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I. INTRODUCTION

The main objective of WP2 is to develop abstraction mechanisms to express both the functionality

and  the  non-functional  properties  of  hardware  architectures  in  a  semantic  way.  Chapter  II

introduces the  CλaSH hardware description environment that focusses on the functional aspects of

hardware architectures. It lifts the design process of hardware to a higher level of abstraction than

offered by traditional tools and design environments. It allows us to capture and describe complexity

of  contemporary  and  future  architectures  (far)  more  easily  than  possible  in  current  design

environments.

Moving to Chapter  III,  we go into dealing with non-functional,  derived, aspects of hardware and

processor architectures. We discuss a modelling environment that allows us to describe the rough

structure of a processor architecture. We can use the same environment to query (non-functional)

properties of the processor  models,  such as whether they are superscalar.  We developed a new

modelling  environment as there was no existing  work  that allows for  easy  capability  extraction.

Using a hierarchical model as opposed to flat data to encode these capabilities is both less error-

prone and more general (as we can derive many capabilities through queries as opposed to hard-

coding  them).  We  also  go  into  detail  how  the  capability  information  can  be  used  for  code

instrumentation.

As we need to make the information of the hardware architecture and capabilities available across

nodes  (for  efficient  code/application  distribution)  in  heterogeneous  large-scale  dynamic

environments, we need to categorize information relevant at the different hierarchies. This problem

is tackled in Chapter  IV. As the systems are potentially highly dynamic (ephemeral connectivity of

mobile devices),  capability information  might have to be transmitted frequently,  warranting the

need to reduce overhead of capability information exchange. Also for this purpose a hierarchical

capability information encoding makes sense,  as we can reduce capability information being sent to

that which is relevant for the specific level in the hierarchy.

Having to analyse the impact of our design choices relating to the code mapping we do based on

capability  information  (Chapter  III),  and  not  having  future  hardware  architectures  available,  we

choose to simulate our systems. Because one of the major aspects of future processing systems [8] is

due to  the  network connecting all  the  cores,  we chose  to  start  our  focus  of  a  simulator  there.

Chapter  V discusses the  MCoreSim NoC-simulator  [9] we are developing based on the well-known

OMNeT++ network modelling and simulation framework.  We intend to incorporate the topology

descriptions from D3.2 [7] into future versions of the MCoreSim framework.
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II. HARDWARE MODELLING

Hardware description languages (HDLs) have not allowed the productivity of hardware engineers to

keep  pace  with  the  development  of  chip  technology.  While  traditional  HDLs,  like  VHDL  [4] and

Verilog [5], are very good at describing detailed hardware properties such as timing behaviour, they

are generally cumbersome in expressing the higher-level abstractions needed for today's large and

complex circuit designs.

With increasing complexity  in architecture design,  it  is preferable to lift  the design process to a

higher,  more abstract level.  CλaSH  [1][2] is a hardware specification environment consisting of a

hardware description language (HDL) and a compiler. The HDL has a syntax and semantics similar to

the  functional  programming  language  Haskell  [3].  The  compiler  translates  the  CλaSH  code  into

synthesisable VHDL. By using CλaSH, it is possible to implement a complete architecture in a concise

way  on  a  high  abstraction  level  while  maintaining  the  possibility  to  implement  parts  of  the

architecture on a  lower  level,  e.g.  on the  bit  level.  The  designer  can thus focus  on the  desired

behaviour  of  the architecture.  Higher  level  parametrisation is  employed to describe  the internal

functionality of the system.

Functional languages are especially well suited to describe hardware because combinational circuits

can  be directly  modelled  as  mathematical  functions  and  functional  languages  are  very  good  at

describing and composing these functions.

Important  aspects  of  the  high-level  approach  are  polymorphism  and  higher  order  functions.

Polymorphism  means  that  a  function  is  implemented  in  a  generic  way  without  specifying  the

concrete  type  of  its  operands.  Later,  this  function  can  be  used  in  different  contexts  and  with

different  types.  Higher  order functions offer,  among other things,  a powerful  means to combine

components in a generic way.

An alternative way to model hardware is to leverage the tools available in simulation frameworks,

such as the MCoreSim tool  [9] we are building in S(o)OS. Indeed, in MCoreSim, the modelling of

different  hardware  topologies  is  possible  thanks  to  the  Network  Description  Language  (NED)

embedded in the OMNeT++ framework. These aspects are discussed briefly in Section  V after an

overview of MCoreSim, and specifically in Section  V. 8.  , where a short example is also shown for

modelling a mesh topology.

1. FUNCTIONAL HARDWARE SPECIFICATIONS

The CλaSH [1][2] compiler can translate descriptions of an hardware architecture given in the  CλaSH

to  RTL-style  VHDL.  The   CλaSH  libraries  provide  a  set  of  predefined  types  (and  corresponding

operators), including: bits, booleans, signed and unsigned integers, vectors, and indices. Aside from

these predefined types, synthesis of user-defined algebraic data types is also fully supported.

Synchronous hardware is modelled as a Mealy machine, where inputs (i) and the current state (s) are

processed, by a transition function (f),  to form a new state (s') and output (o) of the circuit  (see

Figure 1). A generic transition function f is shown in Text 1.

The  State keyword  is  used  to  indicate  which  argument,  and  what  part  of  the  return  value,  is

connected to the state memory element of the component. The transition function and the initial

value of the memory elements have to be combined to describe the complete component. We use

the lifting function "⇑" for this purpose: it takes a transition function and an initial state to form a

component. Components created using "⇑" are of the  Comp i o type, where  i indicates the input

type, and o indicates the output type.
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f (State s) i = (State s',o)
  where 
    (s',o) = …

Text 1: transition function

The use of "⇑" is  illustrated in  Text 2: it  shows the description of a multiply-accumulate circuit,

where the  maccT (lines 1-3) implements the transition function, and  macc (lines 4-5),  using "⇑",

describes the complete component. The macc component is also annotated with its type (using "::"),

indicating that it is a component with an input consisting of a tuple of 9 bit integers, and a single 9

bit integer output. 

maccT (State acc) (x,y) = (State acc', acc)
  where
    acc' = acc + x * y
macc :: Comp (Int9,Int9) Int9    
macc = maccT ⇑ 0

Text 2: Multiply-Accumulate Circuit

We can compose several components using the arrow-syntax (⇒ and ⇐); illustrated by the example

shown in Error: Reference source not found. We declare a new component macsum, that has a four-

tuple  (a,b,c,d) as input,  and a single  result:  the addition of the values  r0 and  r1 (line 1 of  Error:

Reference  source  not  found).  We  use  "⇒"  instead  of  "="  to  indicate  that  we  are  defining  a

component and not a function. A significant difference between a component and a function is that a

function will always return the same value when applied to the same arguments, while this is not

necessarily true for a component. The reason for this difference is that a component has an internal

state which is remembered through consecutive evaluations of the component, and which typically

influences the computation of the result.

macsum (a,b,c,d) ⇒ r0 + r1

  where
    r0 ⇐ macc ⇐ (a,b)
    r1 ⇐ macc ⇐ (c,d)

Text 3: composing macc components

The individual macc components are instantiated in line 3 and 4, being fed the signal tuples (a,b) and

(c,d), and returning r0 and r1 respectively. Again, we use "⇐" instead of the combination of "=" and

function application, because we are dealing with components and not functions.

Synchronous circuits described in CλaSH can be  simulated using a Haskell interpreter or compiler,

because CλaSH circuit descriptions,  and the CλaSH libraries,  are also valid Haskell  code. Although

CλaSH is  similar  to Haskell,  there are several  constructs in Haskell  that are not accepted by the

CλaSH compiler, as their synthesis requires the analysis of time-variant behaviour. These constructs

include dynamic data-structures and structures for which the size can not be determined at compile-

time.
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A) POLYMORPHIC CIRCUITS

CλaSH has three important language features that enable highly parametric designs: polymorphism,

higher order functions, and type derivation. As a result of polymorphism a designer can describe the

general  flow of data, without being restricted  to any specific  type of data. A component where

polymorphism is of great aid is a FIFO buffer, which does not manipulate the data that it stores, and

its structure is the same for all types of data.

There are two ways to make concrete instantiations of polymorphic functions: 1) make a clone and

annotate the clone with a concrete type, or  2) let the type be inferred from the context at the

instantiation. We elaborate both cases using a two-position FIFO buffer as an example.

data FS a = FS { m0 :: a , w0 :: Bool
               , m1 :: a , w1 :: Bool
               }

Text 4: Record type for FIFO state

We start with the definition of a new record-type FS that will encode the state of the FIFO (Text 4).

The record has four fields (m0,w0,m1,w1), where m0 and m1 are the memory locations, and w0 and

w1 are two flags indicating whether the respective memory locations are written. While the fields

w0 and w1 are of type Bool, the types m0 and m1 both of the same polymorphic type a. So where FS

a is the polymorphic type, e.g., FS Int9 and FS (Bool,Bool) are two concrete instantiations of FS a.

The transition function for the FIFO, describing the behaviour, is given in Text 5.

fifo (State (FS {..})) (rd,nv) = 
  (State (FS m0' w0' m1' w1'),(full,ov))
  where
    (m0',w0',m1',w1') 
      | rd && w0      = (nv, True, m0, w0  )
      | rd || not w1  = (m0,   w0, nv, True)
      | not w0        = (nv, True, m1, w1  )
      | otherwise     = (m0,   w0, m1, w1  )
    
    full  = w0 && w1
    ov    = m1 

Text 5: Polymorphic 2-position FIFO Buffer

The fifo function has two inputs, read (rd) and new value (nv), and two outputs, a full flag (full) and a

data output (ov). The rd input indicates if a value is being read from the FIFO, nv is the new value to

be stored, full is an output flag that indicates if the FIFO is full, and ov is the value exiting the FIFO.

The code (FS {..}) in line 1 automatically brings the fields of the FS record into scope. The code (FS

m0' w0' m1' w1') assigns m0' to the first field of FS (which is m0), w0' to the second field, etc. Lines 3

to  8,  the  assignment  of  (m0',w0',m1',w1'),  is  a  guarded expression.  A  guard is  the  Boolean

expression between the "|" and the "=". The expression for which its guard evaluates to True is used

for the assignment. The first expression for which its guard evaluates to True is used when multiple

guards evaluate to True. The otherwise guard always evaluates to True.

We can now make a concretely typed clone of the FIFO transition function by annotating the clone

with a type. For example, a FIFO that stores 9-bit integers (Text 6):

fifo9 :: State (FS Int9) -> (Bool, Int9) 
  -> (State (FS Int9), (Bool, Int9))
fifo9 = fifo

Text 6: Cloned 9-bit Integer FIFO
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For  the  second  case  we use  the  fifo transition  function in  a  concrete  context  and  let  the  type

inference mechanism determine the correct type for that specific instance. We define a concrete

initial state s0 that stores 9 bit integers, by replacing the type parameter a of the FS record with the

concrete type Int9. An instance of fifo is then lifted with s0 to form the concretely typed component

fifo9c (Text 7).

s0 :: FS Int9
s0 = FS 0 False 0 False

fifo9c = fifo ⇑ s0

Text 7: Derived 9-bit Integer FIFO

The type of the instance of fifo in Text 7 can be made concrete through automated type-derivation

because: 1) the type of the initial state of the memory elements is known, and 2) the data in- and

outputs are of the same type as the memory elements.

B) HIGHER ORDER CIRCUITS

Having highlighted the parametrisation potential offered by polymorphism and type derivation, we

now  move  to  the  third  feature  of  CλaSH  that  enables  natural  parametrisation:  higher  order

functions. Higher order functions are essentially no different from `normal' (first-order) functions, in

that they process and return values.  We call functions higher order however when (some of) the

values they process and/or return are functions themselves. A well known higher order function is

vmap, whose type signature is shown in Text 9.

vmap :: (a -> b) -> V s a -> V s b
vmap f as = ...

Text 8: Type signature of vmap

The first  argument  of  vmap is  a  function (f)  with  input  type  a and  output  type  b.  The  second

argument is a vector of length s and element type a, and the return type is again a vector of length s

but with element type b. What the vmap function does is apply the function f to every element in

the vector. Text 9 shows the usage of the vmap function by negating a vector of Boolean values.

negateAll :: V s Bool -> V s Bool
negateAll v = vmap not v

Text 9: Negating a vector of Booleans

Because there are no data dependencies between the function applications that  vmap introduces,

all function instances can be executed in parallel.  The CλaSH compiler will therefore translate the

negateAll function to a set  of concurrently executing components.  A visual  interpretation of the

resulting hardware when applying negateAll to a 12 element vector is shown in Figure 2.

A common circuit where the use of higher order functions leads to a concise and natural description

is a crossbar. The code for the description of such a circuit is shown in Text 10.
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crossbar inputs selects = vmap (mux inputs) selects
  where
    mux inp x = inp ! x

Text 10: Crossbar circuit

The crossbar function selects those values from inputs that are indexed by the selects vector. Besides

the fact that the vmap function again takes another function as an argument, we also see that the

mux function is only applied to one argument while the definition suggests it has two arguments.

This is another instance of higher-order functionality: by applying mux to only a single argument, the

function will return a function that still expects the original second argument. This coincides with the

type signature of vmap. The crossbar is polymorphic in the width of the input (defined by the length

of inputs), the width of the output (defined by the length of selects), and the signal type (defined by

the element type of inputs vector). We (also) remark that the element type of the selects vector is

automatically inferred to be Index; following from the use of the indexing operator for vectors (!).

C) EXAMPLE: HIGHER ORDER CPU

This  section  discusses  a  somewhat  more  elaborate  example  in  which  user-defined  higher-order

function, partial application, lambda expressions, and pattern matching are exploited. The example

concerns a  CPU which consists of four function units,  fu0 … fu3,  (see  Figure 3) that each perform

some binary operation.

Every function unit has seven data inputs (of type Int16), and two address inputs (of type Index D7).

The latter two addresses indicate which of the seven data inputs are to be used as operands for the

binary operation the function unit performs.

These seven data inputs consist of one external input x, two fixed initialization values (0 and 1), and

the previous outputs of the four function units. The output of the  CPU as a whole is the previous

output of fu3.

Function units fu1,  fu2, and fu3 can perform a fixed binary operation, whereas  fu0 has an additional

input  for  an opcode to choose  a  binary  operation out  of  a  few possibilities.  Each function unit

outputs its result into a register, i.e., the state of the CPU. This state can e.g. be defined as follows:

type CpuState = State (Vector D4 Int16)

i.e., the state consists of a vector of four elements of type Int16. The type of the CPU as a whole can

now be defined as (Opcode will be defined later):

cpu :: CpuState 

  -> (Int16, Opcode, Vector D4 (Index D7, Index D7))

  -> (CpuState, Int16)
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Note that this type fits the requirements of the run function. Every function unit can be defined by

the following higher-order function,  fu,  which takes three arguments:  the operation  op that  the

function unit should perform, the seven inputs, and the address pair  (a0,a1).  It selects two inputs,

based on the addresses, and applies the given operation to them, returning the result:

fu op inputs (a0,a1) = 

  op (inputs!a0) (inputs!a1)

Using partial application we now define:

fu1 = fu add

fu2 = fu sub

fu3 = fu mul

Note that  the  types  of  these  functions can be  derived  from the type of  the  cpu function,  thus

determining what component instantiations are needed. For example, the function add should take

two Int16 values and also deliver a Int16 value.

In order to define fu0, the  Opcode type and the multiop function that chooses a specific operation

given the opcode, are defined first. It is assumed that the binary functions shiftR (where shiftR a b

shifts a to the right by the number of bits indicated by b) and xor (for the bitwise xor) exist.

data Opcode = ShiftR | Xor | Equal

multiop ShiftR = shiftR

multiop Xor   = xor

multiop Equal = \a b -> if a == b then 1 else 0

Note that the result of multiop is a binary function from two Int16 values into one Int16 value; this is

supported by CλaSH. The complete definition of fu0, which takes an opcode as additional argument,

is:

fu0 c = fu (multiop c)

The complete definition of the cpu function is (note that addrs contains four address pairs):

cpu (State s) (x,opc,addrs) = (State s', out)

  where

    inputs = x +> 0 +> 1 +> s

    s'     = (fu0 opc inputs (addrs!0)) +>

             (fu1     inputs (addrs!1)) +>

             (fu2     inputs (addrs!2)) +>

             (fu3     inputs (addrs!3)) +>

             empty

    out    = last s

Due to space restrictions, Figure 3 does not show the internals of each function unit. We remark that

CλaSH generates e.g. multiop as a subcomponent of fu0. The combined code fragments of this simple

CPU can be found in  Appendix C: Simple CPU. While the  CPU has a simple (and maybe not very

useful) design,  it illustrates some possibilities that CλaSH offers and suggests how to write actual

designs.

2. MAPPING DESCRIPTIONS TO HARDWARE

We  want  to  use  the  same  resource  description  for  different  purposes  to  avoid  semantic  gaps

between the description used for one purpose (for example simulation) and another description for

a different purpose (for example synthesis). The history of hardware description languages has also

shown  that  engineers,  people  who use  these  description  languages,  do  not  want  to  repeatedly

describe  the  same  system  for  different  purposes.  VHDL,  these  days  commonly  associated  with

hardware  synthesis,  was  originally  meant  to  be  a  specification  language  when  it  was  first

standardized. These specifications were meant to be the documentation for the designed hardware
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systems. Simulation tools for these VHDL specifications were developed quickly afterwards, followed

by automated synthesis tools. This has however led to the situation where most (but not entirely) of

the latest VHDL specification  [4] is accepted by simulators, but only a small subset is accepted by

automated synthesis tools.

Because  CλaSH is (currently) a subset of Haskell, simulation of circuit specification comes for free in

terms  of  existing  Haskell  compilers  and  interpreters.  CλaSH  specifications  are  also  completely

synthesisable using the  CλaSH compiler which translates to the specification to that subset of VHDL

which is accepted by all VHDL synthesis tools. We note that any netlist-like format could have been

used, however, VHDL was chosen because it is a standardized language and has many supporting

tools from different vendors. Because these tools use different (dialects of) netlist representation

languages,  choosing  a  specific  one for  CλaSH  would  have meant  that  we  could  not  use  all  the

available tools. Familiarity with VHDL by the CλaSH developers also added greatly  in verifying the

correctness of the implementation.

The abstractions used in CλaSH specifications, such as polymorphism and higher order functions, are

however not representable in these netlist  formats.  As a result  we have to transform  potential

polymorphic, higher order circuit descriptions to monomorphic, first order functions. Something we

can  only  do  if  the  top-level  entity  is  monomorphic  and  first-order.  We  already  mentioned  this

restriction in the simple cpu example of subsection  II. 1. c)  .   Another example where a  CλaSH

description does not exactly match a netlist  format,  is  that  CλaSH descriptions usually  lack the

explicit  naming  of  an output  port.  These  discrepancies  between  the original  descriptions  and a

netlist format lead to the definition of a 'normal form', which states the form a  CλaSH description

should have to be directly translatable to a netlist format.

This normal form is however defined at the System F (type lambda-calculus) level, a language to

which all  CλaSH descriptions can be de-sugared to, and which has far fewer language constructs.

Because System F has fewer language constructs, a normal form is far easier to define. And, as a

result, the transformations to bring a System F description into a normal form, are also easier to

define. The transformation system applies all transformations exhaustively until the description is in

the  desired  normal  form.  The  soundness,  termination,  completeness,  and  confluence  of  this

transformation system are currently not formally  proven.  However,  extensive  use of the  CλaSH

system indicates that many of these properties hold. We do however intend to formally prove these

desired properties in future iterations.
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III. RESOURCE CAPABILITY DESCRIPTIONS

In addition to the structural and architectural information of the resources and their relationships to

each  other  (topology),  the  actual  capabilities  of  the  resource  are  needed  for  adaptation  and

mapping of code properties – in other words, to exploit the specific capabilities of the resource –. In

the simplest case, the common denominator can be assumed, as this will remain compatible with

most types from a functional perspective, even if it will not help in how to map resources to improve

performance.  This  way  the  specific  capabilities  are  not  exploited  (for  example,  a  GPU  will  be

considered as a single core machine without vector units).

We want to describe the resource capabilities in a way that allows us to:

• identify the requirements of the code

• adapt the code to make use of the hardware capabilities

In this chapter we will expose how to identify the hardware resources requirements from the source

code and how the resource capabilities can be described and derived from hardware descriptions.

1. IDENTIFYING RESOURCE REQUIREMENTS FROM CODE

Code does not in general  explicitly  state resource requirements (besides  for  some programming

extensions), instead, the requirements for optimal performance have to be derived indirectly from

the code behaviour and structure analysis.

Resource requirements are therefore not only derived from the code, but also must be considered

“boundary” criteria for segmentation and adaptation. In case that a very heterogeneous system is

given, then multiple iterations with different boundary may need to be mapped to fit  better the

capabilities of each resource.

In  summary,  we  can  assure  that  the  size  and  amount  of  the  segments  can  vary  significantly

depending on the hardware resources available at each moment.

2. IDENTIFYING RESOURCE CAPABILITIES

In order to identify:

• how well the resource performs given specific algorithm types

• how the code and/or algorithm needs can be adapted to make best use of the resource's

specifics

some information about its capabilities and restrictions are needed: 

A) PROCESSOR CLASSES

The  processor  class  provides  information  about  the  code-data  relationship  of  the  processor,  in

particular regarding its parallelism, i.e. whether the processor can only execute a single instruction

on a single data (SISD),  or on the other hand execute multiple instructions at the same time on

different data (MIMD), or a single instruction on multiple data in parallel (SIMD) which effectively is

the GPU structure – this is closely related to what became known as Flynn's taxonomy [10]:
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Single 

Instruction

Multiple 

Instructions

Single 

Data
SISD MISD

Multiple 

Data
SIMD MIMD

SISD PROCESSORS

• Plain sequential processor (can have pipelining)

• Can  only  operate  one  single  datum  (load/store)  and

instruction at a time

• It can be used in particular for sequential code with little

degree of parallelism

• notable architecture feature:

◦ single data-PU-channel

◦ single instruction-PU-channel

MISD PROCESSORS

• Execute multiple operations on a single datum

• lead to serious consistency problems

• so far, no reasonable, let alone commercial realisation

• notable architecture features:

◦ single data-PU channel

◦ multiple instruction-PU channels

SIMD PROCESSORS

• Execute the same operation on multiple data

• each datum can thereby regarded as a dimension in a vector,

a  SIMD  with  vector-length  8  can  therefore  handle  8

dimensional vectors

• sometimes used as coprocessors

• related to GPUs

• notable architecture features:

◦ multiple data-PU channels

◦ single instruction-PU channels

MIMD PROCESSORS

• Represents  processors  with  multiple  SIMD  ways,  normally

pipelined

• many classes: VLIW, superscalar

• typical general architecture today

• as opposed to multi-processor SIMD, instructions  and data

are related
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• general architecture features:

◦ multiple data channels

◦ multiple instruction channels

but, the relationship between data / code to PU may vary

• limited by:

◦ the degree of intrinsic parallelism in the instruction stream, the amount of instruction-

level parallelism

◦ the complexity and time cost of the dispatcher and associated dependency checking

logic

◦ the branch instruction processing

◦ the size and capabilities (i.e. load overtake stores) of the out of order execution in case

of superscalar processors

◦ the quality of the prefetch unit

Identification criteria in the resource description:

Type Data-PU Channels Instruction-PU

Channels

Number of PUs

SISD 1 1 1

MISD 1 >1 =#instruction-PU channels

SIMD >1 1 =# data-PU channels

MIMD >1 >1 Different versions

• #DPU

• #IPU (<#DPU)

But that information on itself is not enough. It is needed to distinguish between different intentions

of the models. Even though SIMD, MIMD etc. reflect architectural notions of a processor description,

they  do  not  necessarily  incorporate  capability  information  that  is  related  to  the  conceptual

architecture of the processor. For example, given a certain ISA with a 4 dimensional vector SIMD

instruction, one hardware implementation can use 4 ALUs and calculate it simultaneously while in

others one ALU can be used to calculate the 4 data,  one after the other,  with at least a 4 time

increase  in  processing  time  while  compared  to  computing  a  single  data.  In  the case  of  4  ALUs

computing simultaneously, the execution time will be the same for a “package” of for 4 data or for

just 1 datum.

Often,  a  similar  situation is  found when  operating  with  floating  point  units  and  its  precision.  A

double precision operand instruction can usually be processed in a single precision FPU, but the time

needed usually varies from 4 to 16 times more. And even floating point operations can be performed

in a only integer ALU, but with a much high processing time cost (of the order of hundreds of integer

instructions). This last technique called softfp is often used in microcontrollers and other kind of less

performance (and small transistor count) processors.

We can note that the processors are also denoted particularly by the following characteristics:

1. the lines toward the data pool:

1. number of lines (number of data that can be processed simultaneously)
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2. width of a line (bit size of each data, calculation precision)

Modern processors can usually trade the numbers of lines for the width of the lines, that

means that more precision data can be calculated if the number of data is reduced. For

example,  a  128  bit  wide  vector  FPU  could  operate  2  dimensional  64  bit  data  or  4

dimensional 32 bit data. 

2. the type of ALUs and their capabilities:

1. functionalities: ADD, MULT, DIV etc.

2. type: floating point, integer or both.

Many modern architectures have specialised ALUs that can only execute a set of specific

instructions and respectively only operate on specific data types (it is very common to have

many ALUs that can perform simple instructions like ADD or AG (Address Generation) and

very few for complex rare instructions like DIV). A “complete” processor has a set of ALUs

that allows it to execute all the instructions of its ISA. Therefore, ALUs of different types in a

single  processor  either  lead  to  a  reduced  number  of  "complete"  ALUs  or  to  multiple

"specific" SIMDs that share the instruction line. This information can not be easily specified

or identified, as often is not clearly released by the manufacturers.

3. the lines to the instruction pool

1. number of lines is the maximum number of instructions issued per cycle (in the

SISD and SIMD case that's automatically 1, in MIMD it is more than 1). The real

number  IPC  (Instructions  per  Cycle)  is  usually  considerable  inferior  than  the

maximum theoretical – but it is heavily affected by the type of code that is being

executed.

4. Registers

1. ISA specific  registers:  these  are the registers  usable by the programmer (or  the

compiler).  They  differ  in  number  and  bit  width  size.  There  can  also  be  many

different register banks, as for example for the integer ALU, for the FPU or for the

vectorial units.

2. Hidden registers: these registers are not accessible for the user, but are used by

the hardware inside the CPU for different purposes like register renaming, pipeline

instruction overtaking etc..

3. Register window: if there is and its size, which has a big impact on function calls.

4. Register duplication: some processors have duplicated register banks speed up the

thread context switching. Some processors have this technique improved like in

the case of Intel's HyperThreading Technology.

This  information  about  the  different  kind  of  Processing  Units  is  necessary  as  a  too  abstract

description does not provide meaningful information about how well a segment of code will behave

in a particular hardware configuration.

The first filtering has to be to check if the hardware can execute the particular segment of code that

the OS wants to place, although nowadays almost all processors (does not matter if it is a CPU or a

GPU) can in theory run any kind of code, we might still find some that can not. After it we have to

look into particularities of the code. If it has many floating point instructions, then we should look for

a  processor  with  a  FPU or  a  vectorial  unit  with  FP  capabilities  that  fulfil  the  minimum  needed

precision. Another important check is if there are special  operations (like DIV, SQRT, dot product

instruction...)  because a processor  with special  instructions for  this  operations can execute code
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faster than a hardware that does not have them, but that would behave faster in a more generic

code. As for superscalar processors, not all pipelines are the same or have the same capabilities and

this should be taking into account (a code with many DIV operations will probably perform better in

a superscalar CPU with only two pipelines but both with dedicated hardware DIV ALUs, than in a

superscalar CPU with 4 pipelines but with only one of them fitted with a hardware DIV capable ALU).

The previous text tries to justify why all this information is needed, and it is difficult to make a right

balance between the level of detail that is useful and when too many details only complicate the

code segmentation mapping without any improvement in performance (or probably even making it

worse).

B) CONFIGURABLE HARDWARE: EXAMPLE OF SINGLE

INSTRUCTION MULTIPLE DATA (SIMD)

PROCESSOR/PIPELINE

Previously it has been explained the difficulties in determining the level of detail of the hardware

description that  is  useful  and meaningful  for  the segmentation and  code segment  on hardware

mapping algorithm. To this other hardware characteristics have to be added, like the flexibility of

hardware configuration. This flexibility is another factor that has to be considered and that increases

the  algorithm  complexity.  Many  of  today's  hardware  can  be  reconfigured  to  make  use  of  its

resources in very different way.

As shown in Figure 4, SIMD is quite a "generic" type in Flynn's category: many SIMD can “unify” their

ALUs  into fewer  amount but with  a  wider  dataline.  If  all  the  ALUs inside  the processor  (or  the

pipeline)  are unified into a a single ALU then it  becomes a  SISD.  At  the same time many SIMD

pipelines can be unified sharing the register banks which leads to a MIMD processor.

C) USING CAPABILITIES IN CODE / EXECUTION

There are a few levels of information sources that need to be matched in order to execute the code

in a fashion most suitable to the hardware:

• on the software side:

◦ code annotations provided by the user

◦ information automatically derived from code analysis

◦ profiling of previous executions

• on the hardware side:

◦ parametrisation  of  hardware  through  automatic  tests  (ping,  automatic  benchmarks

etc.)

◦ hardware self description (flags in cpuinfo etc.)
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◦ database of description provided by manufacturer and the information derived from

this

The main point of gathering all this information about the description of the hardware and needs of

the software consists in providing a flexible means to query for resources with specific capabilities

with the aim to try to map the software segments as good as possible.

As opposed to pure typing or look up table, a description that is closer to the hardware architecture

offers more freedom in retrieving capabilities. As such, additional information can be retrieved from

the description, if the user writes an according query.

Appendix  A:  FlynnCatQuery describes  the  datatype  with  which to  describe  a  processor  in  a

hierarchical fashion, allowing for the earlier mentioned queries for capabilities. We see in  Text 11

the  textual  representation  of  the  SIMD  machine  shown  in  Figure  4,  according  to  the  datatype

described in Appendix A: FlynnCatQuery.

SIMD_CPU il0 il1 = PU { alus = [alu0,alu1]
                      , registers = [reg0] }
 where
  alu0 = ALU { function = "ADD, MUL", aluType = "FP"
             , register = reg0, dl = dl0, il = il0}
  alu1 = ALU { function = "ADD, MUL", aluType = "FP"
             , register = reg0, dl = dl1, il = il1}
  dl0   = DL { pool = pool0, address = 0, width = 32}
  dl1   = DL { pool = pool0, address = 32, width = 32}
  pool0 = DataPool { size = 64, poolId = "0" }
  reg0  = Register { rId = "0" }

Text 11: SIMD description using FlynnCatQuery

When we use the flynnCategory query (also described in Appendix A: FlynnCatQuery) on a concrete

instantiation, where il0 and il1, will refer to the same instruction line, then we indeed get the answer

that Text 11 indeed describes a SIMD machine.
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IV. RESOURCE DESCRIPTIONS FOR DISCOVERY

An important aspect of resource discovery and management in a network with multi-core nodes is

the way of describing the processing resources. From the network and service discovery point of

view  we need  to  have  a  more  abstract  and high-level  model  of  resource  description.  Resource

description should include useful, effective and short information which would be appropriate for

services advertisement by sending messages. Due to the network overhead and traffic, we cannot

put a lot of information about the resource in the related message for the service announcement.

On the other hand, for resource mapping and management; it is required to have a set of criteria

and parameters for resource evaluation and service matching according to the requirements of the

queries. Thus, resource description should support explicit evaluation criteria.

There are two important performance parameters for the processors, which are time of execution

and throughput (FLOPS/IOPS).  These two depend on many other parameters such as cache size,

bandwidth,  latency,  interconnection  and  even  the  type  of  code  which  is  so  complicated.  The

alternative evaluation criteria is using benchmarks which in case of S(o)OS could be neither practical

nor helpful .

To achieve a more efficient and abstract resource model, the description of computing resources in

a heterogeneous network with multi  chips and multi  core nodes necessitates being divided into

below  levels  including  a  mechanism  for  the  streaming  of  the  descriptions  with  a  particular

functionality  which  can  diminish  low  level  detailed  information  and  absorb  new  attributes  and

predicates of the next upper level architectures:

1. Inter -Cores Level (Network on Chip (NoC) Level): resource description in this level has been

characterized according to THE type of information which is directly related to the core

specifications.  The  most  typical  information  in  this  level  is  floating  point  and  integer

operation per cycle and private cache size.

2. Inter -Chips Level: describes the specifications of the edges for the core communications,

interconnection  networks  and  memory  hierarchy  which  include  information  such  as:

bandwidth, latency, shared or global cache size and number of cores.

3. Inter -Nodes Level: Resource description covers a total overview of all the communications,

memory and processing features and aspects in the node such as memory size and number

of processors.

Due to the above classification resource description is defined in three different layers .The coded

information ranging through the resource description from the first  level to the last one changes

from  hardware  details  to  more  abstract  information.  The  unnecessary  information  which  gets

reduced moving toward the last layer is encrypted into specific fields in the upper layers.

In the resource discovery process, firstly the description of all nodes are read , then the nodes which

can provide the query with the minimum requirements are selected and some specific encrypted

fields are decoded for them in the lower layers , and the information contained in them is extracted .

This selection and extraction operation in the resource description continues to the last layer until

the  minimum  requirements  for  the  query  is  reached.  The  allocation  of  resource  to  query  is

conducted via Distributed Hash Tables (DHT) and Queue Management System (QMS).

We can use the aforementioned multi-layer resource description model to describe resources, but

we need to improve or complete these models in the ways such as the followings:
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1. The performance score can be extracted from all the information provided by the resource

description, which requires us to have an explicit algorithm to calculate this item with.

2. Another alternative is using Mico High Performance Computing (MHPC) Benchmarks such

as  Sandia  Micro-Benchmark  Suite  (SMB)  or  MIBA  Micro-Benchmark  Suite  for  real-time

evaluating and benchmarking. 

3. The typical processor benchmarks are real applications which could vary depending on the

use case and the end user applications. To provide an evaluation criteria, we can use a real-

time benchmarking model according to the past execution performance.

4. Using one of the solutions 1 or 2 with combination of 3

Figure 5 shows the architecture of the multi-layer resource description which keep an abstract of all

the resource specifications related to computing and communicating capabilities of the nodes and

their  components.  We  have  defined  layers  to  avoid  unnecessary  data  transmission  and

communication overhead as the consequence of resource discovery operation in a large multi-core

system  .  For  instance,  in  the  process  of  discovery  operation  among  two  cores  on  a  same  tile,

discovery messages are not required to carry node communication behaviours. 

In  the above hierarchical  architecture containing computational and communicational  properties

and behaviours ,  most describing links and interconnection characteristics are located at the top of

the pyramid, and computational resource descriptions are at the bottom . Due to the hierarchical

structure of the resource description model, it could provide  a comprehensive perspective of all

other  neighbouring  resources  in  the  vicinity  and  in  the  network  for  each  processing  unit

independently  ,besides, the model is able to find out detailed information for each node or chip

multi -processor. 

Multi-Layer resource description acts like fisheye's model (Figure 6). It  means that every processing

unit  (core) in a cluster doesn't need to keep resource descriptions about all other processors . In this

model descriptions of resources include accurate, predictable and unclear data. the accurate data

comes from closer  cores which are placed in the same tile or node  .  In the process of resource

discovery for a query originated from a particular core, processors with the minimum latency have

priority to be nominated as members of qualified resource groups, therefore, for a core, it is not

required to know about far away cores precisely.
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 Table 1 demonstrates set of description parameters that are defined in each layer  

Layers Name Description Parameters 

Layer1 Node Layer or

Network Layer

Network topology description (topology type), network

bandwidth and latency, node  specifications (node ID, node

Type , no. of CPUs,etc) 

Layer2 Chip Multi-

processor Layer

Inter-chips communications characteristics

(rated_bus_speed) , architecture type (Flynn_taxonomy) ,

CPU specifications ( CPU name, CPU ID, no. of cores,etc) ,

memory and cache hierarchy (shared and global cache,

hierarchy,size and latency, DRAM size)

Layer3 Core Layer Processor's characteristics (core ID, clock rate, instruction

set, pipeline, MIPS, private cache L1 and L2,etc.), Memory

access ( cache and memory latency) , Inter-cores

communications behaviours ( interconnection_bus , inter-

cores latency matrix)

Table 1: Resource description parameters for discovery 

The aforementioned resource description model  can be considered as a node description model

which has built-in network topology and link descriptions. However, complicated network topologies

description for the nodes is not included. We are using COTSon and SimNow simulators to evaluate

our resource discovery protocol which is discussed in D3.2  in detail. COTSon uses BSDL to describe

resources  in  a  simulated  cluster.  The  implementation  of  resource  discovery  protocol  must  be

supported by resource descriptions in the most efficient  and easy way, therefore we developed a

model for resource description and  a definition compatible with the required resource information

in discovery process.
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V. NOC SIMULATOR

This chapter describes MCoreSim  [9], the Many-Core Modeling and Simulation framework we are

developing in  the S(o)OS project  for  the purpose of  comparing different  possible  alternatives  in

future many-core, distributed and massively parallel systems. One of the main innovation elements

in  these  kind  of  systems  is  foreseen  [8][6] to  be  the  presence  of  a  Network-on-a-chip  for

interconnecting  the  many  cores  present  on  the  same  chip,  and  the  possible  lack  of  a  globally

coherent  memory.  Therefore,  the simulator  was born with  the main objective  of  simulating  the

impact  of  the  NoC  latencies  for  the  purpose  of  evaluating  different  strategies  for  common

operations  that  are  recurrently  performed  by  the  software  stack,  either  through  the  Operating

System,  or  by  application-level  middleware.  These  operations  may  include  basic  low-level

synchronization and communication primitives for Inter-Process Communications (IPC), as well  as

scheduling and deployment policies which have the responsibility to decide where to deploy each

individual software component (i.e., process, thread, code segment). Therefore, MCoreSim does not

emulate any Instruction-Set Architecture of any real processor, but rather it supports so far a very

basic set of primitive operations needed to move data across the computing and memory elements

in a future many-core, tile-based chip architecture.

MCoreSim is based on the well-known OMNeT++ framework for network modelling and simulation.

Therefore, in the following we provide a quick overview of OMNeT++ before proceeding to describe

our MCoreSim simulator.  MCoreSim is still  to be considered in a work-in-progress status, and its

features and capabilities will improve and expand during the next months.

1. BACKGROUND ON OMNET++ 

OMNeT++1 is a component-based discrete-event  simulation library and framework for simulating

networked systems. It provides developers with the capability to define highly reusable modules,

which  can  be  instantiated  and  interconnected  in  different  designs.  Modules  have  gates  for

interaction with other modules and can be combined with each other at arbitrary nesting levels.

Modules  communicate  through  message  passing  via  defined  gates  and  channels  (connection

between modules).  Modules,  channels and gates can be parametrized by leveraging the Network

Description  (NED)  Language,  and  used  for  customizing  the  behaviour  according  to  specific

application scenarios. 

2. MCORESIM SIMULATOR ARCHITECTURE 

Due to the difficulties in maintaining a globally coherent cache/memory view in many-core systems,

the massage passing paradigm is the most suitable one to be used for communications. In many-

core  systems,  the  network-on-a-chip  paradigm  requires  message  passing  to  be  implemented  in

hardware by the on-chip interconnection logic. MCoreSim models a tile-based networked system.

There are two major components: the tile and the connection strategy (topology). The architecture

of a single tile is summarized in Figure 7. Each tile includes:

• a CPU, which we call processing element (PE)

• a local memory element (Local Store)

• a  Memory  Management  Unit  (MMU)  redirecting  memory  operations  towards  the  local

memory element or some remote tile through the local router

1 More information is available at: http://www.omnetpp.org/.
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• a local cache memory

• a Network Interface, realizing reliable communications with other tiles

Parameter name Description

topology Topology type (mesh or torus)

datarate datarate of a channel

delay delay in channel

flitSize size of flit packet

numX number of nodes in X direction

numY number of nodes in Y direction

bufferSize buffer space available in router

NIbufferSize buffer space available in NI

router type routing algorithm for topology

clockRate clock rate of processing element

memoryClockRate clock rate of memory element

numVC number of virtual channels per input
port

Table 2: Configuration parameters for MCoreSim.

Logically, a Processing Element (PE) can model a general purpose or special purpose processing unit.

Its main function is to fetch the instructions from the application program and simulate the time

needed  to  carry  out  the  involved  computations  interacting  with  the  necessary  local  or  remote

memory elements and/or other cores. 

The Network Interface (NI) enables the transfer of data (or instructions) to/from other tiles and/or

I/O peripherals.  First, it stores the packet to be transmitted in a local buffer then it involves the

communication  unit  for  realizing  the  actual  transfer  to  the  destination  processing  element  or

memory or I/O controller. 

The software that runs over each PE is also modelled in OMNeT++ as a module, which we called

generally  Application. This is a module that provides the set of instructions to be executed on a

computing unit. 

The actual topology simulated in MCoreSim may be customized via a set of configuration options.

The most important of them are summarized in Table 1. The parameters meaning will become clear

in the following description of the main simulator components. 
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3. INTERCONNECTION 

In OMNeT++, interconnection of modules is modelled by using the  network keyword in the NED

language. This construct is exploited in MCoreSim, allowing for the specification of a configurable 2D

mesh and torus. MCoreSim defines a link between each pair of tiles, modelled as a physical channel

that  has  configurable  properties  like  delay,  data-rate,  etc.,  that  are  defined  by  extending  the

ned.DatarateChannel channel model available in OMNeT++. 

The router provides the inter-connectivity of tiles. A typical router architecture consists of a buffer

for input packet storage and a computing unit that performs buffer management, routing, packet

scheduling, port arbitration and a switch to output port.

In MCoreSim, each of this functionality is defined as a module, such as the Route Computation (RC),

Virtual  channel  Allocation (VA),  Switch Arbitration  (SA),  and Switch  (ST)  modules.  Based  on  the

topology details, the number of buffers can be parametrized (see Figure 8). 

4. COMMUNICATIONS

The  MCoreSim  protocol  library  provides  the  protocols  for  simulating  communications  and

computations. Up to now the library implements protocols related to a basic communication and

computational model, including mesh and torus regular topologies with Dimension-Order Routing

(DOR), wormhole switching and a credit-based Link-level Flow Control scheme  [8]. Other schemes

can easily be plugged in the future into the framework, as required. Due to the close relationship

with in-chip communications, further details on these elements are provided in the S(o)OS Project

Deliverable D3.2.
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5. COMPUTATION PLANE 

The Computation Plane has three major  components:  processing plane,  memory and I/O plane,

application modelling. In MCoreSim, the Processing Plane consists of several Processing Elements

that constitute an entire chip. A Processing Element may be general-purpose, simulating a typical

“CPU”  behaviour,  or  specialized,  like  GPUs.  Each  general-purpose  PE  works  by  following  the

traditional  fetch-execute  cycle.  It  processes  mainly  three  types  of  instruction:  ALU  operations,

memory operations, massage passing instructions. In an ALU operation, the PE executes instructions

by using its ALU unit, however only the delay needed for this execution is simulated in MCoreSim. In

a memory operation, the PE routes the memory access towards a local or remote memory element

with the help of the memory management unit (MMU). If the access is local, then it is routed to the

Local  Store,  otherwise  the  PE  generates  a  Message  Passing  Instruction  towards  a  remote

destination. Message Passing Instructions are routed to their destination tile via the Communication

Plane through the local Network Interface. 

There are various memory hierarchy types available for many-core systems. MCoreSim implements

the Memory Plane as a globally shared memory. In this global memory every PE has its own private

memory space called Local Store. Each PE can directly access the Local store but for remote access

uses the Communication Plane. The MMU provides the mapping between the addresses generated

by the PEs and the either local or remote memory elements. 

6. APPLICATION MODELING

As  of  now,  an  MCoreSim  Application  supports  only  three  types  of  Instruction:  memory,  ALU,

message-passing  based.  Furthermore,  these  applications  are  pinned  to  specific  cores  at

configuration time. In the future, the Application Plane will support a richer set of instructions (but

the focus of our simulation will  anyway keep the number of  supported instructions at the bare

minimum),  and it  will  provide dynamic application mapping and scheduling across  the available

computing infrastructure, so as to better emulate the software stack and OS services.

An element we are working on is the simulation of specific scheduling and deployment algorithms in

MCoreSim.  This  feature will  allow to simulate the migration of  tasks among the available cores,

evaluating the impact  of  the data locality/remoteness on the performance of simple application

workloads. One of the critical  workload we will  focus on is the one of real-time and multimedia

applications.

7. PERFORMANCE ANALYSIS 

In OMNeT++ there is a concept of signal. This is used for collecting statistical information out of a

simulation  run.  With  the  help  of  signals,  MCoreSim  can  seamlessly  collect  statistics  for  various

events that occur during the simulation. 

In the Communication Plane, useful performance metrics are the average and/or maximum packet

latency,  the  bisection  bandwidth  and  the  network  throughput.  For  the  Processing  Plane,  useful

performance metrics are the average/maximum execution time for a given Application, which may

be varying depending on the latencies experienced due to the underlying topology. 

8. HARDWARE TOPOLOGY MODELING

In  MCoreSim,  the modelling  of  different  hardware  topologies  is  possible  thanks to the Network

Description Language (NED) embedded  into the OMNeT++ framework.  As  an example,  in Figure

Figure 9 we report an excerpt of the NED description of a mesh topology for a tile-based many-core

architecture.

20 | P a g e D2.2 First Implementation Set: "Hardware" S ( o ) O S



network Mesh {
    parameters:
        int numX;
        int numY;
    types:
        channel CtoC extends ned.DatarateChannel {
            parameters:
                delay = 0.1ns;
                datarate = 50Gbps;
        }
    submodules:
        tile[numX*numY]: Tile {
            parameters:
                numX = numX;
                numY = numY;
         }
    connections:
        for i=0..numX-2, for j=0..numY-1 {
            tile[i+j*numX].eastIn <--  tile[(i+1)+j*numX].westOut;
            tile[i+j*numX].eastOut -->  tile[(i+1)+j*numX].westIn;
        }

        for i=0..numX-1, for j=0..numY-2 {
            tile[i+j*numX].southIn <--  tile[i+
(j+1)*numX].northOut;
            tile[i+j*numX].southOut -->  tile[i+
(j+1)*numX].northIn;
     }
}

Figure 9: Definition of a parametric mesh in MCoreSim.

As can be seen, the language allows for an easy creation of parametric topologies.  In the shown

example, we exploit this feature to have a generically configurable number of tiles along the X and Y

axes of the mesh. These parameters are used to instantiate an array of Tile modules, which have

been  defined  elsewhere  in  MCoreSim.  Also,  powerful  iterative  constructs  allow  for  an  easy

connection of the close tiles with each other, according to their respective positioning (north/south,

east/west). 
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APPENDIX A: FLYNNCATQUERY

module FlynnCatQuery where

data PU  = PU { alus      :: [ALU] 
              , registers :: [Register]
              }

data ALU = ALU { function    :: ALUfunction
               , aluType     :: ALUtype
               , dl          :: DataLine
               , il          :: InstructionLine
               , register    :: Register
               }

type ALUfunction = String
type ALUtype     = String

data DataPool = DataPool { size    :: Int
                         , poolId  :: String
                         }

data Register = Register { rId     :: String }

data DataLine = DL { pool    :: DataPool 
                   , address :: Int
                   , width   :: Int
                   }                 
                         
data Memory = Memory { memSize :: Int }
                       
data InstructionLine = IL { ilId :: String }

data FlynnCategory = SISD | SIMD | MISD | MIMD
  deriving (Eq,Ord,Show)

superscalar :: PU -> Bool
superscalar (PU {alus=alus}) = (flynnCategory alus == MIMD) && 
                               shareAllRegisters alus

shareAllRegisters = allEqual . (map (rId . register))

flynnCategory :: [ALU] -> FlynnCategory
flynnCategory [a]                                               = SISD
flynnCategory alus | sameIL alus && dataShared alus             = SISD
                   | sameIL alus                                = SIMD
                   | not (sameIL alus) && dataShared alus       = MISD
                   | not (sameIL alus) && not (dataShared alus) = MIMD

sameIL = allEqual . (map (ilId . il))

dataShared alus = (allEqual $ map (poolId . pool . dl) alus) &&
                  (allEqual $ map (address . dl)       alus)
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APPENDIX B: OBJECT MODEL FOR MULTI-LAYER RESOURCE

DESCRIPTIONS

#include <iostream> 
using namespace std; 
#ifndef _layers_H 
#define _layers_H 
#define Topology_Type_Def Ring; 
#define Bandwidth_Left_Def_Value 10; 
#define BandwidthRight_Def_Value 10; 
#define Latency_Left_Def_Value 5; 
#define Latency_Righ_Left_Def_Value 5; 
#endif /* _layers_H */ 
enum topologyType {Ring, Bus, Star, Mesh, Hybrid}; 
enum architectureType {SISD,SIMD,MISD,MIMD}; 
class topologyLayer { 
    topologyType topology; 
public: 
    ~topologyLayer(){topology= Topology_Type_Def} 
}; 
class nodeLayer { 
private: 
    int NodeLeftID; 
    int NodeRightID; 
    double BandwidthLeft ; 
    double BandwidthRight ; 
    double LatencyLeft; 
    double LatencyRight; 
public: 
    int nodeId; 
    double rated_bus_speed; 
    nodeLayer(); 
    nodeLayer(double,double,double,double); 
    void setNodeLeftID(int lid){NodeLeftID=lid;}; 
    void setNodeRightID(int rid){NodeRightID=rid;}; 
    int getNodeLeftID(){return NodeLeftID;}; 
    int getNodeRightID(){return NodeRightID;}; 
    void setBandwidthLeft(double bwl){BandwidthLeft=bwl;}; 
    void setBandwidthRight(double bwr){BandwidthRight=bwr;}; 
    double getBandwidthLeft(){return BandwidthLeft;}; 
    double getBandwidthRight(){return BandwidthRight;}; 
    void setLatencyLeft(double lal){ LatencyLeft=lal;}; 
    void setLatencyRight(double lar){LatencyRight=lar;}; 
    double getLatencyLeft(){return  LatencyLeft;}; 
    double getLatencyRight(){return LatencyRight;}; 
    void configNodeLayer(int,double,double,int,double,double); 
}; 
nodeLayer::nodeLayer(){ 
BandwidthLeft=10; BandwidthRight=10; LatencyLeft=5; LatencyRight=5; 
} 
nodeLayer::nodeLayer(double BwL,double BwR,double LaL,double LaR){ 
BandwidthLeft=BwL; BandwidthRight=BwR; LatencyLeft=LaL; LatencyRight=LaR; 
} 
 void nodeLayer::configNodeLayer(int lid, double bwl, double lal, int rid,
double bwr, double lar){ 
NodeLeftID=lid; 
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BandwidthLeft=bwl; 
LatencyLeft=lal; 
NodeRightID=rid; 
BandwidthRight=bwr; 
LatencyRight=lar; 
} 
class CMPLayer : public nodeLayer { 
public: 
    int CPU_ID; 
    architectureType Flynn_taxonomy; 
    double DRAM_size; 
    struct L23 { 
      double cache_size; 
      double cache_line; 
    }; 
    union L2_shared_cache_type { bool has_shared_L2; struct L23 data; }
L2_shared; 
    union L3_global_cache_type { bool has_shared_L3; struct L23 data; }
L3_global; 
}; 
class coreLayer : public CMPLayer { 
public: 
    double interconnection_bus; 
    double * latency_map_cores; 
}; 
class Core : public coreLayer { 
public: 
    int coreID; 
    double frequency; 
    double L1_Instruction_cache_size; 
    double L1_data_cache_size; 
    double mips; 
    double L1_latency; 
    struct L2 { 
      double cache_size; 
      double latency;  
    }; 
    union L2_private_cache_type { bool has_private_L2; struct L2 data; }
L2_private; 
    double memory_latency; 
    double l2_shared_latency; 
    double l3_global_latency; 
}; 
class CMP : public CMPLayer{ 
public: 
    int no_of_cores; 
    Core * cores; 
}; 
class MPNode : public nodeLayer { 
public: 
    int no_of_CMPs; 
    double * latency_cmp_cmp; 
    CMP * cmps; 
};

25 | P a g e D2.2 First Implementation Set: "Hardware" S ( o ) O S



APPENDIX C: SIMPLE CPU
type CpuState = State (Vector D4 Int16)

cpu :: CpuState 

  -> (Int16, Opcode, Vector D4 (Index D7, Index D7))

  -> (CpuState, Int16)

fu op inputs (a0,a1) = 

  op (inputs!a0) (inputs!a1)

fu1 = fu add

fu2 = fu sub

fu3 = fu mul

data Opcode = ShiftR | Xor | Equal

multiop ShiftR = shiftR

multiop Xor   = xor

multiop Equal = \a b -> if a == b then 1 else 0

fu0 c = fu (multiop c)

cpu (State s) (x,opc,addrs) = (State s', out)

  where

    inputs = x +> 0 +> 1 +> s

    s'     = (fu0 opc inputs (addrs!0)) +>

             (fu1     inputs (addrs!1)) +>

             (fu2     inputs (addrs!2)) +>

             (fu3     inputs (addrs!3)) +>

             empty

    out    = last s
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