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I. INTRODUCTION

WP3  concentrated  on  communication  models  and  protocols  in  distributed  operating  systems  on

future many-core systems.

At the base of any distributed system lie a set of protocols making it possible for entities to exchange

data. These protocols must support the interaction models of the upper layers, as well as provide

the correct  primitives  for  optimal  operation.  If  the primitives  provided are  not adequate to  the

environment or to the services transacted,  the result  will  be a deficient operation of  the entire

system. The impact of data encoding, communication model and primitives provided can be a major

obstacle  for  efficient  distribution  of  kernel  functions  over  an  loosely  coupled,  heterogeneous

environmental.  Even if  primitives  are  adequate,  data  coding methods  must  be designed  so that

latency is minimized while overall impact in the system is kept under strict values. 

The challenge of these environments is to devised communication solutions capable of enabling a

distributed  kernel  operating  over  a  environment  with  more  natural  unpredictability.  Latency

guarantees or bandwidth are not within known bounds but can present value covering more than 3

magnitudes.  Also,  message  passing  solutions,  which  are  typically  proposed  by  distributed

environments, must cope with concurrency over links with different latency, and even message loss

due to hardware failure, link failure or link congestion, while providing scheduling assurances and

fairness.

Like in the remaining of the S(o)OS work packages, the work and ideas discussed here consider an

highly heterogeneous environment, where computational resources (CPU, GP-GPUS, etc.) can have

much diverse characteristics and can be located either in the same dye, same board or across an

high bandwidth link. 

1. DOCUMENT ORGANIZATION

In  chapter  II we  propose  a  kernel  communication  framework  based  on  the  component  based

architecture. In this model, components are opaque, exposing only the interface to offer its services.

An opaque component enables heterogeneous and message passing solutions, thus components can

be migrated and distributed.

In chapter  III we propose a resource discovery  protocol for large many core system. In order  to

benefit from all the potential resources in a large many core system, communication protocols are

required to recognize and locate resources with deep understanding of the resource capabilities

according to a query requirements.

In chapter IV we present tools for network modelling and simulation, in connection with the work in

other work packages. This work is also connected to the resource description in chapter III.

In  chapter  V we  present  protocols,  in  connection  with  the  work  in  other  work  packages,  for

message-passing and replication. This work is also connected to the component kernel in chapter II.
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II. COMPONENT BASED KERNEL

We propose a component based approach to realize the modular and distributed communication

model for future many-core and heterogeneous systems.

1. OVERVIEW

A component  or  service  has  a  clearly  defined interface  and conforms to  an expected  behavior.

Components communicate with each other through their interfaces. The modularization is achieved

because the implementation is completely opaque to the user thus it can be replaced or upgraded, it

can  also  have  multiple  and/or  heterogeneous  implementations.  The  system  can  decide  which

implementation to plug at runtime.

Component  based  architectures  are  not  new,  they  have  been  traditionally  used  to  implement

language  neutral  interfaces  using  an  IDL1,  RPC2 and  allow  easy  replacing  or  updating  existing

components without breaking the system. Examples of such are COM3, XPCOM4, CORBA5.

A component can interface with another component whose implementation delegates the call, using

message passing, to another node, thus enabling a distributed and/or heterogeneous system. This

also  greatly  simplifies  the  programming  of  such  system,  since  the programmer  doesn't  have  to

explicitly use message passing.

One  the  requirements  for  the  proposed  approach  is  to  be  able  to  replace  at  runtime  the

implementation of a given component, thus enabling migration to another core while maintaining a

functional and correct interface at the original node. This is possible at the kernel level, since it has

control of the execution and interruptibility of cores.

Components

A component in kernel are the objects that represent a thread, process, a file or even an hardware

device. Some of these can be physical bound, such in the case of hardware devices, or migratory,

such as a thread or process.

Comparison with “service-oriented”

In service-oriented architectures the client-server model is enforced, this is the main difference, but

for a kernel it would be inefficient to have a pure client-server model and a component provides a

service.

Migration and Replication

Components can be migrated between cores and/or distributed among cores. When a component is

not locally available, a stub implementation is used locally instead. The stub delegates the request

through  message  passing  to  the  current  object  location.  However,  a  component  location  may

change and on a  many core system it  would  no be unfeasible  to  keep track  of  the  location of

component.

To make addressing location independent, each component instance has a GUID. To resolve a GUID

to physical location we take the consideration that migration of components is a rare event, thus a

sensible approach is to cache the last known physical  location. If  the location changes,  an error

1 http://www.omg.org/gettingstarted/omg_idl.htm  

2 http://en.wikipedia.org/wiki/Remote_procedure_call  

3 http://www.microsoft.com/com/  

4 https://developer.mozilla.org/en/XPCOM  

5 http://www.omg.org/spec/CORBA/  
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indicating this is sent as a reply when a message is sent to the previous expected physical location.

To  locate  a  resource  that  changed  location,  a  discovery  procedure  of  the  component  must  be

performed.

Managing Component Lifetime

Another challenge to a distributed system is managing the lifetime of a component. Each core is

responsible  for  managing  the  creation,  lifetime  and  deletion  of  each  component.  Typically,  a

reference count is  used to maintain lifetime.  However,  on distributed system,  this  approach will

need to take into account the potential unreliable state of other cores. The sensible approach is to

keep separate reference count for local and external references. If local reference counting is zero

and faults  have been detected on the system or a sensible amount of time as passed since the

component was last accessed and based on system load, an enumeration of the given component

can done to detect dead references.

Interface Description Language

To facilitate code development, an interface description language is used to describe a components

interface, from this code can be automatically generated for:

• message passing interface and handling.

• headers for a C/C++ implementation.

Message Passing

Each  core  must  handle  messages  received  from  other  requesting  cores  and  dispatch  them  to

respective  component.  At the core handling facility,  there are stub servers,  for the components

located on this core, that handle the respective messages. The core handling facility can also hold on

queue messages to a given component instance and route the messages to another core, in order to

support migration.

2. PROTOCOL

The protocol depicted in Figure 1 was developed for RPC, migration, replication and management of

components. The source and destination are the GUIDs of the component instances of the originator

and recipient  of  the  operation  identified  by  the  opcode field.  The remaining  of  the  message  is

specific to the operation and dependent on the component.

A range of values for the  opcode field is reserved for  common operations and protocol internal

operation,  the  remaining  is  for  the  component  specific  use,  that  is  typically  to  identify  which

operation/service is being requested.  The  TID field is the transaction identifier, for distinguishing

individual  operations  since  several  operations  can  be  issued  from  a  single  core  almost

simultaneously.
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For communication with remote components, the client stub6 caches the last known good physical

location, thus a message is always sent to last known physical location. Each core has a table that

keeps tracks of all existing component instances that have remote stub references. Upon receiving a

message, a lookup is performed to get the recipient instance and dispatched using the respective

service stub7. If the lookup fails, then a message reply is sent indicating that the instance does not

exist,  upon  receiving  the  reply  the originator  must  perform a lookup using the mechanisms  for

resource discovery, see chapter III. 2. 

To manage the lifetime of component instances, for each instance, a reference count is keep for

local and remote references. When a component is migrated, first the local references are replaced

with remote references, a then the component can be migrated with a local reference count of zero.

Remote references only track on a core basis, that is, if core A has 4 references to a component

instance  in  core B,  then  core B  only counts 1  remote  reference.  This  minimizes  the amount of

messages needed to exchange, thus core A only needs to notify core B when its has 0 references to a

given component  instance in core A. The client side keeps track of the local references, of course,

no remote references in this case are tracked since that is the exclusive responsibility of the server

side.

During a migration operation,  any messages  receive whose recipient  is  the  component  instance

being  migrated  are  queued  and  then  dispatched  to  proper  destination  when  the  migration  is

complete.

3. DISTRIBUTED OPERATION

In  a  distributed  OS  there's  is  a  number  of  system  which  are global  to  the  entire  systems.  This

systems must be fault tolerant, thus requiring  replication and a consistent view along the entire

system.

One these key systems is the global namespace. Some examples of  what a global namespace can

provide are:

• access to files

• access to devices such as printers

• connectivity with IPC

The namespace aggregates a number of heterogeneous resources into a single file system like view.

A namespace does to kernel resources what a DNS system does to web pages, provides a means to a

access these resources without knowing their location.

A distributed namespace is also key system for distributed file systems, thus enabling distributed

storage and replication for a fault tolerant and efficient system.

Designing  such  system  will  require  communication  protocols  that   guarantee  a  consistent  view

among replicas and atomicity in certain operations, such as: create; rename; delete. For instance,

the Barrelfish OS uses a two-phase commit (2PC) synchronization protocol that relies on multicast to

guarantee synchronization among distributed replicas. Critical data is stored at each core and it must

be kept consistent among the replicas,  so the cores communicate through messages in order to

execute a 2PC agreement protocol. This  research topic is further explored in chapter V. 2. 

6 The client stubs creates, serializes and requests the message to be sent to the recipient.

7 The service stub is responsible to de-serialize the message and call the respective method.
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4. DESIGN AND IMPLEMENTATION

One of the greatest challenge for many-core communication is the asynchronous nature of message

passing. To overcome this challenge on a synchronous paradigm, it would require using multiple

threads. However, threads are an expensive resource and with the additional overhead imposed by

context switching makes this a non scalable solution. On the other hand, the state of the art shown

us8 [1][2] that a non-blocking communication paradigm, such as the reactor  [1] and proactor  [2]

patterns, provides a scalable solution to this challenge.

We are developing a novel kernel from the ground-up inspired on this principles, to advance and

investigate  new  methods  for  service  oriented,  heterogeneous  and  loosely  coupled   distributed

operating systems for the many-core era.

The research kernel being developed is written in the C++11 programming language, the rational for

this choice was the low level systems programming support combined with high level constructs

such as template meta-programming and lambda expressions which greatly simplifies asynchronous

programming.

Figure 2 shows the kernel architecture into 3 layers of abstraction. The 1st layer, the kernel hardware

abstraction layer, compromises the interrupt handling, scheduling and related primitives, exception

dispatching, system services dispatching and the memory management unit abstraction.

At  the  2nd layer  we  have  the  memory  manager,  the  component  manager  and  other  possible

management  duties  for  components,  such  as  threads  and  processes,  which  may  also  be

implemented at the user-level like in a micro-kernel.

At 3rd layer, kernel services are exposed to user-mode. This layer is more of a security boundary for

proper validation of parameters and permissions for user-mode system service requests.

A) ASYNCHRONOUS SUPPORT

To perform an asynchronous operations, in terms of software, a callback function is provided by the

caller to the called method. Upon the completion of the operation the callback function is invoked

with the result of failure or success of the operation. When the called method returns, the operation

may  or  may  not  have  been  completed,  thus  the  result  is  always  reported to  the  callback

asynchronously.

In a pure C programming language style, programming complexity may arise when the programer

needs to pass additional information to the callback. In the mentioned style, the common approach

is to supply to the called method an additional pointer argument which will then be supplied to the

callback. If the additional information does not fit in the pointer argument, then the programmer

must  create a structure to hold the additional information, allocate memory for it  and pass the

address in the pointer argument and then free the memory in the callback. This added complexity is

due to the lack of  language features that  can simplify  this.  Since the kernel  is  written in C++11

8 More information available at http://msdn.microsoft.com/en-us/magazine/cc302334.aspx and

http://www.kegel.com/c10k.html.
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programming  language,  functors are the adopted callback mechanism which can hold additional

information with  much simpler  interface,  using the lambda9 syntax,   compared with the C style

approach.  For  wording  purposes,   this  callback  mechanism  is  also  designated  as  a  completion

functor. The code listing below illustrates an asynchronous method call for a read operation:

read(buffer, [buffer](error_code error, size_t transfered) {

 //thinking asynchronously: sequential execution resumes

here

 });

 Calling an asynchronous method

In the illustrated asynchronous method call, the buffer argument is a tuple with the address and size

of the memory region to hold the data to be read, the second argument is the completion functor

expressed  using  lambda  syntax.  In  the  lambda  the  buffer argument  is  captured  by  the  lambda

capture list denoted in square brackets, the arguments  error and transferred are passed when the

completion functor is invoked indicating respectively the success or failure of the operation and the

number of bytes transferred.

A new type of  primitive  was  developed  to meet  the requirement of  the adopted asynchronous

mechanism.  This  primitive,  known  as  async,  provides  a  stack  based  mechanism  to  store  the

completion functors. When a completion functor is pushed onto the stack, a reference to a tuple is

returned to store the results to be passed to the completion functor. The  async primitive can be

waited on, where a completion functor must also be provided for this. When a wait is performed no

more completion functors can be pushed onto the primitive until its signaled, causing the wait to be

satisfied, and trigger the sequential execution of the completion handlers until either the last one or

a new wait is performed. Also, only an error code can be passed to the wait completion functor,

which is the argument supplied to the signaling method.

Figure 3 illustrates the context of the asynchronous stack when a completion functor is  pushed.

Space is allocated10 for the result data and initialized to its default values. Then space is allocated to

the functor data and copied from the supplied functor. Finally, a pointer to a wrapper function is

pushed at the end. The wrapper function unwinds the stack, and invokes the functor with the result

data as arguments. This is accomplished through the C++ meta-programming features.

9 In C++ lambdas are “syntactic sugar” for function objects.

10 Space is allocated by manipulating the stack position pointer. The current implementation uses a fixed stack size.

And, like in a thread stack, an overflow will result in a kernel panic.
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 template<class Completion>
 void read(const tuple<void*, size_t>& buffer, Completion
comp)

 {
 auto astack = ke::get_current_async();

 auto result = astack.push<error_code, size_t>(comp);

 
 if (do_read(buffer, result))

 astack.pop();

 }

Implementing an asynchronous method

An asynchronous method first requires an entry template wrapper, as illustrated in the code listing

above, in order to set the completion frame in the current async primitive. Then it calls the method

that  implements  the  operation.  The  operation  may  complete  immediately.  In  this  case,  the

completion frame must be popped for the completion functor execution.

Figure  4 illustrates  the  case  when  a  wait  is  performed  on  the  async primitive.  Considering  the

previous code examples, if a read operation had to issue an hardware I/O request, it would first set

the  async primitive  into  a  wait  state,  then  it  would  queue  necessary  information  such  as  the

reference to the  async primitive. Next, it would issue the request and return indicating a pending

operation.  Later,  when  hardware  interrupt  fires,  the  async primitive  is  signaled  to  notify  the

completion of the operation.

When a wait is performed on the  async primitive, it is moved from being the current one to the

async primitive wait list and a new async primitive will be allocated from the core pool when a new

asynchronous operations is initiated. The pointer to the function wrapper for the wait completion

functor is stored on dedicated data member of the async primitive. This allows the interruption of

signaling process when on of the completion functors performs a wait.

The async primitive is bounded to the core11 where the operation is initiated. It arbitrary executes in

any thread context12 when it  gets signaled,  thus avoiding context  switching overhead  and cache

thrashing.

The  async primitive  can  also  be  bound to a  thread,  this  is  particular  relevant  when  servicing  a

request on behalf of user-mode and access to its address space is required.

11 Depending on the architecture, this could also apply to small group of cores that share a cache.

12 There are limitations imposed by a core interrupt level, thus at certain interrupt states the execution can be deferred

until the interrupt level drops.
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III. RESOURCE DISCOVERY AND MATCHING

Service  and  Resource  Discovery  (SRD)  is  the  process  of  finding  and  locating  all  the  available

Services/Resources  within  the  network.   Today,  with  the  growth  of  size  and  diversity  of  the

computer  networks  and  architectures,  SRD  solutions  are  becoming  more  enhanced  and  widely

spread for different applications, environments and infrastructures.  There are various approaches

possible to perform  resource discovery which are differentiated from one another  in the following

aspects.

Architecture: SRD architectures are Structured (Directory Based), Unstructured (Directory Less) and

Hybrid:

• Structured:  majority  of  the  service  discovery  (SD)  systems  are  using  a  structured

architecture.  By structured architecture we can understand systems on certain nodes of

which the services information is fixed, such systems are in general faster in discovering

services than other SDAs, with a fixed and predictable time of service discovery. Structured

SDA are classified into Centralized and Distributed ones. In centralized or directory system,

the information about  the  services  which  are provided  by  all  other  nodes  is  stored  on

preconfigured or auto configured nodes in limited number.  In this  system nodes or the

directory, periodically update the registered service information in central repository. But

some time these services are not valid or expired because they are not updated. 

In  centralized  architecture,  we  have  typically  the  fastest  search  time,  less  traffic  and

overhead, high rate of service discovery . But potentially this system has   some points of

failures  such  as   high  rate  of  false  service  discovery  (discovering  invalid  or  expired

services) ,and being vulnerable to Denial of Service (DoS) attacks. 

In decentralized systems, the distribution of service information is controlled by SD system

and the information is almost distributed between all the participant nodes in a predefined

manner.  Overlays  of  this  type  commonly  make  use  of  Distributed  Hash  Tables  (DHT).

Decentralized  systems  can  be  extremely  effective  for  searching  resources  using  unique

identification,  but  they  fail  when  a  search  using  partial  marching  is  required.  Another

drawback is creating additional overhead by managing network architecture (by updating

the system structure in the case of node failures or node arrival).

• Unstructured: distribution of the service information among the nodes is not followed by a

predefined  or  controlled  mechanism.  In  spite  of  decentralized  structured  system,  the

system built as unstructured or classical peer to peer (UP2P) supports partial matching and

also complex querying. The use of loose architecture makes the system resistant to node

failure and DoS attacks; another advantage of this architecture is easy adaptation of the

system to frequent node joins and disjoints. On the other hand, UP2P has low-level rate of

service discovery in comparison to the structured systems. Nodes in these system are free

to behave as they want , however they carry a part of the network functionalities and their

failure or misbehavior can be costly .There are some other challenges with this kind of SD

systems specially related to issues such as fault tolerance under churn, load balancing ,and

flash crowds.

• Hybrid: The  classical  P2P  service  discovery  architecture  do  not  scale  well  in  the  large

networks , that is why it should be replaced with the peer to peer overlays that utilize a

hybrid architecture.  The hybrid solution tries to combine the advantages offered by the

classical structured and unstructured service discovery systems.
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• OSI layer positioning: SDPs can be built based on different layers within protocol stacks but

most  of the SDPs rely on the network layer or higher application layers such as Service

Location  Protocol  (SLP),  Universal  Plug  and  Play  (UPnP)  and  Simple  Service  Discovery

Protocol (SSDP),  however,  to increase total efficiency and performance of the system in

mobile  ad-hoc networks  SDPs  are integrated  with  the  routing protocols  in  the network

layer. For the fixed network, the appropriate solution is implementing service discovery in

system or application level.   

Service Announcement: SRD Mechanisms for service distribution are Pull (Reactive, Query-based)

and Push (Proactive, Announcement-based) and Hybrid. Reactive is the mechanism in which a node

sends an explicit request query to find and use a specified service, and proactive is a state that the

node  waits  to  receive  a  service  announcement  which  is  advertised  by  other  service  providers.

Proactive uses the periodical service broadcasting or multicasting, and creates more traffic and this

is why today majority of SRD frameworks are using reactive or hybrid methods. 

Network Type: the SRD solutions are different due to the type of the network infrastructure (fixed,

wireless, constrained resource, mobile or sensor networks) for which they are defined .  Some of

SRD methods may support different type of network but they are not always efficient. 

Scale: Scalability  of  a  SRD is  generally   related  to  its  delimitated  scope and provides  issues  on

suitability  and consistency.  Consistency  in  service  discovery  protocol  means  that  the  discovered

services must be matched with the actual services which are advertise by the origin nodes. While the

size  of  a  network  becomes  larger,  the  number  of  service  entities  also  increases,  however,  the

network parameters such as packet loss, link disconnection, and transmission delay  is almost the

same and therefore the inconsistency or rate of false service discovery between the original services

and discovered services is raised. The mechanisms which are used by SRDs to reduce inconsistency

regularly poll the service status or subscribe to the service status modification from the clients sides

and produce service change notification from the server sides. In centralized architecture especially

with the push service advertisement method, the status of services periodically are being updated

which  causes a noticeable increasing in the number of expired or invalid services compared to the

distributed architectures and pull based Sds. 

Scope: SDPs  generate  discovery  messages  over  the  network  and  thus   it  is  important  to  limit

distribution of unnecessary messages in the environment by defining a scope for service discovery.

Scope  enhances  service  discovery  solutions  by  avoiding  considerable  amount  of  unneeded

processing on client  or server  nodes.  Definition of  service  discovery  scope is  made according to

network topology, context information or user rules. 

Routing Protocols: Service Discovery Protocols can be either pure discovery protocols or coupled

with routing protocols  which address the optimum path from the origin node to the destination

node, such as Ad hoc On Demand Distance Vector Protocol (AODV), Dynamic Source Routing (DSR)

(reactive)  ,  On-Demand  Multicast  Routing  Protocol  (ODMRP),  and  Optimized  Link  State  Routing

Protocol (OLSR) (proactive).In wireless network most of the SRDs are being included containing  their

particular routing protocols or are built based on an existing routing approach. 

The  resource  discovery  which  is  required  for  the  So(o)S  project  is  going  to  advertise  resources

(processors and cores in multi-core nodes) as services according to Service Oriented Architecture

(SOA).

Consistency: Consistency  in  service  discovery  protocol  means  the  discovered  services  must  be

matched with the actual services which are advertise by the origin nodes, while the size of a network

becomes larger,  the number of service entities also increases,  however,  the network parameters

such  as  packet  loss,  link  disconnection,  and  transmission  delay  almost  is  same,  therefore,  the
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inconsistency or rate of false service discovery between the original services and discovered services

is raised.

The mechanisms which are used by SRDs to reduce inconsistency  are regular  polling the service

status or subscribing for the service status modification from the clients sides and producing service

change notification from the server sides. In centralized architecture especially with the push service

advertisement method, the status of services periodically are being updated, it causes a noticeable

increasing on the number of expired or invalid services in compare with the distributed architectures

and pull based SDs.

1. MULTI-LAYER RESOURCE DESCRIPTION

Multi-layers resource description model is designed for the purpose of resource discovery to provide

required information about resources for the queries in easy and efficient manner.  It  categories

resource specifications includes computational and communicational properties and behaviors  in

the  there  layers  from  more  abstract  information  to  more  detailed  characteristics.  In  resource

discovery we are considering to avoid generating overload for discovery traffic. By using Multi-Layer

resource  description  model   we  just  transmit  necessary  information  and  resource  description

according to the   status of the discovery procedure. Descriptions in Layers are classified according to

the following categorization:

Layer1: Inter-Cores Level (Network on Chip (NoC) Level), resource description in this level has been

characterized  according  to  THE  type  of  information  which  is  directly  related  to  the  core

specifications. The most typical information in this level is floating point and integer operation per

cycle and private cache size.

Layer2:  Inter -Chips Level, describes the specifications of the edges for the core communications,

interconnection networks and memory  hierarchy which include information  such as:  bandwidth,

latency, shared or global cache size and number of cores.

Layer3: Inter -Nodes Level, Resource description covers a total overview of all the communications,

memory  and processing  features  and aspects in the node such as  memory  size  and number  of

processors.

In the S(o)OS deliverable “D2.2 First Implementation Set: Hardware”  [3] we have discussed more

about the detail of multi-layers resource description model.

2. QUERYING AND SEARCH ALGORITHMS

Search  techniques  are  the  main  part  of  SRDs.  There  exist  several  various  techniques  to  locate

resources  and services  in  the network.  For  small  network with  limited number  of  resources  no

complex search method are required, simply a node can discover  other resources by using basic

broadcasting or multicasting. Directory-based or centralized systems with limited number of servers

also do not require a complex propagation method for querying, however, in distributed networks,

such as unstructured peer to peer overlays, to support complex or free-form queries, appropriate

search  techniques  have  to  be  applied  and  integrated  with  the  query  propagation  methods  to

increase efficiency and scalability. The search algorithms are categorized in two groups, informed

and uninformed search methods: 

• Uninformed: in uniformed methods,  the sender nodes know nothing about other nodes

and resources in surrounding network . These methods can be either systematic or random

algorithms, in systematic approaches, to find a resource, almost whole or part of the search

tree  or  graph is  explored,  and there  is  no option for  random or  probabilistic  search  in

systematic manner. The most well known search algorithms in this group are Breadth First
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Search (BFS) and Depth First Search (DFS) .However there are several other considerable

systematic and random search methods such as Flooding, Depth Limited Search, Iterative

Deepening,  Uniform  Cost  Search,  Random  Walk,  etc.  According  to  the  aforementioned

search methods, there are various SRD protocols which utilize and integrate them with their

query propagation methods such as Probabilistic Flooding and Forwarding Protocol, Gossip-

based Protocol, etc. 

• Unicast and Multicast: Unicast is the most conventional communication way in SDPs. The

origin node (sender)  explicitly  addresses the receiver  and sends messages (query,  reply,

advertisement,  etc.)  directly  to the  destination node through network.  This  is  the most

efficient  way  of  the  communication  while  the  receiver’s  address  is  clear.  However  in

pervasive environment with wireless and mobile ,node services and even nodes are not

known in advance and therefore we need to use, (in this approach), another alternative

which is  multicasting number of nodes’  starts to establish  a multicast  group by sending

unicast initiative messages  to each other.  Once a node sends a message to a multicast

address  it  causes  several  unicast  messages  from the sender  to  all  the  members  of  the

multicast group. Multicast is used when the destination nodes are unknown and it is not

clear which nodes are offering a particular requested service, though this communication

model compared to broadcast is still efficient. 

• Broadcasting: or simple flooding, is using one to all communication to send packet for all

the nodes in the network or subnet .Service discovery systems employ broadcasting in the

absence of the predefined servers which creates a lot of overhead in the network,  and

generally  it  is  used  to  advertise  new  services  in  the  wireless  network  which  are  more

adapted to the nature of the broadcast communications. Today broadcasting is mainly used

in the small wireless network with limited number of services. 

• Publish/Subscribe: It is similar to multicasting in nature. In this approach, a receiver node

subscribes  for  certain  services  which  are  offered  by  publisher  nodes  and  obtain  these

services directly or through intermediate nodes. Publishers constantly report all the service

changes to their  subscribers.  They may update intermediate  nodes.  Subscribers  are not

updated immediately and they should fetch new data from the middle nodes as soon as

they contact them, instead of direct updating.

Algorithm 1 demonstrates steps of resource discovery in a large cluster with multi-CPUs and multi-

core nodes. We have developed a resource discovery protocol using MPI to discover all the available

processing  resources  in  the network  for  a  particular  query.  To  implement  a  resource  discovery

procedure the following components have been defined accordingly.

• Discovery  Event: This  is  an  event  of  discovery  procedure  which  is  assigned  to  all  the

processing resources in the network. It is triggered when the correspondence resource has

overload instructions. Next, it is required to distribute the overload processing tasks over

other available resources. Discovery Event initializes the procedure to discover requested

resources.

• QMS: Queue Management Systems are the components which reside in each node or CPU.

They are responsible for checking the availability of their processing units and manage the

queue of individual queries from various origin cores. 

• DHT Resource Mapping: Distributed Hash Tables are located in resources to keep the state

of execution by mapping query/job/instruction IDs with the most high-ranking discovered

resources.
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• RCT: Resource Cost Table is a data structure to record the rank of discovered resources

according to resource ranking algorithms which can be used for future resource discovery.

There is a time validation for RCT after which the RCT would be invalid.

 Data: query = SetInitialArguments
 Event:  discoveryEvent = SetTrigger
 Data: timing = Calculate timing
 Data: RCT//resource cost table
 Data: QMS, remoteQMS //queue management system
 Data: reqMessage, repMessage
 Collection: manyCoreSystem=Set{n, f(n_id)} // n nodes, f(n_id) cores per
node

 Collection: multiCastGroup, qualifiedResources , remoteQMS_group,
DHT_resource_mapping

 Set timing = false
 
 /* Main discovery procedure */
 ∈∈∈∈for( each node   manyCoreSystem )

 {
     node.nodeAssign(QMS)
 ∈∈∈∈    for( each core   node)

         core.coreAssign(discoveryEvent, RCT)
 }
 
 On_discoveryEvent: { query=generateQuery(applicationArguments) }
 core=getOriginCore()
 QMS=getLocalQMS(core)
 multiCastGroup=getLocalCores(QMS)
 reqMessage =generateRequestMessage(query, multiCastGroup)
 Set timing = true
 on_send:  Broadcast(reqMessage, AnyCast) //send query from orign core
 on_receive: 
 { //receive query from other cores
     for ( each resource ϵ multiCastGroup )
 if  (checkQueryRequirements(reqMessage,resource)>0) 
                 qualifiedResources.add(resource)
 
 
     if (qualifiedResources.length==0) { 
         remoteQMS_group=getListQMS(resource.nodeID)
         for each ( remoteQMS ϵ remoteQMS_group ) 
         {
             multiCastGroup=getLocalCores(remoteQMS)
             reqMessage =generateRequestMessage(query, multiCastGroup)
             Broadcast(reqMessage, AnyCast)
         }
         }
     else{
         RCT=resourceRanking(qualifiedResources)
         core.setRCT(RCT)
         discoveredResource=core.getRCT.getBestMapping(query)
         DHT_resource_mapping.add(query.id, discoveredResource)
         }        
 }

Algorithm 1: Resource Discovery Algorithm
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The procedure of resource discovery takes place according to the following steps:

1. System initialization and resource description: in this step the whole many- core system has

been described, the components such as QMS, RCT and Discovery Event assigned to each

processing unit.

2. Once a core determined an overload execution , it triggers a discovery event to distribute

extra loads over other cores in the vicinity.

3. Discovery event generates a query  which  requests  on-demand resources from  local and

remote nodes  .  The query is generated according to the application requirements and

parameters.  For  instance,  depending   on  the  type  of  an  application  ,   queries  can  be

produced to find  The most efficient resources due to  Flynnś classifications . 

4. Origin core is a processor that starts query dissemination.  It sends a message for local QMS

and checks the list of surrounding processors. The reply message includes a list of possible

local resources to create a Multi-Cast  group. Origin core sends Any-Cast request message

to the group’s address.

5. All the receiver processors check the query message and its conditions and requirements

and according to their resource description if  they can fulfil  the conditions they will  be

added  to a collection of the qualified resources.  In the next step the qualified resources

for  an  individual  query  must  be  evaluated  and  assessed  by  using  resource  ranking

algorithms.

6. If local processors can not provide a specified query with the requirements and collection

of qualified resources is empty, the discovery procedure checks the list of remote QMS and

sends  Any-Cast  queries  to  all  the  remote  resources  neighbouring  the  origin  core.  This

process will continue until the qualified resource collection is not empty.

7. After finding qualified resources for a particular query , according to a ranking algorithm

these resources would be assessed and the best mapping is assigned the correspondence .

each of the processors has its own RCT table to show The  cost of task migration to  the

other processors. RCT tables are used for successive queries with the same requirements.

Figure  5 depicts  the mechanism  of  resource  discovery  in  a  cluster  with  multi-core  nodes.  The

proposed search method is  acting similar to BFS,  Which is due to the point of memory latency,

bandwidth and interconnection network. To  find the optimal resource for a query with minimal

requirements  which  depends on  processing  capability,  memory  and  availability,   the  search

algorithm first explores the possible neighbouring nodes and ranks  them according to a defined cost

table from the source node to the destination, and then selects the most promising ones, explores

the search graph and goes to the next tier only if the founded optimal does not meet  the minimal

requirements of the query.
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3. RESOURCE ASSESSMENT ALGORITHMS

In D2.2  [3] we have classified the performance metrics  and parameters to evaluate  resources  in

format  of  resource  description  in  three  individual  layers:  Core2Core,  Die2Die  and  Node2Node

communications level. These parameters handles gathering real time information about the current

status of executions and processing capabilities of the available resources. Each processor has its

own resource cost table (RCT), see Figure 6, which is includes metrics to asses other processors for

movement of executions to destination processors. According to the metrics values in RCT, ranking

algorithms  generate  rank  number  for  every  particular  processors  in  the  network.  The  following

figure is a sample of a generic RCT.

Under the scope of S(o)OS resource description, we must identify the metrics relevant for describing

the potential performance of a given resource.
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RCT aims to evaluate the cost of resources per query type. To organize RCT for execution per core

we need to define query types. RCT ranks the resources for each queryTypeID which IS conceptually

elaborated   and IS   based  on  the  range  of  computation  and communication   latencies.  Before

implying  query  classifications  we  must  estimate  optimal  or  minimal  application  resource

requirements.

A) APPLICATION RESOURCE ESTIMATION

We know that computational clusters are common alternative platforms for handling massively large

computational problems and parallel applications, and the many-core systems are able to be more

efficient  when  resource  management  is  deployed  according  to  the  run-time  application

requirements  .  Generating  queries  for  resource  discovery  requires  a  capability  to  predict  the

resource requirements of parallel  applications before making  decisions for scheduling. There are

variety of researches to estimate and extract the application´s features. They are trying to deploy

performance models or  mechanisms  to forestall  resource  utilization in  case  of  computation and

communication complexities for applications lunched under a distributed parallel system  including

multiple homogeneous or heterogeneous resources with various processing capabilities. Application

modelling or application description can provide accurate information for querying operations in

resource  discovery  protocol.  Appendix  B:  Extraction  of  Application  Requirements is  a  sample

application  modelling  which  is  a  non-stop  loop  for  extracting  application  features  for  future

executions. 

In  S(o)OS  deliverable  “D2.2  First  Implementation  Set:  Hardware”  [3],  a  section  in  chapter  3

identifying resource requirements from code is discussed . Here for resource discovery protocol we

use  a  simple  algorithm  to  categorize  application  features  and  estimate  their  minimal  execution

requirements to achieve an optimal performance.

queryTypeID LowerBound UpperBound Minimal/Maximal Processor Type

--------------- Memory Access Memory Access Frequency

SIMD / SISD

MIMD / MISD
--------------- L1_Latency L1_Latency cacheSize_L1

--------------- Run time Run time Pipeline stages

Table 1: Argument for query classifications

At the time of query generation, due to the application features we can assign a  queryTypeID for

each  particular  query.  And  after  discovering  an  appropriate  resource,  all  the  query-resource
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mapping information added to DHT_resource_mapping for task management and also reuse of the

discovered resources in similar query  statements. 

On_discoveryEvent:
{ query=generateQuery(applicationArguments) }

B) RESOURCE COST EVALUATIONS

Resource cost is subjected to three elements. The first one is the processor that is looking for other

resources to augment its processing capabilities and distribute jobs among them. This processor

starts the process of discovery and triggers its assigned discovery event. The second element is the

application that runs on the aforementioned processor. 

There are variety of applications with different specifications and requirements, to make it simple,

we assume that for each particular application we can map it to a queryTypeID which the type of

query describes the application execution resource requirements.  The final element is the processor

that would be nominated as the result of discovery in collection of qualifiedResources. The resource

cost for all the members of qualifiedResources stores in RCT of the processor which it is generated

the query. According to these elements and their affects on the resource evaluation we can model

the complexity of assessment as: 

Resource Cost= Communication Time + Computation Time

C) RESOURCE RANKING ALGORITHM

We have developed a resource discovery protocol for the cluster environment includes homogenous

and heterogeneous multi-CPUs and multi-cores nodes.  In classic  resource discovery  protocols,   a

typical cluster environment generally defined as a Virtual Organization (VO) which consists of two

types of individuals includes resources and resource directories.  In our approach for discovery we

assume that  a  cluster  is  a directed graph  C gV e , E d   with  n nodes  and w edges.  Each of  edge

e d a ,b   connect two nodes  a and b where:

e d a , b ∈E d ,  a n d  ∀  a ,b  ∈V e  a , b  ≤n

Nodes  in  the  graph  are  cores  in  the  real  cluster.  Cores  are  linked  to  each  other  through

interconnection networks, for all the cores which are placed in a CPU or cluster node an identity has

been defined which Queue Management System (QMS) is. The QMS includes a set of addresses and

descriptions for resources with maximum priority in resource discovery. in our graph we allocate set

of first priority resources  for each node.

e d a ,b   is connection link between core a  and core b  , communication cost to describe this link are

bandwidth and delay. For each core,  states  and descriptions of  its  processing resource and also

other cores in the first-tier vicinity stores in localQMS. Cost of resource  r   in localQMS of core  b

through  e d a ,b   maintained as 1∁a b

r
.

In our resource discovery approach, we generate one query per discovery request, and in the whole

cluster system concurrently several query would be generated. In our ranking algorithm each of the

successful queries with the best matching discovery affects the dynamic values of the resource cost

and resource rank consequently. Queries explore the cluster and checks local and remote QMS for

the best resource matching. 

15 | P a g e D3.2 First Implementation Set: Protocols S ( o ) O S



When a query explore a QMS and related resources, it shows one of the following two behaviors:

first, query does not find the best matching, then it goes to the next QMS, and will keep continue

until the best matching for discovery be achieved.  If a query that is exploring QMS associated with

node a  does not satisfy with the local resources then it goes to the next node b  in one of the QMS

neighbor with the following probability which is proportionally related with the rate of ∁ab

r  for each

one of r   resources over edge e d a ,b  .

P r oba b

r
=

∁a b

r

∑
z

∁a z

r
.    z∈Q M S  i n  v i c in i t y  o f  n o d e  a ,  r :co r e I D ,  r em o t e  r es ou r ce  in  n od e  b     1

According (1), queries use the probability to select the next node for discovery. After finding a match

for  a  query,  the  reply  message  includes  the  description  of  the  qualified  discovered  resources

returned to the initiated node. Among all the discovered resources the best matching is a resource

with lowest rate of latency. In the next step rank for the best matching discovered resource would

be update according to following formula.

R e sCab

r
=

1

R e sCa b

r
−δ R e sCa b

r
−

δ

min⁡L aa b 

 ,

 0δ≪ 1 ,  ∂  i s  r an do m  n umb er ,  L aab  i s  l a t e n c y  be t w e en  n od e  a  a nd  no d e  b   

Resource rank for a collection of the qualified resources assigned according to a list of resource cost

which is sorted based on ascending sort algorithm.

4. SIMULATION

A) CLUSTER SIMULATION

To  study  and  analyse  the  performance  impact  of  the  future  hardware  architectures,  network

protocols, operating systems and parallel applications, we are required to use cluster simulators to

simulate  these  future  systems.  Generally,  cluster  simulators  are  combinations  of  cycle-accurate

discrete event multi processor full system simulators and network models or simulators; as such, in

these  systems  frequent  interactions  among  the  potentially  different  parallel  cycle-accurate

simulators  are  necessary.  Cluster  simulators  then  need  to  support  an  efficient  synchronization

mechanism. 

The main performance metrics for cluster simulators are accuracy and speed; however there is a

tradeoff  between  these  factors,  it  is  important  to  verify  correctness  of  simulation  when  the

simulator emulates the behaviour of a real physical machine with real devices, operating systems

and user applications. To increase the accuracy of the simulator we need to increase the frequency

of the synchronization which will slow down the operation speed of the simulator. Synchronization is

a critical challenge for current research on cluster simulators. 

In  some  research  works,  they  have  tried  to  solve  the  synchronization  problem  by  proposing

asynchronous  distributed  simulation,  however  this  is  not  accurate  enough,  and  for  increasing

simulation  accuracy  costs  increase:  more  frequent  synchronization  that  causes  limitation  on

performance,  simulation  speed  and  scalability.  The  COTSon  simulator  is  concentrated  on  best

combination  of  both,  trading  speed  for  accuracy  depends  on  simulation  purpose  and  the  user

preferences. The MARS simulator platform and BigSim are another alternative for COTSon, MARS

has focused on offering a very detailed and accurate network simulator, instead a network model, it

fed the network simulator by traces which are generated by IBM-Mambo, the solution scalable but
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has some disadvantage, as the detailed network and traffic analyzes impact on node architectures.

BigSim also uses the Mambo full system simulator with an optimistic method for synchronization, for

exploiting parallelism it could be efficient for fine-grained tasks but Mambo, as a single parallel task

is coarse grain. BigSim is not able to simulate node detail in clusters. 

Full system simulation is not a new research area, there are a lot of works about virtual machines

and cycle accurate simulators have extended these works. Several system simulators such as AMD

SimNow ,SimOS, Simics Central come with a built in functionality that enables them to communicate

with other instance of the simulators or the real network by a network model, also many virtual

machines and emulators, such as VMWare or QEMU embed similar “virtual networks” functionality,

to model the networking among all the instances and other physical machines. Other than the above

mentioned performance metrics,  there exist  other metrics for assessment of a cluster simulators

such, repeatability and scalability. The regular techniques to evaluate simulated clusters are using

benchmarks such as, NAMD,HPL, IS ( from NAS Benchmark) , AMG (from Sequoia Acceptance Suite),

LAMMP(from Sequoia Acceptance Suite), FFTW, HPCCG. In this work we have selected COTSon and

SimNow simulators to evaluate the proposed resource discovery protocol.

B) SIMULATION IN COTSON

We have simulated a cluster over two physical nodes by executing four instances, see Figure 7, of a

simulated node (target node) on the first machine and two instances of a target node on the second

machine.  Each  target  node  has  two  cores  lunched  per  physical  core.  The  simulated  nodes

communicate with each other through a component which is responsible to model NIC and network.

This component is called mediator. 

The NIC model provides facility to connect the target nodes with their related host nodes. The Q-

Mediator  is  an application from HP that implements AMD SimNow’s mediator using C++,  it  is  a

pluggable network model component   that is able to be connected to SimNow service and provides

functionalities  for  communication  among  multiple  SimNow  instances  by  using  Ethernet  frame

encapsulating  inside  UDP  packages.  For  the  purpose  of  simulation  we  have  implemented  our

resource discovery model by Using Open MPI (RDMPI). 
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This application used Q-Mediator to manage and control communication between target nodes in

simulated cluster. SimNow instances also are able to connect to the real networks by using Virtual

Distributed Ethernet (VDE). RDMPI implements the resource discovery mechanisms on top of the Q-

Mediator layer.

Figure 8 depicts interaction among various simulation components, we have explained our resource

discovery in previous sections, RDMP is an implementation of this algorithm using Open MPI and C+

+. it works with Q-Mediator and took place between NIC Model in SimNow  instance and Network

Model.  In  order  to  simulate   the  proposed  resource  discovery  method,  first  we  established  a

simulator cluster with interfering of RDMPI in mediator and network transport layer. And finally we

use some standard parallel application benchmark to evaluate  the simulated cluster with resource

discovery enhancement. In Figure 3, application uses  MPICH to communicate with the simulated

system.  It  interacts  with  device  layer  in  NIC  model  in  SimNow  instance,  NIC  models  can

communicate with other NIC models by using RDMPI and mediator.

C) FUNCTIONAL AND TIMING SIMULATION 

We use  AMD SimNow  as  the simulation component  for  functional simulation.  It  is  a fast  cycle-

accurate full system emulator and use caching and dynamic compilation technique. It can support

booting an real operating system and lunch complex applications over it.  The SimNow simulator

deployed x86 and x86-64 instruction sets with support for system devices . It perform simulation of

the  real  system  with  10x  slowdown  in  comparison  with  the  native  execution.  SimNow  cores

generate  a  series  of  event  that  are  stored  in  asynchronous  queue.      COTSon  provide  timing

feedback for SimNow instances, it parses asynchronous queues to create higher level objects such as

instruction.  COTSon  provides  timing  information  back  to  the functional  simulators  to  affect  the

behaviour of the application. It also uses Quantom based simulation for synchronization techniques,

it uses a Quanta (Q) bigger than latency time between two nodes. 

D) BANDWIDTH AND LATENCY SIMULATION 

We are simulating a cluster which is a LAN network with high bandwidth and small value of latency.

Therefore simulation of cluster is easier than a real network with complex bandwidth and latency

behaviours. Functional simulation generally adds some extra latency to every transmitted packet. It

happens  because  we  send  packets  twice  ,  one  time  functional  simulator  sends  packet  to  the

mediator  and  in  destination,  mediator  sends  packets  to  the  receiver  node.  COTSon  performs

bandwidth  and  network  simulation  in  the  sender  NIC  device,  but  all  the  network  timing

characteristics and information is collected in mediator level.
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IV. NETWORK MODELS

1. FUNCTIONAL NETWORK TOPOLOGIES

DESCRIPTION

Given that future systems will have more and more components, both on-chip and off-chip, there is

a  need  easily  experiment  with  different,  complex,  topologies  [4].  We  need  a  language-based

approach to these topologies, as an overview of the network is quickly lost when working in a purely

graphical  environment.  We chose  a  functional  languages  approach  to  generate  and manipulate

these network topologies, for reasons we hope to make clear in the rest of this section.

We describe the layout/topology13 of a network using a sparse adjacency matrix, annotated with the

properties of every link. We use a sparse representation because we assume that a highly connected

topology is uncommon and we envision that we will be working with topologies that have hundreds

or even thousands of nodes.

type Layout = [[(Int,LinkProps)]]

The  Layout type is defined as a list of lists, where the inner lists represent the rows in the sparse

adjacency matrix. Every element in a row is tuple consisting of the index of the source-node and the

link  properties  of  that  incoming  connections. Because  we  annotate  each  connection  with  link

properties,  it  becomes  possible  to  have  different  up-  and  downstream  properties.  The  link

properties currently captured in our topology model are bandwidth and latency. Extending them

with information regarding reliability and availability is considered as future work.

 type LinkProps = (Bandwidth,Delays)

 Although the concept of using a sparse matrix to describe a layout can be captured in almost any

modelling approach / programming language, we chose to use a functional language to manipulate

and generate topologies.  Support for built-in dynamic list structures,  polymorphism, higher order

functions,  and  lazy  evaluation,  leads  to  very  natural  descriptions  and  generators  of  complex

topologies.  We mean by 'natural' description, descriptions “in code” that have an almost one-to-one

mapping to the descriptions “in words”. We will illustrate this concept using a fairly simple topology:

a fully-connected layout. In a fully-connected layout each node is connected to every other node.

The function “fullyConnected” has two arguments: the number of nodes in the topology, and a link

property that will be associated with every link.

fullyConnected :: Int -> LinkProps -> Layout

fullyConnected n lp =
  [ zip (filter (/=k) [0..(n-1)]) (repeat lp) | k <- [0..
(n-1)] ]

where the zip function zips two lists together to form one list of tuples, the filter function removes

every element from a list  that does not pass the given test,  and the  repeat function creates an

infinite list of the given element. The fullyConnected function uses a so-called list comprehension, of

the form  [ f e | e  <- g ], to create a list of  e's generated from generator  g, where a function  f is

applied to every e. In the case of fullyConnected this generator is the list [0..(n-1)], which is syntactic

sugar for the list of integers from 0 to (n-1). 

The above list comprehension will create n rows, and each row, k, will consists of the neighbours of

k. The neighbours of k are all nodes 0 to (n-1) except k itself (hence the use of the filter function).

13 The use of the terms 'topology' and 'layout'  in this section both refer to the concept of 'topology'.
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We also need to associate the link property lp with every link to a neighbour, for which we use the

zip function. We noted earlier that repeat lp will create a list of infinitely many copies of lp, this will

however not cause any problems due to lazy evaluation. The zip function will only evaluate as many

copies created by repeat lp as there are elements created by filter (/=k) [0..(n-1)].

We feel the description “in code” follows natural from the description of the fully-connected layout

“in words”: every node is connected to every other node, and all links have the same property. The

list comprehension captures the “every node”, the filter (/=) [0..(n-1)] captures connected to every

other node”, and the combination of zip,  repeat, and lazy evaluation corresponds to “all links have

the same property”. Where the use of lazy evaluation is particularly convenient, in that we only

create as many link properties as needed.

A) COMBINING TOPOLOGIES

A more interesting application follows naturally from the functional approach is combining several

existing  topologies  to  form  a  new  topology.  We  highlight  one  layout  combinator,  the  ring

combinator (see “Appendix A: Ring layout combinator“ for the actual code), that combines several

given identical layouts (with n nodes) by putting a ring through the corresponding nodes, for every

node in these given layouts. The (bidirectional) rings that connect the layouts all have the same link

properties.  The type signature of ring is thus:

ring :: LinkProps -> [Layout] -> Layout

To create a simple ring network of  n nodes, we can call the  ring layout combinator on a set of  n

layouts that have a single node with no connections. We define such a singleton layout as follows:

singleton :: Layout
singleton = [[]]

Going back to the definition of Layout, we see that the adjacency matrix of singleton has one row (a

single node) that is completely empty ([]),  indicating it has no connections.  Having the  singleton

layout, defining the ring topology becomes straightforward:

ringLayout :: LinkProps -> Int -> Layout
ringLayout lp n = ring lp (replicate n singleton)

where replicate n singleton makes a list of n copies of the singleton layout. Figure 9 shows the result

of generating a layout using ringLayout (2,4) 5, to create a ring topology of 5 nodes where the up

and downstream link properties are identical.

Now that we have a function to generate ring topologies, the natural extension is to combine several

ring topologies to form a 2D torus. We will use the ring layout combinator again to create an n x m

2D torus, by combining n rings that all have m nodes.
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TwoDTorusLayout :: (LinkProps,Int) -> (LinkProps,Int) -> Layout
twoDTorusLayout (lp1,n) (lp2,m) =
  ring lp1 (replicate n (ringLayout lp2 m))

When we generate a layout using twoDTorusLayout ((6,8),3) ((2,4),5) to create a 2D torus consisting

of 3 rings of 5 nodes each we get the topology we see in Figure 10.

We  were  able  to  create  a  2D  torus  by  combining  several  ring  topologies  using  the  ring layout

combinator.  We  can  use  the  ring layout  combinator  again  to  create  a  3D  torus  topology  by

combining several 2D torus topologies. Actually, we can make a N-dimensional torus by calling the

ring combinator recursively on a set of (N-1) dimensional torus topologies.  The zero-dimensional

torus is then the earlier mentioned singleton layout.

nDimenTorusLayout :: [(LinkProps,Int)] -> Layout
nDimenTorusLayout []           = singleton
nDimenTorusLayout ((lp,n):dim) =
  ring lp (replicate n (nDimenTorusLayout dim))

where the code in the form (x:xs) refers to a list where x is the first element, and xs is  the rest of the

list.  When calling the above  nDimenTorusLayout function with the list  [((2,3),5),((2,3),6),((2,3),4),

((2,3),8),((2,3),9)] we get  a 5-dimensional  5x6x4x8x9  torus.  We do not  show a picture of  this  5-

dimensional  torus as the flattened, 2D representation,  is  both too large for  this  document,  and

offers no real insight of the generated structure.

As both the ring topology and the 2D torus topology are both two specific instances of the more

general N-dimensional torus topology, we can also redefine the  ringLayout and  twoDTorusLayout

function in terms of the nDimenTorusLayout function:

ringLayout' lp n = nDimenTorusLayout [(lp,n)]

twoDTorusLayout (lp1,n) (lp2,m) = 
  nDimenTorusLayout [(lp1,n),(lp2,m)]

Encouraged   by  the  versatility  of  the  ring layout  combinator,  allowing  us  to  generate  complex

structures in a clear and unencumbered way, we intend to investigate other layout combinators in
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future iterations. We also intend to make a translator that converts the network topologies created

and described in this section, to topology descriptions that are used by NoC-simulator “McoreSim”

described in project deliverable D2.2 [3].

2. THE MCORESIM NOC SIMULATOR

As mentioned in the S(o)OS Project Deliverable D2.2 [3], we are developing MCoreSim [5], a Many-

Core Simulation framework that aims to allow for comparing different possible alternatives in future

many-core,  distributed  and  massively  parallel  systems.  The  simulator  was  born  with  the  main

objective  of  simulating  the impact  of  the  NoC latencies  for  the  purpose  of  evaluating  different

strategies  for  common  operations  that  are  recurrently  performed  by  the  software  stack,  either

through  the  Operating  System,  or  by  application-level  middleware,  such  as  basic  low-level

synchronization and communication primitives for Inter-Process Communications (IPC), as well as

scheduling and deployment policies.  MCoreSim is based on the well-known OMNeT++ framework

for network modeling and simulation. In this section, we focus on the MCoreSim Protocol Library,

which  implements  in  the  MCoreSim  Communication  Plane  the  simulation  of  the  in-chip

communication capabilities foreseen in future many-core systems.

A) MCORESIM PROTOCOL LIBRARY

The  MCoreSim  protocol  library  provides  the  protocols  for  simulating  communications  and

computations  in  MCoreSim.  The  protocols  planned  to  be  implemented  in  the  MCoreSim

Communication Plane are the network-on-chip protocols related to buffer management, switching,

arbitration, packet scheduling and routing. 

Up to now the library implements protocols related to a basic communication and computational

model.  MCoreSim  supports  mesh  and  torus  regular  topologies,  and  the  popular  deterministic

routing Dimension-Order Routing (DOR) [6]. In this routing, no storage element like register file or

routing table is required.

There are various switching protocols available but, as the number of cores increases, the on-chip

transmission bandwidth available to each core decreases. Due to this constraint, we implemented in

MCoreSim  wormhole  switching  [6].  In  this  approach,  a  Network  Interface  splits  a  processor

Instruction packet into smaller size data units called Flit, then it transfers them towards destination

through the  network.  At the  destination tile,  the  Network  Interface  re-assembles  the processor

Instruction packet and sends it to the PE for further execution. 
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Between the source and destination NIs, routers handle Flit packets in the following manner (see in

Figure 11). The Route Computation (RC) module computes route according to the specified routing

algorithm, the Virtual channel allocation (VC) module allocates a virtual channel for the next router

input  buffer,  as  specified  by  the  RC  module,  and  according  to  the  Virtual  channel  allocation

algorithm.  Then,  the  Switch  Arbitration  (SA)  module,  based  on  packet  scheduling  and  port

arbitration  algorithms,  sets the path up from the  input  buffer  to  the output  port  in  the Switch

Traversal (ST) module. 

There are various flow control protocols available for switch-to-switch or end-to-end transmissions.

In  MCoreSim,  a  credit-based  Link-level  Flow  Control  protocol  is  implemented.  This  credit  flow

control protocol is employed in between network interface (NI) and router, and among routers. The

credit-based flow control mechanism indicates to the output port the buffer space availability in the

adjacent input ports. Once an output port runs out of credits, it will stop sending flits to the adjacent

input port.

The MCoreSim Router element has a buffer for each input channel port. For buffer management, the

Router implements a virtual channel based protocol. In this each physical channel is divided into a

number  of  virtual  channels  and  each  virtual  channel  has  its  own  buffer  space.  After  the  route

computation, a request is made to the virtual channel allocator (VC) to allocate an unused virtual

channel to the new route. After the allocation, the switch arbiter (SA) schedules the packets that

flow through the output port of the Router. 

Among the variety of arbitration algorithms available, in MCoreSim only FIFO based port arbitration

is implemented as of now.
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V. STATE MAINTENANCE

1. MESSAGE PASSING

In  this  section,  we  focus  on  message  passing  in  shared  memory,  which  has  recently  attracted

significant  attention as a  way  to  build  scalable  applications that  enable applications  to  execute

transparently  on heterogeneous  systems  that  are  becoming  more  widespread.  In  particular,  we

describe how to implement message passing at the user level  on cache coherent and non-cache

coherent systems.

A) NON-CACHE COHERENT SYSTEMS

The increase in the number of cores tends to shift the way we envision communication in operating

systems towards a more inherently distributed systems. 

We  are  currently  investigating  the  performance  of  distributed  atomic  operations  executed  as

transactions. Deliverable 4.2 presents our recent achievements in this context by providing a new

Distributed Transactional Memory (DTM) algorithm dedicated to non-cache-coherent architectures.

Below, we present the underlying protocols used for communication (by this DTM) as an alternative

to the cache coherent protocols that may not scale up to many cores.

Intel Single-Chip Cloud Computer (MPB) 

The Single-Chip Cloud Computer (SCC) experimental processor is a 48-core 'concept vehicle' created

by Intel Labs as a platform for many-core software research. The 48 cores are arranged in a 6x4 on-

die mesh of tiles with two cores per tile. SCC provides no hardware cache coherency and the nodes

communicate via message passing. Drawing 4 shows the available memory address spaced on the

SCC.

Message Passing Buffer (MPB) 

In  addition  to  the  traditional  cache  structures,  a  local  memory  buffer  (MPB)  capable  of  fast

Read/Write operations has been added to each tile. This 16KB buffer provides the equivalent of 512

full cache lines of memory. Any core or the system interface can write or read data from these 24

on-die message buffers.  The intended use for the MPB is fast core-to-core message passing. The

data that are sent via the MPB have a special data type, called MPDT. All accesses to MPDT data

bypass the L2 cache.

The RCCE Message-Passing Library

RCCE  runs on the SCC chip,  as well  as  on top of  a functional  emulator  that runs on a  Linux or

Windows platform that supports OpenMP. Communication in RCCE is synchronous (blocking) and

deterministic (for every send request a corresponding receive has to exist and vice-versa).

The iRCCE Library 

iRCCE is a extension of RCCE Library which provides asynchronous, but still deterministic, message-

passing functions. iRCCE also allows multiple outstanding requests and provides functions for testing

their  completion.  Non-Deterministic  Asynchronous  Communication  In  our  DSTM  algorithm

(presented in  Deliverable 4.2)  the communication is  not  predefined,  meaning that the send and

receive requests cannot be simply coupled since at any time a message may arrive from any other

core.  In  order  to  bypass  this  limitation,  the  pending  request  queues  of  iRCCE  were  used  to

implement the communication as following.  Every  node performs the following  steps  in a  loop:
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Keeps  a  pending  receive  request  for  every  other  node in  a  waitlist  and checks  the  waitlist  for

incoming messages. On asynchronous send, adds the send request (if not

completed immediately) in a sendlist. Checks the sendlist for completed send requests.

B) CACHE COHERENT SYSTEMS

The main purpose of using message passing on cache coherent systems is to enable scalability and

operation on heterogeneous hardware.

1. Scalability. Using  message  passing  enables  writing  of  scalable  software  as  it  makes  all

communication between various threads and processes of the applications explicit.  With

the  more  traditional  approach  to  concurrent  programming  on  the  cache  coherent

machines, which includes well-known locking and lock-free techniques, the communication

between the threads and the processes of the application is explicit as it is done as a part of

the cache coherence protocol. With this approach, threads share some data and when they

access the data, the up-to-date versions of the data are passed between CPUs transparently

to  the  application.  This  can  often  lead  to  scalability  and  performance  issues  as  the

communication between the CPUs becomes overwhelming. On the other hand, when the

communication is done explicitly to the messages, it is limited to only the data that needs

to be passed between the threads and processes. This has the potential of reducing the

cache coherence traffic at higher levels of parallelism and improving the scalability of the

applications.

2. Heterogeneous  hardware. When  the  communication  between  threads  and  processes

includes message passing it becomes hidden in the communication layer and transparent to

the application. This enables some parts of the application to execute on a local CPU, others

on another CPU in the same machine,  yet others on the GPU in the same machine and

some even on geographically distant machines completely transparently to the application

code.  In this  section,  we focus on the communication only between CPUs on the same

physical machine and leave the more interoperability-centric message passing system for

future work.

SWISSMP MESSAGE PASSING

We developed a user-level message passing library called SwissMP. The main goal of this library is to

enable  light-weight  communication  between  the  application  threads  that  reside  on  the  same

physical machine.

Communication model

In order to provide light-weight message passing, the library provides a polling interface for threads

that receive incoming messages. The usage of polling as a message passing interface enables us to

avoid overheads of context switching and achieve high communication performance.

Alternatively, the library can be used with the cooperative user level threads to create an illusion of

asynchronous message passing if such a model is more appropriate for the application. We still have

not integrated SwissMP with any of the user-level threading libraries,  but we do not expect any

problems with such an integration. The current polling approach was completely satisfactory for the

current applications of SwissMP.

In SwissMP, messages are passed between communication endpoints.  Each endpoint has a unique

address, which is an integer value assigned by SwissMP library. Each thread can own one or more

endpoints,  although  we  expect  that  in  typical  uses  of  SwissMP  each  thread  will  own  only  one

endpoint. SwissMP also provides an API call for assigning endpoint to the OS CPU. This information is
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used internally in the SwissMP to enable construction of efficient multicast and broadcast trees, but

it does not actually tie a thread to a particular CPU – the user has to invoke the appropriate system

call to do so. We decouple these interfaces to avoid unexpected interactions of SwissMP with other

parts of the system and application.

In a typical execution of applications that use SwissMP, each thread creates (or is assigned) one

endpoint during the initialization and uses it subsequently for the communication. Currently, the

mapping between threads and endpoints is done outside the SwissMP library. This can be done by

using a separate mapping shared data structure that is effectively read-only after the application

initialization phase. After initialization is done, each thread can use the assigned endpoint to send

the messages to other endpoints (effectively other threads in the described setup) and to receive

messages from them. SwissMP needs to be extended further to support dynamic subscription of

new endpoints to the system. We do not envision that such an extension would change anything in

the SwissMP dramatically, but we still did not implement it.

Messaging queues 

During the initialization, a pair of queues is created between each pair of endpoints (Figure 12). Each

of  the  queues  is  used  for  one-way  communication  between  the  endpoints.  With  such  an

organization, for each of the queues the elements are enqueued by one thread and dequeued by

another one. This enables us to use simple sequential cyclic queues, where only one thread updates

the head index (but reads the tail) and when another thread writes the tail index (but reads the

head). Such a queue can be implemented without using any locking or any of the expensive atomic

CPU instructions (such as compare and swap). We only need to use a memory ordering barrier to

ensure that the published data has actually be written to the queue, before the head index has been

updated and that the consumed data has actually been read from the queue before the tail index

has been updated.

To improve cache efficiency of the queue we keep the head and the tail indexes in separate cache

lines. Furthermore, we also keep the actual queue data aligned to cache line boundaries (Figure 13).

Each message can span multiple  cache lines,  but it  is  always  padded up to  the  next  cache line

boundary to avoid false sharing and multiple unnecessary cache line invalidations while the next

message is being enqueued to the queue. The first two bytes of each message specify the message

size in bytes, as the message sizes can vary.
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With this message queue organization, the number of cache invalidations for sending or receiving a

message that is m cache lines long is m + 1. There is one cache line invalidation for writing or reading

each of the message cache lines and an additional one for updating the head or the tail index of the

queue.

The downside of our design is that the time required to receive the message increases linearly with

the number of the endpoints registered in the system. Alternatively, we could use a single receive

queue  per  endpoint,  which  would  keep  the  receive  time  constant,  but  would  increase  the

complexity  and  required  time for  sending  a  message as  a  more  elaborate  and time consuming

synchronization scheme would be needed.  Also,  the number of the cache invalidations per data

cache line sent would vary and would be higher than with the current approach. 

Unicast

Sending a unicast messages consists of the following steps:

1. Locate the queue used for sending the message to the receiver. This step is rather simple as

it only requires a simple array indexing.

2. Ensure that there is enough empty space in the queue. This requires reading both the head

and the tail of the queue.

3. Copy the message length into the first two bytes of the message in the queue.

4. Copy the rest of the message to the queue.

5. Update the head index to point to the start of the next message to be sent.  A release

memory barrier  is required at this  point to prevent the recipient  from reading the data

written in an incomplete step 4.

Receiving a message from any of the endpoints consists of the following steps:
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1. Loop through all queues that correspond to endpoints registered in the system and are

used to send the messages to this endpoint.

2. If all queues are empty return the indicator that there are no messages sent. 

3. Otherwise, read the size of the message from its first two bytes.

4. Copy the message data to the buffer passed from the application. The buffer  should be

large enough to receive all the application messages. Allocating the large enough buffer is

the responsibility of the caller.

5. Update the tail index to point to the start of the next message to receive. A release memory

barrier is  required at this  point to prevent  the sender to overwrite the contents of  the

message that is being read in an incomplete step 4. 

Multicast and broadcast

SwissMP  supports  efficient  message  broadcast  and  multicast  by  exploiting  the  CPU  and  cache

organization of the machine. In a nutshell, broadcast and multicast trees are built according to the

CPU  and  cache  organization  and  messages  are  sent  and  forwarded  along  the  trees  by  the

participating endpoints. An example machine configuration and the corresponding broadcast tree

are  depicted  in  Figures  14 and  15.  For  this,  the  message  header  is  extended  to  include  the

originating  endpoint  and  the  forwarding  information.  Using  the  broadcast  tree  for  a  machine

consisting of 48 cores, organized into four chips of two CPUs each where the CPUs consist  of six

cores that share a L3 cache (the machine is two times larger than the machine depicted in Figure 14),

we  were  able  to  improve  the  broadcast  performance  by  around  10x  over  a  simple  sequential

broadcast  and around 10% over  the tree-based  broadcast  that  uses  non-cache hierarchy aware

trees.

The multicast send and receive functions are similar to the unicast ones except that they need to be

extended  to  send  and  forward the data  along  the  correct  parts  of  the  trees.  When tree-based

broadcast is used, a nice property of ordered delivery of messages sent from the same source is lost.

If this property is still needed, the messages need to be reordered either by a communication layer

higher than SwissMP using the message sequence numbers or the messages following the broadcast

should be sent only after the acknowledgement of the received message is received. 
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Delivered code

We delivered source code for the SwissMP library and several simple micro-benchmarks as a part of

this work package. The micro-benchmarks are used to demonstrate how SwissMP can be used in

several simple scenarios as well as to measure the performance of the basic messaging primitives.

The following micro-benchmarks are built:

1. p2p is a benchmark that is used for measuring the latency of sending messages from one

thread to the other at the highest possible speed. The exact number of messages and the

CPUs to which the threads and endpoints are assigned can be specified as command line

arguments.  

2. p2p_2way is  a  benchmark  that  is  used  for  measuring  the  latency  of  two-way

communication. Two threads are used and the first endpoint initiates the communication

by sending a message to the second one and then waits for the response from the second

thread. The exact number of messages and the CPUs to which the threads and endpoints

are assigned can be specified as command line arguments. 

3. Broadcast s  a  benchmark  that  is  used  for  measuring  the  latency  of  sending  broadcast

messages  from one thread to all  the other  participating threads at the highest  possible

speed.  The exact number of participating threads,  messages and the CPUs to which the

threads and endpoints are assigned can be specified as command line arguments. 

4. mp_lock is a simple implementation of an exclusive lock using SwissMP. One thread serves

as a server that implements a lock and executes the request from all the other participating

threads. The exact number of participating threads, lock/unlock operations and the CPUs to

which the threads and endpoints are assigned can be specified as command line arguments.

5. cas_lock is an implementation of compare and swap based lock. It is used to compare the

performance of traditional lock implementations to the message passing one. 

6. mcs_lock  is  an  implementation of MCS lock.  It  is  used  to  compare the performance of

traditional lock implementations to the message passing one.

Both SwissMP and micro-benchmark bundles contain a simple README file that describes how to

build and run them. Both components use open-source atomic_ops library. Standard make is used

for building them.
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2. REPLICATION

The communication paradigm at the heart of operating system kernels will have to be redesigned to

fit  the  scalability  requirements  imposed  by  upcoming  concurrent  machine.  Although  nowadays

operating systems are embracing concurrency on multiple cores using traditional cache coherent

techniques, it is likely that future systems will suffer high contention from 10 to 20 years down the

road, when many-core clusters will become the norm. 

There  are  two  distinct  communication  paradigms  that  operating  systems  can  exploit:  message

passing and shared memory. A recent OS proposal, called Barrelfish, which aims at exploiting multi-

core environments, has shown the benefit of message passing communication paradigm over shared

memory. The shared memory paradigm penalizes seriously the efficiency of modifications in largely

concurrent environments. More precisely, the authors of Barrelfish, have shown that probability of

cache  misses  due  to  cache  coherency  is  so  high  when  16  cores  communicate  through  shared

memory, that it can slow down by a factor of 400 a data update when compared to a sequentially

running update.  In contrast,  considering multiple cores as distributed entities that communicate

through message passing—typically by remote procedure calls (RPC)—can speedup share memory

updates by a factor 2. 

Besides the message passing communication paradigm, higher level communication protocols also

play a significant role in congestion, depending on the number of replicas they target. For instance,

the Barrelfish OS uses a two-phase commit (2PC) synchronization protocol that relies on multicast,

technique mentioned in Section II, to guarantee synchronization among distributed replicas. 

More precisely in Barrlefish, critical data is stored at each core. This data needs to be kept consistent

among  the  replicas,  so  the  cores  communicate  through  messages  in  order  to  execute  a  2PC

agreement  protocol.  There  are  several  drawbacks  to  this  choice  of  maintaining  replicated  data

consistent. There might be a huge penalty if,  for example, there is a slow core. Also, the state is

replicated at each core, which is much less efficient compared to the case when there are only a

small number of dedicated server processes storing the replicated state. Barrelfish achieves efficient

message  passing  by  using  multicast  trees,  which  is  constructed  based  on  the  latency  of  the

communication between pairs of cores. However, as loads on the cores change, a multicast tree may

no longer be as efficient as it was initially.

SYNCHRONIZATION PROTOCOLS

A better alternative that can ensure availability and scalability of future distributed systems while

guaranteeing consistency is to run an agreement protocol. One of the best-known and most widely

used non-blocking consensus protocols is Paxos. In Paxos, nodes can be of three types: proposers,

acceptors and learners. Proposers try to impose the requests sent by the clients, acceptors decide

which proposal to pick if there are multiple choices and learners execute the agreed requests and

update the state if necessary. 

Paxos assumes there is a leader process among the participants. 

• In the first phase of the algorithm, the processes decide on a leader. 

• The second phase then consists of the leader sending the message to be decided to the

acceptors, 

• and the acceptors sending it forward to the learners. 

Before the learners execute a request, they need to receive messages regarding that request from a

majority of acceptors. Using Paxos, messages can be totally ordered among a number of nodes, even

if some participants fail.
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We ran some experiments on a dual-quad core AMD Opteron using 3 replicas and between 1 and 5

clients to have an overview of the performance one could expect from using Paxos instead of 2PC for

synchronizing replicas.

Figure 16 depicts the latency of our new protocol (OnePaxos), a variant of it (Multi-Paxos) and the

usual 2PC as the throughput increases. It outlines that our algorithm scales much better than 2PC for

synchronizing replicas.  First,  the latency remains  almost  constant when changing the number of

clients  while  the  latency  of  2PC explodes.  Second, the throughput  increases  with the increasing

number of clients.

Figure 17 depicts the throughput of Paxos while  Figure 18 depicts the throughput of 2PC. In both

cases, a slow processor is introduced. As Paxos has the ability to elect a new leader to run other

instances of the protocol, it recovers from the slow-down by detecting it and choosing automatically

a new leader. As 2PC relies on the participation of all nodes, performance drops as soon as a single

processor  slows  down.  This  experiment  indicates  how availability  of  the  synchronization  service

remains ensured when using Paxos instead of 2PC.
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Figure 16: Paxos is more scalable than 2PC for synchronization.

Figure 17: The Paxos protocol tolerates slow processors
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Figure 18: The 2PC protocol does not tolerate slow processors.
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APPENDIX A: RING LAYOUT COMBINATOR

ring :: LinkProps -> [Layout] -> Layout
ring lt layouts = 
  zipWith (\ls (u,d) -> (u,lt):(d,lt):ls) (concat layouts') newConnections
  where
    newConnections          = zip upConnections downConnection
    
    upConnections           = rotate (negate $ length $ head layouts)   
                               [0..(totalLength-1)]
    downConnection          = rotate (length $ head layouts) 
                               [0..(totalLength-1)]
    
    (totalLength, layouts') = mapAccumL renewUnique 0 layouts
    
    renewUnique n layout    = ( n + length layout 
                              , map (map (\(k,l) -> (k+n,l))) layout
                              )
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APPENDIX B: EXTRACTION OF APPLICATION REQUIREMENTS

Sample pseudo-code for extraction of the application requirements under cores computation and

communication pattern 

MPI Init(&argc, &argv); 
MPI Comm size(&size); 
MPI Comm rank(&rank); 
n=size; req=Appfunc(arguments); 
while(1) 
{

size_of_block=4; 
half_block=size_of_block/2
for(k=1; k<=log(n);k++) 
{

chk=rank mod size_of_block
bnd=(chk <= half_block) and (chk> 0)
if (bnd)
{

buffer=req; 
next=rank+half_block; 
MPI Send(buffer,next); 
req=AppFunc(arguments); 

}
else 
{

origin=rank-half_block; 
MPI Recv(buffer,origin); 
req_list=buffer; 
Apply(req,reqlist); 

}
size_of_block=*2;

}
}
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