUT), Multiplexer (Mux) and Delay Flip-Flop 
(DFF)  [212], whereas a CPLD uses the Sea of Gates (e.g., sum of products) to 
define  its  logic.  There  are  many  configuration  mediums  for  these  devices, 
ranging from Static Random Access Memories (SRAMs) where the devices have 
to be programmed every time they are powered on, over Flash memories where 
the configuration data is retained even when the device is switched off, to anti-
fuses where the configuration becomes permanent [213].

1.C) OPERATION MODES

Modern  computer  architectures  provide  protected  modes  of  operation  that, 
together  with  other  hardware  mechanisms  like  memory  protection,  interrupt 
handling,  etc.  are  commonly  exploited  by  Operating  Systems  to  efficiently 
implement  multiprogramming  (see  also  section  IV.  1.  on  Operating  System 
Models). The basic need covered by the protected mode of operation is isolating 
the Operating System from user applications, thus protecting it from unwanted 
voluntary or involuntary user influences and interferences.
The  implementation  of  these  modes  varies  a  lot  among  the  various  CPU 
architectures available on the market. The common trait  the various types of 

2 More  information  is  available  at:  http://www.recoresystems.com/index.php?
option=com_content&task=view&id=73&Itemid=168.

3 More information is available at: http://www.pactxpp.com/.

7 | P a g e D5.1 State of the Art S ( o ) O S

http://www.pactxpp.com/
http://www.recoresystems.com/index.php?option=com_content&task=view&id=73&Itemid=168
http://www.recoresystems.com/index.php?option=com_content&task=view&id=73&Itemid=168


implementation  share  is  the  support  for  multiple  operating  modes,  with  the 
system behaving differently depending on the active operating mode.  At least 
two operating modes are usually supported:
• User mode: the CPU executes program code under various restrictions, e.g., 

on the instructions of the ISA that can be executed, the operands they may 
use, the registers they can access, etc.

• System mode: most of the restrictions to which user mode is subject are no 
longer in place, and the program code being executed has full control over 
the CPU. Some of the restrictions imposed to user mode operation can be 
configured from system mode.

The protection mechanisms of the CPUs provide also control over the transitions 
between the operating modes, ensuring their security. Some architectures also 
support  the  distinction  between  two  additional  modes  used  to  enhance  the 
support of virtualization:
• Host or  Hypervisor mode: the CPU executes regularly and can control what 

operations are exactly allowed while in guest mode.
• Guest mode:  the  CPU  executes  a  virtualized  copy  of  itself,  emulating 

efficiently the execution of its own instruction set in hardware and resorting 
back to hypervisor mode when the emulation cannot be done in hardware by 
the CPU itself (e.g., in case it requires access to I/O devices).

Figure 1 shows the transitions between the CPU modes in the case of x86 CPUs:

These transitions need to be considered in modern OS kernel designs as they 
introduce a new kind of context-switch. The typical CPU allows for the following 
transitions between operating modes (cf. Figure 1):

• From user to system mode:
• Software interrupts (e.g., system calls), where the user code explicitly 

asks for a service from the operating system with the hardware taking 
care of switching mode safely. For example, in the case of x86 CPUs 
the hardware switches to a system stack to avoid the user forcing the 
system to access unwanted memory regions.

• Hardware interrupts or exceptions, generally handled in system mode, 
using a protection mode switch similar  to  the  one used for  system 
calls.

• From system to user mode:
• End of interrupt: the hardware usually provides a mechanism to the 

operating system to resume user mode operation once the interrupt 
handling is over.

• Explicit request by system code: for example in the x86 architecture 
this is done simulating in software the end of an interrupt.

• From hypervisor to guest mode:
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• Explicit request by system code, usually with a special instruction.
• From guest to hypervisor mode:

• Hardware interrupts.
• Hypercalls:  the  equivalent  of  system  calls,  but  with  the  guest 

Operating System, with the awareness of being a guest OS, requesting 
directly  and  explicitly  a  service  provided  by  the  virtualization 
hypervisor  (or  host  Operating  System),  implemented  using  special 
instructions.

• Hypervisor exits: whenever the CPU is not able to continue emulation 
in guest mode, it asks for assistance from the hypervisor Operating 
System. For example, consider a write to an I/O port: the CPU in guest 
mode can be configured to immediately return to hypervisor mode, to 
let  the  hypervisor  code  handle  the  write  emulating  the  device 
associated to the port, or to handle a protection error if the guest was 
not supposed to access the port.

• From guest user to guest system mode:
• System calls: since the CPU emulates its own behavior on a parallel set 

of registers while in guest mode, the same sequence of actions used to 
implement system calls in user mode is emulated in guest mode, and 
provokes a switch to guest system mode.

• From guest system to guest user mode:
• Returning from system calls.

Interrupts delivered to the guest Operating System need a special mention. They 
are generated by the hypervisor kernel (unless direct hardware access is allowed 
to guest mode) and there is hardware support to propagate them to guest mode.

Memory protection is  tightly coupled with protected modes of  operation.  The 
usual memory protection mechanisms, like segmentation and pagination, and its 
simplified  forms  used  in  embedded  processors,  which  usually  implement  a 
software-managed Translation Lookaside Buffer (TLB), allow for distinct access 
rights  to  code being  executed in  system and in  user  mode.  To improve  the 
performance  in  guest  mode,  recent  processors  provide  nested  page  tables, 
creating one more level of indirection in the address translation path inside the 
CPU: the addresses generated while in guest mode are translated using the page 
tables configured in guest mode,  and the result  of  the translation is  a guest 
linear address, which is then resolved using the host translation mechanisms. In 
this  way  the  guest  Operating  System is  free  to  modify  its  own  page  tables 
without assistance from the host Operating System. Instead, without the support 
for  nested  page  tables,  each  time  the  guest  OS  needs  to  modify  its  page 
mappings,  the  host  OS needs to be informed.  Without  this  kind of  hardware 
support,  the  hypervisor  needs  to  use  more  expensive  emulation  techniques, 
where the host OS needs to track all the write-accesses of the guest OS to its 
own page tables.

2. MULTI CORES AND MULTI PROCESSORS

Processor  manufacturers  have  gone  very  far  away  from  the  traditional 
architecture of the processor, in which the chip used to contain a single Central 
Processing Unit (CPU). From the time when they started to integrate the cache 
memory elements into the chip for boosting performance, nowadays processors 
mimic  more  and  more  the  System-on-a-Chip  (SoC)  paradigm  typical  of  the 
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embedded domain, in which a multitude of heterogeneous hardware components 
are all integrated in the same chip.
As explained above, modern CPUs already possess a certain level  of internal 
parallelism, with multiple ALUs, several pipeline stages of execution, vectorial 
instructions  (e.g.,  with  such  SIMD  extensions  as  MMX  and  SSE).  Some  Intel 
processors  also  parallelise  the  phase  of  instruction  fetch,  with  the  Hyper-
Threading4 technology, with which two fetching stages can independently feed a 
CPU  pipeline  in  parallel  emulating  the  presence  of  two  CPUs.  However,  the 
performance of each hyper-threaded CPU depends on the workload imposed on 
the internal pipeline elements by both concurrent flows of execution.
Many modern processors embed multiple “cores” within the same chip -  full-
featured CPUs which are capable of executing independently from one another, 
hierarchies  of  cache  memories,  interrupt  controllers,  timers  and  other 
peripherals. Also, the complexity of the new chips and the growing requirements 
in  terms  of  computational  power  (cf.  [86])  led  to  novel  paradigms  of 
interconnection among the various hardware components within the chip (and 
within  the  system),  mainly  driven  by  the  need  for  increasing  the  level  of 
parallelism in communications. This led to an increasing trend in abandoning the 
traditional “interconnection bus” concept in favour of Network-on-a-Chip (NoC) 
interconnection solutions, in which hardware elements communicate with each 
other by means of packets (similar to how networking among systems used to 
do), whilst proper routing elements are responsible for delivering these packets 
to their destination.
Modern GPPs are implemented as homogeneous multi-core processors, including 
the Intel Core-line, the AMD Phenom-line and the IBM Power series. Not only are 
these GPPs homogeneous, the cores within these CPUs are also symmetric, in 
the  sense that  they have the  same single-threaded performance.  The above 
architectures fall under the multi-core paradigm,  i.e., parallel “fat” serial cores, 
that  are  effectively  independent  computing  units  with  communication 
capabilities. There are also architectures that follow the many-core paradigm. In 
a many-core architecture the processing units are basically small, highly coupled 
cores where a workload is typically distributed over many of these cores. Such 
architectures can be found for example in graphics processing units (GPUs).
The same architectures are also used for General-Purpose Graphics Processing 
Units (GP-GPUs), in which all the vector cores are used for general computations, 
instead of being merely capable of performing 3D rendering operations. Some 
GPU  architectures,  such  as  the  Nvidia  GT200,  have  even  double-precision 
floating-point operations within the ALUs of their vector cores  [190], especially 
for scientific computations (3D rendering requires only single-precision floating-
point operations)  [191][192][214]. Some GPUs are available as special boards 
especially  made for GP-GPU processing, as these boards do not even have a 
video output [215].
Switching  to  heterogeneous  systems,  the  IBM  CellBE  is  an  example  of  an 
heterogeneous multi-core GPP deployed for HPC purposes. The Cell includes a 
single  PowerPC  core  (GPP)  and  8  Vector  cores,  called  Synergistic  Processing 
Elements (SPEs). The lacking success of the Cell could be taken as an indicator 
against  the  validity  of  heterogeneous  multi-core  architectures.  However,  the 
major issues relate to the fact that the processor has high manufacturing costs 
and it is difficult to code when using current programming models. This currently 

4 More information is available at:  http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm.
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makes the Cell  mostly of interest for specific application areas (note that the 
Roadrunner by IBM hosts a combination of Opteron and Cell processors [160]).
Intel Core-line of processors use Point-to-Point links between the cores, where for 
example IBM latest Power processor uses a hybrid ring and crossbar. The IBM 
CellBE uses multiple rings to communicate between the SPEs and the GPP. As on-
chip interconnects is such a broad topic it is covered in more detail in the next 
section (Section 3. ).

3. ON-CHIP INTERCONNECTS

3.A) SCALABILITY AND FUTURE COMPUTING  
TECHNOLOGY

The current era of computing has reached petascale,  i.e., 1015 operations per 
second, and the first approaches towards exascale (1018 operations per second) 
are  already  planned.  To  make  this  happen,  we  have  to  think  about  a  new 
paradigm of computing that is not only in the direction of software parallelism 
but also in the one of hardware infrastructure parallelism.
Peta- and Exa- scale computing architectures are moving towards multiple cores 
per  chip.  This  kind  of  chip  architecture  has  to  address  two  main  aspects: 
computation  and  communication.  As  the  core  count  increases,  the 
interconnection of cores becomes a more challenging task. We can address the 
problem at three different levels:
• physical infrastructure;
• communication paradigm;
• software/OS level.

PHYSICAL INFRASTRUCTURE
A  good  interconnection  mechanism  determines  the  efficient  execution  of  an 
application  or  set  of  applications,  based  on  the  required  computation  and 
communication  needs.  In  single  core  processors,  most  components  are 
connected by a hybrid bus topology. But, as the core count increases, one has to 
think about not only the interconnection of the components inside a single core, 
but also the interconnection of multiple cores. So an efficient physical topology 
for multi-core architectures is needed. Up to now, designs are restricted to two-
dimensional (2D) topologies, which are best for small-scale systems, but recent 
advancements in three-dimensional (3D) integrated technology  [222][223] will 
open  a  new  paradigm  for  design  (see  also  [86]).  There  are  various 
interconnection  mechanisms  studies  and/or  proposals  for  multiple-cores 
architectures. Every mechanism has its own advantages and disadvantages. The 
major performance metrics are: topology regularity, network diameter5, bisection 
bandwidth6, and  power consumption.
In Table 1 we report a summary of commonly used topologies, along with their 
main characteristics, in terms of the just mentioned metrics, as a function of the 
number of interconnected elements [235].

5 The  diameter  of  network  is  defined  as  the  maximum (over  all  node pairs)  length  of  the 
shortest path between any pair of nodes.

6 Divide  a  network  of  N  nodes  into  two  sub-networks  of  N/2  nodes.  Then,  the  bisection 
bandwidth is the minimum possible bandwidth between these two groups.
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Type of 

Topology

Number of 

nodes

Degre

e

Diamete

r

Bisection 

bandwidth

Bus k k 2 1

nD Mesh kn 2n n(k-1) kn-1

Ring k 2 k/2 2

nD Torus kn 2n nk/2 2kn-1

nD Hypercube 2n 2n n 2n-1

Crossbar k2  + 2k 4 2 (k+1) k

Binary tree 2k - 1 3 2 (k-1) 1

Fat tree Depends on actual structure

Butterfly (k + 1) 2k 4 2k 2k

Table 1: Main characteristics of commonly used topologies.

There  are  various  other  hybrid  interconnection  mechanisms  proposed  in  the 
literature,  like  Augmented  Hypercube  Torus  (AHT)  [216],  Torus  Fusion  (Tofu) 
[217], Flattened Butterfly Topology [218], Express Cube [219], etc.

COMMUNICATION PARADIGM
The communication paradigm specifies how cores communicate with each other. 
Here, major challenges are flow control and routing:

Flow-control

There are two possible levels at which flow control is realised: switch-to-switch 
and end-to-end.  Flow-control  at  the  switch-to-switch level  mainly  depends on 
switching and buffer management techniques.
Switching  techniques  are  important  because  they  specify  when  a  routing 
decision has to be made. In a network-based system, there are two types of 
switching techniques: packet switching and circuit switching. Given that major 
constraints in silicon are area and power, it is advised to use as few buffers as 
possible at the network switch and router levels.
Circuit switching  is suitable for communications with QoS guarantees because 
the required link resources are reserved for the entire lifetime of a particular 
communication  and  no  arbitration  is  needed  [220].  So,  it  provides  very  fast 
communication when needed by the application, but it limits the possibilities of 
time-sharing of the links across multiple communications. Circuit switching can 
be combined with Time-Division Multiple Access (TDMA) to provide more sharing 
connections.  Nostrum  [225][226] and  Æthereal  [224] are  examples  of  this 
scheme.
Packet switching techniques fall into four main categories:
• Store & Forward – incoming packets are stored first, then they are forwarded 

to next hop.
• Wormhole switching – each packet is divided into flits (small chunks), which 

are  sent  one  by  one  to  the  intermediate  router;  the  router  stores  and 
processes the header flit first, then it forwards it to the next hop and the 
other flits just follow the path taken by the header flit.

• Virtual-Cut-Through – each packet is divided into flits and sent one by one to 
the intermediate router; the router stores all the flits in a buffer, then, after 
the routing decision, forwards them to the next hop.
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• Virtual circuits/channels –  it is similar to  circuit switching, in the sense that 
the connection is established before any packets are transferred, and that 
packets are delivered in order.

Each  one  of  the  above  schemes  has  advantages  and  disadvantages.  For 
example,  Store & Forward and Virtual-Cut-Through  need the routers to have a 
buffer-size sufficient for storing an entire packet, while Wormhole switching does 
not.  Finally,  in  virtual  circuits/channels the  buffer  size  requirements  are  also 
high.
Among all the packet switching techniques, Wormhole switching seems to be the 
most suitable for fast computing, because of its lower latency and limited buffer 
requirements. For QoS-sensitive systems, we can combine virtual circuit packet 
switching with TDMA.
The  performance  of  a  switching  technique  also  depends  on  channel  buffer 
management between routers to avoid channel buffer overflow. There are two 
major techniques: Go-and-Stop (or on/off) control and Credit-based control.
In  Go-and-Stop control,  the receiver router sends a  stop signal  to the sender 
router if the buffer is full. When the available buffer size rises again above a 
preset threshold and/or the size of a packet, then the receiver router sends a go 
signal to the sender router.
In Credit-based control, the receiver router sends credits (indicating the available 
receive buffer size) to the sender router when some buffer is available. Then, the 
sender router sends packets up to the available credits (buffer size).
In addition to the switch-to-switch level, we can control the flow between the 
source router and the destination router by adjusting the injection traffic rate on 
and end-to-end basis. There are two popular techniques: Injection Limitation and 
ACK/NACK flow control.
Injection Limitation – in this case, the sending router suppresses the traffic rate 
to saturation load, which can be statically or dynamically defined.
ACK/NACK flow control  –  as soon as  a  packet  is  received by  the  destination 
router,  it  is  explicitly  acknowledged  by  a  ACK  packet  (or  NACK,  in  case  of 
problems).

Routing algorithm

The routing problem becomes more and more relevant as the number of cores 
increases.  The goal of  a routing algorithm is to distribute traffic evenly among 
the  paths  supplied  by  the  network  topology,  so  as  to  avoid  deadlock  and 
minimize contention, thus improving network latency and throughput. 
Based  on  the  application  requirement,  routing  paths  may  be  adaptive  or 
deterministic, and multi-path or single-path. There are various algorithms which 
have been proposed, but the most commonly used ones are Dimension-Ordered-
Routing (DOR) and Turn-Model routing.
In  DOR,  by  looking  at  the  distance  vector  between  the  sender  and  the 
destination,  a message is forwarded first  in the lower dimension,  then in the 
other one. DOR uniformly distributes minimal paths between all pair of nodes 
[229].
In Turn-Model routing, the packet has two choices in each router: proceed on the 
same direction or turn in the other direction, based on the availability of the path 
or link [230][231].

Quality-of-Service

Quality-of-Service guarantees in communication networks, i.e., predictable and 
ensured delivery latency and throughput,  constitutes also an important issue. 
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Interconnect networks are constrained by on-chip bandwidth, or the number of 
available communication channels over the link. These  are allocated based on 
traffic requirements (latency critical, data stream, best effort). Therefore, there is 
a  need for  proper  network resources allocation  and scheduling  algorithms  in 
order to support QoS.
As discussed for the switching techniques,  circuit switching provides the best 
solution for resources allocation or QoS [220] and virtual circuit/channel packet 
switching with TDMA also provides a partial solution for this  [221]. But, in both 
cases, resources are allocated to either short time slots (TDMA based) or during 
the entire lifetime of a connection (circuit switching). But these are not optimized 
for  worst-case  situations.  Therefore,  several  dynamic  resources  allocation 
schemes have been proposed in the literature [234].

SOFTWARE/OS LEVEL
The goal of this level is to define the access method to the hardware platform by 
the applications.  This can be done based on computation and communication 
requirements,  which  may  be  automatically  inferred  by  the  OS  by  means  of 
proper heuristics,  like the ones commonly found in GPOSes for discriminating 
between batch and interactive processes, or more advanced ones  [274][275]. 
Also,  applications  may  explicitly  communicate their  resource requirements  by 
using  proper  APIs  [81].  Anyway,  the  OS  and/or  application  has  to  deal  with 
application mapping, communication and task scheduling.
The goal of application mapping is to map a set of processor-cores to a specified 
application in an optimised manner (software-hardware mapping). In multi-core 
systems, the hardware topology is pre-configured, so we will have to map and 
schedule  applications  and  their  communications  on  the  available  hardware 
resources.  Given  some  knowledge  on  the  application  components  and  their 
computing and communication requirements, we end up with a graph mapping 
problem, where the application-level graph needs to be properly mapped to the 
available physical level topology. These approaches may be based on an a-priori 
characterisation  of  the  application  requirements  and  an  off-line  optimisation 
process  [227][228].  However,  this  is  not  appropriate  for  dynamic  real-time 
applications with strongly varying workloads. For this class of applications, online 
dynamic mapping is more appropriate, where the cores to applications mapping 
may be dynamically varied depending on the actually imposed workload on the 
various subsystems [232][233].
For  communication  and  task  scheduling,  based  on  available  communication 
infrastructure  and  communication  requirement  it  is  possible  to  use  various 
scheduling schemes (see Section IV. 2.  for details).

4. HIGH-PERFORMANCE COMPUTING

High  Performance  Computing  (HPC)  is  always  considered  a  “role  model”  for 
many-core systems due to the essential similarity of the architecture and hence 
the  means  to  develop  programs  for  it.  At  the  same  time,  the  many-core 
movement  leads  to  a  sudden  boost  of  scale  in  high  performance  computing 
without essentially  increasing the requirements or costs. Whilst the degree of 
mutual influence between many-core PCs and HPC will be discussed elsewhere 
[86], this chapter focuses in particular on providing an overview over the past 
and present approaches in high performance computing, including programming 
models to realise distributed and parallel applications.
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Since  the  topic  is  vast  in  itself,  we  restrict  ourselves  to  the  main  issues  of 
relevance for  the S(o)OS project.  We thereby assume the reader already has 
basic  knowledge in  the area,  and specifically  that  he/she is  familiar  with the 
concepts found in [157][158][159].
High Performance Computing is often confused with Grid and Cloud computing 
due  to  the  fact  that  all  these  areas  investigate  into  distributed computing. 
However, the degree of connectivity and the type of scale differs enormously 
between these three systems:
Cloud  Computing has  the  weakest  relationship  with  high  performance 
computing, as its main focus is on ensuring accessibility of data and/or services 
hosted within the cloud infrastructure by scaling these instances. Implicitly, scale 
in Cloud systems must be regarded as “horizontal” where instances of data and 
code are replicated to increase availability [95]. Whilst this is particularly useful 
for data and service hosts, such as eBay, Amazon, etc., it does have little or no 
impact  on scalable systems  acting on “vertical”  scale  (i.e.,  where the actual 
application is split into multiple processes or threads that jointly contribute to the 
application functionality). Recently there have been more and more references 
to the so-called “HPC Clouds” [96][97][98], yet they either focus on making small 
parallel  machines  (in  the  order  of  8  cores  in  the  case  of  the  Amazon  EC27) 
available,  or  provide access to thousands of cores in an almost unconnected 
fashion, similar to Compute Grids (see below), as for example in the case of Plura 
Processing8.
Grids or  “the Grid” [99] generally refer to a set of machines that can be used 
either as compute units (Compute Grids [100][101]), or to access given services 
(Virtual  Organisations  [102][103] or  eBusiness  Grids  [104]).  Grids  primarily 
provide  unlinked  or  weakly  linked  capabilities  that  can  be  used  for 
embarrassingly parallel  tasks,  but not for typical  HPC, strongly  linked parallel 
execution.  Usage of  the Grid for  such tasks is closely related to peer-to-peer 
computing,  such as Folding@home9.  HPC Grids on the other hand do expose 
access  to  supercomputers  and  manage  job-based scheduling  across  the  HPC 
units  in the grid –  the grid itself  does  not realise the computing capabilities. 
Notably, Grids can theoretically scale vertically and horizontally, depending on 
usage,  but  all  communication  is  Internet  based  and  accordingly  slow  (weak 
linkage).
Supercomputers are “computers that are at the frontline of current processing 
capacity, particularly speed of calculation”10. However, a supercomputer is not 
necessarily  a  parallel machine,  but  any  machine  that  offers  enough 
computational  power.  Typically  a  so  high  computation  power  is  realised 
nowadays  by linking multiple  compute  units  with high-bandwidth,  low-latency 
connections – we will use the term in this sense in the context of this document.

4.A) SUPERCOMPUTER ARCHITECTURES

In supercomputers,  communication is key to achieve high performance  [105]
[106][107]. This does not only relate to the network connectivity between nodes, 
but also to communication on all levels and between any kind of resource in the 
system (between cores, between processors, towards the cache, any I/O, etc.). 
Current  petaflop  machines  have  more  than  100.000  compute  cores  in  a  full 
cluster of over 10-20 units that consist each of approximately 15 racks or towers. 

7 Amazon Elastic Cloud Computing - http://aws.amazon.com/ec2/ 
8 Plura Processing, LP; A Creeris Company - http://www.pluraprocessing.com/ 
9 More information is available at: http://folding.stanford.edu/.
10 More information is available at: http://en.wikipedia.org/wiki/Supercomputer.
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Each rack or tower hosts roughly 12 nodes, which again may have any number 
of CPUs between 6 and 16, which in turn currently may have 2-4 cores (general 
purpose) or 8 vector pipelines. It is important to highlight that there is a strong 
hierarchical structure of the architecture which implies different performance of 
the interconnects. The fastest connection is realised at the level of core-to-cache 
and core-to-core, with bandwidths in the order of 19,2 GB/s and latencies of 5.6 
ns.  The  slowest  one  is  between  units,  e.g.,  by  the  use  of  Infiniband  with  a 
bandwidth of 12GB/s and a latency of nearly 1 ms11.
As  a  consequence,  one  of  the  major  challenges  for  software  development 
consists in distributing and segmenting the code and data in a fashion that any 
access beyond the immediate cache is reduced to a minimum, and that tightly 
interacting components are not deployed too far away from each other, in the 
underlying  physical  topology.  This  implies  that  the  code  structure  needs  to 
match as much as possible with the system architecture. However, hardly any 
programming language, nor any hardware mechanism does support this specific 
feature, thus typically all communication is treated equally on the programming 
level and the slowest connectivity will decide over the overall latencies.
Communication  and  synchronisation  is  currently  still  supported  from  the 
hardware  side  by  means  of  a  (virtually)  shared  memory,  i.e.,  hardware 
coherency support  (e.g.,  by using  the  Quick  Path  Interconnect  protocol  by 
Intel, see below). Coherency thereby means that all processes (or threads) have 
access to the same memory content – as we shall see, this does not imply that 
all  memories  have  the  same  state.  The  simplest  approach  to  shared  data 
consists in actually physically sharing the memory or cache across multiple (all) 
compute units in a parallel machine. While such a uniform memory access (UMA) 
between  the  nodes  and  clusters  would  be  ideal  for  programming  purposes 
(leaving the latency issue aside), it is far from realistic. In fact, in order to reduce 
costs with the increasing need for scalability,  it  is more feasible to distribute 
memory so that each compute unit hosts its own cache and/or local memory. 
Therefore,  the  reality  is  that  there  is  a  non-uniform  memory  access  (NUMA) 
between processors, nodes and clusters. This means that data (and processing) 
will have to be distributed according to the locality of the computation, otherwise 
the processor would mostly be waiting for its data.
Coherency in these cases can be achieved in two ways: either by allowing access 
to  remote  cache  and  memory  blocks  (“NUMA:  Non-Uniform  Memory 
Architecture”), or by actually maintaining the same state in all memory instances 
(“ccNUMA:  cache-coherent  NUMA”).  Both  approaches  come  at  the  cost  of 
increased data access latency where the slowest memory connectivity restricts 
the overall speed [108][109][111].
In  large scale  clusters  it  is  therefore  more  typical  to  have different  types of 
shared memories on different hierarchical levels of the system, e.g., between 
processors on a single node, but not across nodes etc. [109][110].
Note that, with the advent of multi-core processors, NUMA has also become the 
reality within processors, where the access to a core local cache is 2-4 times 
faster than accessing the cache of  a neighbouring core.  In systems with No-
Remote-Memory-Access (NoRMA), memories belonging to other nodes or clusters 
can not be accessed directly at  all.  In this  case,  the software (application or 
Operating  System)  has  to  ensure  consistency  of  data  across  processes  or 
threads.  This  obviously  increases complexity for  the developer,  because such 

11 All figures depend on usage and configuration.
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devices need to be programmed using some type of message-passing protocol, 
such as MPI12.
Cache  organisation  determines  the  data  throughput  of  the  processor  and  in 
particular modern vector machines, such as the NEC SX-8, used a proprietary 
memory bank structure to reduce access latency (odd-strides and stride 2 being 
best for access) which is not identical to the one in the NEX SX-9 (where stride-1 
is  best)  this  obviously  requires  more  adaptations  on  the  programmer's  side 
[111].  So  far,  most  cluster  machines  are  homogeneous  in  nature,  i.e.,  the 
processors incorporate identical cores and all processors across the system are 
identical. However, modern day systems, such as the IBM Road Runner, show a 
clear trend towards heterogeneity, incorporating graphic cards on a node level, 
as well as heterogeneous cores on a processor level. In the HPC domain [113], 
the organisation clearly reflects the typical usage area, so that the processor and 
cache layout is close to the algorithmic maps [112][114] – a circumstance that 
can not be employed in desktop PCs as they try to address a large usage scope.

5. MEMORY ARCHITECTURES

High-Performance  GPPs  use  multiple  levels  of  cache(s)  to  hide  the  memory 
latency of the main memory. As cache misses cause a core to stall (5-6 cycles for 
L1 cache miss,  50+ for L3 cache miss) for a significant part  of its operation, 
cache  misses  are  the  biggest  performance  problem  for  CPUs.  So  the  main 
problem for distributed applications is to find the right segmentation of code and 
data to minimise cache misses.
The first level of cache (L1 cache) is always private per core, L2 caches and 
higher may however be shared among cores in a processor. The highest-level 
cache (e.g. L3 in Intel Nehalem) is the cache that sits between the processor and 
the RAM memory – sometimes the RAM is therefore referred to as the highest-
level cache. Typically the higher-level cache is also slower in being accessed due 
to manufacturing reasons, with the RAM always being the slowest memory (note 
that  modern  hierarchical  views  also  consider  hard  drives  and  other  storage 
devices as higher order memories [109]). In addition to being slower, access to 
higher-level  cache is  also delayed due to the hierarchical  organisation of  the 
cache: all access to higher levels are routed via all their lower levels (hence the 
“hierarchy” of  the structure).  For example, a L2 cache access has to first  go 
through the L1 cache before being handed over to the L2. This means that the 
access is delayed further by a factor proportional to the level of the cache being 
accessed [116].
Some  architectures  (mostly  DSPs)  employ  some  type  of  Harvard  memory 
architecture, where there is no cache at all, but local memories for both code 
and data.
The simplest approach to programming parallel applications consists in a shared-
memory approach, where each process can easily access data and state across 
all other processes (see also section  V.   on programming models). Due to the 
organisation of multi-core processors, the only effectively shared memory is the 
RAM,  which  is  at  the  same  time  the  slowest.  In  most  common  desktop 
applications,  shared  memory  is  not  even  required  (as  the  code  is  strictly 
sequential). In order to achieve a shared-memory like behaviour, the caches of 
different cores need to be kept coherent. Cache-coherency for most multi-core 
GPPs are implemented in HW in the form of a protocol (as opposed to physically 
sharing the memory). Cache coherency thereby needs to be distinguished from 

12 More information is available at: http://www.mpi-forum.org/.
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shared  memory  insofar  as  it  does  not  exactly  allow for  accessing  a  remote 
cache,  but  ensures that  basically  all  (coherent)  caches have the same state. 
Remote access could lead to deadlocks if no specific care is taken to avoid that,  
which again may lead to major  delays.  Intel  for  example  employs the MESIF 
protocol on top of the “Quick Path Interconnect” (QPI) bus since its Intel Core i7-
9xx  processor  (2008).  This  protocol  does  not  so  much  aim  at  constant 
consistency across all caches, but it verifies the consistency of a specific memory 
location at access time. The basic essence of the protocol consists in asking all 
other cores whether the information is still up-to-date or has been invalidated by 
any other core, in which case the datum will be overwritten prior to being made 
available to the querying process. Not only does this require additional steps (3-4 
hops, depending on the situation) which delay the memory access even further, 
it also diminishes the potentially available cache if it were shared between the 
consistent cores. Nonetheless, the QPI approach is still slightly faster than other 
coherency protocols [117]. In order to reduce the delays, such protocols base on 
the assumption that  the cache is fully interconnected (so as to avoid further 
delays by routing steps). With the growing scale of multi-core processors, this 
assumption is however not feasible in the long run (see D5.2 [86] for details).
RAM is typically only accessible via a dedicated core (there is only one memory 
controller), however, newer architectures have a memory controller per core. To 
access  other  devices,  Direct  Memory  Access  (DMA)  is  used,  where  the  DMA 
controller transfers data between the RAM and the device. The CellBE also uses 
DMA to transfer data between the main memory and the local memories of each 
SPE.
DSPs usually employ some type of Harvard memory architecture, where the local 
memory falls within a different address range than the larger main memory. The 
SPEs on the Cell on the other hand only have direct access to their local memory, 
and data from the main memory can only be acquired through DMA transfers.

6. SUMMARY

We can categorize the (current) computing hardware architectures as follows: 
multicore on a single chip or on computing card with multicore chip, multi socket 
or  multiple  chip on single board and network of  systems or super computer. 
Table 2 summarises general-purpose in-chip multi-core and many-core systems, 
a.k.a.,  Chip  Multiprocessor  (CMP).  This  table  shows  the  comparison  between 
some of  the recent  CMP systems with processor  properties like architectural, 
memory  and  power  consumption.  We  can  conclude  that  industry  is  going 
towards the direction of multi-core tile based systems, currently following 2D 
topologies but in future we may find 3D based chip multi-core system also.
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Intel TeraFlop Intel SCC Sony, Toshiba, IBM cell Sun UltraSPARC T2 Sun UltraSPARC T3 UT Austin TRIPS Intel Larrabee Cavium octeon cn6880 Tilera TILE64

Type CPU CPU CPU CPU CPU CPU CPU/GPU hybrid NPU NPU

ISA X86 x86 Power SPARC SPARC EDGE x86 MIPS

Micro 
architecture

in-order VLIW 2 way In-order CPU, 
RISC,  2 way In-order 
128-B SIMD SPU

RICS, SIMD RICS, SIMD SIMD 2 way In-order, 4 
way SMT, 512-B 
SIMD

RISC, SIMD RICS, 3-way 
VLIW

Technology 65nm 45nm 90nm 65nm 45nm 130nm IBM ASIC 32nm 90nm 90nm

Number of 
core

80 48 1 CPU(PPE)
8 SPU(SPE) SIMD

8 16 2 Upto 48 32 cnMIPS  II core 64

Operating 
frequency

3.2GHz - 5.7GHz - 3.2GHz - 4GHz 1.6GHz 1.67GHz 533MHz 2 GHz 1.5 GHz on each core 866MHz

Data width 32bit 32bit 128 bit 128 bit 64 bit 32 bit 64bit 64 bit 32 bit

Interconnect 8x10
2D mesh

2D Torus Ring Crossbar Crossbar 4x10 2d mesh Ring crossbar 8x8 grid 2D mesh

Bi-Section Bw 320GB/s 256GB/s 195GB/s - - 64GB/s - - 240GB/s

Switching Wormhole Wormhole Pipe-lined Circuit Circuit switching Circuit switching Wormhole - - Wormhole

Flow-control On/Off Stall/Go Credit-based Handshaking Credit-based Credit-based - - Credit-based

Routing Sourcing Routing 
(DOR)

DOR , odd-even 
Turn Model

Shortest-path Board level routing Board level routing DOR Ring based routing - DOR

Number of 
Threads

- - 2 on PPE
8 on SPE

64 8 per core
(8 x 16)

4 4-way interleaved 
multi-threading /core

- -

L1 cache 3KB I-cache, 
2KB D-cache

16KB I-cache, 
16KB D-cache

32KB I-cache, 
32KB D-cache

16KB I-cache,
8 KB D-cache

32KB I-cache,
16 KB D-cache

64KB I-cache, 
32KB D-cache

32KB I-cache, 
32KB D-cache

37KB I-cache, 
32KB D-cache

8KB I-cache, 
8KB D-cache

L2 cache 256kb 512kb 4MB 6MB 1MB 4MB 4MB shared 64KB

L3 cache/ 
other cache

16kb massage 
passing buffer 
(shared), total 384kb

256kb scratchpad 
memory (Local Store)

- - - - - Abstractly all on 
chip cache

Memory 
model

Message-passing Message-passing Shared-memory Shared-memory Shared-memory Shared-memory Shared-memory - shared memory 
and user-level 
message passing 

Cache 
coherence
UMA/NUMA

Directory based 
cache coherent 
shared-memory

Software based 
cache coherent 
shared-memory

NONE MESI
SNUCA

2 coherence plane No hardware based, 
Non-Uniform 
(NUCA) L2 Cache

Broadcast - -

Development 
environment

- - IBM Cell Broadband 
Engine SDK
C/C++ compiler 

- - TRIPS compiler 
based on C and 
FORTRAN

C/C++ Compiler
OCTEON  (CDK)  C 
compiler

Tilera MDE 
Eclipse based, c 
compiler

TLB - - - - - 16 I / 16 D - 64 I / 64 D 8 I / 16 D 

Power - 25W - 125W 92W 72 – 123 W - 36W - 95W 15-20W

Table 2: Summary of computing hardware architectures.



Table  3 summarises multiprocessor systems based on Card Computing Units, where 
the multiple  computing  units  are  seen by  the  OS similar  to  an expansion  card  (or 
peripheral).

NVIDIA Tesla 
C2050/C2070

ATI Radeon HD 5970 Cisco QuantumFlow ClearSpeed  CSX700

Type GP-GPU card computing 
unit

GP-GPU card computing 
unit

NPU Numerical Computation 
Unit

Process  Technology 40nm 40 nm 90nm IBM 90nm

Number of core 512 CUDA core or 
Stream processors ( 16 
Stream multi-processors 
and 32 core per Stream 
multi-processors  )

3200 Stream Processing 
Units (160 SIMD unit & 
20 Stream Processing 
Units per SMID unit)

40 4-way-threaded (160 
total) CPU cores called 
Packet Processing 
Engines (PPE) 32-bit 
RISC core 

1 core (96 Processing 
Element), RISC, Array 
SIMD per chip

Micro architecture CUDA TeraScale 2 Unified 
Processing Architecture

-

Operating frequency 1.25GHz to 1.4GHz 725 MHz 900MHz 250MHz

Double-Precision 
Operations per seconds 
(Gflops)

515 515 - 96

Single-Precision 
Operations per seconds 
(Gflops)

1030 4620 - 96

Interconnect Infiband - - ClearConnect (Hybrid)

L1 cache 64 KB shared per SM - - 8KB I-cache, 
4KB D-cache

L2 cache 768KB shared  - - 2x 128kb shared

Memory 3GB/6GB 2GB Shared memory - 1 Gb of 
memory to support 
128,000 queues and 40 
Mb of content-
addressable memory 
(TCAM)  

Memory clock speed 1.5GHz 4.0 GHz 

Memory bandwidth 144Gbps 256.0 Gbps 100Gbps 

Memory bus width 384 bit 512 bit

Memory Interface GDDR5 GDDR5 DDR2

Memory model Shared memory - Shared-memory

Cache coherence

Development 
environment

NVIDIA nexes IDE ATI Stream SDK ClearSpeed SDK Eclipse 
based

Compiler support C, C++, FORTRAN, 
OpenCL, JAVA, Pyton

OpenCL C

Address Space 64 Bit 64-bit Virtual 
48-bit physical

QoS Priority based

Power 190W to 225W 51W to 294W 9W

Comment Concurrent Kernel 
Execution

Table 3: Summary of multiprocessor systems based on Card Computing Units.



III. PROTOCOLS: COMMUNICATION CONTROL MODELS

This chapter overviews research literature in the field of communications and control 
models for distributed, massively parallel and highly scalable systems. In the context of 
the S(o)OS project, we plan to leverage general concepts from the world of distributed 
computing,  like  scalable  mechanisms  for  load  distribution  and  balancing,  services 
localisation by means of  publishing/subscribing  mechanisms,  etc.,  in the  context  of 
massively parallel systems, even within the chip. However, the necessary differences 
need to be properly accounted for, because the mechanisms used for communications 
within  the  chip,  and  among  different  chips  on  the  same  system,  and  the  implied 
latency and throughput figures, are tremendously different as compared to standard 
networking stacks.

1. INTERCONNECTION NETWORKS

In  standard  networks  two  of  the  core  aspects  constantly  under  improvement  are 
bandwidth  and  latency.  Current  research  is  focused  on  the  improvement  of  these 
aspects by enhancing the underlying technology or by making protocols more efficient, 
thus decreasing overhead and maximising utility. Even so, bandwidth  improves much 
faster than latency [32], frequently faster than a system can cope with, especially in IP, 
fibre  based,  transport  networks.  In  these  networks,  traffic  demand  increases  very 
rapidly, doubling every two years (see Figure 2). 

Current  state  of  the  art  optical  communication  devices  transmit  at  a  rate  of  100 
Pb/s/km using a DWDM (Dense Wavelength Division Multiplexing) deployment of 155 
lambdas at 100 Gbs each [29] and over 7000 km. Still, this number only shows up to 
where technology can be pushed, and it does not refer to real deployments (at least 
not for transport  or HPC networks), because bandwidth between hosts is limited by 
protocols and controlling electronic equipment.
Most high speed interconnects are based either on copper or optical technology, using 
point to point connections. The fastest deployments reserved for research purposes as 
the  Internet2,  GEANT  or  CERN.  Optical  technology  was  elected  for  long  distance 
interconnects due to factors such as its low attenuation and distortion, high capacity, 
low price and raw material availability (now fibre deployment is more cost effective 

Figure 2: Cisco VNI Forecasts 64 Exabytes per Month of IP Traffic in 2014



than copper [30]), and the immunity to electromagnetic interference (or TEMPEST style 
eavesdropping). Future prospects plan to bring optical technologies into chips, highly 
increasing integration as well as power efficiency and performance. Considering that 
the limits of optical technologies are still not reached, we expect bandwidth to increase 
continuously, while trying to follow demand. Still, for tightly coupled deployments such 
as  HPC environments,  copper  technologies  such as  the  ones used by Infiniband or 
Ethernet are pretty much standard.
A  more  important  factor  for  tightly  coupled  distributed  systems,  such  as  parallel 
applications, is latency  [31]. The higher the latency, the more time is wasted sitting 
idle,  thus  hurting  overall  performance  and  efficiency  in  resource  usage.  With  the 
increase in bandwidth, latency has decreased over time, however network latency is 
still  very  far  from  the  latency  found  between  system  components.  Moreover,  the 
increase  in  bandwidth  requirements  is  flanked by  the  need for  lower  latencies,  as 
systems have synchronization points more frequently. Increasing the bandwidth may 
not be enough for some classes of applications, but unfortunately some systems with 
higher bandwidth may present also higher latency figures  [31]. Still, considering the 
overall  relation  stating  that  a  bandwidth  improvement  in  a  technology,  generally 
implies a latency reduction (e.g. Ethernet), after systems start operating at the same 
speed magnitude  as  the  bandwidth  provided  by  their  interconnection  network,  the 
latency  issue  returns,  and  over  time,  latency  is  lagging  [32].  This  is  particularly 
relevant  in  the  HPC  environment  where  even  the  low  latency  of  less  than  1.5  us 
provided by Infiniband [37] is a point where improvements are much desired. The only 
way  to  actually  minimize  latency  is  by  optimising  algorithms  and  overall  systems. 
Infiniband allows up to 1.5 us due to high coupling of the communication stack, and 
strong hardware support.  More importantly,  Infiniband designers opted for solutions 
which effectively minimise latency independently of the provided bandwidth, such as 
cut-through switching, switch fabrics, or serial links.
In  more  conventional  networks,  such  as  Ethernet  or  DSL,  the  major  aspects  are 
bandwidth,  and  simplicity,  or  Operations  Administration  and  Maintenance  (OAM) 
functionalities. In particular it is commonly agreed between authors that the lack of 
OAM functionality  is  a  major  limitation  for  Ethernet  [38].  Latency,  while  being  an 
existing  issue,  is  not  a  critical  problem  as  applications  are  designed  to  take  into 
consideration high delay between end points.
In  order  to  reduce  latency  and  improve  useful  bandwidth  (at  a  reasonable  cost, 
depending  on  requirements  and  purpose),  several  different  protocols  are  used, 
following a layered approach. Between cores, state of the art systems use HyperPath or 
QuickPath  Interconnect  [34],  inter-processor  communications  use  IXS  (Internode 
Crossbar Switches), in HPC environments Infiniband [37] provides connectivity between 
nodes, and Ethernet typically  connects hosts.  Over the Internet,  IP is the dominant 
protocol, and it is used over a multitude of technologies.
Beside the potential capabilities of each technology, it is also relevant how systems are 
interconnected (i.e.,  the communication  topology): traditional  home networks  make 
use of either the Bus (such as in 802.11 or 802.3 10Base2) or Star (such as in Ethernet 
XBaseT) configurations,  however these are not optimal  for high performance or low 
latency systems. Instead they favour cost and ease of deployment. One particularly 
bad example of system configuration, in relation to latency, is the ring model where 
each node connects to two of their neighbours, forming a circle. Message flow between 
two nodes must traverse all intermediate nodes, making latency critical communication 
only possible between direct neighbours.  One benefit of this topology is that, if the 
detailed  topology  is  known,  latency  (although  high)  between  two  hosts  can  be 



predicted.  Data-centers  for  Grids,  Clouds  and  HPC  are  currently  driven  by  inter-
networking  topologies  much  different  from  their  counterparts  used  in  Local  Area 
Networks.  In this world,  designs maximising bandwidth while keeping latency at  its 
lowest value are desired, and we find Hypercube, N dimensional Mesh, Torus, Dragonfly 
[33].  Each  topology  has  its  advantages,  in  terms  of  latency,  bandwidth,  cost  and 
predictability.  The  Flattened  Butterfly  [39] improves  the  existing  topologies,  by 
proposing the use of high-radix routers to reduce network diameter, while improving 
throughput in 50% for multi-core designs. Moreover, the authors show that routing can 
have negligible impact in latency, and the design can actually reduce it by 28%.
Communication between software or hardware agents must take into consideration the 
actual topology, so that parallelism provides the highest possible performance. Several 
authors already identified the relevancy of this aspect, showing the impact of cross 
layer adaptation in order to maximise performance [35]. In the context of S(o)OS, we 
must  follow the  same approach and make code distribution  and  parallel  execution 
aware of the underlying topology. In the case that topology information is not directly 
available, the same can be inferred by quantifying the latency of the multiple links, as 
it is shown in [36].

2. COMMUNICATION PROTOCOLS (SW LAYER) 
At the software layer, protocols are much more complex than the ones addressed in 
the previous section such as Infiniband or Ethernet. This arises from the fact that they 
are closer to application and business model concepts, providing a much richer set of 
functionality.  They  are  mostly  driven  by  the  TCP/IP  or  OSI  protocol  stacks.  These 
approaches consider that protocols are in layers, where each layer makes use of the 
functionality provided at the lower layers. Typically no two layers provide the same 
functionality, but because of the multiple possible combination of layers, redundancy 
and replication of functionality may occur.
Applications  reside  at  the  upper  layers  and exchange  data  units  which differ  from 
application to application. Initially most applications were designed on top of the UDP 
or TCP layers (or even IP!), but nowadays several common layers, such as HTTP and SIP 
[41] are shared by many applications. IPv4 is the common protocol driving today and 
future networks as all  services are provided on top of it,  with IPv6 following it  and 
allowing for the major deployments required for the Internet of Things. However, as 
some authors recently suggest  [47], transition to IPv6 may not be so soft due to the 
way  operating  systems  are  implemented,  and  the  actual  implementation  of  the 
protocol may result in lower throughput and higher resource consumption for IPv6.
Many  applications,  in  particular  time-sensitive  ones,  need  to  have  a  notion  of  the 
available latency and bandwidth in order to deliver services to users and are designed 
in order to cope with this. Conversely, the further down the protocol layer, the more the 
protocols  are  specialised  to  the  characteristics  of  the  local  communication 
environment. Moreover, many applications require to have a detailed knowledge of the 
underlying transport path and adapt content accordingly [40]. Vertical interoperability 
is however not easy as the protocol stack relies on a closed layered model, not allowing 
much access besides to the neighbour layers, and cross-layer optimizations requires 
particular care. Mostly because some short-cuts can change the expected behaviour of 
a  protocol  and break  compliance.  This  makes  high  level  integration  of  devices  for 
parallel  execution  more  unrealistic,  in  particular  under  synchronization  critical 
conditions.
Another protocol highly relevant for a distributed operating systems is 9P. As the name 
suggests, 9P was created for Plan9, the prototype operating system developed by Bell 



labs. Started in 1985, it suffered several refinements with 9P2000 [46] being the latest 
version.  The innovation  of  9P consists  in  a  protocol  oriented towards  a  distributed 
operating system, which allows to distribute filesystems, devices and applications in a 
grid,  however  in  a  transparent  manner.  That  way,  resources  are  used  in  a  way 
independent  of  their actual  location.  It  supports  locking,  client-side caching,  secure 
authentication  and  even  internationalisation.  The  Inferno  Operating  System  [49] 
(developed  by  Via  Nuova  Holdings)  continued  research  in  the  9P  protocol,  but 
extending  it  to  more  useful  scenarios.  One  important  aspect  was  the  support  for 
heterogeneous hardware platforms, through the use of a virtualisation technology (DIS) 
and a type-safe, C alike language named Limbo. Recent work around this protocol is 
present  in  XCPU2,  proposed  by  Lonkov  et  al.  [50].  The  authors  propose  a  system 
allowing users to compose the environment of remote cluster nodes so as to match 
local resources, creating the illusion that the cluster is a seamless extension of the 
local machine, much facilitating development and debugging.

SERVICE DISCOVERY PROTOCOLS
Service  discovery  protocols  (SDPs)  consist  of  two  groups:  protocols  that  focus  on 
services (such as  AppleTalk),  and the ones which concentrate  on devices (such as 
DHCP). The activities in SDPs include three main tasks: how to find services; how to 
publish services; how to use services. Generally UDDI, WSDL, SOAP  [51] have been 
used to implement the mentioned activities in various SDPs. The mechanism of service 
discovery  and advertisement constitutes distributed services or centralized services, 
AppleTalk, NetBIOS/SMB [52], IPX that  were designed following  local network (not IP 
based) features and decentralized discovery (Distributed Service Discovery). UPNP [53]
[54] and SLP  [55] present distributed solutions to operate in a local scope as well as 
searching for services in a global scope. This is achieved by exploiting extensions of 
existing standards (DNS)  that enable remote service discovery. The traditional SDPs 
have  weakness  in  supporting  a  simple  and  reliable  way  to  configure  and  browse 
services  over  IP  networks.  However,  to  overcome  these  challenges  the  next 
generations of distributed service discovery solutions (zeroconfig SDPs) [56] have been 
emerged  recently.  The  main  advantage  of  zeroconfig  SDPs  is  their  adaptation  to 
various heterogeneous network structures. IPv4 Link-Local Addressing, Multicast DNS, 
Bonjour [57] and DNS Service Discovery [58] are examples of zeroconfig SDPs. Bonjour 
is an open source distributed service discovery which is submitted by Apple to IETF as a 
standard.  It  enables  automatic  IP  configuration,  translating  name to  IP  and service 
discovery without using DHCP server, DNS server and Directory.

3. COMMUNICATION INTERFACES (API)
There  is  a close relationship  between programming models,  tools  and the protocol 
stack. Applications communicate using Berkeley Sockets alike interfaces which vary 
according  to  the  tools,  programming model  and environment.  These interfaces are 
exposed to applications  by means of  libraries which are agnostic  of  the underlying 
infrastructure and connect end-points using either UDP or TCP connections (here we 
focus  on  distributed  systems  –  see  Chapter  V.   later  for  programming  models  for 
parallel multi-processor and multi-core systems). One underlying limitation of this API is 
that  connections  are  maintained  between  IP  addresses.  In  reality  what  matters  to 
communication is not the actual  location but the identity of the hosts.  Identifier to 
locator decoupling is an aspect pursued since a long time such as using HIP [42], but its 
support is still lacking in current operating systems. Interestingly in the work developed 
by Khurri et al [48], it is shown that HIP (which makes use of cryptographic functions) 



can be successfully implemented in highly constrained devices such as Symbian OS cell 
phones.  Decoupling  allows  communication  to  be  performed  between  entities 
independently  of  where  they  are  located,  as  well  as  IP  mobility  and  session 
transference, while maintaining active sessions. One way which could be argued to 
achieve this is by using DNS, however DNS latency is in the order of hours to days, 
making it unsuitable for today’s scenarios.
On top of the socket API, several other APIs provide additional functionality, as well as 
richer interfaces – for example, related to multi-core and parallel designs, the Message 
Passing Interface (MPI. The first version (1.0) was released in 1994 rapidly becoming a 
standard,  with  version  2.2  released in  September  2009  [43].  Research  for  parallel 
systems  also  adopted  MPI  and  is  now  focused  on  improving  it  [44][45].  This 
specification provides miscellaneous methods such as point-to-point message passing, 
collection or group communication, process topology and many others. Its specification 
was created as being language agnostic and has bindings to several languages such as 
C, C++ or Fortran-95. Many of the basic design principles of MPI can be used in a 
distributed operating system such as message passing, avoiding memory-to-memory 
copies,  reliable  communication  between  hosts,  offload  processing  to  dedicated  co-
processors (in particular communication), and more importantly platform and hardware 
agnosticism.
The communication API provided by modern operating systems support both blocking 
and  non-blocking  mechanisms.  In  the  latter  we  have  non-blocking  synchronous  or 
asynchronous I/O. A blocking interface means that it does not return until the operation 
is  completed,  thus  preventing  a  caller  to  perform  other  activities.  Alternatively, 
additional  threads  could  be  created,  but  its  a  limited  and  expensive  resource.  By 
contrast, non-blocking I/O interfaces return without blocking even if the operation is not 
completed, thus allowing for a more efficient use of threads. Currently, there are two 
design  approaches  to  develop  high-performance  concurrent  applications  that  are 
scalable13, in particular server applications, using non-blocking I/O: the reactor pattern 
[59] and the proactor pattern [60]. This mechanisms rely on an event demultiplexer, an 
object that  dispatches events  from various sources to  the appropriate  handlers  (or 
callbacks).
The reactor pattern involves non-blocking synchronous I/O. The event multiplexer waits 
for events that indicate when an object, such as a file or socket, is ready for a read or 
write operation. The demultiplexer dispatches the event to the appropriate handler that 
is responsible for performing the actual read or write. Then the handler can handle the 
completion of the operation and may renew interest in I/O events.
The proactor pattern, on the other hand, involves asynchronous I/O. A caller issues a 
read or write on an object and supplies a completion handler. The operating system 
handles the operation asynchronously and queues a completion event, which is then 
dispatched by the demultiplexer to the appropriate handler. The handler manages the 
completion of the operation and may start new asynchronous operations.
By comparison, the proactor pattern has some advantages over the reactor pattern:
• it is easier to write an application, since it relies on the operating system to fully 

handle the I/O;
• the  operating  system  completion  queue  handles  multiple  threads  and  their 

concurrency, thus making more efficient use of threads;
• provides better portability, since it can be emulated efficiently on top of the reactor 

pattern.

13 More  information  is  available  at  http://msdn.microsoft.com/en-us/magazine/cc302334.aspx and 
http://www.kegel.com/c10k.html.
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Most UNIX like operating systems support14 the reactor pattern, while support for the 
proactor pattern can be found on Windows NT15 based operating systems and Solaris16. 
Libraries,  such as ACE17 and Boost.ASIO18,  provide a unified proactor API  for a wide 
range of operating systems. The former library also provides a reactor API.  On the 
other hand, Linux supports asynchronous I/O by means of an implementation19 of the 
POSIX asynchronous I/O API20.

14 POSIX select(), poll() and variants like epoll() and kqueue().
15 More information is available at: http://msdn.microsoft.com/en-us/magazine/aa365198.aspx
16 More information is available at: http://developers.sun.com/solaris/articles/event_completion.html
17 More information is available at: http://www.cs.wustl.edu/~schmidt/ACE.html
18 More information is available at: http://think-async.com/Asio/
19 More information is available at: http://lwn.net/Articles/94566/.
20 More information at: http://www.gnu.org/software/libc/manual/html_node/Asynchronous-I_002fO.html.
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IV. OPERATING SYSTEMS

This chapter overviews research literature in the area of Operating Systems models 
which is relevant for the S(o)OS Project. The works surveyed in this chapter constitute a 
snapshot  of  the current OS kernel  architecture  models,  with a strong focus on the 
support  for  highly  and  massively  parallel  systems.  These  constitute  the  point  of 
departure from which the research in the context of the S(o)OS project will be carried 
out.

1. OPERATING SYSTEM KERNEL MODELS

Various models of Operating Systems and kernels have been proposed in the literature. 
In what follows, an overview of the most significant works related to the S(o)OS project 
is provided.

1.A) MICROKERNELS

Microkernels  have  been  proposed  in  the  research  literature  as  an  alternative  to 
monolithic  kernels  [26][90][94].  In  this  architecture,  a  small  code  base  provides 
essential  services,  such as  physical  memory management  and protection,  interrupt 
handling and task scheduling. This code (the microkernel) is the only one that executes 
with full privileges in the processor, whilst most of the classical services provided by a 
monolithic operating system, like network protocols, I/O device drivers, file systems, 
virtual memory management, are provided by special server processes running in user-
space. In this way, the operating system is extremely modular, robust and secure. Only 
a small set of essential services is always present in the kernel, while all other services 
are  optionally  implemented  as  processes.  In  microkernel  based  OSes,  all  services 
interact with each other and with applications through message passing.
Also, the robustness and security of the OS is highly increased, because misbehaviour 
of a device driver, either malicious or accidental (due to common bugs), can only cause 
the malfunctioning of the corresponding OS subsystem and cannot cause the crash of 
the  entire  OS.  Conversely,  in  a  monolithic  OS,  every  kernel-level  device  driver, 
developed in the hurry to support the latest (and widely sold) piece of hardware, may 
potentially crash the entire system.
Several microkernel architectures have been proposed in the research literature, most 
notably the Minix system by A. Tanenbaum Group21 and the L4 family of microkernels 
[26]. However, such architectures did not have a great success in commercial OSes, 
mainly because of the performance penalties due to interprocess communication (IPC) 
mechanisms on single processor systems with memory protection.
It should be noted that most of the research on microkernels is focused on two aspects: 
security  and  use  as  hypervisor  for  running  multiple  virtual  machines  on  the  same 
hardware  platform.  Unfortunately,  only  a  few  researchers  have  investigated  the 
performance and scalability of microkernels on multicore systems. In L4 [26], the basic 
IPC mechanism is  designed to  be  highly  optimised for  uni-processors:   the  send() 
primitive hands off its time-slice to the server process without involving a call to the 
scheduler.  In  this  way,  the  overhead  of  message-passing  reduces  to  two  contexts 
switches  per  IPC operation.  However,  such  optimisations  are  not  possible  in  multi-
processor systems, because sending a message involves an inter-processor interrupt 
and a call to the scheduler, while the sender is forced to wait for the message reception 

21 More information is available at: http://www.minix3.org
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before  continuing.  Moreover,  microkernels  still  have  the  problem of  some  internal 
shared  data  structure  between  cores,  namely  for  interrupt  forwarding  and  virtual 
memory.  It  is  not  clear  how  these  data  structures  are  handled  in  a  multicore 
environment.
Uhlig  [90] presented  an  adaptive  mechanism  for  sharing  data  structures  between 
microkernels running on different  cores,  which is  a combination  of  coarse  and fine 
locking and Remote Procedure Call (RPC). Locks can be enabled or disabled at run-time 
depending on the sharing profile presented by the application with an appropriate API. 
Also,  remote  resources  (for  example  on  a  NUMA machine,  resource  residing  on  a 
memory with a longer access time) are treated differently from local resources. Uhlig 
reports examples for the Virtual Memory management. The idea is interesting, however 
the results depend on the specific hardware platform thus cannot be easily generalised 
to other architectures.
The  use  of  microkernel  based  OSes  has  been  investigated  also  in  the  domain  of 
supercomputing  on  multi-processor  systems,  like  happened  with  the  Amoeba  [92], 
Mach [94] and Chorus [93] OSes. These investigations were born from the observation 
that monolithic OSes used to carry on lot of unneeded functionality on each and every 
node  of  a  parallel  machine,  introducing  unneeded  overheads.  Also,  the  standard 
communication primitives used on traditional OSes used to be highly inefficient in the 
context of a multi-processor machine. On the other hand, the approach typical of the 
HPC domain  used  to  consist  in  not  having  a  real  OS,  but  rather  a  small  run-time 
environment provided in the form of libraries. This was too minimalistic and used to 
lack potentially useful capabilities. So, the adoption of a  microkernel based OS was 
considered a good trade-off between these worlds [91].
A few commercial operating systems were inspired by the microkernel architecture. 
Windows  NT  borrowed  some  of  the  ideas  from the  microkernel  environment  [27], 
however  NT  should  be  considered  a  “hybrid”  between  a  monolithic  kernel  and  a 
microkernel.  Also,  the Mac OS-X kernel,  a.k.a.,  XNU, derives from the fusion of the 
Mach and FreeBSD kernels. However, only some kernel-level primitives and paradigms 
of Mach were kept, whilst the microkernel architecture has been basically dropped.
QNX  Neutrino  [28] is  a  Real-Time  Operating  System  with  a  structure  similar  to  a 
microkernel,  however,  some  of  the  essential  scheduling  services  (like  the  pthread 
interface,  mutexes  and  semaphores)  are  implemented  directly  by  the  kernel  for 
efficiency reasons. The market of Neutrino (mainly embedded systems and networking 
systems like high speed routers)  pushed the development  of  the multicore support 
early  on,  thus  Neutrino  was one of  the first  RTOSes to  be  available  on embedded 
multicore platforms.
OSE22 is another microkernel-based RTOS. OSE was developed by ENEA, a spin-off of 
Ericsson AB. In OSE, real-time tasks are implemented as processes that communicate 
among them mainly through message passing paradigm. Since memory protection is 
enforced between processes, the OSE kernel is known for its fault-tolerant and high 
availability features, and it is widespread in telecommunication applications.

1.B) SINGLE-SYSTEM IMAGE

Single-System Image (SSI) Operating Systems have been designed in the context of 
cluster computing,  for  the  purpose of  making the  usability  and programmability  of 
clusters easy. An SSI OS gives the application programmer the illusion that a cluster is 
a single computing system with a higher performance. The programmer writes parallel 
applications composed of many processes which communicate to each other by means 
of standard IPC mechanisms. Actually, the OS is capable of seamlessly distributing the 

22 More information is available at: http://www.enea.com.
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workload  over  a  distributed  set  of  homogeneous  machines  interconnected  by  a 
network, migrating applications and data as required in order to make an efficient use 
of the underlying physical resources.
Key features of a SSI OS comprise: migration of processes and threads, load balancing 
strategies,  global  distributed  shared-memory,  management  of  the  cluster  possibly 
supporting dynamic node addition, fault-tolerance, checkpointing and high availability 
capabilities,  scalable  distributed  File-System  and  high-performance  networking 
primitives, special security features needed to manage users, groups and permissions 
in the cluster.
The SSI Operating System concept has been implemented for example in Kerrighed 
[13], openMosix23 (initially based on MOSIX  [15],  the project was officially closed in 
2008) and OpenSSI24. All of them constitute variants of Linux, which add to the kernel 
the fundamental lacking features. A comparison among these approaches can be found 
for example in [14].
SSI systems aim to realise high-performance computing clusters preserving a “local” 
programming model that is unaware of the actual distribution of the load within the 
network. This allows parallel applications initially thought for multi-processor (or multi-
core) systems to easily take advantage of the additional computing resources made 
available across the network, without any need to explicitly code the distribution logic. 
While being one of the main advantages of this kind of systems, it also constitutes its  
very limitation. The actually obtainable performance speed-up depends strongly on the 
communication patterns among the processes composing an application. However, the 
assumptions of the programmer about locality of data and processes are subverted 
when the application is deployed in an SSI  cluster.  The interaction overheads (now 
implying networking latencies) may sometimes nullify the potential advantages due to 
the increased available overall  computing power,  unless the application is  carefully 
coded  considering  the  deployment  environment.  This  kind  of  problems  may  be 
mitigated by proper monitoring and migration strategies at the SSI kernel level, e.g., by 
trying to keep those processes which interact too frequently on the same machine .

1.C) OPERATING SYSTEMS FOR MULTIPLE/MANY CORES

Research on multiprocessor operating systems is active since a long time, much before 
the  multi-core  paradigm  became  so  successful.  Two  broad  classes  of  kernel 
organisation have been proposed by Lauer and Needham  [156]: message-based and 
procedure-based approaches.  In a procedure-based kernel,  there is  no fundamental 
distinction  between  a  process  in  user  space  and  kernel  activities:  each  process 
performs kernel operations via system calls, and kernel resources are represented by 
shared data structures  between processes.  Conversely,  in a message-based kernel, 
each major kernel resource is handled by a separate kernel process, and typical kernel 
operations require message exchanges. The procedure-based approach closely mimics 
the hardware organisation of Symmetric Multiprocessors (SMP) with Uniform Memory 
Access  (UMA):  this  is  the  basic  organisation  underlying  monolithic  kernels.  The 
message-based approach closely mimics the hardware  organisation of  a distributed 
memory multicomputer, and this is the basic organisation of microkernels. As noted by 
Chaves  et  al.  [155],  the  choice  between  procedure-based  and  message-based 
structures has a pervasive impact on the rest of the operating system than any other 
single design decision. The authors then compare two different approaches to kernel-
kernel communication in a NUMA machine without cache coherency: remote memory 
access  versus  remote  invocation.  In  the  first  case,  access  to  shared  resources  is 

23 More information is available at: http://www.openmosix.org.
24 More information is available at: http://www.openssi.org.
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performed by accessing remote memory using a remote locking mechanism; in the 
second case, it is achieved through invoking an operation on the remote node. The 
work is outdated,  because of the advances in hardware architectures, however, some 
of  the  basic  findings  are  of  general  validity:  in  particular,  remove  invocation  is 
preferable for  long operations,  while  remote  memory access is  preferable for  short 
critical sections.
Many different  papers  [155][156] have insisted on  the  tension  between lock-based 
communication  and  synchronisation  versus  remote  invocation.  Depending  on  the 
underlying  hardware  architecture  and  on  the  different  structure  of  the  operating 
system, and depending on the requirements of the applications (performance, security, 
scalability, etc.) sometimes the lock-based approach seems to be the most appropriate, 
sometimes the remote-invocation approach proves to be the best approach.
Andrew Baumann et al. recently proposed an OS model called Multikernel [9] which is 
largely  inspired  by  the  message-based  organisation  described  above:  each  single 
processor and even core inside a processor can be seen as a node of a distributed 
system. One of the basic principles Multikernel relies upon is the absence of shared 
kernel-level data structures.  Each core runs a kernel instance which is independent 
from the other cores. The various kernel instances communicate with each other by 
means of message passing and RPC-like interactions. All kernel-level information and 
status  data  that  needs  to  be  shared  among  multiple  cores  is  therefore  replicated 
between  them,  and  kept  synchronised  by  explicit  protocols.  This  way  all 
communications  among cores and processors  need to  be explicitly  coded,  and this 
naturally leads to asynchronous communication patterns,  largely used in distributed 
systems,  which  enhance  the  possibility  for  the  system  to  parallelise  and  pipeline 
activities, rather than having cores stall waiting for implicit cache coherence protocols 
run by the underlying hardware. Interestingly, in the Multikernel view, the fact that the 
OS does not rely on shared data does not preclude applications to be developed with a 
shared memory paradigm.
Also, Multikernel envisions a hardware-neutral OS model, where for example the part of 
a CPU driver in charge of handling the communications between different cores, may 
actually take advantage of available low-level information about the cores topology and 
their interconnection infrastructure. For example, different hardware-level mechanisms 
may be exploited in  order  to  send messages among cores sharing  a  L3  cache,  as 
compared to the ones needed to send messages among cores that do not share such a 
cache, or reside on different processors (e.g., multi-cast trees, so well-known in the 
domain of distributed systems).
The Multikernel model has been implemented as of now as the Barrelfish25 prototype, 
and  preliminary  measurements  seem  to  be  promising,  especially  on  the  side  of 
scalability of certain critical operations involving all the cores (e.g., TLB shootdown). 
However, the experimental results available so far are to be considered as preliminary, 
in particular since many of the aspects addressed by the Multikernel concept have not 
been  realised  as  yet,  due  to  technological  problems  (such  as  the  hardware 
independence etc.).
Yuan et al. proposed GenerOS [16], a variation of the Linux kernel explicitly addressing 
heterogeneous multi-core systems. In GenerOS, the cache contention on the same core 
due to different types of activities going on within a system is reduced by means of 
partitioning the activities among the available cores. Specifically, the GenerOS kernel 
envisions  a  partitioning  of  the  available  cores  into  three  types:  application  cores, 
dedicated to running applications and specifically exclusively user-space code;  kernel 
cores dedicated  to  running  exclusively  the  kernel-space  part  of  the  system  calls 

25 More information is available at the URL: http://www.barrelfish.org.

http://www.barrelfish.org/


invoked by the applications;  interrupt cores dedicated to servicing interrupt requests. 
This kind of partitioning of activity type into separate cores is made available through a 
set of modifications to the kernel that allow system calls to execute on a core different 
from the application core invoking the functionality. Also, kernel cores run one or more 
kernel servers. Each kernel server is dedicated to one or more system calls, it waits 
continuously for requests of that particular  set of system calls from the application 
cores,  and  serializes  their  execution  by  means  of  the  so  called  “slim  scheduler”, 
avoiding any need for context switches among requests from different applications.
The fact that kernel-space code is handed over to different cores than the ones where 
the main applications code is running, together with the serialisation of kernel-space 
system call executions by the kernel servers, causes a decrease of the contention in 
accessing  the  cache,  when compared with a  plain  Linux  system,  as  shown by  the 
experimental results performed by the authors. However, the serialisation of system 
calls execution is somewhat against the current trend in the Linux kernel: from the 
ancient ages in which the kernel-space code was non-preemptible, in recent years a lot 
of effort has been dedicated just for increasing preemptibility of kernel code, which is 
well-known to reduce latencies and improve responsiveness of the system. Even if the 
presence of multiple cores may mitigate such problem, the situation is not expected to 
be tremendously different when high workloads are in place with a nearly saturated 
system. Therefore, more investigations would be needed in order to understand what is 
the impact  of  the proposed OS model  on various  application  classes,  especially  on 
interactive and real-time ones. An issue of the GenerOS model is constituted by the 
proper OS configuration in terms of balancing among the various types of cores, as well 
as the number of kernel servers and how system calls are distributed across them. In 
the initial prototype, the authors used a static configuration, but they also observed 
that this is one of the troublesome to be faced in their proposed OS model.
Boyd-Wickizer et al. proposed Corey [21], an Operating System designed from scratch 
around the need for allowing applications to make an efficient use of massively parallel 
and multi-core hardware. The authors highlight that kernel-level shared data structures 
may cause unneeded overheads when accessed from multiple cores, even when the 
applications that are being run would not need to share any data. For example, process 
and file descriptor tables are potentially at risk of being contended among multiple 
cores,  even  when  the  applications  running  on  them  are  accessing  independent 
processes and files. Therefore, it is proposed to delegate the responsibility to decide 
what is shared across which cores as much as possible to the application. This is done 
via a specialised API allowing applications to define and control three main elements: 
shares are areas of scope either local to a core or global for a set of identifiers; address 
ranges are  memory segments  explicitly  assigned to  shares;  kernel  cores are cores 
dedicated to the execution of kernel code, i.e., interrupt handlers and the kernel-side 
part of system calls (which are handed over from the application cores to the kernel 
cores). Experimental results seem promising, in that a reduction of the overheads due 
to  contentions  on  kernel-level  data  structures  is  achievable,  at  the  cost  of  a  little 
complexity for  the  application developer,  who needs to  properly  set-up shares and 
address ranges.
Wentzlaff  and Agarwal  proposed the  Factored Operating  Systems (fos)  [22],  an OS 
model that builds on concepts taken from the distributed computing world, in order to 
reduce  contention  on  kernel-level  shared  data  structures.  Specifically,  the  fos 
architecture  foresees  the  partitioning  of  cores  between  applications  and  kernel 
services. Each kernel service is implemented by one or more specialised servers that 
run on kernel cores, and bits of service-based computing are reused for allowing each 



kernel service in distributing its workload to the available kernel servers, similarly to 
load-balancing  techniques  in  web  servers.  The  fos  Operating  System is  still  under 
development, and it is being entirely redesigned from scratch, based on a microkernel 
structure, where the concept of relegating OS functionality within specialised servers 
that communicate by message-passing mechanisms to each other and to applications 
is  already  in  place.  Also,  in  fos,  each kernel  core  runs  a  single  kernel  server  that 
enqueues  requests  in  an  input  queue  and  services  them  in  a  serialised,  non-
preemptible way. This removes (in the opinion of the authors of this approach) the 
need for having traditional temporal scheduling of kernel cores. Actually, it is foreseen 
to have a form of  cooperative scheduling,  by which a kernel  core,  while  serving a 
request, can yield explicitly the core so that it can serve other requests, while it waits 
for some device and/or other kernel servers to respond. The way kernel servers service 
applications requests is planned to be based on stateless protocols, so that subsequent 
requests of the same application can be potentially handed over to different kernel 
servers for a better load distribution across kernel cores.
Interesting investigations in this area have also been carried out by Schubert et al. [1]
[2][3][4].  These are summarised in D5.2  [86],  as they are at  the foundation of  the 
research proposed in the context of the S(o)OS project itself.
All of the above mentioned approaches to the (re-)engineering of the OS kernel model 
for dealing with massively parallel systems are of utmost interest for the purposes of 
the  S(o)OS  project.  However,  these  approaches  are  at  a  quite  preliminary  and 
conceptual  stage,  with  only  some  of  them  having  experimental  prototype 
implementations. Therefore, these do not constitute consolidated approaches proved 
to  be  industrially  viable,  feasible  and  understandable  for  a  wide  audience.  More 
research needs to  be performed on this  side,  addressing  scalability,  efficiency and 
programmability issues for all of the sub-components of an OS kernel, and investigating 
on  the  achievable  trade-offs  between  overall  system  and  individual  applications 
performance and responsiveness.

1.D) OPERATING SYSTEMS FOR GRIDS

Proposals have appeared in the literature for Operating Systems specifically targeted at 
supporting GRID systems. For example, Padala and Wilson proposed  [10] a GRID OS 
that has the goal of providing a minimum set of services which are common to all GRID 
middleware  infrastructures,  still  building  on a  traditional  OS like  Linux  with  as  few 
changes  as  possible  (in  fact,  additional  features  required  at  the  kernel  level  are 
provided through Linux loadable kernel modules). The core functionality that needs to 
be added to the OS, according to the authors, is: high-performance I/O and networking, 
for example relying on copy-free communication primitives and fine-tuning of network 
stack parameters such as the TCP/IP window size; communication primitives with a 
better support for such mechanisms as MPI; resource management features allowing 
for  resource  discovery,  allocation,  monitoring;  process  management  capabilities 
supporting  for  example  global  identifiers  for  processes,  which  may be used in  the 
mentioned communication primitives for distributed IPC. The point that is made by the 
authors,  and validated by the presented experimental  results,  is  that  implementing 
such services merely at the middleware level, outside the kernel, as commonly done in 
existing  GRID  middleware  solutions,  constitutes  a  bottleneck  in  the  potentially 
achievable performance.
More recently, Puri and Abbas conceptualized  [11] a GRID OS aimed to support GRID 
applications, by means of embedding within the OS itself such capabilities as: fault-
tolerance and check-pointing, transparent access to distributed resources in a location-



independent  fashion,  load  balancing  by  means  of  migration  of  processes  and 
virtualization, and scalability. However, the paper remains at a very abstract level, and 
it does not discuss practical implications of the envisioned architecture, such as what is 
required to be supported at the kernel level  and what can be delegated to the OS 
middleware.
The XtreemOS European Project26 produced XtreemOS [17], a variation of the Linux OS 
enhanced with Grid capabilities. The XtreemOS extensions to Linux include: LinuxSSI, a 
single-system image version of Linux based on Kerrighed [13] which allows to register 
into the XtreemOS Grid a cluster of systems virtually seen as a single, more powerful 
machine; XtreemFS [18], a networked file-system supporting automatic replication and 
high-availability of data; process checkpointing; a middleware for management of Grid 
nodes  and  submission  of  tasks;  XOSAGA  [20],  an  application-level  API  for  Grid 
applications  which  constitutes  an  implementation  of  the  abstract  language-
independent SAGA [19] specification, with some XtreemOS specific extensions.
Starting  from release 10.4,  the Mac OS-X Operating System embeds a simple Grid 
management  middleware  called  Xgrid  [12],  which  is  immediately  available  on  all 
installations of the OS, if the corresponding service is activated. Xgrid has a three-tier 
architecture: clients submit jobs to controllers, which in turn hand them over to agents 
for the actual processing. Clients may submit jobs to the Grid by means of either a 
command-line tool, or a dedicated API which is part of the OS foundations API. In order 
to share large amounts  of  data among Grid  tasks,  it  is  possible  to  use one of  the 
available distributed filesystems, such as NFS. Xgrid is targeted to an easy set-up of 
Grids  with  no  strong  requirements  on  the  number  of  interconnected  nodes  and 
complexity of the submitted jobs. For example, only linear workflows are supported, 
whereas for more complex Grid settings one can install on the OS one of the other 
more  complex  Grid  management  middleware  solutions.  Mac  OS-X  10.5  introduced 
Xgrid 2,  with some enhancements  on the job scheduling decisions,  such as the so 
called Scoreboard, i.e., a customizable scoring script that may be provided by clients in 
order to drive the decisions made by controllers about what agent nodes to choose 
when multiple ones are available. The script may base its score on the availability of 
particular capabilities of the agent node, or the connection/connectivity conditions, etc. 
This is useful for increasing the performance of the deployed applications.

1.E) OPERATING SYSTEMS FOR HPC
As detailed in section V. on high performance computing, in classical cluster systems, 
each processor (in the sense of smallest compute unit) hosts its own operating system 
environment. HPC jobs typically run on the system in an exclusive way, in order to 
achieve maximum performance. This means that the respective execution environment 
does not have to deal with scheduling issues, scale management etc. Essentially, the 
operating  system  therefore  primarily  serves  the  same  purpose  as  a  virtualisation 
system, i.e. it abstracts from the underlying hardware and deals with I/O of the system, 
in  particular  for  accessing  shared  resources  and  communication  between  threads, 
respectively processes. This means implicitly that many of the functions in a general 
purpose operating  system are obsolete for HPC usage and can (should) be removed 
from the kernel, in order not to produce unnecessary overhead.
As noted, it is thereby of particular relevance for efficient parallel computing that the 
specific characteristics of the hardware are exploited to their maximum potential, such 
as  the  memory  architecture  of  the  systems.  Therefore,  the  operating  system  is 
typically specifically adapted to the environment, so as to reduce performance loss due 
to misalignment. 

26 More information is available at: http://www.xtreemos.eu.
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Essentially, most HPC providers therefore reduce the operating system to an essential 
minimum and adapt the kernel to the specific environment.  Obviously,  Linux is the 
primary choice in such cases, due to its open source nature. Microsoft Windows and 
even Apple Mac OS-X have been demonstrated to work for HPC clusters, too27, yet their 
performance and the overhead for adaptation typically does not fulfill the expectations 
– as such, there are for example 475 Linux / UNIX based systems on the Top 500 28 list 
(in which systems are  ranked by their performance on the  LINPACK Benchmark [87]
[88]), but only 5 Windows based ones (and none for Mac OS-X)29. With the increasing 
heterogeneity and hence divergence between supercomputer setups and at the same 
time the growing scale of affordable high performance machines, it is likely that this 
distribution will change slightly in the near future (see D5.2 for details). 
Currently, the most widely used Linux distributions are probably30 :
Red Hat Linux31 and SUSE Linux Enterprise32 are widely used33 mainly due to the range 
of system architectures they support (namely: x86 32 & 64 bit, Itanium IA-64, PowerPC 
32 & 64 bit), even though official Red Hat Linux releases are comparatively rare (latest 
official release was in 2003).
The Scientific Linux34 distribution is typically preferred over the Red Hat distribution, 
which is 100% compatible  with Red Hat Linux. As opposed to the Red Hat version, 
Scientific Linux however is available for free and adaptations to individual systems are 
maintained  by  the  community  rather  than  by  Red  Hat.  Even  though  reliability  is 
decreased this way, the distribution adapts quicker to new systems. Scientific Linux 
supports the following architectures: x86 32 & 64 bit, Itanium IA-64.
CentOS35 is another popular Linux distribution which bases on Red Hat Linux and is 
available free of charge. Like Scientific Linux it is mainly maintained by the community, 
yet  the  latest  versions  only  support  the  x86  architectures  thus  making  it  less 
interesting in the future. At the time of writing, 7 machines in the top 500 made use of 
CentOS.
Even  UNIX  based  operating  systems  are  still  in  use  on  HPC  clusters,  as  they 
generally  scale  quite  well.  With  a  few  exceptions,  they  are  mostly  commercially 
distributed  which  makes  them less  attractive  than  Linux  in  particular  in  academic 
circles.  The number  of  UNIX  systems in  the  top  500  basically  decreases,  with  the 
particular  exception  of  AIX  which  ships  with  the  IBM  machines  and  supports  in 
particular  the  PowerPC  and  the  IA-64  architecture,  making  it  attractive  for  the 
according clusters.
Though Lameter claims that Linux scales well enough for future large scale platforms 
[118], it must be noted that this is mostly true for the number of processes but not the 
number of processors [119][9]. The authors furthermore claim that due to messaging 
overhead, a microkernel approach is not a feasible alternative to Linux, yet as Barham 
et al.  could show, the messaging approach scales better than the Linux monolithic 
structure [9].

27 More information is available at: http://hpc.sourceforge.net/.
28 More information is available at: http://www.top500.org/.
29 More information is available at: http://www.top500.org/stats/list/35/osfam.
30 More information is available at: http://www.clusterbuilder.org/software/operating-system.php.
31 More information is available at: http://www.redhat.com  .  
32 More information is available at: http://www.novell.com/linux  .  
33 At the time of writing this, 18 machines in the top 500 use either distribution.
34 More information is available at: http://www.scientificlinux.org  .  
35 More information is available at: http://www.centos.org  .  
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2. SCHEDULING

One of the core features of an Operating System is its ability to multiplex the access to 
the available physical  resources to multiple processes/threads that run at the same 
time onto the system. Some resources may be managed in an exclusive way, i.e., only 
one application at  a time is  granted access to it.  Other resources, and particularly 
processor(s)  and  disks,  are  managed  in  a  shared  way,  so  that  the  competing 
applications  alternate  in  accessing  the  resource(s)  according  to  some  scheduling 
policy.  For  the  CPU,  General-Purpose  OSes  usually  provide  Round-Robin  based 
scheduling, where the ready tasks alternate each other after a certain time-slice which 
may  be  fixed  or  dynamically  changing.  GPOSes  have  usually  scheduling  policies 
designed so as to achieve a high overall system throughput, and to serve processes on 
a  Best-Effort  (BE)  basis,  i.e.,  no  guarantees  can  be  provided  to  the  individual 
applications. On the other hand, Real-Time OSes have usually scheduling policies which 
are capable of providing precise scheduling guarantees to the competing applications. 
To this purpose, RTOSes undertake an admission-control phase, in which a new process 
is accepted into the system only if its timing requirements may be fulfilled, and the 
ones of the already accepted processes are not disrupted.

2.A) REAL-TIME SCHEDULING

The traditional  real-time scheduling research area focuses mainly on hard real-time 
systems,  where  deadlines  are  considered to  be  critical,  in  the  sense that  deadline 
misses cannot  be tolerated, because they lead to the complete system failure and 
possible catastrophic consequences (i.e. losses of life).
However, real-time theory and methodologies are gaining applicability in the field of 
soft  real-time systems,  where applications  possess  precise timing and performance 
requirements, but occasional failures in meeting them may be easily tolerated by the 
system, causing a graceful degradation in the quality of the provided service.
The real-time literature on soft real-time technologies for General purpose operating 
systems (GPOSes) is growing, and two major research branches to mention, with some 
relevance for the IRMOS project, are those relative to: multiprocessor scheduling, soft 
real-time scheduling, QoS control in distributed real-time applications and adaptive QoS 
control, detailed below.

SCHEDULING REAL-TIME TASK SETS ON MULTIPROCESSOR PLATFORMS
Even  if  the  concept  of  multiprocessing  has  always  been  present  in  the  real-time 
community, only recently it is receiving a significant attention, thanks to the increasing 
industrial interest in such platforms, and their consequent increasing availability. While 
the scheduling  problem for  uni-processor  systems has been widely  investigated for 
decades, producing a considerable variety of publications and applications, there are 
still  many  open  problems  regarding  the  “schedulability”  analysis  of  multiprocessor 
systems. As pointed out by Liu in his seminal paper [193]: “few of the results obtained 
for a single processor generalise directly to the multiple processor case: bringing in  
additional processors adds a new dimension to the scheduling problem”.
Unfortunately, predicting the behaviour of a multiprocessor system requires in many 
cases a considerable computing effort. To simplify the analysis, it is often necessary to 
introduce pessimistic assumptions. This is particularly needed when modelling globally 
scheduled  multiprocessor  systems,  in  which  the  cost  of  migrating  a  task  from  a 
processor to another can significantly vary over time. The presence of caches and the 
frequency of memory accesses have a significant influence on the worst-case timely 
parameters that characterize the system. To bind the variability of these parameters, 



often real-time literature focuses on platforms with multiple processors but  with no 
caches,  or  whose  cache  miss  delays  are  known.  Also,  the  cost  of  preemption  and 
migration on multi-processor systems is a very important issue that still needs to be 
properly  considered  in  real-time  methodologies.  Some  research  in  the  domain  of 
hardware architectures moves towards partially mitigating such issues. Recently, a few 
architectures  have  been  proposed  that  limit  penalties  associated  to  migration  and 
cache  misses,  for  example  the  MPCore  by  ARM.  Some  researchers  have  recently 
proposed hardware implementations of some parts of the operating system, allowing 
one to reduce the scheduling penalties of multiprocessor platforms [236].

SCHEDULING ON MULTIPROCESSOR
When deciding which kind of scheduler to adopt in a multiple processor system, there 
are two main options: partitioned scheduling and global scheduling:

Partitioned scheduling

In a partitioned scheduler, there are multiple ready queues, one for each processor in 
the system, and it is possible to leave a processor in idle state even when there are 
ready tasks needing to be executed. Each queue is managed according to (well-known) 
uni-processor scheduling algorithms, and task migration is not allowed. The placement 
of tasks among the available processors is a critical step. The problem of optimally 
dividing the workload among the various queues, so that the computing resources be 
well utilised, is analogous to the bin-packing problem, which is known to be NP-hard in 
the strong  sense  [237][238].  This  complexity is typically  avoided using sub-optimal 
solutions provided by polynomial and pseudo-polynomial time heuristics. Example of 
policies used for this purpose are First Fit, Best Fit, Next Fit, First Fit with decreasing 
utilizations, etc. [241][242][243][244].
Partitioned scheduling is commonly used in real-life multi-processor systems, due to 
the fact that overheads due to continuous synchronisation and contention among cores 
typical  of  global  scheduling  are avoided,  and that  it  allows for  analysing  a system 
similarly to what can be done in a distributed system with various single-processor 
elements.

Global scheduling

For  task  sets  with  highly  varying  computational  requirements,  instead  of  wasting 
computational power by repeatedly invoking complex load-balancing algorithms, it is 
better to use a global scheduler. This way, tasks are extracted from a single system-
wide queue and scheduled onto the available processors. The load is thus intrinsically 
balanced, since no processor is idled as long as there is a ready task in the global  
queue.
A class  of  algorithms,  called  Pfair  schedulers  [245],  is able  to  ensure  that  the  full 
processing capacity can be used, but unfortunately at the cost of a potentially large 
run-time  overhead.  Migrative  and  non-migrative  algorithms  have  been  proposed 
modifying well-known solutions adopted for the single processor case and extending 
them to  deal  with  the  various  anomalies  [269] that  arise  on  a  parallel  computing 
platform.
Complications in using a global scheduler mainly relate to the cost of inter-processor 
migration, and to the kernel overhead due to the necessary synchronisation among the 
processors for the purpose of enforcing a global scheduling strategy. Even if there are 
mechanisms  that  can  reduce  the  migration  cost,  it  could  nevertheless  cause  a 
significant schedulability loss when tasks have a large associated context (i.e. data 



overhead). Therefore, the effectiveness of a global scheduler is rather dependent on 
the application characteristics and on the architecture in use.

Hybrid schedulers 

In addition to the above classes, there are also intermediate solutions, like hybrid- and 
restricted-migration schedulers. A hybrid-migration scheduler  [250] limits  the number 
of processors among which a task can migrate, in order to limit the number of caches 
in which the task image is present. This way, fewer cache misses are expected, and the 
cost of migration and context changes is lower. This method is more flexible than a 
rigid  partitioning  algorithm  without  migration,  and  it  is  particularly  indicated  for 
systems with a high number of processors (with tens of CPUs), where moving a task 
from a computing unit to a distant one would imply significant overheads.
A restricted-migration  scheduler  instead allows for  task  migrations,  but  only  at  job 
boundaries, i.e., before a job starts to be executed or at the end of its execution. In this 
way, the amount of information that must be transferred while migrating a task from 
one processor to another is likely to be less than the full migration case [251]. A similar 
method consists in using a global scheduler with preemptions disabled: this way, once 
a  job  starts  executing  on  a  CPU,  it  is  not  possible  to  preempt  it  until  the  end of 
execution,  so  that  migration  can never  take  place  [252].  However,  note  that  non-
preemptable  systems can incur  in  significant  schedulability  losses,  due to potential 
delays caused by long chunks of code that can execute without being interrupted.

Soft real-time scheduling

Different scheduling algorithms have been proposed to support the specific needs of 
soft  real-time  applications.  A  first  important  class  approximates  the  Generalized 
Processor Sharing concept of a fluid flow allocation, in which each application using the 
resource marks a progress proportional  to its weight.  Among the algorithms of this 
class, we can cite Proportional Share [260] and Pfair [245]. Similar are the underlying 
principles of a family of algorithms known as Resource Reservation schedulers [262]. In 
the  Resource  Kernels  project  [262],  the resource  reservation  approach  has  been 
successfully applied to different types of resources (including disk and network). Also, it 
is noteworthy to mention that the current scheduler in the main-stream Linux kernel, 
known as Completely Fair Scheduler (CFS), is basically a variation of the Proportional-
Share  idea.  The  Resource  Reservation  framework  has  been adapted  to  partitioned 
multiprocessor systems in  [258] and  [259] for  the Constant Bandwidth Server (CBS) 
and the Total Bandwidth Server (TBS) algorithms, respectively.

Design of distributed real-time applications

The problem of designing scheduling parameters for distributed real-time applications 
has received a constant attention in the past few years. In [264], the authors introduce 
a notion of transaction for real-time databases characterized by periodicity and end-to-
end  constraints  and  propose  a  methodology  to  identify  periods  and  deadlines  of 
intermediate tasks.  A similar approach is taken in [265], in which activation periods of 
the  intermediate  tasks  that  comply  with  end-to-end  real-time  requirements  are 
synthesized by an optimization problem. In [266], the same idea is applied to soft real-
time applications.  In this  case  the authors  use performance  analysis  techniques  to 
decide the bandwidth allocated to each task that attain a maximum latency and a 
minimum average throughput for the chain of computation.
Concerning modelling of timing requirements of real-time applications, usually models 
similar  to  synchronous  data-flow  networks  [267] are  used.  As  shown in  [268], 
synchronous  data  flow  networks  lend  themselves  to  an  effective  code  generation 



process, in which an offline schedule is synthesized that minimizes the code length and 
the buffer size. The models used in [270], [271] and [272] are also a special cases of 
synchronous data-flow, but, due to the inherently distributed and dynamic nature of 
the considered applications, the aim is not an optimized offline scheduling of activities, 
but rather an efficient on-line (run-time) scheduling mechanism. Finally, in  [273] the 
problem  of  optimum  deployment,  over  a  physical  heterogeneous  network,  of 
distributed real-time applications with computing and networking requirements subject 
to end-to-end response-time constraints  is tackled by introducing a formalisation in 
terms of a Mixed-Integer Non-Linear Programming optimisation program. The authors 
propose both  a deterministic  and a probabilistic  formalisation  of  the  problem,  with 
various  possible  optimisation  goals.  Once  solved,  the  solution  not  only  provides 
information  about  where  to  deploy  the  various  real-time  components,  but  it  also 
provides  the  scheduling  parameters  to  be  used  for  configuring  the  local  real-time 
schedulers over the CPUs, and the bandwidth figures to be reserved over the physical 
links.
In the context of the S(o)OS project, complex real-time applications may have several 
threads spread over multiple cores and processors within a many-core system. The 
problem of  how to exactly perform the deployment of  the various  threads may be 
inspired  to  the  above  mentioned  research  works.  However,  for  scalability  reasons, 
distributed approaches in which sub-optimum solutions are found with a collaborative 
set  of  computations  carried out  by more cores/processors  should be favoured over 
centralised  approaches  which  may  easily  turn  out  to  be  infeasible  on  large  scale 
systems.

3. SYNCHRONISATION

Synchronisation  is  an  essential  problem  of  concurrent  programming,  and  it  has 
received a great attention from the research community. The problems of concurrent 
access and of providing a consistent view of shared data structures can be solved in 
different ways, depending on the abstraction level and on the basic organization of the 
operating  system  and  programming  paradigm.  The  basic  properties  that  correct 
concurrent  programs must possess were described by Herlihy and Wing  [165],  and 
solutions have been proposed both for shared-memory and message-passing. 

SHARED-MEMORY
In the shared-memory paradigm all processors can access the same memory, uniformly 
(UMA machines) or non uniformly (NUMA machines). In the following, we abstract from 
low-level mechanisms for providing shared-memory, as long as all the processors have 
a consistent and coherent view of the memory. 
The basic mechanism to guarantee mutual exclusion is to use locks. In its basic form, 
every shared data structure can be associated with a a lock, which is just a Boolean 
variable that can be false (meaning that no process is accessing it) or true, meaning 
that a process is accessing it, so the other have to wait for the previous process to 
complete. Locks are usually implemented using special atomic operations, like  test-
and-set, fetch-and-store or compare-and-swap. A lot of work has been done to improve 
the basic locking mechanism. Mellor-Crummey and Scott  [168] solved the problem of 
reducing  contention  on  the  shared  bus  by  using  separate  spin  variables  for  each 
processor on which each core performed busy waiting. Their solution, called MCS locks 
from the names of the authors, also resolves the typical problems with fairness and 
starvation under high contention scenarios. Many papers have proposed improvements 
on this basic mechanism, e.g., to introduce time-out  [169], to reactively change the 



lock behaviour [170], to balance overhead vs. latency using a mixed coarse-grain/fine-
grain locking strategy [171]. 
Higher level concurrency control objects (e.g., semaphores) are built on top of low-level 
locks. The main difference is that when the resource is busy, a low level lock performs 
a busy wait (spin-lock) while a high level object will block the process and invoke the 
scheduler.  Of  course,  this  second option has a  substantially  higher  overhead,  as  it 
involves a scheduler call  and one context switch.  Moreover,  waking up requires an 
inter-process interrupt. Depending on the contention level, and on the duration of the 
critical section, it may be more convenient to perform non preemptive busy waiting or 
to  block  the  process.  Mukherjee  and  Schwan  [175] proposed  an  adaptive  locking 
protocol, that chooses which method to use (blocking or busy waiting) depending on 
the characteristics of the application (e.g., the typical duration of critical sections).
A different approach consists in making a local copy of the data structure (or of part of 
it), modify it, and later try to commit the changes in the global copy without disrupting 
the linearisability property [165]. This class of approaches is usually referred to as lock-
free or non-blocking or wait-free [166]. In general, wait-free techniques are much more 
difficult to program than lock-based techniques, hence they are rarely implemented in 
actual  systems; also, the commit phase may fail,  and in such a case the operation 
needs  to  be  repeated  one  or  more  times  until  the  commit  succeeds.  Under  high 
contention, it is difficult to bound the execution time of the operation. However, many 
wait-free  algorithms  have  been  proposed  for  common data  structures,  like  priority 
queues  [173],  or  stacks  [174].  Transactional  memory has  been  proposed  as  a 
hardware-level support for wait-free mechanisms  [167]: the idea is to provide simple 
hardware mechanisms to support the implementation of wait-free algorithms.
For  data  structures  where  reading  is  more  frequent  than  writing/updating,  special 
mechanisms have been proposed to reduce contention, such as the Read-Copy Update 
(RCU) mechanism [172], widely adopted within the Linux kernel for accessing critical 
shared  lists.  With  RCU,  readers  are  allowed  to  just  read  (and  walk  through)  the 
common shared list elements without any synchronisation; a writer modifies the list by 
atomically manipulating pointers so as to insert new items in the list or delete existing 
ones. In the latter case, one or more readers possibly accessing the deleted element 
will keep seeing the element, which can only be discarded at specific instants (called 
quiescent states) when no process is reading or writing it (e.g., idle instants, scheduler 
calls, etc.).
Which locking mechanism is more adequate? McKenney [181] provides a comparison of 
several  techniques  in  the  form  of  patterns,  from different  points  of  view:  latency, 
memory bandwidth, memory size, granularity, fairness and read-write ratio. There is no 
clear winning strategy and every mechanism has its advantages and disadvantages. A 
similar comparison has been carried out by Anderson [162].

MESSAGE-PASSING
In the message-passing paradigm, each resource is assigned a server thread which 
exclusively  performs  operations  on  the  data  structures  of  the  resource.  Mutual 
exclusion is thus guaranteed by the fact that only one thread has exclusive access to 
data. Other threads (clients) must request the operation by issuing a remote invocation 
via an IPC. This organisation mimics distributed systems where nodes do not share 
memory. The MPI interface [176] is based on this paradigm.
From the point of view of the kernel in multiprocessor systems, it is worth comparing 
the performance of message-passing vs. shared memory communication.  Chavez et al. 
[163] perform a comparison of shared-memory communication based on spin-locks vs. 
remote  invocation  in  a  NUMA multiprocessor  architecture.  Another  comparison  has 



been  proposed  by  Chandra  et  al.  [180].  They  highlight  that  the  server  can  be 
implemented as an interrupt handler or as a thread. In the first case the overhead is 
minimal, however the implementation is more difficult as an interrupt handler is not 
subject to the kernel scheduler and cannot block. In the second case, the overhead is 
larger but the advantage is that the implementation is easier. Performance is highly 
dependent on the underlying hardware structure, memory hierarchy (UMA or NUMA, 
presence of cache coherency, etc.),  however it can be generally said that message 
passing is more adequate for long critical operations on processors with high memory 
access delay, while shared memory is preferable on short critical section on local data 
structures. It is important to underlying that if two servers on two different resources 
are executed on the same node, their operations will be serialized, and this in some 
case may be an unnecessary restriction of parallelism. On the other hand, it is worth 
noticing that providing lock-based access to remote memory may be expensive and 
unnecessarily increase the level of contention. 
Clearly, it is possible to mix shared memory locking and remote invocation [178][179]. 
Recently, Uhlig [177] proposed to use IPC or shared memory locking depending on the 
locality of the data structure with respect to the current node, and to use an adaptive 
locking mechanism depending on the level of contention. 

4. SYNCHRONISATION AND SCHEDULING

When multiple tasks need to access a shared resource or data structure, they need to 
synchronise each other, in order to avoid performing the access at the same time. The 
basic synchronisation means is constituted by a binary semaphore, which, if already 
taken,  causes the  process  attempting  to  acquire  the  lock  to  be  suspended  by the 
scheduler,  and  be  woken  up  later  when  the  lock  owner  exits  the  critical  section. 
However, a great research effort has been done in two very important domains: in the 
literature of real-time scheduling, it is important to ensure that the amount of time a 
process has to wait before acquiring a lock may be some how kept under control; also, 
in multi-processor and multi-core scheduling, if the acquired resource is held by a task 
on another  processor,  and the  critical  section is  expected to  be very short  (like  it 
happens quite often in the kernel of an OS), then suspending the current task and 
performing a context-switch might lead to unnecessary overheads, whilst other policies 
may be more convenient (e.g., spin-locking). Interestingly, the PREEMPT_RT branch of 
the Linux kernel has an option [276] for turning (almost) every spin-lock primitive used 
inside the kernel into a mutex.
In the following, we summarise the most important research works on these topics:

4.A) SHARED RESOURCES PROTOCOLS IN REAL-TIME  
SCHEDULING

There are well-known efficient protocols  to arbitrate the exclusive access to shared 
resources for  real-time task sets scheduled on a single  processor platform:  Priority 
Inheritance (PI), Priority Ceiling Protocol (PCP) [253], Dynamic Priority Ceiling Protocol 
(DPCP) [254] and Stack resource Policy (SRP) [255]. Each one of these protocols allows 
for solving the “priority-inversion” problem, that takes place when a task is blocked by 
a lower priority one at the beginning of a critical section accessing a shared resource. 
The SRP ensures that  a  task can never be blocked once it  started executing.  This 
minimises the number of context switches, allows all tasks to be executed on a single 
stack, and prevents deadlocks.
The problem of designing shared resource protocols for real-time systems scheduled on 
more than one processor has been analysed in different papers. Most of them [66][67]



[69][68][76] are extensions of well-known approaches that have been developed for 
uniprocessor systems. Others, instead, mandate that each short global critical section 
be executed non-preemptively, reducing the occurrence of  remote blocking [74][75], 
i.e., a task that blocks in the attempt to lock a global resource which is already locked 
by another task running on a different processor. We will hereafter summarise the main 
characteristics of these solutions, distinguishing between solutions for partitioned and 
global  scheduling.  Global  schedulers  have  a  single  system-wide  queue  from which 
tasks are extracted to be scheduled on the available processors.  Note that,  with  a 
global scheduler, a task might be preempted by a higher priority job, and later resume 
its execution on a different processor. This process is called migration of the task. With 
a partitioned scheduler, instead, tasks are statically assigned to processors, so that 
they are bound to execute on that processor and cannot migrate.

PROTOCOLS FOR PARTITIONED SCHEDULING
Adaptations of the above policies for partitioned multiprocessor real-time environments 
are given by the Multiprocessor PCP proposed by Rajkumar et al. in [256], and by the 
MSRP protocol proposed by Gai et al.  in [257]. The Multiprocessor PCP is basically an 
extension to partitioned systems of the uniprocessor Priority Ceiling Protocol (PCP) [65]
[66]. Since each global resource is controlled by one particular processor, the solution 
proposed in [66] is not so suitable for shared-memory multiprocessors. For this reason, 
an improved MPCP version [67] was proposed. According to this policy, local resources 
– i.e., resources that are shared only within tasks assigned to one specific processor – 
are arbitrated using the classic uniprocessor PCP. Global critical sections – accessing 
resources that are shared among more than one processor – are executed at a priority 
higher  than  any  non-critical  section  of  code.  This  allows  for  reducing  the  remote 
blocking  experienced by  the  system,  making  it  a  function  of  critical  sections  only. 
Whenever a task cannot lock a global resource because it is locked by a different task,  
the task is blocked  and it is inserted in a prioritized queue, using the normal priority as  
the key for the queue insertion. When the lock is released, the highest priority task in 
the queue can acquire the lock. Since a task is suspended whenever it is blocked on a 
shared  resource,  lower  priority  tasks  can  execute  and  lock  some  other  shared 
resources. When the blocked task resumes execution, it might experience additional 
blocking due to the (global or local) shared resources meanwhile accessed by lower 
priority tasks. The blocking factors to be accounted for are therefore multiple and can 
be significantly large. Moreover,  deadlock conditions  are possible  in case of  nested 
critical sections unless a proper ordering of the lock operations is used.
To avoid these problems, an alternative approach is to prohibit lower priority tasks to 
lock  any  resource  while  a  higher  priority  task  is  blocked  in  the  same  processor. 
Alternatively, the blocked task might busy wait until resource access is granted again, 
forbidding the execution of lower priority tasks. However, even if the blocking factors 
are  significantly  reduced,  both  approaches  introduce  some inefficiency,  in  that  the 
processor is left unused whenever a high priority task is blocked on a global resource, 
increasing the interference on lower priority tasks. Schedulability tests and partitioning 
algorithms for MPCP with suspension and busy wait have been recently presented in 
[68].
Extensions of MPCP for partitioned EDF scheduling have been proposed by Chen and 
Tripathi  [69]. Global critical sections were executed non-preemptively and they were 
not allowed to be nested with local critical sections. However, their method is valid only 
for the more restrictive periodic task model, and not for the sporadic one.



Among busy-waiting  approaches, Gai et al. presented  [70] the Multi-processor Stack 
Resource Policy (MSRP), generalizing to multi-processor systems the SRP protocol [71]. 
Global critical sections are executed non-preemptively, and access to global resources 
is implemented with FIFO-based spin-locks: tasks that are waiting for a global resource 
insert their requests on a global FIFO queue, without surrendering the processor until 
the resource is granted. To avoid deadlocks, global critical sections cannot be nested. A 
less efficient solution based on SRP for partitioned EDF scheduling has been proposed 
by  Lopez  et  al. [72],  assigning  to  the  same  processor  all  tasks  sharing  the  same 
resource.

PROTOCOLS FOR GLOBAL SCHEDULING
The problem of mutually exclusive access to shared resources for global scheduling 
algorithms has only recently been analysed [73][74][75][76]. Devi et al. proposed [74] 
a  straightforward  modification  to  the  global  EDF scheduler,  with  a  locking  protocol 
based on the non-preemptive execution of global critical sections and with FIFO-based 
wait  queues.  Holman and Anderson  designed locking protocols  for  Pfair  schedulers 
[73].  Block  et  al. implemented  the  FMLP  protocol  [75],  validating  it  for  different 
scheduling strategies, namely, partitioned EDF, global EDF, and Pfair scheduling. Short 
critical sections are handled using spin-locks with FIFO-based wait queues, while long 
critical sections are arbitrated using a priority inheritance protocol similar to PCP [65]
[66]. In all of the above approaches, the problem of accessing nested shared resources 
is either avoided – forbidding the nesting of critical sections – or it is solved by limiting 
the degree of locking parallelism – i.e., protecting nested critical sections with group 
locks. Very recently, Easwaran and Andersson proposed [76] two different protocols for 
the arbitration of the access to shared resources in multiprocessor systems globally 
scheduled with Fixed Priority. The first one (PIP) is a generalization to global scheduling 
of  the  Priority  Inheritance Protocol [65][66].  The second one  (P-PCP)  implements  a 
tunable trade-off between PIP and a ceiling-based protocol that limits the number of 
times a job can be blocked by lower priority tasks. In the same paper, schedulability 
tests based on response time analysis were presented for both protocols.

SHARED RESOURCES PROTOCOL IN THE LINUX KERNEL
The  design  criteria  and  performance  metrics  mainly  adopted  by  Linux  kernel 
developers  is  overall  system throughput  and  fairness.  However,  although  real-time 
behaviour and predictability have not been a primary concern until now, Linux embeds 
a  few  features  that  are  commonly  included  in  real-time  kernels,  and  the 
synchronization sub-system does not constitute an exception to that.
In a Linux system, support  for mutual  exclusive access to shared memory areas is 
provided at both kernel and user level. In the latter case, this is achieved by means of  
system libraries (e.g., the glibc library). From the real-time analysis point of view, this 
means that  the well-known phenomenon of  Priority  Inversion may occur,  in such a 
system. However, the Linux kernel embeds some precautions against it,  as detailed 
below.

Synchronisation inside the kernel: mutexes and RT-mutexes

Inside the kernel, critical sections can be protected mainly by spinlocks, mutexes and 
RT-mutexes. There are other means of regulating the access to sensible code, such as 
read-writer locks, RCU approaches, and some others, but describing them in details is 
out of the scope of this document.
Spinlock Spinlocks  are  busy-waiting,  non-preemptable  locks  typically  used  for 
protecting small code sections of critical kernel paths. Being non-preemptable makes 



them real-time safe to some extent – since the Non-Preemptive Protocol  (NPP) is a 
known priority inversion control  technique. However,  a code section protected by a 
spinlock is required to be very short, to not “sleep” or block on any other lock and to 
not invoke any other code that does such.
Mutexes Mutexes are binary semaphores, and they are quite widespread, protecting 
many  of  the  critical  sections  inside  the  kernel.  Their  use  is  subject  to  almost  no 
limitation, but they do not deal with priority inversion avoidance.
RT-mutexes  RT-mutexes are mutexes with support for Priority Inheritance (PI), i.e., 
the owner of  a  RT-mutex inherits  dynamically  the priority  of  the  task  with highest 
priority blocked on the same rt-mutex, if such priority is higher.
In the Linux implementation of PI, the concept of pending ownership is supported as a 
performance  optimization  to  allow  uninterrupted  workflow  of  a  (high  priority)  task 
repeatedly locking and releasing the RT-mutex.
When  an  rt-mutex  is  released,  the  highest  priority  waiting  task  is  woken-up  and 
assigned its /pending ownership/, i.e., it becomes the pending owner of that rt-mutex. 
Hence,  it  will  try to lock the mutex as soon as it  is  scheduled.  If  nothing happens 
between these instants, the pending owner will be able to lock the rt-mutex, becoming 
its effective owner.
However, it might happen that some other task – very likely with a higher priority – 
tries to lock the rt-mutex before the woken-up task is scheduled again. In that case, the 
priority of the newcomer and of the pending owner are checked, and the lock will be 
granted to the higher priority one.
RT-mutexes are optimised for fast path operations, i.e., both acquiring and releasing 
them reduces  to  a  cmpxchg instruction  (atomic  compare  and  exchange,  nowadays 
supported by most of the available hardware architectures) in the uncontended case.
If the RT-mutex is contended (the so-called slow path), locking means: if the RT-mutex 
has not an owner but it has got a pending owner it can be locked only if the priority of 
the pending owner is lower than the one of the locking task; if the RT-mutex has an 
owner or stealing the pending ownership failed, the locking task is blocked and the 
priority of the RT-mutex owner is updated accordingly.
Conversely, unlocking of a contended RT-mutex means: wake up the blocked task with 
highest  priority  and  give  him the  pending  ownership  of  the  RT-mutex;  update  the 
priority of the unlocking task accordingly.
In mainline Linux, the only subsystem which uses RT-mutexes is the futex interface, 
used to offer to user space application locking and synchronization mechanisms as 
required by the POSIX standard  [78],  which include priority inheritance and priority 
protection (more on this later).
On the other hand, in PREEMPT_RT – a patch maintained by a small developer group 
led by Ingo Molnar, with the aim of making the kernel suitable for very low latency and 
real-time applications – things are quite different: In fact, when this patch is applied, 
most of the spinlocks and mutexes are turned into RT-mutex. Since this enormously 
shortens  the  duration  of  in-kernel  non-preemptable  sections  and  enforces  priority 
inversion avoidance, this might negatively impact the overall system throughput, but it 
also reduces the performance and predictability gap between Linux and classical real-
time kernels available in industry or academia by far.
In order to allow for atomic management of core kernel-level data structures,  small 
regions of code still exist where preemption is not allowed, and thus they are still dealt 
with by means of classical spinlocks.



Synchronisation support for user-space: futexes

In  order  to  provide  user-space  application  developers  with  mutual  exclusion  and 
synchronization  primitives  the  standard  system  (e.g.,  POSIX)  libraries  need  some 
support from the kernel. One way in Linux is Fast Userspace muTEXes (futexes):
They consist of aligned in-memory integer values that can be shared between different 
tasks  (mainly  threads,  but  also  processes).  Such  values  can  be  incremented  and 
decremented by atomic operations directly from user-space, while the kernel is only 
involved when a contended case requires arbitration and some task has to fall asleep. 
This means that synchronization mechanisms implemented on top of futexes are very 
fast and efficient, at least in the fast path. A futex slow path is instead  implemented by 
means of a specific system call which includes a parameter to indicate what kind of 
operation  the  caller  wants  to  perform,  such  as:  FUTEX_WAIT,  FUTEX_WAKE, 
FUTEX_REQUEUE,  FUTEX_FD and also FUTEX_LOCK_PI and FUTEX_UNLOCK_PI, which rely 
on RT-mutexes to handle the contended case with priority inheritance in place.

Synchronisation in user-space

Since POSIX 1003.1 1995 the so-called Pthreads API  includes locking operations,  to 
achieve mutual  exclusive access to shared data, such as  pthread_mutex_lock  and 
pthread_mutex_unlock,  and  synchronization  operations,  to  wait  on  events  and 
conditions  such  as  pthread_cond_wait,  pthread_cond_timedwait, 
pthread_cond_signal and pthread_cond_broadcast.
Interestingly,  in  the  API,  mutexes  may  be  enriched  at  creation  time  with  such 
“protocols” as PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT. In the former case, 
PI-aware futex operations are used inside the library implementation, in the latter one 
normal futex operations are utilized, and when a task locks a PRIO_PROTECT-ed mutex, 
it starts executing at the higher between its priority and the priority ceilings of all the 
mutexes it owns, regardless of whether there are or not other tasks blocked on any of 
these mutexes. Such behaviour is implemented inside the library without involving the 
kernel.

5. VIRTUALIZATION

There  are  many  possible  approaches  to  virtualisation  that  differ  by  a  number  of 
technical details related to how hardware and peripherals are emulated, whether the 
guest  Operating System is  aware  or  not  of  running in a  virtualisation  environment 
(a.k.a.,  para-virtualisation  and  full-virtualisation,  respectively),  and  if  they  exploit 
special capabilities of modern CPU architectures designed specifically for virtualisation. 
There  are  also  attempts  to  virtualize  by  creating,  within  a  single  OS,  multiple 
“namespaces” or “containers” that are capable of isolating multiple sets of processes 
from each other - however such an approach looses the capability to have multiple 
OSes hosted on the same hardware. All of these approaches deal in different ways with 
virtualization  at  the  various  levels  (e.g.,  special  CPU  instructions  and  processor 
privilege levels,  networking adapters virtualization,  disk access virtualization,  etc...). 
Therefore, they exhibit different overheads and different achievable computation and 
I/O performance figures of the guest machine(s). A full description of the approaches is 
out of the scope of this deliverable, and can be found for example in  [79],  [82],  [83] 
and [85] (an interesting survey [84] also exists that dates back to 1974).



The various existing virtualization layers (a.k.a., Virtual Machine Monitors), exhibit a 
range of availability and licensing options, from completely open-source and free-of-
charge use, to completely commercial. A non-exhaustive list may be the following36:
• Xen, by Citrix Systems;
• Kernel-based Virtual Machine (KVM), a project currently founded by Qumranet, a 

technology start up now owned by Red Hat;
• VirtualBox, by Sun;
• VMware Workstation, by VMware Inc.;
• VirtualPC, by Microsoft;
• coLinux;
• QEMU;
• User-Mode Linux (UML);
• OpenVZ / Vservers for Linux (OS-level Virtualization).

6. RUN-TIME SUPPORT AND MIDDLEWARE

Common desktop machines have to run multiple applications  locally  in a concurrent 
(time-sharing)  fashion  –  as  opposed to  that,  distributed systems,  in  particular  high 
performance computers, are typically focused on executing specific application types 
with a high degree of communication.  Whilst the desktop landscape is expected to 
change in the near future (see Deliverable D5.2  [86]), currently the actual execution 
environment of the individual areas differ considerably (see also section IV. ).
The set of support services which are described in what follows may be either available 
as additional services that build on top of the Operating System, or they may be more 
tightly integrated with the Operating System core services and kernel,  as it  is also 
evident  from the  above  discussion  about  specific  types/models  of  OS  proposed  in 
various application contexts.

CLOUD SYSTEMS
In  cloud  systems,  one  must  distinguish  between  the  type  of  service  offered: 
infrastructure (IaaS), platform (PaaS) or software (SaaS). In the latter two cases, the 
environment focuses on providing one specific service (type) and the according run-
time support typically consists of an execution engine (such as the Google Docs App37) 
that  is  available  on  all  systems.  Main  task  therefore  consists  in  distributed  data 
management  which  poses  different  requirements  on  consistency  management  and 
transportation. There are no standard solutions though: for example, Amazon relies on 
eventual  consistency,  eBay  executes  a  plain  merge,  data  is  replicated  in  the 
background etc. [95][194]. Due to the specialisation, the system can focus on a subset 
of requirements and find appropriate solutions.
Of  more  interest  in  this  context  are  the  general  purpose  goals  pursued  by 
Infrastructure as a Service providers, such as Amazon EC238, Microsoft Live39 etc. They 
are either realised through virtualisation engines or middleware components (Amazon 
EC2, OpenNebula40) or using their own dedicated operating system (MS Azure41, Google 
Android42). Each compute instance thereby is effectively a full blown server system with 
the full instance of the operating system / engine / image running (cf. Grid)

36 An impressive comparison chart among features of nearly 50 existing virtualization layers may be 
found on Wikipedia at the URL: http://en.wikipedia.org/wiki/Comparison_of_virtual_machines. 

37 More information is available at: http://code.google.com/appengine/docs/whatisgoogleappengine.html.
38 More information is available at: http://aws.amazon.com/ec2/.
39 More information is available at: http://www.live.com.
40 More information is available at: http://www.opennebula.org/.
41 More information is available at: http://www.microsoft.com/windowsazure/.
42 More information is available at: http://www.android.com/.

http://www.android.com/
http://www.microsoft.com/windowsazure/
http://www.opennebula.org/
http://www.live.com/
http://aws.amazon.com/ec2/
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://en.wikipedia.org/wiki/Comparison_of_virtual_machines


GRID(S)
Similar  to  cloud  systems,  most  Grid  environments  provide  their  own  middleware 
(Globus Toolkit 443, gLite44 etc.) which is sometimes embedded in the operating system 
(ExtreemOS45, .NET Framework46). Effectively each endpoint (Grid node) hosts its own 
full-fledged grid system that deals with communication and instance management. As 
opposed to clouds, Grids are mostly general purpose oriented – accordingly, the focus 
of  existing  middleware  and  frameworks  rests  on  standard  interfaces  and 
communication support,  rather  than efficiency.  The respective frameworks  do scale 
comparatively  well  with  respect  to  communication  efficiency,  but  only  to  a  limited 
degree  with  respect  to  instances,  as  they  expect  at  least  one  full  instance  to  be 
available per node.
Scheduling  in  both  grids  and  clouds  relies  on  a  more  or  less  centralized  instance 
responsible for the respective service in order to ensure manageability. There are some 
approaches  towards  distributed  scheduling  [120] which  however  do  not  have  to 
consider consistency across instances, so that the scheduling really just deals with a 
“scale-out on demand”. For further information see e.g. [195][196][197][198]

HIGH PERFORMANCE COMPUTING
Current HPC usage takes a special position in the field of computing: with its focus 
primarily  on efficiency,  HPC jobs  do  generally  not  concurrently  share  resources.  In 
other  words,  processes  run  exclusively  on  their  respective  computing  environment 
(core)  and  across  multiple  compute  units,  only  one  such  job  has  to  be  executed. 
Implicitly, the environment has comparatively simple scheduling and hardly any time-
sharing tasks to perform.
With  the  classical  HPC  infrastructure,  consisting  of  multiple  single-core  processors, 
each compute unit had sufficient cache available to host a full environment including 
the  relevant  code  and  data,  so  that  only  little  memory  swaps  (and  hence 
communication overhead) occurred. With the multi-core systems, resources are shared 
per processor, so that additional overhead builds up which is currently not catered for 
in the systems.
The environment is accordingly very bare-bone and offers little capabilities additional 
to abstracting the hardware and managing system calls. It is generally expected that 
the  developer  in  some way has  to  cater  for  data  segmentation,  code  distribution, 
concurrency and consistency etc. as there are no other processes running at the same 
time. In most cases, however, the according capabilities are actually build and provided 
by the compiler (cf. Programming Models).
Both  compiler  and  execution  environment  are  therefore  explicitly  adapted  to  the 
(hardware)  environment  they  are  running  on,  to  make  the  most  use  of  the 
communication  and  setup  specifics.  Higher-level  details,  such  as  memory  layout 
generally  need to  be  respected by  the  developer  too,  though,  in  order  to  achieve 
maximum  performance.  According  effort  is  vested  into  converting  the  operating 
system (typically Linux) and the compilers front-end (mostly building up on LLVM) to 
the environment. 
The heterogeneity of new cluster systems poses according problems.
Summary:

• Most scale and heterogeneity management takes place on the middleware layer
• Middlewares and frameworks are too inefficient for HPC usage

43 More information is available at: http://www.globus.org.
44 More information is available at: http://glite.web.cern.ch/glite/.
45 More information is available at: http://www.xtreemos.eu/.
46 More information is available at: http://msdn.microsoft.com/netframework/.
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• Cache limitations and system heterogeneity make “one environment per unit” 
impossible

• Much effort is vested into adaptation of the run-time support to the respective 
system



V. PARALLEL AND DISTRIBUTED PROGRAMMING MODELS

Optimum exploitation of parallelism in applications – in particular when efficiency is 
crucial  –  is  an  NP  hard  problem  [61][62][63] and  therefore  generally  requires  an 
experienced human user  to  execute  the  according  parallelisation  tasks.  Before  the 
introduction of multi-core processors back in 2006, parallel development was mostly 
restricted to users of supercomputers (parallel clusters), as they were the only ones to 
draw  benefits  from  this  approach.  Accordingly,  parallel  and  the  more  common 
(sequential) programming models diverged slightly: with the latter looking in particular 
at simplicity, parallel models aimed particularly at efficiency to make the most of the 
system capabilities.
Recently, multi-core computing are also omnipresent in the domain of home computing 
(nowadays  it  is  becoming  increasingly  difficult  to  buy  a  single-core  machine). 
Therefore, in the world of common programming models that need to be at reach of 
most  developers,  parallelism  is  becoming  an  increasingly  important  issue. 
Unfortunately,  when adding parallelism to  an application,  a  number  of  issues arise 
which need to be properly addressed, in order to preserve a correct operation of the 
program. These range from how to properly split the functionality across concurrently 
running  threads,  to  how  to  properly  synchronize  them  for  accessing  shared  data 
structures and to how to avoid race conditions and deadlocks.

1. COMMON PROGRAMMING MODELS

Compared to parallel programming, sequential programming models have made quick 
progress  and  adapted  perfectly  to  the  mixed  needs  of  developers,  hardware  and 
operating system, so that now most programs are fairly portable and easy to learn, 
whilst they show performance suitable to the environment needs – obviously, higher 
efficiency  comes  at  the  cost  of  complexity  and  higher  portability  at  the  cost  of 
efficiency. We will spare the reader a detailed overview over the most relevant current 
languages, such as C/C++, Java, C#, etc. So far there have been little efforts though to 
seriously take over parallel concepts into the common programming language world – 
mostly for the problem of maintaining simplicity whilst supporting parallelism. 

1.A) PROCESS- OR THREAD-BASED PARALLELISM

The most  classical  approaches to  dealing with parallelism in common development 
consists in splitting the program up into individual threads that exchange data with 
each  other  at  dedicated  communication  points.  Multiple  libraries  extend  common 
languages (mostly C) with such low-level capabilities for dealing with parallelism. Most 
of them build up on the POSIX standard [78] which embeds a set of well-known UNIX 
library calls for the C language for coding parallelism by means of multiple processes 
(e.g.,  by  using  the  fork()  system call)  and  synchronisation  mechanisms   (such  as 
signals,  semaphores and FIFOs).  However,  multiple  processes have different  virtual 
memory  spaces,  what  forces  the  programmer  to  use  message-passing  among 
processes,  or  shared-memory  segments  in  memory  (e.g.,  shmget() and  shmat() 
system calls  of  the same standard),  both  suboptimal  solutions.  In the context of  a 
single parallel application, multiprocessing is deprecated in favour of multithreading, 
largely supported by nowadays Operating Systems, where multiple concurrent threads 
of execution share the same memory space and the context switch among threads is 
lighter than among processes.



For example,  POSIX Threads constitutes a library allowing C programs to manage 
multiple threads of parallelism and manage synchronisation among them. The concept 
of threads is already well known and will therefore not be elaborated here. For more 
details,  check  out  Barney's  tutorial  [89].  Pure  thread-building  is  however  fairly 
complicated  and  therefore  in  contradiction  with  maintaining  simplicity  in  common 
programming languages. Many efforts building up on this principle therefore exploit the 
object-orientation  capacities  of  C++ allowing  to  instantiate  objects  as  threads  and 
supporting their communication through dedicated libraries – this is for example the 
case  in  KAAPI47.  Many  more  modern  languages  natively   incorporate  threading  for 
parallelism and synchronisation,  being  designed for  a  higher  level  of  programming 
abstraction - this is for example the case for Java and C# from the .NET framework. 
The main problem with pure threading support consists in the comparatively weak fine-
tuning and alignment to the infrastructure: they produce substantial  messaging and 
protocol overheads, as well as leading to delays due to misalignment of communication 
between threads. 
Due to the high degree of complexity to actually split up a task in potential threads that 
actually exploit the multi-core environment - many libraries and extensions therefore 
build up on these capabilities by incorporating higher-order functionality that can be 
parallelised by the compiler (e.g. Intel's TBB48) or at run-time (in particular  Microsoft 
Parallel Extensions and the Java Concurrency Utilities). This also allows the framework 
to take more care of thread alignments according to predefined templates.
Microsoft Parallel Extensions49 introduce so-called “tasks” as a concept similar to 
threads that act in particular on database queries and according loops by splitting the 
query into tasks according to the size of the loop. By using a task manager,  these 
thread-like  instances  can  be  spread  out  across  the  infrastructure  according  to 
availability. Obviously, the performance gain depends on their individual work load as 
opposed to the messages they have to exchange – short, small tasks will obviously not 
be very beneficial. 
The developer can even write his / her own tasks by explicitly initiating and executing 
them, much like threads. The main difference being that .NET lends from the influence 
of  functional  programming  in  its  development,  so  that  tasks  are  actually  closer  to 
lambda operators and can be treated accordingly50. As will be discussed in more detail 
in D5.2 in the context of development trends in programming languages, the functional 
(declarative)  approach  towards  programming  benefits  from  parallelism  which 
procedural (imperative) approaches have more difficulties with (see e.g. [121][122]). It 
should be noted in this context that still less people make use of declarative than of 
imperative programming languages  51,52,  non-regarding these advantages – this may 
change once parallel programming finds more common usage.
Similarly,  in  the  Java  domain  the  Concurrency  Utilities53 provides  thread 
management features to Java. As opposed to their .NET counterpart, the concurrency 
utilities primarily deal with the user-initiated declaration, instantiation and execution of 
threads and does not aim at automatic scaling support,  for example in the case of 
database queries. Accordingly, the programming effort is comparatively higher, as the 
developer has to ensure proper synchronisation and coordination.
Whilst the average efficiency achieved through these extensions will exceed the one by 
pure thread management for the average  developer (not used to parallelism), they at 

47 Kernel for Adaptative, Asynchronous Parallel and Interactive programming - http://kaapi.gforge.inria.fr/
48 Threading Building Blocks - http://software.intel.com/en-us/intel-tbb/ 
49 More information is available at: http://msdn.microsoft.com/concurrency 
50 More information is available at: http://msdn.microsoft.com/en-us/library/bb397687.aspx.
51 More information is available at: http://www.devtopics.com/most-popular-programming-languages/ 
52 More information is available at: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 
53 More information is available at: http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/overview.html
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the same time restrict usage to specific, typical parallelisable functions, which are not 
always employed in the average application. What is more, with little (to no) expertise 
by the developer, there is a high risk of over using these functions in cases where the 
implicit messaging overhead will exceed the parallelisation benefit, e.g. for large loops 
over small operations etc.
Frequent attempts are therefore directed at semi-automatic parallelisation which will 
maintain the maximum of sequentiality and simplicity – however, as noted, automatic 
parallelisation  is  NP  hard  and  therefore  not  generally  the  best  approach  towards 
covering the efficiency issue.
On a related note, one of the languages with a good native support for concurrency 
and synchronisation is the Ada language [277]. However, Ada is generally used in the 
context of embedded and real-time applications, thus it lacks a powerful and rich run-
time support such as found in modern development environments.

1.B) DISTRIBUTED PROGRAMMING

Recently, with the advancements in Web Services and Service-Oriented Architectures, 
standard messaging has become widespread as a basis for distributed (as opposed to 
parallel)  computing,  being  greatly  advanced  and  simplified  for  the  user.  Since  the 
introduction  of  the  Grid  and  the  success  of  Web  Services,  many  commercial  and 
community  based  enhancements  to  common  programming  models  have  been 
developed that  enable  the user  to  communicate  with  remote  service instances via 
automated, standard-based messaging (see also sections IV. 1.d) and in particular  IV.
6.  ).  The  basic  idea  behind  (web-based)  distributed  programs  is  more  related  to 
dynamically linked libraries than to parallel  threads and / or processes, but can be 
exploited in a similar fashion, taking the additional communication overhead (typically 
SOAP based) and latency (Ethernet) into consideration. 
Given the  interconnect  problems,  distributed,  service-oriented  environments  can  in 
particular be exploited to “outsource” tasks that local resources cannot provide for, i.e. 
employing remote resources following the principles of utility computing. This has been 
extensively researched (and actually employed) in the context of so-called “Virtual 
Organisations”  (see e.g.  [102][103][182]).  In  these cases,  each participant  in  the 
collaborative environment will provide (host and execute) one ore multiple tasks in the 
form of  services that  can be invoked remotely.  In its  most  basic  form,  a  workflow 
defines  the  order  of  tasks  to  be  executed,  i.e. services  to  be  invoked  –  this  can 
essentially  be  regarded  as  a  higher  level  algorithm  or  program  logic.  A  typical 
description logic  to  this  end is  WS-BPEL (Web Services Business  Process  Execution 
Language) [183].
Obviously, such workflows can incorporate parallel steps where multiple services are 
invoked at the same time,  i.e. follow parallel strands. The classical business process 
specification  does  not  foresee  full  distribution  and  hence  no  direct  communication 
between individual services, so that the workflow engine host (typically the user) will 
act  as  an  intermediary  for  all  communication.  Notably,  there  are  concepts  for  full 
distribution  of  the  workflow  to  separate  participants,  thus  allowing  direct 
communication  (see  e.g.  [184])  –  however,  there  is  very  little  uptake  of  these 
approaches, mostly due to the lack of control and supervision. 
A business process of this kind therefore shows principal  similarity with a threaded 
application in so far, as any process can effectively be represented by a workflow. With 
the basic idea behind the Grid being the dynamic outsourcing of tasks and potentially 
even migration of code on the fly, the approach can principally be used to dynamically 
scale out an application, thus distributing the actual logic and executing it in parallel.  



This requires an according platform in the respective environments, respectively pre-
installation of the logic and invocation on the fly. There are multiple approaches along 
that line, ranging from higher level extensions, such as Parallel C#54 to enabling HPC 
parallel programming models such as MPI over the Ethernet (see e.g. [185][186][188]) 
– see also section V. 2.  on HPC programming models below.
The  main  problem  with  distributed  programming  models  as  opposed  to  parallel 
programming  concepts  consists  in  the  implicit  latency  between  communication 
endpoints, which is generally much higher in the environments for distributed program 
execution, as in those for parallel execution. Typically, the prior acts over the internet,  
whilst the latter requires Infiniband or higher (see also section  II. 4.  ). Due to these 
communication constraints, distributed computing deals more with separate tasks with 
little communication dependencies between them. In its simplest form, a distributed 
process  consists  of  a  sequence  of  individual  tasks  that  each  gather  input  from  a 
preceding task and pass it on to the next. 
Accordingly, the main point to this type of environment is not so much efficiency in 
light of communication and synchronisation, but work offloading. It can thereby exploit 
the specific  capabilities  of  services  and /  or  resources as  they are available  –  this 
means that specific characteristics of the overall process can be addressed on task-
level in this environment [103][187] (see also service discovery protocols in section III.
2. ).

2. HPC PROGRAMMING MODELS

As the programming model is only as efficient as the underlying compiler, compilers for 
parallel programming are typically extremely specialised to the underlying hardware - 
they typically look for specific patterns in the code that are best suited to the system 
characteristics (e.g., for loop unrollment). 
Over time, in particular the compilers improved more and more through community 
effort  –  therefore,  as  a general  rule,  “older” programming models typically  lead to 
better  performance  figures  than  more  modern  ones,  for  even  though  newer  ones 
typically  address  outstanding  issues  and  potentially  are  better  suited  for  modern 
hardware  architectures,  they  still  do  not  compete  with  the  years  of  experience  in 
development of the “classical” languages.
Accordingly, programming languages in the HPC domain change only very rarely and 
the typical  “maintenance” duration  of  a  language is  more than 10 years –  i.e.  the 
community will use almost solely a specific programming language for almost 10 years, 
before new models are considered. During this time, the new models are adopted by 
compiler developers and experienced developers who provide the necessary support 
for the language.
So far, MPI and OpenMP on top of C have been the prevalent programming models in 
High  Performance  Computing  with  some  remainders  of  Fortran  still  being  notable. 
Notably,  these  languages  are  effectively  parallel  extensions  to  the  original 
programming language, so that e.g. Fortran has been extended with explicit parallel 
elements that indicate functions that essentially show no dependencies and can hence 
be executed in parallel  [123]. Along the same line, MPI and OpenMP extensions exist 
for both C and Fortran.
As has been noted, the primary problem of parallel programming consists in controlling 
synchronisation  and  message  exchange  which  not  only  takes  away  most  of  the 
performance if not done accurately, but which also poses the most problems to the 
developers:  in classical  shared memory architectures or where cache is maintained 

54 More information is available at: http://www.parallelcsharp.com/.
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coherent by the hardware (like in Intel current multi-core processors), synchronisation 
maintenance effectively means locking memory until the synchronisation point, after 
which concurrent access is again allowed. Obviously, this may cause deadlocks and 
inconsistency if not programmed carefully, but the developer does not actually have to 
cater  for  how  the  memory  is  updated  to  achieve  coherency.  In  large  distributed 
clusters, this means however that the system needs to provide some hardware support 
to maintain (distributed) coherency.
The Open Multi-Processing (OpenMP)55 programming interface originated in 1997 
and  it  relies  strongly  on  the  fact  that  the  system provides  some  form  of  shared 
memory. It provides the means to decompose the work very much like programming 
threads, so that, e.g., a loop can be unrolled into parallel threads. OpenMP does not 
support the decomposition of data and offers little (to no) control to the user in this 
direction, which often causes problems when mapping the code and data structure to 
the system, so that efficiency can be seriously affected. Since messaging is implicit, 
OpenMP may produce overheads that affect in particular small loops  [124][125]. As 
opposed  to  MPI  though,  OpenMP  (like  most  shared-memory  models)  allow  easier 
transfer of serial code to the parallel environment.
The  Message  Passing  Interface  (MPI)56 model  (originated  1992)  builds  on 
distributed memory machines where communication between threads / processes has 
to occur by exchanging messages. MPI itself just specifies the operations to exchange 
messages  synchronously  and  asynchronously  between  the  parallel  instances  in 
different forms (broadcast,  scatter etc.) It  does  not standardise the actual  message 
format or links to one specific implementation, so that system-specific capabilities and 
restrictions can be employed by the compiler.
Over  time,  MPI  has  accumulated  additional  features  that  go  beyond  just  message 
passing  –  whilst  these  operations  suit  experts'  needs,  it  makes  the  standard  very 
difficult  to  master  for  beginners.  In  fact,  it  requires  a  lot  of  experience to  achieve 
efficient load balancing and reduce the messaging overhead [124]. As will be discussed 
in more detail below, programming MPI is also not very intuitive to the average user, 
and it  is generally more difficult to port serial code to MPI  [124]. Also, MPI is quite 
difficult to debug, even with the support of tools such as MARMOT [126]. Performance 
of MPI is directly affected by the communication model of the system and the message 
overhead produced by inexperienced  programmers – in shared memory models, MPI 
generally shows bad performance compared to OpenMP due to this overhead [127].
Due to the specifics of OpenMP (shared-memory) and MPI (message-based), it is not 
unusual  to  actually  employ  a  hybrid  programming  approach,  where  OpenMP  is 
employed in a local shared memory environment (cores) and MPI to pass data over the 
network (nodes). 
Both MPI  and OpenMP are still  the most used programming language in HPC,  non-
regarding their age (more than 10 years at the time of writing this).  More recently 
(since roughly 2003) an alternative programming standard has emerged: Partitioned 
Global Address Space (PGAS)57 which essentially exposes a “virtually” shared global 
memory  that  allows  access  from and  across  all  threads  /  processes.  It  essentially 
partitions  a global  address  space and assigns  it  to  individual  compute  units  where 
essentially threads (cf. Pthreads) are executed – obviously, access to local blocks is 
fastest, but the threads are allowed to access remote memory too, where the compiler 
has  to  take  care  of  how  remote  access  (message  passing  or  shared  memory)  is 
realised. 

55 More information is available at: http://openmp.org/wp/.
56 More information is available at: http://www.mcs.anl.gov/research/projects/mpi/.
57 More information is available at: http://pgas.org/.
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PGAS is still in progress, even though the first implementations appeared more than 5 
years  ago.  The  Fortran  implementation  (CAF  –  Co-Array  Fortran58)  shows  best 
performance so far, even comparable to MPI [128] – this is again due to the fact that 
there  is  more  knowledge  in  the  efficient  parallelisation  of  Fortran  than  in  other 
languages, e.g., in C. Accordingly, C (UPC – Unified Parallel C59) implementations (such 
as by the Berkeley University60 or HP61) (still) show worse performance than CAF [129]. 
We will discuss PGAS again in the context of development trends (D5.2).

3. TRANSACTIONAL MEMORY

Transactional  Memory  (TM)  has recently  been proposed  as  a  parallel  programming 
paradigm to take benefit from modern multicore architectures. In contrast to traditional 
paradigms like lock-based techniques, TM uses speculative execution of transactions 
for simplicity reasons: semantics is preserved under transaction composition. 
The power of the TM paradigm is twofold. First it lies in its abstract nature: no need to  
know the internals of shared object implementations - it suffices to delimit any critical 
sequence of shared object accesses using transactional  boundaries.  This avoids the 
most  common  difficulties  related  to  parallel  programming  known  as  data  race 
detections, deadlocks, livelocks.
Second, the code produced using TM is straightforwardly extensible: there is no need 
to  break  existing  code  abstractions  and  one  can  reuse  a  parallel  library  without 
modifying it or precluding concurrency. For instance, a TM- based set abstraction that 
is  implemented  from  a  binary  tree  data  structure  can  be  enriched  to  provide  a 
collection abstraction without compromising atomicity or parallelism. 
Besides making code development scalable, the adoption of TM thus makes parallel 
programming  simple  enough  for  average  programmers  and  ensures  reusability  of 
parallel software components as libraries.
The  idea  of  the  transactional  memory  (TM)  originally  comes  from  [147] before  a 
hardware  [144] and a software implementations were proposed [154]. More recently, 
other  hardware  transactional  memories  have  been  suggested  [137][150] but  keep 
being limited by the existing physical constraints, like the cache size. Attempts to cope 
with these issues exist [132][133][152], however, software extensions seem necessary 
to  keep  the  appealing  simplicity  of  the  TM  and  to  face  heterogeneity  of  future 
architectures.
Operating systems for many-core architectures, as investigated in the S(o)OS project, 
will  have  to  face  the  inherent  parallelism  available  on  the  chip,  considering  both 
communications among cores through shared-memory , and communications among 
machines through message-passing. First, we discuss the achievements in the context 
of shared memory architectures (STMs), second we present the recent achievements in 
the context of message passing (DTMs).

STMS
The first purely software TM (STM) [154] considered that the locations accessed by a 
transaction were known prior to its execution. In order to support dynamic transactions 
where the transaction control flow could depend on the value returned by the latter 
memory access,  alternative software TMs have naturally  been proposed  [142][146]. 
Whereas these TM implementations relied only on locks and universal  primitives to 

58 More information is available at: http://www.co-array.org/.
59 More information is available at: http://upc.gwu.edu/.
60 More information is available at: http://upc.lbl.gov/download/index.shtml.
61 More information is available at:
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synchronize concurrent transactions, new time-based TMs were proposed to improve 
performance by validating a transaction depending on the time instants at which it 
could commit [138][139][140][153].
Yet,  some  parallel  programs  tuned  by  expert  programmers  could  reach  higher 
concurrency  than  the  traditional  transactional  model  shared  by  all  these  “easy  to 
program with” TMs.  Consequently,  several  research work  [141][143][145][148][151] 
extended the classical transactional model in order to account for the semantics of the 
application and increase concurrency. Nesting models  [151][143] consider high-level 
operations as nested transactions, so that they can either commit or abort (and roll-
back) only subparts of a transaction. Transactional boosting [145] and coarse-grained 
transactions  [148] benefit from commutativity of application-level operations to avoid 
false-conflicts and enhance concurrency. 
Only very recently,  have new TM implementations  shown better  results  than usual 
synchronization  techniques  [141][135] by  relaxing  consistency  at  read/write  levels 
while retaining programming simplicity. We believe that the upcoming challenge is to 
integrate  these  TM  mechanisms  with  future  communication-aware  DTMs  without 
impacting on their efficiency. 

DTMS
Several DTM implementations have recently been proposed to run on clusters. In [149] 
the  authors  present  a  DTM  that  uses  speculation  to  execute  the  distributed 
transactions issued by one node as well as transactions running on a single node. Their 
approach exploits a conflict-aware scheduler that spreads the transactional request so 
that update  transactions  are executed by some master node locally,  and read-only 
ones are executed on slave nodes. This limits the invalidation of read-only transactions 
as they can return an old snapshot without requiring slave nodes to maintain multiple 
versions. In contrast, the update transactions create a local transactional memory copy 
at  the  master  node  to  buffer  updates  that  remain  invisible  during  the  transaction 
execution. Upon commit, the update transaction acquires a global lock on the cluster 
and sends its modifications (as a “diff” between the two copies) to the other nodes of 
the system. After reception of the acknowledgement of all other nodes, the transaction 
can commit.
In [134] the authors have identified the existing transactional memory designs that are 
well-suited  for  clusters  where  the  memory  access  time  is  non-uniform  among  the 
nodes. Among these designs, they confirmed the need for a node to acknowledge a 
transaction from a distant node prior to effectively applying its changes locally - as 
noticed in [149], this allows the distant transaction to commit early. In addition, they 
identified that making a read visible to other nodes (by for instance using concurrent-
readers/exclusive-writer locks) and deferred updates (where all updates are bufferized 
until commit-time) can perform well when remote operations dominate the latency. D2 
STM [136] aims at bringing fault-tolerance to the existing cluster-based STMs. Instead 
of acquiring a global lock on the cluster, D2 STM uses an atomic broadcast primitive 
that ensures the serialization of commits among concurrent transactions.
Tomorrow’s many-core architectures will have to support highly scalable services that 
neither rely on atomic broadcast nor on centralized control. 

4. COMPILERS

Programming  languages  hardly  ever  act  directly  upon  the  hardware  –  instead  a 
compiler has to translate the language into hardware instructions  first.  Since every 
infrastructure  has  its  own  specifics  regarding  instruction  set,  but  also,  more 



importantly, regarding strengths and weaknesses in most cases it is the compiler that 
performs  a  major  task  in  optimizing  the  code  for  the  specific  platform.  There  are 
multiple  optimization  techniques  employed  by  different  compilers,  ranging  from 
exploitation of memory hierarchies and operation reordering to identification of typical 
functions  and analysis  of  code dependencies  [189].  As  such,  for  example  the  Intel 
compiler employs three main methods for optimisation: 
(1) in the profile-guided optimization (PGO) method, the compiler is provided with the 
results from a test run of the code with a selected input set (a profile) – this information 
can be used to identify frequently executed program code. The compiler typically uses 
this  data  to  reorder  the  blocks,  thus  reducing  cache  misses  .  Notably,  the 
representative input sets have to be provided by the user – if the actually used data 
leads to different code behaviour, profile-guided optimization may actually reduce code 
performance (this method is employed by Intel, GCC, Microsoft Visual C++).
(2)  High-level  optimizations  (HLO)  actually  imply  a  set  of  optimization  techniques 
performed on the source-code (or an intermediary higher-level code, cf. below). This 
includes steps such as loop unrollment,  loop fusion etc.  Due to the high degree of 
complexity  [189], the according analysis may take most of the compilation time and 
the  actual  gain  is  highly  dependent  on  the  executing  architecture,  restricting  the 
portability of the code (even on this higher level)
(3)  Similarly,  interprocedural  optimization  (IPO)  steps  actually  incorporate  a set  of 
techniques but on a broader code scope than (2),  i.e. these steps try to analyze the 
whole program. In particular, the IPO strategies tries to reduce or eliminate recurring 
procedures by inlining the respective code, thus reducing overhead for branching and 
potential memory swaps. This technique typically also includes elimination of unused 
code and parameters etc. These sets of techniques are typical for most C compilers 
and can be found e.g. in GNU GCC, Intel Compiler and Microsoft's C compiler.
There  are overall  more  than 60 well-known compiler  optimization  strategies,  which 
shall not all be listed here – for a more comprehensive overview over all strategies, 
please  refer  to  Wikipedia62,63.  We  can  thereby  specifically  distinguish  between 
hardware-specific and general optimisation strategies, whereas the latter (such as IPO 
and  partially  HLO)  focus  on  steps  that  improve  (or  should  improve)  the  execution 
performance non-regarding the platform on which the code is running, and hardware-
specific strategies (such as PGO and  some HLO) utilize specific characteristics of the 
hardware (such as rd-length in vector processors) for reducing unnecessary steps and 
delays in the code. Obviously, the latter reduce portability of the code enormously. 
Generally, the lower the level of the programming language, the more hardware-bound 
the according code – e.g. C is less hardware-specific than Assembly code. Most modern 
programming languages build up on existing ones, such as C# basing on C++ and 
parts of Java. It is therefore not unusual for a compiler to traverse down this hierarchy 
when compiling the source code, thus producing intermediary versions which become 
increasingly  hardware-specific.  Many  modern compilers  build  on this  principle,  thus 
employing compiler  logic and knowledge that has already been build up in “older” 
languages (such as C and Fortran). Typically, this means that the compiler actually 
executes multiple passes (multi-pass compiler) in order to convert the source code 
into respective “lower-level” languages and execute the according compilation on the 
respective code. 
In such cases,  most  passes perform so-called “source-to-source” compilation  steps, 
where actually no machine code is generated, but only a conversion takes place, where 
e.g. higher-level specific commands which integrate multiple commands from a lower-

62 More information is available at: http://en.wikipedia.org/wiki/Compiler_optimization.
63 More information is available at: http://en.wikipedia.org/wiki/Category:Compiler_optimizations.
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level  language  are  converted into  their  according  representative  in  that  respective 
language. This step may also involve according high-level optimisation steps that are 
particular  to the source language.  The final  step in such a hierarchical  compilation 
approach always consists in producing the actual machine code.
Notably,  we  also  speak  of  “multi-pass”  compilation  when  the  compiler  produces 
assembly  code  right  away  but  passes  over  the  code  multiple  times  in  order  to 
iteratively  improve  performance,  identify  dependencies  etc.  As  opposed  to  that,  a 
“single-pass” compiler generates the (final) assembly in a single pass over the source 
code. Whilst single pass compilers show much compilation speeds (as they only have to 
execute transformation once), they also typically generate less optimal code, as some 
optimisation points can only be identified after one pass annotating of the code.
The other major compiler technology next to the ones described above consist in Just-
in-Time (JiT) Compilers.. The basic idea behind these types of compilers consist in 
executing  the  actual  conversion  of  the  code  at  the  moment  of  actual  execution. 
Typically this applies to a whole code block at once, though in the worst case this could 
be applied to one command at a time – in these cases we speak of “ Interpreters” or 
“Virtual Machines” though. In the context of this document, we treat them as special 
cases of JiT compilers, as the implications from this distinction are of little relevance in 
this context, even though we can note that interpreters and virtual machines typically 
show much lower performance.
In  theory,  JiT  compilers  are  very  similar  to  interpreters  insofar  as  they  translate  a 
function the moment it is invoked, yet with the performance advantage that e.g loops 
do not need to recompile (interpret) the according set of operations every time, but 
only with the first iteration. According to this approach, the compilation would unload 
once it is removed from the memory – in other words, the compilation is not persistent. 
Obviously,  this  approach  increases  portability  significantly,  since  hardware-specific 
optimisation and adaptation tasks are performed only at program execution time, and 
thus  only  once  the  code  is  actually  in  the  according  environment.  However,  even 
though this means in principle that more hardware-specific optimisation steps can be 
executed,  the  impact  from  the  constant  recompilation  has  a  major  performance 
impact.  As  already  noted  above,  optimised  compilation  takes  up  a  lot  of  time,  in 
particular if IPO steps are executed that have to analyse the whole overall program 
structure. 
In  order  to  improve  performance  and  reduce  the  recompilation  effort,  most  JiT 
compilers take a hybrid approach, in which they create an intermediary code in a first 
transformation step,  similar to source-to-source conversion in a multi-pass compiler 
(see above). More time can thus be vested into this first pass, with a focus on holistic  
optimization  steps,  such  as  pursued  by  the  IPO steps,  which  take  up  most  of  the 
compile time. At the same time, this intermediary code still shows a maximum degree 
of portability and platform-independence, as the according steps are mostly performed 
in the last compiler steps (cf above).
Microsoft has improved the JiT technology with its release of the .NET framework and in 
particular the C# programming language significantly: the .NET framework generates a 
memory  map  at  first  invocation,  keeping  frequently  used  sections  in  cache,  thus 
reducing overhead for recompilation and memory swaps [161].
Some compilers support programming model extensions dedicated to writing parallel 
applications,  where the main issues are segmentation,  distribution and catering for 
communication. There are different approaches to this end (see also Section  V. 2.  ): 
with  MPI,  the  programmer  needs  to  focus  on  the  communications  between  the 
application  components  and  threads;  with  PGAS,  the  programmer  may  rely  on  a 



shared-memory  abstraction  and  process  threads;  with  StarSS,  the  focus  is  on  the 
definition  of  data  dependencies;  with  OpenMP,  the  programmer  may  pretend  to 
program sequentially, but he/she may add special directives along the code, instructing 
the compiler on how to create automatically  the parallelisation logic;  etc.  All  these 
extensions still require the programmer to define the details relating to parallelism. 
Even though data and code segmentation are an important part of the performance on 
multi-core  systems,  there  are  currently  no  compilers  or  programming  models  that 
understand such annotations (for code and data distribution) effectively.
Finally, it is worth mentioning that, for those languages that support native language-
level  extensions  for  parallel  programming,  the  compiler  has  the  responsibility  to 
generate the logic for handling multiple flows of control (usually creating new threads) 
and  the  synchronisation  among  them  (for  example,  the  a  native  support  for 
concurrency and synchronisation is present in the Ada language, and partially present 
in  the  Java  language).  However,  usually  the  language-level  constructs  for  parallel 
programming aim to be simple to use and to be understood by the programmer, thus 
rarely they manage to provide the programmer with optimum and extremely efficient 
solutions.  For  example,  language-level  constructs  usually  do  not  include  optimised 
read-write locks or other sophisticated locking strategies.



VI. BENCHMARKING

In order to estimate the performance of a system, direct measurements are typically 
not possible: too much depends on the actual usage and system load under stress. This 
is  particularly  true  for  computational  performance,  where  typically  reference 
applications are used as a means of performance indicator.  In the following we will 
provide a quick overview over the main benchmarks used for estimating performance 
and their usefulness for the S(o)OS purposes.

HIGH PERFORMANCE COMPUTING
The “Top 500”64 ranks high performance machines according to their performance – 
there is a general agreement, that any machine within the Top 500 list may thus safely 
be called a “supercomputer” (cf. section II. 4.   on High Performance Computers). The 
performance rating is achieved through usage of an Linpack adaptation for distributed-
memory computers (HPLinpack) – a reference implementation (HPL) existing by Jack 
Dongarra et al.  [23]. HPL essentially solves random dense linear systems with double 
precision on the distributed machines. It bases on MPI and a set of predefined libraries 
(BLAS or VSIPL) to perform a set of calculations and then assess the execution time. 
Even though it is often claimed that the order in the top 500 would not be affected by 
replacing  the  benchmark  with  another  one,  the  results  are  clearly  affected by  the 
vendor-specific  matrix-matrix  operations  which  can  thus  be  tuned  for  better 
performance on the Linpack benchmark. Whilst it is only fair that the vendor can make 
use of specific capabilities of the machine that only he knows (cf. Section  II. 4.  ), it 
nonetheless  means  that  the  test  is  not  objective  (which  it  effectively  cannot  be). 
Furthermore  Linpack  is  making  strong  use  of  broadcasts  rather  than  explicit 
synchronisation  points.  Overall,  Linpack  focuses  on  specific  mathematical  functions 
which  essentially  drive  a  100%  processor  load,  but  tells  little  about  the  mixed 
functionality requirements of typical applications, in particular from the more common 
areas, such as home usage (cf. D5.2)
Alternative  benchmarking  approaches  are  examined amongst  others  by  the  PRACE 
project65  in order to reflect the actual usage patterns better and thus provide more 
meaningful performance figures. At the time of writing this, the PRACE project has only 
identified a set of relevant applications and no specific means of benchmarking though.

GENERAL COMPUTING BENCHMARKS
The  Standard  Performance  Evaluation  Corporation66 provides  a  standardised  set  of 
benchmarks for specific hardware and computation aspects, such as the SPEC CPU2006 
benchmark  set67  that  tests  the  CPU performance  for  integer  and  double-precision 
floating  point  operations.  The  set  of  benchmarks  do  therefore  not  cover  the  full 
capability requirements of typical applications, but are particularly used for hardware 
developers and testers.
In order to provide usage-wide benchmark results, the most typical approach consists 
in  agreeing  on  reference  applications  and  comparing  their  specific  characteristics 
against each other in different environments. The most common benchmarks following 
this direction are 3dMark  [24] and PCMark  [25] from Futuremark Corporation – both 
benchmarks effectively implement default applications in the area of graphics (3dMark) 

64 More information is available at: http://www.top500.org.
65 Partnership for Advanced Computing in Europe - http://www.prace-project.eu/
66 More information is available at: http://www.spec.org.
67 More information is available at: http://www.spec.org/cpu2006/.
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and home usage (PCMark) and compare the execution performance with other (known) 
system results. The resulting performance indicators are effectively relative and thus 
only  meaningful,  if  the  user  is  able  to  interpret  them  in  comparison  to  different 
hardware settings. 
As discussed in more detail in D5.2, the actual system requirements per application 
differ strongly according to the usage area – this is most visible in gaming versus office 
applications, but can also be noted in stream editing etc. No benchmark can address 
these differences equally – instead it will break down the overall requirements into a 
set of sub-features, such as average I/O access etc. PCMark introduced so-called test 
suites  that  reflect  specific  consumer  behaviour,  which  combine  the  specific  sub-
features  accordingly  [25] -  this  provides  a  more  meaningful  performance  indicator 
within the respective usage area.
Notably, since Windows Vista, Microsoft provides a reduced performance benchmark 
based on essential test parameters (memory access latency, floating point calculations 
per second etc.)  -  the according data is not representative for  distributed (parallel) 
computing,  but  particularly  useful  for  games,  which  partially  already  indicate  their 
system requirements through this performance score.

CONCLUSIONS
Applications  have  different  requirements  towards  the  system,  depending  on  their 
respective tasks and functional structure – as such, games require in particular high 
graphics  throughput  and  use  the  CPU  mostly  for  physics  calculations;  video  and 
streaming applications require transcoding capabilities etc. (please refer to D5.2 for 
details).  The  performance  of  an  application  is  therefore  basing  on  the  combined 
performance of the respective features needed in executing the processes. This follows 
the same principles as Amdahl's law [130]: speed-up of a distributed application in a 
parallel environment is determined by the ratio of the application parallel and serial 
aspects to the system parallel and serial capabilities; for the general application this 
means that its performance is determined by the ratio of the application algorithms to 
the system capabilities to support these algorithms.
Benchmark  tests  therefore  do  not  necessarily  have  to  be  executed  on  the  full 
application, but on its essential functional aspects. FutureMark identified aspects such 
as data encryption, data compression, video transcoding etc. as core test features [25] 
which leave the execution and implementation of the according features completely to 
the operating system. In the context of High Performance Computing,  (cf. also section 
II. 4.  ), Asanovic et al. have identified the so-called 13 dwarfs as being the essential 
algorithmic kernels putting the actual performance demand on distributed and parallel  
computing [131]. There is, however, no benchmark suite explicitly dedicated to these 
dwarfs.
Note that in the specific context of S(o)OS, that does not aim at an implementation of a 
single full fledged operating system, but in particular at evaluating essential aspects of 
future highly scalable operating systems, no full benchmark suite is applicable. Instead, 
the benchmark must be capable of evaluating the influence of these approaches (such 
as a scheduling protocol) on to principle application execution. The benchmark(s) must 
therefore follow a line similar to PCMark and the 13 dwarfs and compare the effect of 
different algorithms on the respective core features (dwarfs or tests) – for example the 
impact of the scheduling protocols on parallel audio transcoding etc.



VII. CONCLUSIONS

In this document, a survey has been presented over the current state of the art in both 
industrial  practice  and  academic  research  in  the  areas  of  parallel  and  massively 
parallel  systems,  and the  support  for  such  platforms at  the  Operating  System and 
programming  levels.  From  the  presented  discussion,  it  is  clear  that  software 
development,  both  from  the  Operating  System  and  from  the  application-level 
programming perspectives, struggles at following the hardware trends in the areas of 
massively  parallel  and  distributing  computing.  The  tera-scale  future  computing 
platforms  of  tomorrow,  along  with  the  envisioned  developments  in  the  areas  of 
interconnection capabilities, parallelism level and application distribution, are going to 
constitute  a  challenging  scenario  for  future  ICT  development.  Methodologies  for 
developing  software  need to be accordingly  adapted to the new evolving scenario, 
starting from a re-engineering process that encompasses the entire software stack in a 
holistic way: from the foundations of Operating Systems kernel model and middleware 
services,  to  application-level  software  infrastructures  and  parallel  programming 
paradigms.  Only  this  rethinking  of  the  software  stack  will  allow  for  the  needed 
departure from the classical sequential  programming paradigms for moving towards 
novel distributed and parallel programming techniques on a large scale, in order to 
achieve an efficient use of the resources that will be available to the applications in the 
future.  This  deliverable,  along  with  D5.2  “Definition  of  Future  Requirements”  [86], 
highlights the motivations underpinning the research that is being undertaken in the 
context of the S(o)OS project, and it serves as a basis over which the S(o)OS future 
investigations will be carried out.
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