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Rare events are di�cult to study, because of the long waiting times between their occurrences.
Therefore, a lot of sampling techniques have been developed recently. However, the implementation
of these techniques together with a simulation tool and calculating on high performance computers
turned out to be very di�cult. In this article, we succeed in this challenge by exemplarily describing
one of these samplinge techniques, namely Forward Flux Sampling (FFS) as a work�ow application
in the context of the Science Experimental Grid Laboratory (SEGL). SEGL handles the work�ow and
data�ow of the simulation, and matches the requirements for FFS by drawing a certain number of
random datasets from a given dataspace. We demonstrate the usability of this work with an example
simulation problem from physics. With this combination, FFS can easily be used together with any
simulation software which can be described in the context of the SEGL framework, without the need
of implementing the FFS method by the researcher himself, making rare event simulations easily
available. Beyond that, trajectory fragments can be calculated in parallel and on high performance
computing hardware by design.

I. INTRODUCTION

Rare events happen rapidly compared to the long wait-
ing times between the events and with important conse-
quences for the investigated system, e.g. lightening, vul-
canic eruptions and telecommunication failures on the
macroscale or nucleation, protein folding and translo-
cation of DNA through nanopores on the microscale.
Therefore, it is important to investigate these events.
However, in brute force computer simulations, a lot of
time is wasted simulating the long waiting times be-
tween these �uctuation-driven events, where nothing in-
teresting happens [33]. To overcome this problem, a lot
of rare event techniques have been developed for the
particular simulation scenarios such as umbrella sam-
pling [1, 2], Bennett-Chandler methods [2�4], transition
path sampling [5�7], transition interface sampling [8�
10], milestoning [11�13], nudged elastic band [14, 15],
string methods [16, 17], weighted-ensemble methods [18],
non-equilibrium umbrella sampling or forward �ux sam-
pling (or splitting)-type methods [19�28]. The aim of all
these methods is the reduction of simulation time which
is spent in the long waiting time between the events
and concentrate on simulating the interesting domains
in phase space.

However, implementing these rare event simulation
methods together with the particular scienti�c simula-
tion code can be very demanding. In this article, we show
an elegant way of using such methods together with the
scienti�c simulation code. Therefore, we focus on the for-
ward �ux sampling (FFS) approach [22] which we apply
to an example problem from physics, namely the barrier
crossing of a particle. In FFS, the progress of a reaction
from the initial state to the �nal state is characterized by
an order parameter. The region between these two states
is subdivided by several interfaces, which are positioned

at certain values of the order parameter. Then, the sim-
ulation is driven step-wise towards the �nal state by �rst
�ring trajectories from the initial state and storing con-
�gurations, if they reach the next interface. From these
con�gurations, new trajectories are �red and so on, until
the �nal state is reached. From the fraction of success-
ful trajectories, the �success probabilities� can be deter-
mined, which, together with the �ux of the trajectories
which managed to leave the initial state in a certain simu-
lation time, give the transition rate from the initial state
to the �nal state. Beyond the transition rate, success-
ful transition trajectories can be extracted from such a
simulation, e.g. to investigate reaction pathways.
FFS can be used for both equilibrium and non-

equilibrium systems, because it doesn't require a pri-

ori knowledge of the phase space density) [22]. Re-
cently, several extensions for FFS have been devel-
oped, including di�erent algorithms for the trajectory-
�ring procedure [20], computation of phase-space densi-
ties and transition rates [29], analysis of the e�ciency
[21, 22, 24, 25, 28], enhancing the placement of the inter-
faces [30] and the development of FFS-like methods for
systems which are out of the stationary state [31, 32].

A. The direct FFS algorithm (DFFS)

With FFS, the transition rate kAB from an initial state
A to a �nal state B can be calculated with [8]

kAB = ΦescPB . (1)

Here, Φesc is the escape �ux, a quantity to characterize
the �ux of trajectories leaving the initial state, and PB

is the conditional probability, that a trajectory which
successfully left the initial state reaches the �nal state.
Beyond the calculation of the transition rate in FFS, the
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Figure 1: The DFFS algorithm, schematic. The region be-
tween the initial state A and the �nal state B is subdivided
by a set of interfaces at speci�c values of the order parameter
λ. The vertical axes denotes simulation time and the arrows
depict the trajectory fragments between the interfaces.

transition trajectories can be investigated. To this aim,
the region from the initial state A to the �nal state B
is de�ned in terms of λ, the order parameter, such that
the system is in A, if λ < λA and in B, if λ > λB ,
respectively. The area between A and B (λA < λ < λB)
is subdivided by a set of n interfaces at speci�c values of
λ, with λ0 ≡ λA, λn ≡ λB and λi < λi+1 (Fig. 1). The
probability PB can be expressed as [8]

PB =

n−1∏
i=0

pi (2)

where pi is the conditional probability between the in-
terfaces λi+1 and λi. Using FFS, these quantities can be
computed in an e�cient way. Hence, kAB can be com-
puted. Moreover, the transition trajectories are gener-
ated. Recently, several variants of FFS have been devel-
oped [20, 22, 28]. Here, we use the direct FFS algorithm
(DFFS) [19, 22, 28].
The DFFS algorithm consists of two simulation tasks.

In the �rst task, the escape �ux Φ is computed by draw-
ing a con�guration of the basin A and starting the sim-
ulation while monitoring the crossing frequency on λ0 of
the trajectories. Every time, a crossing of the trajectory
happens and the trajectory was in A before the crossing,
the con�guration on λ0 is stored. This is continued until
a set of N0 con�gurations on λ0 is collected. If the sys-
tem reaches B during this task, a new state of basin A
is drawn and the system is re-equilibrated. For further
practical details see ref [22]. In the second task, the con-
ditional probabilities pi are computed for each interface
transition step by step. Therefore, a con�guration on the
last interface λi is drawn at random, and the simulation
is started using this con�guration point. If the trajectory
reaches the next interface λi+1, this counts as �success�

and a new con�guration on λi+1 is stored. If the tra-
jectory falls back to A, the number of launched runs is
incremented but not the success counter and no new con-
�guration is stored. The fraction of the successful runs
divided by the number of the total runs gives then the
probability pi for each interface transition. This proce-
dure is repeated until the �nal interface at the border of
state B is reached. Then, the set of conditional proba-
bilities pi is complete. After the simulation, the reaction
pathways can be reconstructed from the successful tra-
jectories [20, 22].

B. The Science Experimental Grid Laboratory
(SEGL)

The Science Experimental Grid Laboratory (SEGL)
[? ] is a scienti�c work�ow management system, de-
signed with the aim of e�ciently supporting complex,
data-intensive, multi-dimensional computational exper-
iments across distributed high-performance computing
resources. Thus, by specifying the high-level work�ow,
SEGL can e�ciently integrate many di�erent resources
and applications into a single computational experiment.

To describe the work�ow, the �Grid Concurrent Lan-
guage� (GriCoL) is used. GriCoL is based on a two-level
model for the description of work�ows - the control �ow
level and the data �ow level. The control �ow level of-
fers the possibility to describe the control �ow of the set
of tasks within the scope of the work�ow. To describe
the logic within the control �ow level, di�erent types of
blocks are o�ered: solver, transition, fork/merge (paral-
lel branching), cycle, conditional transition and nested
experiment. For each such block in the control �ow, the
user has to describe the underlying data �ow. The data
�ow level description contains detailed information on the
computational jobs that will be started on the HPC re-
source. Also this level includes the input and output data
sets, variables that describe di�erent parallel data sets,
parameter values for the di�erent data sets and expres-
sions to select and group the data sets. Well-known mid-
dleware systems such as Globus Toolkit [? ], gLite [? ] or
Unicore [? ] provide a typical task and service oriented
approach with rather high latency. Arguably, these mid-
dleware systems do not well support dynamical and in-
tensive multi-job scheduling and real-time optimization.
Therefore, SEGL features a dedicated middleware layer.
In this layer dynamic clustering is implemented, with the
help of which it is possible to implement dynamic perfor-
mance optimization for simulation experiments. Now, we
describe the implementation of Forward Flux Sampling
into SEGL to make use of all these advantages which
SEGL provides.
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Figure 2: Control �ow of FFS implemented in SEGL. The cir-
cles denote start (s,S) and end (e,E) points of the particular
experiments. Thereby, the lower-case letters correspond to a
so-called sub-experiment. The main calculation is performed
in the calculation modules (orange-colored rectangles) like de-
scribed in Sec. IIA and Sec. II B. At the end of a calculation
stage, the �Arrived in B� module decides, whether to proceed
with the next calculation stage or to end the simulation (see
Sec. II C).

II. IMPLEMENTATION OF FFS IN SEGL

In this section, we describe how the two-stage DFFS
algorithm (see sec. IA) was implemented using SEGL.
Thereby, the main setup of the DFFS algorithm, e.g. the
positions of the interfaces, is stored in a con�guration
�le.

A. First stage: The escape �ux module

In this module, a random con�guration in the initial
state A of the system is drawn. Therefore, the initial
parameterset for FFS is read from a con�guration �le
(Fig. 3). Then, the calculation is performed while moni-
toring the calculation time which is necessary to calculate
the desired number N of con�gurations on the border of

Figure 3: Stage 1: Data �ow of the escape �ux module. This
module uses as input parameters only the con�guration �le
with the general FFS setup. The escape �ux module is ex-
pected to calculate the con�guration points on the �rst inter-
face while monitoring the calculation time, which was neces-
sary to collect them. These informations are stored as output-
�les, which are collected by SEGL and stored in the particular
dataspaces.

the initial state A which corresponds to the �rst interface
λ0. The calculation time and the con�guration points are
then written to data�les which are collected and stored
in the corresponding dataspaces. In our case, our simu-
lation tool has the information, how many con�gurations
are collected, therefore no control structure is needed. If
this is not the case, a simple control structure can be
added, which queries the number of con�gurations on λ0
and decides how to proceed. The outcome of this calcu-
lation module is the �rst quantity of the transition rate,
namely the escape �ux

Φesc =
number of con�gurations on λ0

simulation time
, (3)

which is a measure, how good our system is in crossing
the border of the initial state A. With this information,
the �rst calculation stage is ready and we proceed with
the next calculation stage.

B. Second stage: The conditional probabilities
module

In this module, a random con�guration from the last
interface λi is drawn, and the calculation is continued us-
ing this con�guration point as starting point. The simu-
lation is aborted, if either the next interface λi+1 or the
initial state λ0 is reached. Therefore, the simulation has
as input the standard con�guration �le, the index of the
current interface and the �lename of the random chosen
con�guration snapshot (see Fig. 4). If the run was suc-
cessful, a new snapshot on interface λi+1 is stored. This
results in a collection of successful snapshots, which are
collected and stored in the dataspace. Each cycle of this
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Figure 4: Stage 2: Data �ow of the probabilities module. The
input parameters are the general set-up of the FFS simulation,
the current interface index i to calculate on, and a random
chosen con�guration point from the dataspace, drawn by the
�Selection� �lter. If the run was successful by reaching the
next interface λi+1, a new con�guration point on λi+1 is pro-
duced and stored in the dataspace, ready for beeing drawn
in the next iteration. If the number of trial runs is not �xed
(e.g. if no successful points are created, the number of trial
runs could be increased on-the-�y), the number of trial runs
launched is stored in the dataspace �runcount� for later post-
processing.

subexperiment module results in a contribution to the
overall transition rate kAB : The probability to reach the
next interface λi+1 coming from the previous one, λi, is
given by

pi = P (λi+1|λi) =
number of successful trials

number of total trials
. (4)

These quantities are calculated during the postprocess-
ing, see sec. IID.

C. The �arrived in B� decision module

In this module, we check, if further simulations are nec-
essary or if the simulation is �nished. If the calculation
on interface λi is complete, the index counter i for the
current interface staging is incremented and the simula-
tion is started again with the new con�guration set. If the
last interface was the border of the �nal state λB = λn,
the simulation is ended and the simulation data can be
extraced for postprocessing.

D. Postprocessing

After the run, the collected simulation data can be ex-
amined. The total transition rate kAB from the initial
state A to the �nal state B is given by Eq. (1). To ex-
tract the escape �ux from the �rst calculation stage, the
number of con�guration points on λ0 is divided by the
simulation time stored in the �time� dataspace of the es-
cape �ux calculation module. The probabilities pi of the
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Figure 5: Barrier crossing of a single particle, initially set
up in region A. The potential V (x) is shown exemplarily for
a height of h = 8kBT . If the barrier is large compared to
the energy of the particle, crossings become very rare. The
reaction coordinate λ is the x-coordinate of the particle in this
case. For FFS, the way from A to B is partitioned by several
interfaces (dashed lines). Thereby, more interfaces must be
placed in bottleneck regions, here the ascent of the potential.

second stages are extraced from the number of success-
ful con�guration snapshots in each interface dataspace
divided by the number of total runs launched.
From the collected datasets, the reaction pathways

(transition trajectories) can be extracted by backtrac-
ing the con�guration snapshots. Therefore, the user can
choose appropriate names for the data�les, or store the
information inside the data�le. For backtracing it is suf-
�cient to store the name of the last snapshot, where the
trajectory started, in the data�le. Now, we will show how
this implementation works in practice with an example
from physics.

III. EXAMPLE: SINGLE PARTICLE BARRIER
CROSSING

We use FFS in combination with SEGL to push a single
particle moving in one dimension over an energy barrier
(see Fig. 5). If the barrier is large compared to the energy
of the particle, this problem can be classi�ed as a rare
event. The potential in our case is de�ned by

V (x) = (h/2) [1− cos (πx)] (5)

for x in the range [−1, 3] and has two minima, at x = 0
and x = 2 (see Fig. 5). We set the maximal height of the
potential barrier, at x = 1, to h = 10kBT , where kB is
the Boltzmann factor and T the temperature. Therefore,
crossings of the particle are very unlikely. The particle,
which is initially placed in the region −0.2 < x < 0.2
which corresponds to the phase space region A in FFS,
undergoes underdamped Langevin dynamics, which re-
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Index i 0 1 2 3 4 5 6 7 8 9 10
λi 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 2.0

Table I: Interface positions of the FFS simulation. The main
part of the interfaces is placed at the steep part of the po-
tential coming from the initial state A. If the barrier is over-
come, the probability to reach the �nal state B, beginning
with λ >= 2.0 is very high. Therefore, less interfaces are
needed for 1.0 < λ < 2.0.

i number of trials successful pi
1 1000 324 0.324
2 1000 245 0.245
3 1000 253 0.253
4 1000 199 0.199
5 1000 227 0.227
6 1000 267 0.267
7 1000 385 0.385
8 1000 603 0.603
9 1000 864 0.864
10 1000 917 0.917

Table II: Number of trials per interface, successful trials with
con�guration points on λi and conditional transition proba-
bilities to these interfaces pi.

sults in the following equation of motion:

mẍ = −∇V (x)− γmẋ+R(t)
√

2mγkBT , (6)

where m is the mass of the particle, ẍ is the accelera-
tion, −∇V (x) is the force on the particle derived from
the potential V (x), ẋ is the velocity, and γ is the fric-
tion coe�cient. The Langevin thermostat is a stochastic
thermostat, which models the �uctuation behavior of the
particle given by the �nite temperature T , and results in
di�erent trajectories which are necessary for FFS by the
Gaussian-distributed random term R(t)[34]. In our case,
we set m = 1, γ = 1 and kBT = 1. Moreover, we use the
verlocity verlet as integration scheme with a timestep of
dt = 0.001. Our reaction coordinate λ is taken to be the
position x of the particle and the borders of the initial
and �nal states are de�ned by λA = 0.2 and λB = 2.0.
Most of the interfaces are located at the steep part of the
potential when coming from A, because in FFS, more in-
terfaces should be placed in bottleneck regions [21, 30].
For the locations of the interfaces, see table I.

The result of the FFS calculation for the escape �ux
is Φesc = 0.424τ−1, with the measuring unit of simula-
tion time, τ . An overview over the conditional transition
probabilities pi per interface is given in table II.

The conditional probabilities are multiplied (see Eq. (2)),
which gives us the probability PB = 4.455×10−5. Hence,
the transition rate for the event from A to B is

kAB = 1.89× 10−5τ−1
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Figure 6: (a) Histogram of the distribution of the reaction
coordinate λ = x. The solid line shows the histogram of the
FFS simulation, the dashed line from a brute force simulation
with the same number of simulation steps. The brute force
simulation stays in the potential minima domain A, whereas
the order parameter of the FFS simulation is distributed up to
the border of basin B at λB = 2.0. (b) Phase space trajectory
of a part of the brute force simulation run (dashed line) and
a successful FFS trajectory (solid line). Thereby, p is the
momentum of the particle. The solid vertical lines depict the
position of the FFS interfaces, the dashed vertical line is at
the position of the energy barrier, where the trajectory of the
FFS run also has a minimum.

This value of kAB means, that we have to wait on aver-
age 5.30× 104τ to observe a single crossing event at the
used barrier height of h = 10kBT . To compare the FFS
results against a conventional simulation run, a brute-
force simulation was performed with the same number of
integration steps like the FFS simulation needed in to-
tal, including unsuccessful runs. The distribution of the
order parameter x = λ is shown in �g. 6(a). As one can
clearly see, the brute-force simulating does not manage
to cross the barrier as often as in the FFS simulation
with the same number of simulation steps. In contrast,
the order parameter of the FFS run is distributed in the
whole region between A and B. Fig. 6(b) shows exem-
plarily a section of the trajectory of the particle for the
brute-force simulation and a successful trajectory for the
FFS-simulation in phase space. If one is interested in the
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Figure 7: Sampling tree diagram of 5 successful trajectories,
simulation time t in calculation steps against order parameter
λ in terms of x. The interfaces are located at the datapoint
positions. It is clearly visible, that the trajectories need a
di�erent amount of calculation steps to arrive at the �nal
state λB = 2 because of the stochastic Langevin thermostat
of the simulation. The successful runs can be backtraced to
investigate the reaction pathways of the system.

reaction pathways, all the successful trajectories can be
backtraced. This is exemplarily shown for 5 trajectories
in �g. 7. In principle, if all the information which is
necessary to reproduce a trajectory is stored in the con-
�guration points, the whole successful simulation runs
can be reproduced and di�erent reaction pathways can
be studied.

IV. DISCUSSION

We demonstrated the usage of Forward Flux Sampling
(FFS) together with the Science Experimental Grid Lab-
oratory (SEGL). The great bene�t of this scheme is, that
FFS must not be implemented in the researcher's simula-
tion code. In principle, this scheme can be used with any
simulation which can be described by the SEGL frame-
work. Therefore, appropriate calculation modules for cal-
culating the escape �ux and the conditional probabilities
must be created. Control �ow, data �ow, parallelization
of the trajectory fragments and queuing the jobs on high
performance hardware are handled by SEGL.

An issue of the parallelization of FFS is, that the collec-
tion of datapoints on the last interface must be complete
before advancing to the next interface. This can lead
to situations, where no new jobs can be started, before
the last run has completed, which is unde�ned, because
of the unknown simulation time (trajectory fragments
must end either on the next interface or in A and have
no �xed number of simulation steps). To overcome this
issue, other �avors of FFS have been developed, like the
branched growth FFS, but there, the control structure is
more di�cult to implement in SEGL. However, this par-
allel implementation should be in any case faster than

the conventional serial implementation.
In principle, beyond the implementation of FFS, other

sampling methods can be described using SEGL, which
work in a similar way. The main thing which must be
implemented is the way, how the next con�guration is
drawn from the present dataset. E.g. in the Stochas-
tic Process Rare Event Sampling (S-PRES) method, the
next con�gurations are drawn according to an associated
weight. Therefore, this weight criterion should be some-
how queriable in the control �ow. The great advantage
of this method would be the �xed simulation time of the
runs, and that this method is also applicable for non-
quasistatic processes.
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