
First Implementation
Set: “Hardware”
Project Deliverable D2.2

Christiaan Baaij [UT]; Jan Kuper [UT]; Javad Zarrin [IT]; Lutz Schubert [HLRS]; Vincent
Gramoli [EPFL]; Tommaso Cucinotta [SSSA]; Daniel Rubio Bonilla [HLRS]

Due date: 30/04/2011

Delivery date: 30/04/2011

This work is partially funded by the European

Commission under

FP7-ICT-2009.8.1, GA no. 248465

(c) 2010-2012 by the S(o)OS consortium

This work is licensed under the Creative Commons Attribution 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or

send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Version History

Version Date Change Author

0.1 06/02/11 First TOC Christiaan Baaij

0.2 08/02/11 Initial Content (from IR2.1 and wiki) All

0.3 25/02/11 Refined content, explanatory text All

0.4 05/03/11 Updated structure Christiaan Baaij

0.3 18/03/11 Update test on resource descriptions for discovery Javad Zarrin

0.4 21/03/11 Add section on CλaSH Christiaan Baaij

0.5 21/03/11 Add cpu description example Christiaan Baaij

0.6 24/03/11 Add introduction Christiaan Baaij

0.7 25/03/11 Revise Chapter on MCoreSim, start on section about

hardware synthesis

Tommaso Cucinotta,

Christiaan Baaij

0.8 28/03/11 Extend section on hardware synthesis and Update

section on resource descriptions for discovery

Christiaan Baaij, Javad

Zarrin

0.9 29/03/11 Section on resource capabilities Daniel Rubio Bonilla

0.10 08/04/11 Updated section on CλaSH Christiaan Baaij

0.11 13/04/11 Revised section on hardware synthesis and resource

discovery

Christiaan Baaij, Javad

Zarrin

0.12 16/04/11 Finalise section on resource capabilities Daniel Rubio Bonilla

1.0 30/04/11 Revision and fixes Christiaan Baaij

I. TABLE OF CONTENTS

I. TABLE OF CONTENTS

1. LIST OF FIGURES

2. LIST OF TABLES

3. ABBREVIATIONS

I. INTRODUCTION

II. HARDWARE MODELLING

1. FUNCTIONAL HARDWARE SPECIFICATIONS...

A) POLYMORPHIC CIRCUITS..12

B) HIGHER ORDER CIRCUITS...14

C) EXAMPLE: HIGHER ORDER CPU..15

2. MAPPING DESCRIPTIONS TO HARDWARE..

III. RESOURCE CAPABILITY DESCRIPTIONS..

1. IDENTIFYING RESOURCE REQUIREMENTS FROM CODE...

2. IDENTIFYING RESOURCE CAPABILITIES..

A) PROCESSOR CLASSES..18

B) CONFIGURABLE HARDWARE: EXAMPLE OF SINGLE INSTRUCTION MULTIPLE DATA (SIMD) PROCESSOR/PIPELINE22

C) USING CAPABILITIES IN CODE / EXECUTION..22

IV. RESOURCE DESCRIPTIONS FOR DISCOVERY...

V. NOC SIMULATOR..

1. BACKGROUND ON OMNET++ ...

2. MCORESIM SIMULATOR ARCHITECTURE ...

3. INTERCONNECTION ..

4. COMMUNICATIONS..

5. COMPUTATION PLANE ...

6. APPLICATION MODELING...

7. PERFORMANCE ANALYSIS ..

8. HARDWARE TOPOLOGY MODELING..

REFERENCES...

APPENDIX A: FLYNNCATQUERY...

APPENDIX B: OBJECT MODEL FOR MULTI-LAYER RESOURCE DESCRIPTIONS........................

iv | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

APPENDIX C: SIMPLE CPU..

v | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

1. LIST OF FIGURES

FIGURE 1: MEALY MACHINE...11

FIGURE 2: NEGATEALL - DERIVED HARDWARE...14

FIGURE 3: CPU WITH HIGHER-ORDER FUNCTION UNITS..15

FIGURE 4: CONFIGURABLE SIMD PROCESSOR/PIPELINE DIAGRAM...22

FIGURE 5: ARCHITECTURE OF THE MULTI-LAYER RESOURCE DESCRIPTION...25

FIGURE 6: FISHEYES'S MODEL OF RESOURCE DESCRIPTION FOR RESOURCE DISCOVERY ..26

FIGURE 7: INTERNAL ARCHITECTURE OF A TILE...28

FIGURE 8: ROUTER ARCHITECTURE..29

FIGURE 9: DEFINITION OF A PARAMETRIC MESH IN MCORESIM..31

vi | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

2. LIST OF TABLES

TABLE 1: RESOURCE DESCRIPTION PARAMETERS FOR DISCOVERY ..26

TABLE 2: CONFIGURATION PARAMETERS FOR MCORESIM..28

vii | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

3. ABBREVIATIONS

Abbreviation Description

HDL Hardware Description Language

S(o)OS Service-oriented Operating System(s)

VHDL VHSIC HDL

VHSIC Very High Speed Integrated Circuit

viii | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

I. INTRODUCTION

The main objective of WP2 is to develop abstraction mechanisms to express both the functionality

and the non-functional properties of hardware architectures in a semantic way. Chapter II

introduces the CλaSH hardware description environment that focusses on the functional aspects of

hardware architectures. It lifts the design process of hardware to a higher level of abstraction than

offered by traditional tools and design environments. It allows us to capture and describe complexity

of contemporary and future architectures (far) more easily than possible in current design

environments.

Moving to Chapter III, we go into dealing with non-functional, derived, aspects of hardware and

processor architectures. We discuss a modelling environment that allows us to describe the rough

structure of a processor architecture. We can use the same environment to query (non-functional)

properties of the processor models, such as whether they are superscalar. We developed a new

modelling environment as there was no existing work that allows for easy capability extraction.

Using a hierarchical model as opposed to flat data to encode these capabilities is both less error-

prone and more general (as we can derive many capabilities through queries as opposed to hard-

coding them). We also go into detail how the capability information can be used for code

instrumentation.

As we need to make the information of the hardware architecture and capabilities available across

nodes (for efficient code/application distribution) in heterogeneous large-scale dynamic

environments, we need to categorize information relevant at the different hierarchies. This problem

is tackled in Chapter IV. As the systems are potentially highly dynamic (ephemeral connectivity of

mobile devices), capability information might have to be transmitted frequently, warranting the

need to reduce overhead of capability information exchange. Also for this purpose a hierarchical

capability information encoding makes sense, as we can reduce capability information being sent to

that which is relevant for the specific level in the hierarchy.

Having to analyse the impact of our design choices relating to the code mapping we do based on

capability information (Chapter III), and not having future hardware architectures available, we

choose to simulate our systems. Because one of the major aspects of future processing systems [8] is

due to the network connecting all the cores, we chose to start our focus of a simulator there.

Chapter V discusses the MCoreSim NoC-simulator [9] we are developing based on the well-known

OMNeT++ network modelling and simulation framework. We intend to incorporate the topology

descriptions from D3.2 [7] into future versions of the MCoreSim framework.

 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

II. HARDWARE MODELLING

Hardware description languages (HDLs) have not allowed the productivity of hardware engineers to

keep pace with the development of chip technology. While traditional HDLs, like VHDL [4] and

Verilog [5], are very good at describing detailed hardware properties such as timing behaviour, they

are generally cumbersome in expressing the higher-level abstractions needed for today's large and

complex circuit designs.

With increasing complexity in architecture design, it is preferable to lift the design process to a

higher, more abstract level. CλaSH [1][2] is a hardware specification environment consisting of a

hardware description language (HDL) and a compiler. The HDL has a syntax and semantics similar to

the functional programming language Haskell [3]. The compiler translates the CλaSH code into

synthesisable VHDL. By using CλaSH, it is possible to implement a complete architecture in a concise

way on a high abstraction level while maintaining the possibility to implement parts of the

architecture on a lower level, e.g. on the bit level. The designer can thus focus on the desired

behaviour of the architecture. Higher level parametrisation is employed to describe the internal

functionality of the system.

Functional languages are especially well suited to describe hardware because combinational circuits

can be directly modelled as mathematical functions and functional languages are very good at

describing and composing these functions.

Important aspects of the high-level approach are polymorphism and higher order functions.

Polymorphism means that a function is implemented in a generic way without specifying the

concrete type of its operands. Later, this function can be used in different contexts and with

different types. Higher order functions offer, among other things, a powerful means to combine

components in a generic way.

An alternative way to model hardware is to leverage the tools available in simulation frameworks,

such as the MCoreSim tool [9] we are building in S(o)OS. Indeed, in MCoreSim, the modelling of

different hardware topologies is possible thanks to the Network Description Language (NED)

embedded in the OMNeT++ framework. These aspects are discussed briefly in Section V after an

overview of MCoreSim, and specifically in Section V. 8. , where a short example is also shown for

modelling a mesh topology.

1. FUNCTIONAL HARDWARE SPECIFICATIONS

The CλaSH [1][2] compiler can translate descriptions of an hardware architecture given in the CλaSH

to RTL-style VHDL. The CλaSH libraries provide a set of predefined types (and corresponding

operators), including: bits, booleans, signed and unsigned integers, vectors, and indices. Aside from

these predefined types, synthesis of user-defined algebraic data types is also fully supported.

Synchronous hardware is modelled as a Mealy machine, where inputs (i) and the current state (s) are

processed, by a transition function (f), to form a new state (s') and output (o) of the circuit (see

Figure 1). A generic transition function f is shown in Text 1.

The State keyword is used to indicate which argument, and what part of the return value, is

connected to the state memory element of the component. The transition function and the initial

value of the memory elements have to be combined to describe the complete component. We use

the lifting function "⇑" for this purpose: it takes a transition function and an initial state to form a

component. Components created using "⇑" are of the Comp i o type, where i indicates the input

type, and o indicates the output type.

1 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

f (State s) i = (State s',o)
 where
 (s',o) = …

Text 1: transition function

The use of "⇑" is illustrated in Text 2: it shows the description of a multiply-accumulate circuit,

where the maccT (lines 1-3) implements the transition function, and macc (lines 4-5), using "⇑",

describes the complete component. The macc component is also annotated with its type (using "::"),

indicating that it is a component with an input consisting of a tuple of 9 bit integers, and a single 9

bit integer output.

maccT (State acc) (x,y) = (State acc', acc)
 where
 acc' = acc + x * y
macc :: Comp (Int9,Int9) Int9
macc = maccT ⇑ 0

Text 2: Multiply-Accumulate Circuit

We can compose several components using the arrow-syntax (⇒ and ⇐); illustrated by the example

shown in Error: Reference source not found. We declare a new component macsum, that has a four-

tuple (a,b,c,d) as input, and a single result: the addition of the values r0 and r1 (line 1 of Error:

Reference source not found). We use "⇒" instead of "=" to indicate that we are defining a

component and not a function. A significant difference between a component and a function is that a

function will always return the same value when applied to the same arguments, while this is not

necessarily true for a component. The reason for this difference is that a component has an internal

state which is remembered through consecutive evaluations of the component, and which typically

influences the computation of the result.

macsum (a,b,c,d) ⇒ r0 + r1

 where
 r0 ⇐ macc ⇐ (a,b)
 r1 ⇐ macc ⇐ (c,d)

Text 3: composing macc components

The individual macc components are instantiated in line 3 and 4, being fed the signal tuples (a,b) and

(c,d), and returning r0 and r1 respectively. Again, we use "⇐" instead of the combination of "=" and

function application, because we are dealing with components and not functions.

Synchronous circuits described in CλaSH can be simulated using a Haskell interpreter or compiler,

because CλaSH circuit descriptions, and the CλaSH libraries, are also valid Haskell code. Although

CλaSH is similar to Haskell, there are several constructs in Haskell that are not accepted by the

CλaSH compiler, as their synthesis requires the analysis of time-variant behaviour. These constructs

include dynamic data-structures and structures for which the size can not be determined at compile-

time.

2 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

A) POLYMORPHIC CIRCUITS

CλaSH has three important language features that enable highly parametric designs: polymorphism,

higher order functions, and type derivation. As a result of polymorphism a designer can describe the

general flow of data, without being restricted to any specific type of data. A component where

polymorphism is of great aid is a FIFO buffer, which does not manipulate the data that it stores, and

its structure is the same for all types of data.

There are two ways to make concrete instantiations of polymorphic functions: 1) make a clone and

annotate the clone with a concrete type, or 2) let the type be inferred from the context at the

instantiation. We elaborate both cases using a two-position FIFO buffer as an example.

data FS a = FS { m0 :: a , w0 :: Bool
 , m1 :: a , w1 :: Bool
 }

Text 4: Record type for FIFO state

We start with the definition of a new record-type FS that will encode the state of the FIFO (Text 4).

The record has four fields (m0,w0,m1,w1), where m0 and m1 are the memory locations, and w0 and

w1 are two flags indicating whether the respective memory locations are written. While the fields

w0 and w1 are of type Bool, the types m0 and m1 both of the same polymorphic type a. So where FS

a is the polymorphic type, e.g., FS Int9 and FS (Bool,Bool) are two concrete instantiations of FS a.

The transition function for the FIFO, describing the behaviour, is given in Text 5.

fifo (State (FS {..})) (rd,nv) =
 (State (FS m0' w0' m1' w1'),(full,ov))
 where
 (m0',w0',m1',w1')
 | rd && w0 = (nv, True, m0, w0)
 | rd || not w1 = (m0, w0, nv, True)
 | not w0 = (nv, True, m1, w1)
 | otherwise = (m0, w0, m1, w1)

 full = w0 && w1
 ov = m1

Text 5: Polymorphic 2-position FIFO Buffer

The fifo function has two inputs, read (rd) and new value (nv), and two outputs, a full flag (full) and a

data output (ov). The rd input indicates if a value is being read from the FIFO, nv is the new value to

be stored, full is an output flag that indicates if the FIFO is full, and ov is the value exiting the FIFO.

The code (FS {..}) in line 1 automatically brings the fields of the FS record into scope. The code (FS

m0' w0' m1' w1') assigns m0' to the first field of FS (which is m0), w0' to the second field, etc. Lines 3

to 8, the assignment of (m0',w0',m1',w1'), is a guarded expression. A guard is the Boolean

expression between the "|" and the "=". The expression for which its guard evaluates to True is used

for the assignment. The first expression for which its guard evaluates to True is used when multiple

guards evaluate to True. The otherwise guard always evaluates to True.

We can now make a concretely typed clone of the FIFO transition function by annotating the clone

with a type. For example, a FIFO that stores 9-bit integers (Text 6):

fifo9 :: State (FS Int9) -> (Bool, Int9)
 -> (State (FS Int9), (Bool, Int9))
fifo9 = fifo

Text 6: Cloned 9-bit Integer FIFO

3 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

For the second case we use the fifo transition function in a concrete context and let the type

inference mechanism determine the correct type for that specific instance. We define a concrete

initial state s0 that stores 9 bit integers, by replacing the type parameter a of the FS record with the

concrete type Int9. An instance of fifo is then lifted with s0 to form the concretely typed component

fifo9c (Text 7).

s0 :: FS Int9
s0 = FS 0 False 0 False

fifo9c = fifo ⇑ s0

Text 7: Derived 9-bit Integer FIFO

The type of the instance of fifo in Text 7 can be made concrete through automated type-derivation

because: 1) the type of the initial state of the memory elements is known, and 2) the data in- and

outputs are of the same type as the memory elements.

B) HIGHER ORDER CIRCUITS

Having highlighted the parametrisation potential offered by polymorphism and type derivation, we

now move to the third feature of CλaSH that enables natural parametrisation: higher order

functions. Higher order functions are essentially no different from `normal' (first-order) functions, in

that they process and return values. We call functions higher order however when (some of) the

values they process and/or return are functions themselves. A well known higher order function is

vmap, whose type signature is shown in Text 9.

vmap :: (a -> b) -> V s a -> V s b
vmap f as = ...

Text 8: Type signature of vmap

The first argument of vmap is a function (f) with input type a and output type b. The second

argument is a vector of length s and element type a, and the return type is again a vector of length s

but with element type b. What the vmap function does is apply the function f to every element in

the vector. Text 9 shows the usage of the vmap function by negating a vector of Boolean values.

negateAll :: V s Bool -> V s Bool
negateAll v = vmap not v

Text 9: Negating a vector of Booleans

Because there are no data dependencies between the function applications that vmap introduces,

all function instances can be executed in parallel. The CλaSH compiler will therefore translate the

negateAll function to a set of concurrently executing components. A visual interpretation of the

resulting hardware when applying negateAll to a 12 element vector is shown in Figure 2.

A common circuit where the use of higher order functions leads to a concise and natural description

is a crossbar. The code for the description of such a circuit is shown in Text 10.

4 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

crossbar inputs selects = vmap (mux inputs) selects
 where
 mux inp x = inp ! x

Text 10: Crossbar circuit

The crossbar function selects those values from inputs that are indexed by the selects vector. Besides

the fact that the vmap function again takes another function as an argument, we also see that the

mux function is only applied to one argument while the definition suggests it has two arguments.

This is another instance of higher-order functionality: by applying mux to only a single argument, the

function will return a function that still expects the original second argument. This coincides with the

type signature of vmap. The crossbar is polymorphic in the width of the input (defined by the length

of inputs), the width of the output (defined by the length of selects), and the signal type (defined by

the element type of inputs vector). We (also) remark that the element type of the selects vector is

automatically inferred to be Index; following from the use of the indexing operator for vectors (!).

C) EXAMPLE: HIGHER ORDER CPU

This section discusses a somewhat more elaborate example in which user-defined higher-order

function, partial application, lambda expressions, and pattern matching are exploited. The example

concerns a CPU which consists of four function units, fu0 … fu3, (see Figure 3) that each perform

some binary operation.

Every function unit has seven data inputs (of type Int16), and two address inputs (of type Index D7).

The latter two addresses indicate which of the seven data inputs are to be used as operands for the

binary operation the function unit performs.

These seven data inputs consist of one external input x, two fixed initialization values (0 and 1), and

the previous outputs of the four function units. The output of the CPU as a whole is the previous

output of fu3.

Function units fu1, fu2, and fu3 can perform a fixed binary operation, whereas fu0 has an additional

input for an opcode to choose a binary operation out of a few possibilities. Each function unit

outputs its result into a register, i.e., the state of the CPU. This state can e.g. be defined as follows:

type CpuState = State (Vector D4 Int16)

i.e., the state consists of a vector of four elements of type Int16. The type of the CPU as a whole can

now be defined as (Opcode will be defined later):

cpu :: CpuState

 -> (Int16, Opcode, Vector D4 (Index D7, Index D7))

 -> (CpuState, Int16)

5 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Figure 3: CPU with higher-order Function Units

Note that this type fits the requirements of the run function. Every function unit can be defined by

the following higher-order function, fu, which takes three arguments: the operation op that the

function unit should perform, the seven inputs, and the address pair (a0,a1). It selects two inputs,

based on the addresses, and applies the given operation to them, returning the result:

fu op inputs (a0,a1) =

 op (inputs!a0) (inputs!a1)

Using partial application we now define:

fu1 = fu add

fu2 = fu sub

fu3 = fu mul

Note that the types of these functions can be derived from the type of the cpu function, thus

determining what component instantiations are needed. For example, the function add should take

two Int16 values and also deliver a Int16 value.

In order to define fu0, the Opcode type and the multiop function that chooses a specific operation

given the opcode, are defined first. It is assumed that the binary functions shiftR (where shiftR a b

shifts a to the right by the number of bits indicated by b) and xor (for the bitwise xor) exist.

data Opcode = ShiftR | Xor | Equal

multiop ShiftR = shiftR

multiop Xor = xor

multiop Equal = \a b -> if a == b then 1 else 0

Note that the result of multiop is a binary function from two Int16 values into one Int16 value; this is

supported by CλaSH. The complete definition of fu0, which takes an opcode as additional argument,

is:

fu0 c = fu (multiop c)

The complete definition of the cpu function is (note that addrs contains four address pairs):

cpu (State s) (x,opc,addrs) = (State s', out)

 where

 inputs = x +> 0 +> 1 +> s

 s' = (fu0 opc inputs (addrs!0)) +>

 (fu1 inputs (addrs!1)) +>

 (fu2 inputs (addrs!2)) +>

 (fu3 inputs (addrs!3)) +>

 empty

 out = last s

Due to space restrictions, Figure 3 does not show the internals of each function unit. We remark that

CλaSH generates e.g. multiop as a subcomponent of fu0. The combined code fragments of this simple

CPU can be found in Appendix C: Simple CPU. While the CPU has a simple (and maybe not very

useful) design, it illustrates some possibilities that CλaSH offers and suggests how to write actual

designs.

2. MAPPING DESCRIPTIONS TO HARDWARE

We want to use the same resource description for different purposes to avoid semantic gaps

between the description used for one purpose (for example simulation) and another description for

a different purpose (for example synthesis). The history of hardware description languages has also

shown that engineers, people who use these description languages, do not want to repeatedly

describe the same system for different purposes. VHDL, these days commonly associated with

hardware synthesis, was originally meant to be a specification language when it was first

standardized. These specifications were meant to be the documentation for the designed hardware

6 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

systems. Simulation tools for these VHDL specifications were developed quickly afterwards, followed

by automated synthesis tools. This has however led to the situation where most (but not entirely) of

the latest VHDL specification [4] is accepted by simulators, but only a small subset is accepted by

automated synthesis tools.

Because CλaSH is (currently) a subset of Haskell, simulation of circuit specification comes for free in

terms of existing Haskell compilers and interpreters. CλaSH specifications are also completely

synthesisable using the CλaSH compiler which translates to the specification to that subset of VHDL

which is accepted by all VHDL synthesis tools. We note that any netlist-like format could have been

used, however, VHDL was chosen because it is a standardized language and has many supporting

tools from different vendors. Because these tools use different (dialects of) netlist representation

languages, choosing a specific one for CλaSH would have meant that we could not use all the

available tools. Familiarity with VHDL by the CλaSH developers also added greatly in verifying the

correctness of the implementation.

The abstractions used in CλaSH specifications, such as polymorphism and higher order functions, are

however not representable in these netlist formats. As a result we have to transform potential

polymorphic, higher order circuit descriptions to monomorphic, first order functions. Something we

can only do if the top-level entity is monomorphic and first-order. We already mentioned this

restriction in the simple cpu example of subsection II. 1. c) . Another example where a CλaSH

description does not exactly match a netlist format, is that CλaSH descriptions usually lack the

explicit naming of an output port. These discrepancies between the original descriptions and a

netlist format lead to the definition of a 'normal form', which states the form a CλaSH description

should have to be directly translatable to a netlist format.

This normal form is however defined at the System F (type lambda-calculus) level, a language to

which all CλaSH descriptions can be de-sugared to, and which has far fewer language constructs.

Because System F has fewer language constructs, a normal form is far easier to define. And, as a

result, the transformations to bring a System F description into a normal form, are also easier to

define. The transformation system applies all transformations exhaustively until the description is in

the desired normal form. The soundness, termination, completeness, and confluence of this

transformation system are currently not formally proven. However, extensive use of the CλaSH

system indicates that many of these properties hold. We do however intend to formally prove these

desired properties in future iterations.

7 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

III. RESOURCE CAPABILITY DESCRIPTIONS

In addition to the structural and architectural information of the resources and their relationships to

each other (topology), the actual capabilities of the resource are needed for adaptation and

mapping of code properties – in other words, to exploit the specific capabilities of the resource –. In

the simplest case, the common denominator can be assumed, as this will remain compatible with

most types from a functional perspective, even if it will not help in how to map resources to improve

performance. This way the specific capabilities are not exploited (for example, a GPU will be

considered as a single core machine without vector units).

We want to describe the resource capabilities in a way that allows us to:

• identify the requirements of the code

• adapt the code to make use of the hardware capabilities

In this chapter we will expose how to identify the hardware resources requirements from the source

code and how the resource capabilities can be described and derived from hardware descriptions.

1. IDENTIFYING RESOURCE REQUIREMENTS FROM CODE

Code does not in general explicitly state resource requirements (besides for some programming

extensions), instead, the requirements for optimal performance have to be derived indirectly from

the code behaviour and structure analysis.

Resource requirements are therefore not only derived from the code, but also must be considered

“boundary” criteria for segmentation and adaptation. In case that a very heterogeneous system is

given, then multiple iterations with different boundary may need to be mapped to fit better the

capabilities of each resource.

In summary, we can assure that the size and amount of the segments can vary significantly

depending on the hardware resources available at each moment.

2. IDENTIFYING RESOURCE CAPABILITIES

In order to identify:

• how well the resource performs given specific algorithm types

• how the code and/or algorithm needs can be adapted to make best use of the resource's

specifics

some information about its capabilities and restrictions are needed:

A) PROCESSOR CLASSES

The processor class provides information about the code-data relationship of the processor, in

particular regarding its parallelism, i.e. whether the processor can only execute a single instruction

on a single data (SISD), or on the other hand execute multiple instructions at the same time on

different data (MIMD), or a single instruction on multiple data in parallel (SIMD) which effectively is

the GPU structure – this is closely related to what became known as Flynn's taxonomy [10]:

8 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Single

Instruction

Multiple

Instructions

Single

Data
SISD MISD

Multiple

Data
SIMD MIMD

SISD PROCESSORS

• Plain sequential processor (can have pipelining)

• Can only operate one single datum (load/store) and

instruction at a time

• It can be used in particular for sequential code with little

degree of parallelism

• notable architecture feature:

◦ single data-PU-channel

◦ single instruction-PU-channel

MISD PROCESSORS

• Execute multiple operations on a single datum

• lead to serious consistency problems

• so far, no reasonable, let alone commercial realisation

• notable architecture features:

◦ single data-PU channel

◦ multiple instruction-PU channels

SIMD PROCESSORS

• Execute the same operation on multiple data

• each datum can thereby regarded as a dimension in a vector,

a SIMD with vector-length 8 can therefore handle 8

dimensional vectors

• sometimes used as coprocessors

• related to GPUs

• notable architecture features:

◦ multiple data-PU channels

◦ single instruction-PU channels

MIMD PROCESSORS

• Represents processors with multiple SIMD ways, normally

pipelined

• many classes: VLIW, superscalar

• typical general architecture today

• as opposed to multi-processor SIMD, instructions and data

are related

9 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

• general architecture features:

◦ multiple data channels

◦ multiple instruction channels

but, the relationship between data / code to PU may vary

• limited by:

◦ the degree of intrinsic parallelism in the instruction stream, the amount of instruction-

level parallelism

◦ the complexity and time cost of the dispatcher and associated dependency checking

logic

◦ the branch instruction processing

◦ the size and capabilities (i.e. load overtake stores) of the out of order execution in case

of superscalar processors

◦ the quality of the prefetch unit

Identification criteria in the resource description:

Type Data-PU Channels Instruction-PU

Channels

Number of PUs

SISD 1 1 1

MISD 1 >1 =#instruction-PU channels

SIMD >1 1 =# data-PU channels

MIMD >1 >1 Different versions

• #DPU

• #IPU (<#DPU)

But that information on itself is not enough. It is needed to distinguish between different intentions

of the models. Even though SIMD, MIMD etc. reflect architectural notions of a processor description,

they do not necessarily incorporate capability information that is related to the conceptual

architecture of the processor. For example, given a certain ISA with a 4 dimensional vector SIMD

instruction, one hardware implementation can use 4 ALUs and calculate it simultaneously while in

others one ALU can be used to calculate the 4 data, one after the other, with at least a 4 time

increase in processing time while compared to computing a single data. In the case of 4 ALUs

computing simultaneously, the execution time will be the same for a “package” of for 4 data or for

just 1 datum.

Often, a similar situation is found when operating with floating point units and its precision. A

double precision operand instruction can usually be processed in a single precision FPU, but the time

needed usually varies from 4 to 16 times more. And even floating point operations can be performed

in a only integer ALU, but with a much high processing time cost (of the order of hundreds of integer

instructions). This last technique called softfp is often used in microcontrollers and other kind of less

performance (and small transistor count) processors.

We can note that the processors are also denoted particularly by the following characteristics:

1. the lines toward the data pool:

1. number of lines (number of data that can be processed simultaneously)

10 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

2. width of a line (bit size of each data, calculation precision)

Modern processors can usually trade the numbers of lines for the width of the lines, that

means that more precision data can be calculated if the number of data is reduced. For

example, a 128 bit wide vector FPU could operate 2 dimensional 64 bit data or 4

dimensional 32 bit data.

2. the type of ALUs and their capabilities:

1. functionalities: ADD, MULT, DIV etc.

2. type: floating point, integer or both.

Many modern architectures have specialised ALUs that can only execute a set of specific

instructions and respectively only operate on specific data types (it is very common to have

many ALUs that can perform simple instructions like ADD or AG (Address Generation) and

very few for complex rare instructions like DIV). A “complete” processor has a set of ALUs

that allows it to execute all the instructions of its ISA. Therefore, ALUs of different types in a

single processor either lead to a reduced number of "complete" ALUs or to multiple

"specific" SIMDs that share the instruction line. This information can not be easily specified

or identified, as often is not clearly released by the manufacturers.

3. the lines to the instruction pool

1. number of lines is the maximum number of instructions issued per cycle (in the

SISD and SIMD case that's automatically 1, in MIMD it is more than 1). The real

number IPC (Instructions per Cycle) is usually considerable inferior than the

maximum theoretical – but it is heavily affected by the type of code that is being

executed.

4. Registers

1. ISA specific registers: these are the registers usable by the programmer (or the

compiler). They differ in number and bit width size. There can also be many

different register banks, as for example for the integer ALU, for the FPU or for the

vectorial units.

2. Hidden registers: these registers are not accessible for the user, but are used by

the hardware inside the CPU for different purposes like register renaming, pipeline

instruction overtaking etc..

3. Register window: if there is and its size, which has a big impact on function calls.

4. Register duplication: some processors have duplicated register banks speed up the

thread context switching. Some processors have this technique improved like in

the case of Intel's HyperThreading Technology.

This information about the different kind of Processing Units is necessary as a too abstract

description does not provide meaningful information about how well a segment of code will behave

in a particular hardware configuration.

The first filtering has to be to check if the hardware can execute the particular segment of code that

the OS wants to place, although nowadays almost all processors (does not matter if it is a CPU or a

GPU) can in theory run any kind of code, we might still find some that can not. After it we have to

look into particularities of the code. If it has many floating point instructions, then we should look for

a processor with a FPU or a vectorial unit with FP capabilities that fulfil the minimum needed

precision. Another important check is if there are special operations (like DIV, SQRT, dot product

instruction...) because a processor with special instructions for this operations can execute code

11 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

faster than a hardware that does not have them, but that would behave faster in a more generic

code. As for superscalar processors, not all pipelines are the same or have the same capabilities and

this should be taking into account (a code with many DIV operations will probably perform better in

a superscalar CPU with only two pipelines but both with dedicated hardware DIV ALUs, than in a

superscalar CPU with 4 pipelines but with only one of them fitted with a hardware DIV capable ALU).

The previous text tries to justify why all this information is needed, and it is difficult to make a right

balance between the level of detail that is useful and when too many details only complicate the

code segmentation mapping without any improvement in performance (or probably even making it

worse).

B) CONFIGURABLE HARDWARE: EXAMPLE OF SINGLE

INSTRUCTION MULTIPLE DATA (SIMD)

PROCESSOR/PIPELINE

Previously it has been explained the difficulties in determining the level of detail of the hardware

description that is useful and meaningful for the segmentation and code segment on hardware

mapping algorithm. To this other hardware characteristics have to be added, like the flexibility of

hardware configuration. This flexibility is another factor that has to be considered and that increases

the algorithm complexity. Many of today's hardware can be reconfigured to make use of its

resources in very different way.

As shown in Figure 4, SIMD is quite a "generic" type in Flynn's category: many SIMD can “unify” their

ALUs into fewer amount but with a wider dataline. If all the ALUs inside the processor (or the

pipeline) are unified into a a single ALU then it becomes a SISD. At the same time many SIMD

pipelines can be unified sharing the register banks which leads to a MIMD processor.

C) USING CAPABILITIES IN CODE / EXECUTION

There are a few levels of information sources that need to be matched in order to execute the code

in a fashion most suitable to the hardware:

• on the software side:

◦ code annotations provided by the user

◦ information automatically derived from code analysis

◦ profiling of previous executions

• on the hardware side:

◦ parametrisation of hardware through automatic tests (ping, automatic benchmarks

etc.)

◦ hardware self description (flags in cpuinfo etc.)

12 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

◦ database of description provided by manufacturer and the information derived from

this

The main point of gathering all this information about the description of the hardware and needs of

the software consists in providing a flexible means to query for resources with specific capabilities

with the aim to try to map the software segments as good as possible.

As opposed to pure typing or look up table, a description that is closer to the hardware architecture

offers more freedom in retrieving capabilities. As such, additional information can be retrieved from

the description, if the user writes an according query.

Appendix A: FlynnCatQuery describes the datatype with which to describe a processor in a

hierarchical fashion, allowing for the earlier mentioned queries for capabilities. We see in Text 11

the textual representation of the SIMD machine shown in Figure 4, according to the datatype

described in Appendix A: FlynnCatQuery.

SIMD_CPU il0 il1 = PU { alus = [alu0,alu1]
 , registers = [reg0] }
 where
 alu0 = ALU { function = "ADD, MUL", aluType = "FP"
 , register = reg0, dl = dl0, il = il0}
 alu1 = ALU { function = "ADD, MUL", aluType = "FP"
 , register = reg0, dl = dl1, il = il1}
 dl0 = DL { pool = pool0, address = 0, width = 32}
 dl1 = DL { pool = pool0, address = 32, width = 32}
 pool0 = DataPool { size = 64, poolId = "0" }
 reg0 = Register { rId = "0" }

Text 11: SIMD description using FlynnCatQuery

When we use the flynnCategory query (also described in Appendix A: FlynnCatQuery) on a concrete

instantiation, where il0 and il1, will refer to the same instruction line, then we indeed get the answer

that Text 11 indeed describes a SIMD machine.

13 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

IV. RESOURCE DESCRIPTIONS FOR DISCOVERY

An important aspect of resource discovery and management in a network with multi-core nodes is

the way of describing the processing resources. From the network and service discovery point of

view we need to have a more abstract and high-level model of resource description. Resource

description should include useful, effective and short information which would be appropriate for

services advertisement by sending messages. Due to the network overhead and traffic, we cannot

put a lot of information about the resource in the related message for the service announcement.

On the other hand, for resource mapping and management; it is required to have a set of criteria

and parameters for resource evaluation and service matching according to the requirements of the

queries. Thus, resource description should support explicit evaluation criteria.

There are two important performance parameters for the processors, which are time of execution

and throughput (FLOPS/IOPS). These two depend on many other parameters such as cache size,

bandwidth, latency, interconnection and even the type of code which is so complicated. The

alternative evaluation criteria is using benchmarks which in case of S(o)OS could be neither practical

nor helpful .

To achieve a more efficient and abstract resource model, the description of computing resources in

a heterogeneous network with multi chips and multi core nodes necessitates being divided into

below levels including a mechanism for the streaming of the descriptions with a particular

functionality which can diminish low level detailed information and absorb new attributes and

predicates of the next upper level architectures:

1. Inter -Cores Level (Network on Chip (NoC) Level): resource description in this level has been

characterized according to THE type of information which is directly related to the core

specifications. The most typical information in this level is floating point and integer

operation per cycle and private cache size.

2. Inter -Chips Level: describes the specifications of the edges for the core communications,

interconnection networks and memory hierarchy which include information such as:

bandwidth, latency, shared or global cache size and number of cores.

3. Inter -Nodes Level: Resource description covers a total overview of all the communications,

memory and processing features and aspects in the node such as memory size and number

of processors.

Due to the above classification resource description is defined in three different layers .The coded

information ranging through the resource description from the first level to the last one changes

from hardware details to more abstract information. The unnecessary information which gets

reduced moving toward the last layer is encrypted into specific fields in the upper layers.

In the resource discovery process, firstly the description of all nodes are read , then the nodes which

can provide the query with the minimum requirements are selected and some specific encrypted

fields are decoded for them in the lower layers , and the information contained in them is extracted .

This selection and extraction operation in the resource description continues to the last layer until

the minimum requirements for the query is reached. The allocation of resource to query is

conducted via Distributed Hash Tables (DHT) and Queue Management System (QMS).

We can use the aforementioned multi-layer resource description model to describe resources, but

we need to improve or complete these models in the ways such as the followings:

14 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

1. The performance score can be extracted from all the information provided by the resource

description, which requires us to have an explicit algorithm to calculate this item with.

2. Another alternative is using Mico High Performance Computing (MHPC) Benchmarks such

as Sandia Micro-Benchmark Suite (SMB) or MIBA Micro-Benchmark Suite for real-time

evaluating and benchmarking.

3. The typical processor benchmarks are real applications which could vary depending on the

use case and the end user applications. To provide an evaluation criteria, we can use a real-

time benchmarking model according to the past execution performance.

4. Using one of the solutions 1 or 2 with combination of 3

Figure 5 shows the architecture of the multi-layer resource description which keep an abstract of all

the resource specifications related to computing and communicating capabilities of the nodes and

their components. We have defined layers to avoid unnecessary data transmission and

communication overhead as the consequence of resource discovery operation in a large multi-core

system . For instance, in the process of discovery operation among two cores on a same tile,

discovery messages are not required to carry node communication behaviours.

In the above hierarchical architecture containing computational and communicational properties

and behaviours , most describing links and interconnection characteristics are located at the top of

the pyramid, and computational resource descriptions are at the bottom . Due to the hierarchical

structure of the resource description model, it could provide a comprehensive perspective of all

other neighbouring resources in the vicinity and in the network for each processing unit

independently ,besides, the model is able to find out detailed information for each node or chip

multi -processor.

Multi-Layer resource description acts like fisheye's model (Figure 6). It means that every processing

unit (core) in a cluster doesn't need to keep resource descriptions about all other processors . In this

model descriptions of resources include accurate, predictable and unclear data. the accurate data

comes from closer cores which are placed in the same tile or node . In the process of resource

discovery for a query originated from a particular core, processors with the minimum latency have

priority to be nominated as members of qualified resource groups, therefore, for a core, it is not

required to know about far away cores precisely.

15 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Figure 5: Architecture of the multi-layer resource description

 Table 1 demonstrates set of description parameters that are defined in each layer

Layers Name Description Parameters

Layer1 Node Layer or

Network Layer

Network topology description (topology type), network

bandwidth and latency, node specifications (node ID, node

Type , no. of CPUs,etc)

Layer2 Chip Multi-

processor Layer

Inter-chips communications characteristics

(rated_bus_speed) , architecture type (Flynn_taxonomy) ,

CPU specifications (CPU name, CPU ID, no. of cores,etc) ,

memory and cache hierarchy (shared and global cache,

hierarchy,size and latency, DRAM size)

Layer3 Core Layer Processor's characteristics (core ID, clock rate, instruction

set, pipeline, MIPS, private cache L1 and L2,etc.), Memory

access (cache and memory latency) , Inter-cores

communications behaviours (interconnection_bus , inter-

cores latency matrix)

Table 1: Resource description parameters for discovery

The aforementioned resource description model can be considered as a node description model

which has built-in network topology and link descriptions. However, complicated network topologies

description for the nodes is not included. We are using COTSon and SimNow simulators to evaluate

our resource discovery protocol which is discussed in D3.2 in detail. COTSon uses BSDL to describe

resources in a simulated cluster. The implementation of resource discovery protocol must be

supported by resource descriptions in the most efficient and easy way, therefore we developed a

model for resource description and a definition compatible with the required resource information

in discovery process.

16 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Figure 6: Fisheyes's model of resource description for resource discovery

V. NOC SIMULATOR

This chapter describes MCoreSim [9], the Many-Core Modeling and Simulation framework we are

developing in the S(o)OS project for the purpose of comparing different possible alternatives in

future many-core, distributed and massively parallel systems. One of the main innovation elements

in these kind of systems is foreseen [8][6] to be the presence of a Network-on-a-chip for

interconnecting the many cores present on the same chip, and the possible lack of a globally

coherent memory. Therefore, the simulator was born with the main objective of simulating the

impact of the NoC latencies for the purpose of evaluating different strategies for common

operations that are recurrently performed by the software stack, either through the Operating

System, or by application-level middleware. These operations may include basic low-level

synchronization and communication primitives for Inter-Process Communications (IPC), as well as

scheduling and deployment policies which have the responsibility to decide where to deploy each

individual software component (i.e., process, thread, code segment). Therefore, MCoreSim does not

emulate any Instruction-Set Architecture of any real processor, but rather it supports so far a very

basic set of primitive operations needed to move data across the computing and memory elements

in a future many-core, tile-based chip architecture.

MCoreSim is based on the well-known OMNeT++ framework for network modelling and simulation.

Therefore, in the following we provide a quick overview of OMNeT++ before proceeding to describe

our MCoreSim simulator. MCoreSim is still to be considered in a work-in-progress status, and its

features and capabilities will improve and expand during the next months.

1. BACKGROUND ON OMNET++

OMNeT++1 is a component-based discrete-event simulation library and framework for simulating

networked systems. It provides developers with the capability to define highly reusable modules,

which can be instantiated and interconnected in different designs. Modules have gates for

interaction with other modules and can be combined with each other at arbitrary nesting levels.

Modules communicate through message passing via defined gates and channels (connection

between modules). Modules, channels and gates can be parametrized by leveraging the Network

Description (NED) Language, and used for customizing the behaviour according to specific

application scenarios.

2. MCORESIM SIMULATOR ARCHITECTURE

Due to the difficulties in maintaining a globally coherent cache/memory view in many-core systems,

the massage passing paradigm is the most suitable one to be used for communications. In many-

core systems, the network-on-a-chip paradigm requires message passing to be implemented in

hardware by the on-chip interconnection logic. MCoreSim models a tile-based networked system.

There are two major components: the tile and the connection strategy (topology). The architecture

of a single tile is summarized in Figure 7. Each tile includes:

• a CPU, which we call processing element (PE)

• a local memory element (Local Store)

• a Memory Management Unit (MMU) redirecting memory operations towards the local

memory element or some remote tile through the local router

1 More information is available at: http://www.omnetpp.org/.

17 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

• a local cache memory

• a Network Interface, realizing reliable communications with other tiles

Parameter name Description

topology Topology type (mesh or torus)

datarate datarate of a channel

delay delay in channel

flitSize size of flit packet

numX number of nodes in X direction

numY number of nodes in Y direction

bufferSize buffer space available in router

NIbufferSize buffer space available in NI

router type routing algorithm for topology

clockRate clock rate of processing element

memoryClockRate clock rate of memory element

numVC number of virtual channels per input
port

Table 2: Configuration parameters for MCoreSim.

Logically, a Processing Element (PE) can model a general purpose or special purpose processing unit.

Its main function is to fetch the instructions from the application program and simulate the time

needed to carry out the involved computations interacting with the necessary local or remote

memory elements and/or other cores.

The Network Interface (NI) enables the transfer of data (or instructions) to/from other tiles and/or

I/O peripherals. First, it stores the packet to be transmitted in a local buffer then it involves the

communication unit for realizing the actual transfer to the destination processing element or

memory or I/O controller.

The software that runs over each PE is also modelled in OMNeT++ as a module, which we called

generally Application. This is a module that provides the set of instructions to be executed on a

computing unit.

The actual topology simulated in MCoreSim may be customized via a set of configuration options.

The most important of them are summarized in Table 1. The parameters meaning will become clear

in the following description of the main simulator components.

18 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Figure 7: Internal architecture of a tile.

3. INTERCONNECTION

In OMNeT++, interconnection of modules is modelled by using the network keyword in the NED

language. This construct is exploited in MCoreSim, allowing for the specification of a configurable 2D

mesh and torus. MCoreSim defines a link between each pair of tiles, modelled as a physical channel

that has configurable properties like delay, data-rate, etc., that are defined by extending the

ned.DatarateChannel channel model available in OMNeT++.

The router provides the inter-connectivity of tiles. A typical router architecture consists of a buffer

for input packet storage and a computing unit that performs buffer management, routing, packet

scheduling, port arbitration and a switch to output port.

In MCoreSim, each of this functionality is defined as a module, such as the Route Computation (RC),

Virtual channel Allocation (VA), Switch Arbitration (SA), and Switch (ST) modules. Based on the

topology details, the number of buffers can be parametrized (see Figure 8).

4. COMMUNICATIONS

The MCoreSim protocol library provides the protocols for simulating communications and

computations. Up to now the library implements protocols related to a basic communication and

computational model, including mesh and torus regular topologies with Dimension-Order Routing

(DOR), wormhole switching and a credit-based Link-level Flow Control scheme [8]. Other schemes

can easily be plugged in the future into the framework, as required. Due to the close relationship

with in-chip communications, further details on these elements are provided in the S(o)OS Project

Deliverable D3.2.

19 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

Figure 8: Router architecture.

5. COMPUTATION PLANE

The Computation Plane has three major components: processing plane, memory and I/O plane,

application modelling. In MCoreSim, the Processing Plane consists of several Processing Elements

that constitute an entire chip. A Processing Element may be general-purpose, simulating a typical

“CPU” behaviour, or specialized, like GPUs. Each general-purpose PE works by following the

traditional fetch-execute cycle. It processes mainly three types of instruction: ALU operations,

memory operations, massage passing instructions. In an ALU operation, the PE executes instructions

by using its ALU unit, however only the delay needed for this execution is simulated in MCoreSim. In

a memory operation, the PE routes the memory access towards a local or remote memory element

with the help of the memory management unit (MMU). If the access is local, then it is routed to the

Local Store, otherwise the PE generates a Message Passing Instruction towards a remote

destination. Message Passing Instructions are routed to their destination tile via the Communication

Plane through the local Network Interface.

There are various memory hierarchy types available for many-core systems. MCoreSim implements

the Memory Plane as a globally shared memory. In this global memory every PE has its own private

memory space called Local Store. Each PE can directly access the Local store but for remote access

uses the Communication Plane. The MMU provides the mapping between the addresses generated

by the PEs and the either local or remote memory elements.

6. APPLICATION MODELING

As of now, an MCoreSim Application supports only three types of Instruction: memory, ALU,

message-passing based. Furthermore, these applications are pinned to specific cores at

configuration time. In the future, the Application Plane will support a richer set of instructions (but

the focus of our simulation will anyway keep the number of supported instructions at the bare

minimum), and it will provide dynamic application mapping and scheduling across the available

computing infrastructure, so as to better emulate the software stack and OS services.

An element we are working on is the simulation of specific scheduling and deployment algorithms in

MCoreSim. This feature will allow to simulate the migration of tasks among the available cores,

evaluating the impact of the data locality/remoteness on the performance of simple application

workloads. One of the critical workload we will focus on is the one of real-time and multimedia

applications.

7. PERFORMANCE ANALYSIS

In OMNeT++ there is a concept of signal. This is used for collecting statistical information out of a

simulation run. With the help of signals, MCoreSim can seamlessly collect statistics for various

events that occur during the simulation.

In the Communication Plane, useful performance metrics are the average and/or maximum packet

latency, the bisection bandwidth and the network throughput. For the Processing Plane, useful

performance metrics are the average/maximum execution time for a given Application, which may

be varying depending on the latencies experienced due to the underlying topology.

8. HARDWARE TOPOLOGY MODELING

In MCoreSim, the modelling of different hardware topologies is possible thanks to the Network

Description Language (NED) embedded into the OMNeT++ framework. As an example, in Figure

Figure 9 we report an excerpt of the NED description of a mesh topology for a tile-based many-core

architecture.

20 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

network Mesh {
 parameters:
 int numX;
 int numY;
 types:
 channel CtoC extends ned.DatarateChannel {
 parameters:
 delay = 0.1ns;
 datarate = 50Gbps;
 }
 submodules:
 tile[numX*numY]: Tile {
 parameters:
 numX = numX;
 numY = numY;
 }
 connections:
 for i=0..numX-2, for j=0..numY-1 {
 tile[i+j*numX].eastIn <-- tile[(i+1)+j*numX].westOut;
 tile[i+j*numX].eastOut --> tile[(i+1)+j*numX].westIn;
 }

 for i=0..numX-1, for j=0..numY-2 {
 tile[i+j*numX].southIn <-- tile[i+
(j+1)*numX].northOut;
 tile[i+j*numX].southOut --> tile[i+
(j+1)*numX].northIn;
 }
}

Figure 9: Definition of a parametric mesh in MCoreSim.

As can be seen, the language allows for an easy creation of parametric topologies. In the shown

example, we exploit this feature to have a generically configurable number of tiles along the X and Y

axes of the mesh. These parameters are used to instantiate an array of Tile modules, which have

been defined elsewhere in MCoreSim. Also, powerful iterative constructs allow for an easy

connection of the close tiles with each other, according to their respective positioning (north/south,

east/west).

21 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

REFERENCES

[1] Baaij, C.P.R. and Kooijman, M. and Kuper, J. and Boeijink, W.A. and Gerards, M.E.T. (2010) CλaSH:

Structural Descriptions of Synchronous Hardware using Haskell. In: Proceedings of the 13th

EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools (DSD 2010),

1-3 Sep 2010, Lille, France. pp. 714-721. IEEE Computer Society, Los Alamitos, CA, USA. ISBN 978-0-

7695-4171-6. http://eprints.eemcs.utwente.nl/18376/

[2] Kuper, J. and Baaij, C. and Kooijman, M. and Gerards, M. (2010) Exercises in architecture

specifications using CλaSH. In: Proceedings of the 2010 Forum on Specification & Design

Languages (FDL 2010), 14-16 Sep 2010, Southampton, UK. pp. 178-183. ISSN 1636-9874.

[3] Jones, S.P. (Editor), Haskell 98 language and libraries, Journal of Functional Programming, 2003,

vol. 13, no. 1.

[4] VHDL Language Reference Manual, IEEE Std. 1076-2008, 2008

[5] Verilog Hardware Description Languages, IEEE Std. 1365-2005, 2005.

[6] Tommaso Cucinotta, Giuseppe Lipari, Rui Aguiar, João Paulo Barraca, Bruno Santos, Jan Kuper,

Christiaan Baaij, Lutz Schubert, Hans-Martin Kreuz (2010) Definition of Future Requirements –

Project Deliverable D5.2, July 2010

[7] Bruno Santos, Javad Zarrin, João Paulo Barraca, Rui Aguiar, Christiaan Baaij, Jan Kuper, Dario

Faggioli, Giuseppe Lipari, Tommaso Cucinota, Alexander Dragojevic, Vasileios Trigonakis, Vincent

Gramoli, Daniel Rubio Boninalla, Lutz Schubert (2011) First Implementation Set: Protocols –

Project Deliverable D3.2

[8] Tommaso Cucinotta, Giuseppe Lipari, Dario Faggioli, Fabio Checconi and Sunil Kumar, Rui Aguiar,

João Paulo Barraca, Bruno Santos and Javad Zarrin, Jan Kuper and Christiaan Baaij, Lutz Schubert

and Hans-Martin Kreuz, Vincent Gramoli (2010). State of the Art – S(o)OS Project Deliverable D5.1

, July 2010

[9] Sunil Kumar, Tommaso Cucinotta, Giuseppe Lipari, A Latency Simulator for Many-core Systems, in

Proceedings of the 44th Annual Simulation Symposium (ANSS 2011), part of the Spring Simulation

Multiconference (SpringSim'11). Boston, April 2011.

[10] Michael J. Flynn, Some Computer Organizations and Their Effectiveness. IEEE Trans. Comput.,

1972

22 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

APPENDIX A: FLYNNCATQUERY

module FlynnCatQuery where

data PU = PU { alus :: [ALU]
 , registers :: [Register]
 }

data ALU = ALU { function :: ALUfunction
 , aluType :: ALUtype
 , dl :: DataLine
 , il :: InstructionLine
 , register :: Register
 }

type ALUfunction = String
type ALUtype = String

data DataPool = DataPool { size :: Int
 , poolId :: String
 }

data Register = Register { rId :: String }

data DataLine = DL { pool :: DataPool
 , address :: Int
 , width :: Int
 }

data Memory = Memory { memSize :: Int }

data InstructionLine = IL { ilId :: String }

data FlynnCategory = SISD | SIMD | MISD | MIMD
 deriving (Eq,Ord,Show)

superscalar :: PU -> Bool
superscalar (PU {alus=alus}) = (flynnCategory alus == MIMD) &&
 shareAllRegisters alus

shareAllRegisters = allEqual . (map (rId . register))

flynnCategory :: [ALU] -> FlynnCategory
flynnCategory [a] = SISD
flynnCategory alus | sameIL alus && dataShared alus = SISD
 | sameIL alus = SIMD
 | not (sameIL alus) && dataShared alus = MISD
 | not (sameIL alus) && not (dataShared alus) = MIMD

sameIL = allEqual . (map (ilId . il))

dataShared alus = (allEqual $ map (poolId . pool . dl) alus) &&
 (allEqual $ map (address . dl) alus)

23 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

APPENDIX B: OBJECT MODEL FOR MULTI-LAYER RESOURCE

DESCRIPTIONS

#include <iostream>
using namespace std;
#ifndef _layers_H
#define _layers_H
#define Topology_Type_Def Ring;
#define Bandwidth_Left_Def_Value 10;
#define BandwidthRight_Def_Value 10;
#define Latency_Left_Def_Value 5;
#define Latency_Righ_Left_Def_Value 5;
#endif /* _layers_H */
enum topologyType {Ring, Bus, Star, Mesh, Hybrid};
enum architectureType {SISD,SIMD,MISD,MIMD};
class topologyLayer {
 topologyType topology;
public:
 ~topologyLayer(){topology= Topology_Type_Def}
};
class nodeLayer {
private:
 int NodeLeftID;
 int NodeRightID;
 double BandwidthLeft ;
 double BandwidthRight ;
 double LatencyLeft;
 double LatencyRight;
public:
 int nodeId;
 double rated_bus_speed;
 nodeLayer();
 nodeLayer(double,double,double,double);
 void setNodeLeftID(int lid){NodeLeftID=lid;};
 void setNodeRightID(int rid){NodeRightID=rid;};
 int getNodeLeftID(){return NodeLeftID;};
 int getNodeRightID(){return NodeRightID;};
 void setBandwidthLeft(double bwl){BandwidthLeft=bwl;};
 void setBandwidthRight(double bwr){BandwidthRight=bwr;};
 double getBandwidthLeft(){return BandwidthLeft;};
 double getBandwidthRight(){return BandwidthRight;};
 void setLatencyLeft(double lal){ LatencyLeft=lal;};
 void setLatencyRight(double lar){LatencyRight=lar;};
 double getLatencyLeft(){return LatencyLeft;};
 double getLatencyRight(){return LatencyRight;};
 void configNodeLayer(int,double,double,int,double,double);
};
nodeLayer::nodeLayer(){
BandwidthLeft=10; BandwidthRight=10; LatencyLeft=5; LatencyRight=5;
}
nodeLayer::nodeLayer(double BwL,double BwR,double LaL,double LaR){
BandwidthLeft=BwL; BandwidthRight=BwR; LatencyLeft=LaL; LatencyRight=LaR;
}
 void nodeLayer::configNodeLayer(int lid, double bwl, double lal, int rid,
double bwr, double lar){
NodeLeftID=lid;

24 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

BandwidthLeft=bwl;
LatencyLeft=lal;
NodeRightID=rid;
BandwidthRight=bwr;
LatencyRight=lar;
}
class CMPLayer : public nodeLayer {
public:
 int CPU_ID;
 architectureType Flynn_taxonomy;
 double DRAM_size;
 struct L23 {
 double cache_size;
 double cache_line;
 };
 union L2_shared_cache_type { bool has_shared_L2; struct L23 data; }
L2_shared;
 union L3_global_cache_type { bool has_shared_L3; struct L23 data; }
L3_global;
};
class coreLayer : public CMPLayer {
public:
 double interconnection_bus;
 double * latency_map_cores;
};
class Core : public coreLayer {
public:
 int coreID;
 double frequency;
 double L1_Instruction_cache_size;
 double L1_data_cache_size;
 double mips;
 double L1_latency;
 struct L2 {
 double cache_size;
 double latency;
 };
 union L2_private_cache_type { bool has_private_L2; struct L2 data; }
L2_private;
 double memory_latency;
 double l2_shared_latency;
 double l3_global_latency;
};
class CMP : public CMPLayer{
public:
 int no_of_cores;
 Core * cores;
};
class MPNode : public nodeLayer {
public:
 int no_of_CMPs;
 double * latency_cmp_cmp;
 CMP * cmps;
};

25 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

APPENDIX C: SIMPLE CPU
type CpuState = State (Vector D4 Int16)

cpu :: CpuState

 -> (Int16, Opcode, Vector D4 (Index D7, Index D7))

 -> (CpuState, Int16)

fu op inputs (a0,a1) =

 op (inputs!a0) (inputs!a1)

fu1 = fu add

fu2 = fu sub

fu3 = fu mul

data Opcode = ShiftR | Xor | Equal

multiop ShiftR = shiftR

multiop Xor = xor

multiop Equal = \a b -> if a == b then 1 else 0

fu0 c = fu (multiop c)

cpu (State s) (x,opc,addrs) = (State s', out)

 where

 inputs = x +> 0 +> 1 +> s

 s' = (fu0 opc inputs (addrs!0)) +>

 (fu1 inputs (addrs!1)) +>

 (fu2 inputs (addrs!2)) +>

 (fu3 inputs (addrs!3)) +>

 empty

 out = last s

26 | P a g e D2.2 First Implementation Set: "Hardware" S (o) O S

