STEP: a distributed OpenMP for coarse-grain parallelism tool

Daniel Millot, Alain Muller, Christian Parrot, and Frédérique Silber-Chaussumier

GET/INT, Institut National des Télécommunications, France

Abstract. To benefit from distributed architectures, many applications need a coarse grain paral-
lelisation of their programs. In order to help a non-expert parallel programmer to take advantage of
this possibility, we have carried out a tool called STEP (Systéme de Transformation pour I’Exécution
Paralléle). From a code decorated with OpenMP directives, this source-to-source transformation
tool produces another code based on the message-passing programming model automatically. Thus,
the programs of the legacy application can easily and reliably evolve without the burden of re-
structuring the code so as to insert calls to message passing API primitives. This tool deals with
difficulties inherent in coarse grain parallelisation such as inter-procedural analyses and irregular
code.

1 Introduction

On the one hand, parallel applications must evolve with hardware architectures ranging from computa-
tional grids to multi-core/many-core architectures. Indeed, since parallel programming seeks performance,
parallel algorithms will be different depending on architectures in order to take advantage of their speci-
ficities. On the other hand, when developing a parallel version of some sequential application (or a new
parallel application from scratch), parallel programmers have currently the choice between two alterna-
tives to program their application: either MPI for message-passing programming [PIF95] or OpenMP for
shared-memory programming [arb04]. Both ways have advantages and drawbacks. MPI provides a way
for the programmer to control the behaviour of his parallel application precisely and especially the time
spent in communication or computation. For this reason, MPI programming is considered low-level, and
using it for development is time consuming. Furthermore the SPMD programming model of MPI provides
a fragmented view of the program [CCZ06]. MPI code is intermingled with the original sequential code
and this makes the global structure of the resulting code difficult to read. In contrast programming with
OpenMP directives provides a simple way to specify which parts should be executed in parallel and helps
keeping a “global view” of the original application. Driven by the directives, the actual parallelisation is
delegated to a compiler. The main drawback of OpenMP is to be restricted mainly to shared-memory ar-
chitectures. Furthermore hybrid programming OpenMP /MPI is necessary to exploit hybrid architectures
such as clusters of many-cores.

Considering this dilemma, we propose an approach which tries to make the best of both ways :
keeping the relative simplicity of programming with OpenMP directives and developing MPI applications
ready to be tuned to run efficiently on distributed memory architectures. Our goal is to propose a
MPI implementation of OpenMP directives specifically well-suited to express coarse-grain parallelism.
The program written by the programmer remains generic in the sense that it can be either directly
compiled by an openMP compiler to be run on some shared-memory architecture, or transformed into
an MPI source code that can be further optimised by an expert in order to make the best of non
shared-memory architectures such as clusters. In this paper, we propose a tool called STEP (Systéme
de Transformation pour I’Exécution Paralléle) that, being based on the source-to-source transformation
PIPS workbench [AACT94], semi-automatically generates MPI programs for some widely-used coarse-
grain parallel application structures.

The paper is organised as follows : the next section describes the context and gives a typical use case
to emphasize the motivations of our work. In section 3 we describe the prototype we have developed and
the results. In section 4, we describe the related work before conclusion.

2 Context

To benefit from distributed architectures, many applications need a coarse grain parallelisation of their
programs. Therefore the goal of our work is two-fold:

— find a way to express the potential parallelism of an application that can be derived into both shared
and distributed memory parallelisation;
— find a way to parallelise legacy applications without preventing evolutions.

2.1 The goals of our work

Expressing parallelism within an application without corrupting it is the main advantage of the OpenMP
paradigm. Using techniques developed in the field of automatic parallelisation, we conceived STEP, a
tool that transforms a program semi-automatically into an MPI source program and produces MPI code
close to hand-written MPI code. The programmer adds OpenMP directives and then the tool generates a
MPI program automatically. The collaboration between the user and the tool provides a semi-automatic
parallelisation.

Semi-automatic parallelisation. One of our major goals in this work is to determine to what extent a
compiler can help the programmer in developing MPI programs. On the one hand, coarse-grain paral-
lelism is difficult to extract automatically. Automatic parallelism is able to extract fine-grain parallelism
automatically. However these techniques could never be used to extract coarser-grain parallelism. There
are multiple reasons for this as for example the coarser the grain is, the stronger the analyses must be
dealing with inter-procedural analyses, irregular code... Furthermore when dealing with more statements,
parallelism may logically exist but can be prevented because of the way the program is written: false
dependency because of the use of variables... On the other hand, programmers of the legacy applications
have a logical view of the global structure of their applications and thus can easily add simple directives
to specify which tasks could be done in parallel.

Combining intelligence of the programmer with techniques of the automatic parallelisation field gives
an opportunity to use powerful program transformation tools to discharge the programmer from the
parallelising task.

A subset of the OpenMP standard. Another goal of our work is to facilitate parallel programming espe-
cially for the programmer of legacy applications who is not a parallel programming specialist. OpenMP
programming is relatively straightforward if we stand to main work sharing directives such as “parallel
for” and “sections”. Nevertheless taking into account all possible directives, clauses and SPMD program-
ming with runtime routines, OpenMP programming can become as tricky as MPI programming and
suffer from the same disadvantages as MPI, that is to say, produce code difficult to read and maintain,
and error-prone. Firstly, the idea is to restrict our MPI transformation to coarse-grain parallelism to be
able to generate efficient code for distributed-memory architectures. Secondly, some clauses are difficult
to use and could be determined by analysing tools. For instance, “private” and “shared” data inside a
parallel construct can in some cases be determined from data dependency analyses that could also detect
potential problems. Alternatively, when inserted by the programmer, those clauses could be a support
to analyses that fail without them.

Generation of source code. Parallel programmers seek performance and for that sake, don’t necessarily
trust black-boxes. Generating source code provides the user a way to understand the parallel program
and furthermore gives him an opportunity to tune the generated code to improve its performance. In
addition to that, the generated parallel code should propose a generic structure to allow the user to
replace part of the generated code with his own code. Thus one important goal of STEP is to provide
source-to-source transformation. This has also the advantage, in the end, that the written code makes
no hypothesis about the target architecture.

2.2 An illustrative use case

It is often critical in a collaborative scientific context to easily derive parallel versions of an application
which are dedicated to different types of architectures. Here we give the example of a real application
which gives a flavour of applications eligible for the STEP processing. It is an application implementing
a physical optics algorithm that computes the radiation patterns of non-planar aperture antennas over
a range of observation angles [BLO05].

The target application is composed of two disctinct phases: computationl and computation2. Data
dependencies imply that the input of the first computation phase array arrayl is read entirely by
all parallel tasks so it should be shared by all these tasks; the first computation can be processed
independently on all parallel tasks; and the output of this first phase, array2, can then be partitioned
on parallel tasks. This pattern applies to the second computation too: array2 should globally be shared
by all parallel tasks while the output of this second phase, array3, can be distributed on parallel tasks.

In the shared-memory execution, the fork-join model is used. Arrays arrayl, array2 and array3 are
shared. There is no need for any explicit synchronisation since there is no write conflict. A barrier is used
to synchronise the two computational phases. In the distributed-memory execution, the SPMD model is
used. Array arrayl is duplicated for every process. Array array2 resulting from the first computation
phase is distributed among the processes and then an all-to-all exchange provides necessary data for the
second computation phase to all processes. The resulting array array3 is distributed on all processes and
can be gathered on one process if necessary.

Given these execution organisations, corresponding OpenMP and MPI parallel programs can be
represented as in listings 1.1 and 1.2 respectively.

Listing 1.1. OpenMP implementation Listing 1.2. MPI implementation
real(N) :: arrayl, array3 real(N) :: arrayl, array3
real(N) :: array2 real(M) :: array2
initialisation () initialisation ()
!$OMP PARALLEL DO TASK PARTITIONING ()
do i=1,N DETERMINATION_OF _LOOP_INDICES ()
array2(i)= computationl (arrayl)
end do do i=istart ,iend
!$OMP END PARALLEL DO array2(i)= computationl (arrayl)
end do
1$OMP PARALLEL DO
do i=1N ALL_TO_ALL DATA REDISTRIBUTION ()
array3 (i)= computation2(array2) DETERMINATION_OF _LOOP_INDICES ()
end do
1$OMP END PARALLEL DO do i=istart2 ,iend2
array3(i)= computation2(array2)
end do
DATA GATHERING ()

The OpenMP standard guarantees that:

— each thread will access shared arrays arrayl, array2 and array3;
— i is private to a thread;
— there is an implicit data flush and an implicit barrier at the end of the PARALLEL DO constructs.

The MPI program is more complicated to develop. Data and tasks must be explicitly partitioned
depending on the number of processes and on process identifiers. Temporary buffers might have to be
allocated. Communications must be handled and may involve personalised all-to-all communication.
Furthermore it makes the code much more intricate and difficult to read. Both OpenMP and MPI
versions being necessary, a semi-automatic tool able to derive them from the sequential program is
clearly welcome.

3 Description of the STEP prototype

STEP has been developed in the PIPS workbench detailed below. The PIPS project (Inter-procedural
Parallelisation of Scientific Programs) [AACT94] has been developed at ENSMP/CRI since 1988 and
is distributed under the term of the GNU public license. PIPS has been used as support to develop

new analyses and program transformations for Fortran programs by several teams from CEA-DAM,
Southampton University, SRU, ENST Bretagne and ENS Cachan. Nowadays PIPS is composed of more
than 200 000 lines of C code. Since it was first developed for automatic parallelisation, PIPS provides
powerful code transformations and analyses that can be used on real codes: source-to-source code based
generation, inter-procedural analyses and the array regions analysis.

Using the PIPS workbench, the STEP tool implements the three following phases:

1. the outlining phase that consists in the restructuration of the sequential program by outlining state-
ments in parallel sections,

2. the analysis phase that computes SEND array regions based on PIPS array regions analyses,

3. and the compilation phase that generates the MPI parallel code.

3.1 Parallel execution model

To limit changes in the sequential program, the statements delimited by directives are outlined, com-
munications and work-scheduling take place in a new generated subroutine. Data are allocated on all
processes and at the end of parallel constructs, each process communicates to other processes the data
which may be used in the future. All processes redundantly execute serial regions and iterations of
OpenMP “parallel do” loops are partitioned between processes.

3.2 PIPS array regions analysis

In PIPS, array regions are represented by convex polyhedra [Cre96]. They are used to summarise accesses
to array elements. Due to region representation, the analyses are not necessarily exact and some regions
can be over-approximated. Four different types of array regions are computed. The READ and WRITE
regions represent the effects of statements and procedures on sets of array elements. However, READ and
W RITE regions can not represent array data flow and they are not sufficient for advanced optimisations
such as array privatisation. IN and OUT regions have been introduced for that purpose. For a block of
statements or a procedure, an I N region is the subset of the corresponding READ region containing
the array elements that are imported (i.e. read before being written in the block) and an OUT region
contains the exported array elements (i.e. elements assigned in the block before being potentially read
outside it).

Program example for array regions analysis. The program given in the listing 1.3 is an example of a
program P1 composed of a DO loop labelled 20 that is parallelised with OpenMP directives. Inside the
loop, the computation subroutine F'1 is called.

Listing 1.3. Fortran program for array regions analysis.

PROGRAM P1

INTEGER 1 ,N,F1
PARAMEIFR (N=10)
INTEGER T(N,2) ,A(N—1)

I$SOMP PARALLEL DO
DO 20 I =1, N-1
A(I) = F1(T, I)
20 OONTINUE
I$OMP END PARALLEL DO

END

INTEGER FUNCTION F1(T,J)
INTEGER N, J

PARAMEIFR. (N=10)
INTEGER T(N,2)

S S N T SN

W DWW W N N NN NN RN NN
RS~ A™N WV RO 0N s W R ©
QoA QaoaaQ

IF (MOD(J, 2).EQ.0) THEN
F1 = T(J+1,1)-T(J,1)
ELSE
F1 = T(J+1,2)-T(J,2)
ENDIF
END

Array region analysis on this example. Based on the previous example, PIPS performs array regions
analysis at every statement level of the abstract syntax tree. For example, a result of such an analysis
can be seen in the listing 1.4, line 33 :

<T(PHI1,PHI2)-R-EXACT-{PHI2==1, J<=PHI1, PHI1<=1+J}>

It means that at the statement level of the assignment (see listing 1.4, line 35) the READ region
represented by R of the array T is exactly the sub-array T(PHI1, PHI2) with : J <= PHI1 <=1+4J
and PHI2 == 1.

Regions READ, WRITE, IN and OUT (see subsection 3.2) are tagged respectively R, W, IN
and OUT by the pretty-printer. An over-approximated array region is tagged M AY’; the tag EXACT
refers to a non-approximated array-region (under-approximation are not computed and fixed at @). A
such approximation is shown in the listing 1.4, line 30 where the two exact regions line 33 and 37 are
cumulated at the level of the IF statement line 32. These array region analyses are performed at each
statement level for intra-procedural analysis, as well as gathered at function level for inter-procedural
analysis (see line 24 and line 13 at the call statement).

A new source file is generated by the PIPS pretty-printer that displays the results of READ, WRITE,
IN and OUT array regions analyses (listing 1.4).

Listing 1.4. Resulting READ / WRITE / IN and OUT array regions displayed in the program.

PROGRAM P1
INTEGER 1 ,N,F1
PARAMETER. (N=10)
INTEGER T(N,2) ,A(N—1)

(PHI1)-W-EXACT-{1<=PHI1, PHIl<=9}>
(PHI1, PHI2)—R-MAY-{1<=PHI1, PHI1<=10, 1<=PHI2, PHI2<=2}>
(PHI1, PHI2)—IN-MAY-{1<=PHI1, PHI1<=10, 1<=PHI2, PHI2<=2}>
<A (PHI1)—OUREXACT—{I<=PHI1, PHI1<=9}>
I$OMP PARALLEL DO
DO 20 I = 1, N-1
<A(PHI1)-W-EXACT—{PHI1=—I , 1<=I, I<=9}>
<T(PHI1,PHI2)-R-MAY—{I<=PHI1, 1<=PHIl, PHIl<=I+I, PHI1<=10,
1<=PHI2, PHI2<=2, 1<=I, I<=9}>
<T(PHI1,PHI2)-IN-MAY-{I<=PHI1, 1<=PHI1, PHIl<=1+I, PHI1<=10,
1<=PHI2, PHI2<=2, 1<=I, I<=9}>
<A(PHI1)-OUEEXACT-{I=—PHI1, 1<=I, I<=9}>
A(I) = F1(T, 1)
20 CONTINUE
I$OMP END PARALLEL DO

<A
<T
<T

~

END

<T(PHI1,PHI2)-R-MAY-{J<=PHI1, PHIl<=1+J, 1<=PHI2, PHI2<=2}>
<T(PHI1, PHI2)—IN-MAY-{J<=PHI1, PHIl<=1+J, 1<=PHI2, PHI2<=2}>
INTEGER FUNCTION F1(T,J)
INTEGER N, J

C
C

28
29
30
31
32
33
34
35
36
37
38
39
40
41

PARAMETER. (N=10)
INTEGER T(N,?2)
C
C
IF (MOD(J, 2).EQ.0) THEN
C
C
F1 = T(J+1,1)-T(J,1)
ELSE
C
C
F1 = T(J+1,2)-T(J,2)
ENDIF
END

<T(PHI1,PHI2)-R-MAY-{J<=PHI1, PHIl<=1+J, 1<=PHI2, PHI2<=2}>
<T(PHI1,PHI2)-IN-MAY—{J<=PHI1, PHIl<=1+J, 1<=PHI2, PHI2<=2}>

<T(PHIL, PHI2)—R-EXACT-{PHI2==1, J<=PHI1, PHIl<=1+J}>
<T(PHI1, PHI2)~IN-EXACT—{PHI2==1, J<=PHI1, PHIl<=1+J}>

<T(PHIL, PHI2)—R-EXACT-{PHI2==2, J<=PHI1, PHIl<=1+J}>
<T(PHI1 , PHI2)—IN-EXACT—{PHI2==2, J<=PHI1, PHIl<=1+J}>

Combining READ, WRITE, IN and OUT array region analyses helps us determine SEND array
regions that represent data that need to be exchanged between processes and generate MPI code.
In the next subsections, we describe the three different steps of code transformation to produce MPI

parallel code.

3.3 First step: outlining

To limit changes in the sequential program, the statements delimited by directives are outlined. This
code transformation keeps the semantics of the original program and allows to add parallelism without
alteration in the original code of sequential parts. For instance, the loop below labelled 20 in the listing 1.5
is outlined and replaced by a call to a subroutine called P1_DO20 as shown the listing 1.6.

Listing 1.5. Before outlining

Listing 1.6. After outlining

PROGRAM P1

INTEGER 1 ,N,F1
PARAMETER. (N=10)
INTEGER T(N,2) ,A(N—1)

I$OMP PARALLEL DO
DO 20 1 = 1, N-1
A(I) = FI(T, 1)
20 CONTINUE
I$OMP END PARALLEL DO

END

PROGRAM P1

INTEGER 1 ,N,F1
PARAMEIFR. (N=10)
INTEGER T(N,2) ,A(N—1)

!$SOMP PARALLEL DO

CALL P1.DO20(I, 1, N—1, N, A, T)

!$OMP END PARALLEL DO

END

SUBROUTINE P1.DO20(I, I.L, I.U, N, A, T)
INTEGER I, I.L, I.U, N, F1
INTEGER A(1:N—1), T(1:N, 1:2)
DO 20 I =1L, I.U
A(I) = FI(T, 1)

20 OONTINUE

END

The parameters of the prototype of the new subroutine are composed of:

— loop parameters : the loop index and the loop bounds (see parameters I, I_L and I_U in listing 1.6),
— and variables, arrays and parameters used in the outlined statements (see parameters N, A and T

in listing 1.6).

The variable and array updates between callers and callees are performed by the call by reference

used in Fortran.

3.4 Second step: analysis

In order to generate calls to MPI primitives, data that must be exchanged are determined using PIPS
array regions analysis. We distinguish four different types of array regions:

— send regions represent updated array regions which need to be sent at the end of a parallel section;
— receive regions represent data and array regions which need to be received at the beginning of a
parallel section;

private regions represent variables and arrays that could be privatised;

used regions represent necessary memory allocation gathering READ and WRITE regions.

In our execution model (see subsection 3.1), we suppose that sequential computations are done
redundantly in parallel by each process. Then at the beginning of the first parallel section, each process
owns up-to-date data. At the end of the parallel section each process must send its own data to update
the data of other processes. Thus in our prototype we only use the SEND regions to determine which
sub-arrays must be communicated to other processes.

Computation of the SEND array regions. The SEND array regions for a given procedure represent
updated array regions which need to be sent at the end of a parallel section thus it is included into OUT
array regions. Nevertheless, due to the PIPS inter-procedural array regions analysis, the OUT region
of an array A that is a parameter of a procedure P, refers to the array region of A updated (and used
after) by all calls to the P procedure through the whole program. However the SEND region of the array
A corresponds to only one call to the P procedure. Thus the SEND region of A for procedure P is the
intersection between the OUT region and the WRITE region of A:

SEND(A) = OUT(A) N WRITE(A)

Handling region overlap. Moreover, array regions can be over-approximated. That is to say SEND regions
of different processes can overlap each other. Thus it prevents us from directly exchanging sub-arrays
described by the SEND regions. In case of overlap, we compute at runtime data that should be exchanged.
Besides, the results of array region analyses are convex polyhedra. For simplicity sake, in our prototype,
we limit ourselves to communicating “rectangular” sub-arrays. Rectangular sub-arrays are represented
by polyhedra with at most one dimension of the array appearing in each constraint that delimits a
SEND region. In case sub-arrays are not given rectangular by array region analysis, we make an over-
approximation to come back to a rectangular case. In this case also, we must compute at runtime data
that should be updated.

The following listing 1.7 shows the array regions analysis performed on the outlined subroutine
P1_D0O20.

Listing 1.7. Region analyses performed on the subroutine P1_DO20 (excerpt)

Region write P1.D0O20 : 2

<A (PHI1)-W-EXACT—{I_L<=PHI1, PHIl<=I_U}>

<I-W-EXACT—{}>

Region out P1.DO20 : 1

<A(PHI1)-W-EXACT—{1<=PHI1, PHI1<=9, I==11, I_.L==1, I1.U==9, N==10}>
Region Send P1.DO20 : 1

<A (PHI1)-W-EXACT—{I_L<=PHI1, 1<=PHI1, PHII<=I_U, PHI1<=9}>

Region interlaced P1.DO20 : 0

3.5 Third step: compilation

The compilation phase consists in generating the MPI parallel code and inserting communications and
work-scheduling.

For a “parallel do” directive, we create a new routine suffixed with _M PI that replaces the out-
lined sequential routine. For instance, in the main program, the call P1_DO20 is replaced by a call to
P1_DO20_MPI (see listing 1.8 line 6 and line 26).

This new procedure is divided into four parts :

— computation of the loop partitioning: the initial loop range is split in different slices for each process;

— computation of the SEND array regions according to the loop partitioning;

— call of the outlined procedure according to the loop partitioning: before the call, each process owns
necessary data for the computation of its loop slice. After the call, a process owns only the updated
data in its own SEND region;

— communications of the updated data between processes : to deal with the potential overlap of send
data, at the first step, we merge all the SEND regions on a master process and in the second step,
the master broadcasts the global send region corresponding to the initial loop bounds.

In our generated code (see listing 1.8), calls at the MPI library are encapsulated into our own Fortran
functions that deal with send and receive arrays described by our own internal region representation.

© 0 NS G o~

Lo LW W W W W B W WWWWW W M N R RN RN NN
GOIN WV R T OC XTI UN IR0 I Q=R

Listing 1.8. The generated MPI parallel source file.

PROGRAM P1

include ”step.h”
C declarations

CALL STEP_Init

CALL P1.DO20.MPI(I, 1, N—1, N, A, T)

CALL STEP_Finalize
END

SUBROUTINE P1.DO20-MPI(I, I.L, I.U, N, A, T)
include ”step.h”
C declarations

C Loop splitting
CALL STEP _SizeRank (STEP_Size, STEP_Rank)
CALL STEP _SplitLoop(I_-L, I.U, 1, STEP_Size, I_.STEP_SLI)

C SEND region computing
CALL STEP.COMP_SEND(A STEP SR, .. .)

C Where the work is done
I_.IND = STEP_Rank+1
ILOW I_SLI (LOWER, I_IND)
I.UPP = I_SLI(UPPER,I_IND)
CALL P1. DO20(I.IND, ILOW, I.UPP, N, A, T)

C SEND regions communications
IF (STEP_Rank.EQ.MASTER) THEN
CALL STEP_RecvMergeRegion (...)
ELSE
CALL STEP_SendRegion (...)
ENDIF
CALL STEP _BcastRegion (...)
END

3.6 Results

STEP has reached several goals specified in subsection 2.1. We have implemented a source-to-source
program transformation tool that semi-automatically generates MPI programs called STEP. Currently,
STEP is in its early development stage. Its input (resp. output) files are Fortran 77 programs with
OpenMP directives (respectively with MPI primitives) to express the parallelism.

Handling more OpenMP directives. STEP handles “section” and “parallel do” work-sharing directives
for which the number of available computation nodes is known at runtime. As previously said, we do not
necessarily intend to handle the entire OpenMP standard. Nevertheless, STEP is currently limited and
we want to extend it to several widely-used OpenMP directives for instance the master directive for I/O
management. Furthermore the loops are currently partitioned using static scheduling assigning one loop
chunk to each process. This should also be extended to other types of scheduling proposed by OpenMP.
Although only one level of parallelism is currently supported, nested parallelism is planned to deal both
coarse and fine grain parallelism.

At last, STEP does not handle explicit OpenMP synchronisation directives; only implicit synchro-
nisations at the end of “parallel sections” and “parallel do” are performed. Although this limits the
developer’s possibilities, it reduces all the more the synchronisations between processes. Besides limiting
the amount of synchronisations potentially provides a good execution performance.

Handling data. On the contrary to the OpenMP standard, data are private by default. It is the analysis
phase and the computation of the SEND regions that determine which data are shared. These analyses
specify which data must be transmitted /shared from one process to another at the end of a parallel region.
Currently the same amount of memory is allocated on all processes. This is mainly due to Fortran 77. As
this is a important limitation of the STEP prototype, we want as a short-term improvement distribute
arrays when analyses are successful, for instance at least for arrays with regular access. Besides, our first
STEP prototype converts polyhedric regions into rectangular regions in order to generate simple MPI
communication datatypes. This could be improved to benefit from the array region representation in
PIPS [Cre96].

Communication patterns. Currently, the SEND region analysis leads to use different auxiliary functions
to deal with data exchanges :

— when the SEND regions are computed without over-approximation, our tool generates exact MPI
messages to perform the exchange;

— when the SEND regions are computed with over-approximation and without interlacing, the same
function performs the exchange of all the data specified by the SEND region;

— when the SEND regions are over-approximated and interlaced, another function is used to deal
with the interlaced access. A runtime solution has been implemented. It consists in a first step in
exchanging all data in the SEND region, and in the second step in systematically comparing original
and updated values. Nevertheless, this simple solution with an important overhead allows to detect
concurrent accesses.

Currently, the all-to-all data redistribution is centralised for simplicity sake. This could be further refined
since array region analyses provide all the necessary information.

At last, current analyses need to be improved to deal with reductions: recognising a reduction pattern
in the sequential code when no OpenMP reduction clause is present and then generating the appropriate
MPI code. In case where a reduction pattern is not recognised, STEP should be able to handle the
OpenMP reduction clause.

Quality of the generated source code. At last, the generated code is close to hand-written code. First, the
original sequential code is not altered. The sequential parts that are executed in parallel can be found
unmodified in outlined functions. Second, code transformations keep track of the original variable names,
and proposes readable function names. At last, MPI communications are close to hand-written commu-
nications since the volume of the communicated data is given by array region analysis. Nevertheless it
is already possible to use the STEP generated code, read it and modify to tune MPI communications if
necessary. For this purpose, auxiliary functions provide several services, as for instance index conversion
functions to convert array indices.
At last, the STEP tool is currently limited to Fortran 77 but an extension to C is considered.

4 Related work

”Distributed OpenMP” refers to research projects that help running an OpenMP application on distributed-
memory architectures.

Historically, most distributed OpenMP projects addressed Software Distributed Shared Memory
(SDSM) architectures. SDSM architectures rely on a software layer in order to manage data place-
ment on the nodes of a distributed-memory architecture and keep memory consistency between nodes.
For instance, the OMNI OpenMP compiler [SSKT99] is based on a DSM runtime system inserting check
codes before each load/store to/from the shared data space. Those check codes are implemented using
a communication library supporting one-sided remote memory transfer and synchronization between
nodes. Several implementations of “distributed OpenMP” are based on the SDSM Treadmarks sys-
tem [HLCZ00,BMEO02]. Those approaches suffer from very fine-grain communication patterns. In order
to avoid unnecessary data checks and group them when possible, those projects have evolved to use
compiler analyses intensively in order to generate efficient code. The OMNI compiler uses analyses to
eliminate check codes outside parallel regions, eliminate redundant check codes and merge multiple check
codes. In order to do so, the static extent and the dynamic extent are defined. The static extent corre-
sponds to the statements lexically enclosed within an OpenMP construct. The dynamic extent includes
the functions called from within the construct. By default, the compiler determines data mapping accord-
ing to the scheduling of the loop which references the data. One further optimization proposed by the
OMNI compiler is to optimize data transfers between two parallel regions. Using Treadmarks, Basumallik
et al. [BMEO02] proposed optimizations such as data prefetch, barrier elimination and data privatization.
Barrier elimination and data privatization both rely on strong compiler analyzes. Barrier separating two
consecutive loops can be eliminated when permitted by data dependencies. Shared data with read-only
access during a section can be privatized by copy-in during this section. Shared data that are exclusively
accessed by the same processor can also be privatized. There is also some work related to automatic
data placement and adding HPF-like directives to OpenMP to distribute data [MMSO00]. The Cluster
OpenMP software system proposed by Intel [Hoe06] allows OpenMP programs to run on clusters. It re-
lies also on the DSM Treadmarks system. As can be assumed, it is mainly suitable for applications with
small amount of read / write sharable data and few synchronisation. SDSM-based distributed OpenMP
projects represent opposite approaches from ours since they start from the finest communication grain
and then use program analyses to communicate less. Our tool STEP targets coarse-grain parallelism,
thus aims at issuing MPI primitives only at specific points in the program.

Several projects generate hybrid MPI and SDSM programs from OpenMP directives. Based on the
OMNTI compiler, the PaRADE project [KKHO03] replaces synchronization and work-sharing directives
associated with small data structures by MPI explicit collective communication. The critical synchro-
nization directive is translated in an MPI_Allreduce as well as the atomic directive. The single work-
sharing directive is translated in MPI_Bcast whereas the for directive has no message-passing translation.
Generating MPI, the approach also considers fine-grain communication and computation patterns while
we think that MPI is best-suited for coarser-grain parallelizations. Based on the Polaris compiler, the
OpenMP compiler proposed by Eigenmann et al. [EHKT02] generates MPI programs in case of regular
data pattern and Treadmarks SDSM programs in irregular cases. Three classes of data are distinguished:
private data, distributed data for simple usage pattern and shared data for irregular pattern. Irregular or
unknown patterns are handled by the SDSM system. Regular patterns are handled with message-passing
primitives (see HPF compiler techniques): first, determine send/receive pairs for data accessed but not
owned by threads; then determine the intersection between the region of an array (represented by Linear
Memory Access Descriptor (LMAD)) accessed in one thread and the region owned by another thread;
at last determine the overlap using the LMAD intersection algorithm of Hoeflinger and Paek [PHP9S].
Several cases of intersection between array regions accessed by processors are discussed in the paper. For
a read reference, more data can be fetched (superset mode). For a write reference, the write-back must
be precise otherwise it generates a failure. A non-empty overlap indicates necessary communications
and therefore proper message-passing calls are generated. In the paper, several OpenMP extensions are
mentioned: for data distribution as HPF directives, for explicit communication operations outside par-
allel regions with the copy clause and for computation distribution with the schedule clause to specify
which thread computes which iteration and the home clause to specify the thread owner.

In the OpenMPI project which follows a similar objective to ours, Boku et al. [BSMT04] propose a
programming tool for OpenMP-like incremental parallelization based on MPI scheme. They introduce
specific directives to express parallelism based on domain decomposition. They focus on data and take into
account neighbour communications to exchange border elements. So doing, they obtain some dedicated
code which lacks genericity. These new directives can be very interesting when program analyses fail to
express these specific communication patterns.

10

The closest approach to ours is proposed by Basumallik and Eigenmann [BE05,BMEQ7]. They pro-
pose a source-to-source OpenMP to MPI transformation based on the Cetus infrastructure (which is
the next version of Polaris). All participating processes redundantly execute serial regions and parallel
regions marked by omp master. Iterations of OpenMP for loops are statically partitioned. Shared data
is allocated on all processes using a producer/consumer paradigm. At the end of a parallel construct,
each participating process communicates the shared data it has produced that other processes may use.
This approach is based on a strong program analysis tool. As a matter of fact, the compiler constructs
a control flow graph (with each vertex corresponding to a program statement) and records array access
summaries with Regular Section Descriptors (RSDs) by annotating the vertices of the control flow graph.
Havlak and Kennedy [HK91] compare array region representation and in particular RSD and convex re-
gions used in PIPS. Both methods have advantages and drawbacks depending on applications. In both
projects array regions are then propagated through the interprocedural analysis. In addition to READ
and WRITE array regions, IN and OUT regions are computed in PIPS implying additional analysis. All
in all comparing compilation, transformation and analysis tools as Cetus or PIPS is not straightforward.
Nevertheless generated codes by both tools could be compared in the short term.

5 Conclusion and future work

Based on a solid parallel programming experience, our goal is to develop a programming environment
that is a trade-off between 1) the current situation of the parallel programmer who programs the en-
tire application by himself based on OpenMP and MPI 2) and the compilation community which has
developed powerful program analyses and transformations.

The STEP tool is the first phase. Based on the PIPS workbench, STEP generates MPI source code
from some OpenMP directives. Thanks to the PIPS workbench, this implementation was relatively
straightforward. As a matter of fact, PIPS provided us with both a workbench for program transformation
and a clearly defined internal representation as well as powerful inter-procedural array region analyses.
This paper presents early achievements that we can conclude with several perspectives.

Short-term perspectives. This STEP tool must be completed with several technical improvements de-
scribed earlier in subsection 3.6 as OpenMP, communications... The most important one is to really
distribute and not allocate entire arrays since this strongly limits the scope of potential parallel ap-
plications. Furthermore this work must be completed with tests on popular benchmarks and speedup
figures.

Middle-term perspectives. We want to take into account multilevel parallelism and generate hybrid
MPI/OpenMP applications from OpenMP programs. Focusing on coarse-grain parallelisation for MPI
parallel code generation, we could delegate fine-grain parallelisation to OpenMP directives for shared-
memory execution on multi-core/many-core nodes for instance. In this perspective, a program analysis
could compute the ratio between computation and communication and propose to distribute the data
on different nodes or not.

Long-term perspectives. The STEP generated MPI code is close to hand-written parallel code in specific
cases. We want to further focus on the interaction between STEP and the user. Our goal is to build a
tool that is able to work in collaboration with the user and for instance ask for more guidance from the
user in case analyses for data dependencies fail. In these “failure” cases, OpenMP programming could
be refined by the user adding OpenMP clauses such as private, shared, reduction...

To conclude, we believe that this approach is very promising and we intend to improve this work in
these three directions.

6 Acknowledgements

The work reported in this paper was partly supported by the European ITEA2 ParMA (Parallel pro-
gramming for Multicore Architectures) Project 1.

! http://www.parma-itea2.org/

11

References

[AAC'94] Corinne Ancourt, Batrice Apvrille, Fabien Coelho, Franois Irigoin, Pierre Jouvelot, and Ronan Keryell.

[arb04]
[BEO5]

[BLO5)

[BMEO02]

[BMEO7]

PIPS — A Workbench for Interprocedural Program Analyses and Parallelization. In Meeting on data
parallel languages and compilers for portable parallel computing, 1994.

OpenMP architecture review board. OpenMP Application Program Interface, 2004.

Ayon Basumallik and Rudolf Eigenmann. Towards Automatic Translation of OpenMP to MPI. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS), 2005.

Amir Boag and Christine Letrou. Multilevel Fast Physical Optics Algorithm for Radiation From
Non-Planar Apertures. IEEE Transactions on Antennas and Propagation, 53(6), jun 2005.

Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann. Towards OpenMP Execution on Software
Distributed Shared Memory Systems. In International Workshop on OpenMP: Experiences and Im-
plementations, WOMPFEI’2002, 2002.

Ayon Basumallik, Seung-Jai Min, and Rudolph Eigenmann. Programming Distributed Memory Sys-
tems Using OpenMP. In 12th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, 2007.

[BSMT04] T. Boku, M. Sato, M. Matsubara, and D. Takahashi. OpenMPI - OpenMP like tool for easy program-

[CCZ06]

[Cre96]

ming in MPL. In Sizth Furopean Workshop on OpenMP, 2004.

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel Programmability and the
Chapel Language. The International Journal of High Performance Computing Applications, Special
Issue on High Productivity, Programming Languages and Models, 2006.

Beatrice Creusillet. Array region analyses and applications. PhD thesis, Ecole Nationale Supérieure
des Mines de Paris, 1996.

[EHK'02] R. Eigenmann, J. Hoeflinger, R. Kuhn, D. Padua, A. Basumallik, S.-J. Min, and J. Zhu. Is OpenMP

[HK91]
[HLCZ00]

[Hoe06]
[KKHO3)|

[MMS00]
[PHP9S]

[PIF95]
[SSKT99]

for Grids. In NSF' Next Generation Systems Program Workshop held in conjunction with IPDPS, 2002.
Paul Havlak and Ken Kennedy. An Implementation of Interprocedural Bounded Regular Section
Analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, 1991.

Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy Zwaenepel. OpenMP for Networks of SMPs.
Journal of Parallel and Distributed Computing, 60(12), 2000.

J.P. Hoeflinger. Extending OpenMP to Clusters. Technical report, Intel Corporation, 2006.
Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha. ParADE: An OpenMP Programming Environment for
SMP Cluster Systems. In Conference on High Performance Networking and Computing, 2003.

John Merlin, Douglas Miles, and Vincent Schuster. Distributed OpenMP: Extensions to OpenMP for
SMP Clusters. In Second European Workshop on OpenMP, EWOMP’2000, 2000.

Y. Paek, J. Hoeflinger, and D. Padua. Simplication of Array Access Patterns for Compiler Optimiza-
tions. In Proceedings of ACM SIGPLAN’98, 1998.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, 1995.

M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Compiler for an SMP Cluster. In
Proceedings of First European Workshop on OpenMP (EWOMP), 1999.

12

