
Detection of violations to the MPI Standard in
hybrid OpenMP/MPI Applications

Tobias Hilbrich1, Matthias S. Müller1, and Bettina Krammer2

1 TU Dresden, Center for Information Services and High Performance Computing
(ZIH), 01062 Dresden, Germany

2 High Performance Computing Center (HLRS), Universität Stuttgart, Nobelstrasse
19, 70569 Stuttgart, Germany

Abstract. The MPI standard allows the usage of multiple threads per
process. The main idea was that an MPI call executed at one thread
should not block other threads. In the MPI-2 standard this was refined
by introducing the so called level of thread support which describes how
threads may interact with MPI. The multi-threaded usage is restricted
by several rules stated in the MPI standard. In this paper we describe
the work on an MPI checker called MARMOT[1] to enhance its capabil-
ities towards a verification that ensures that these rules are not violated.
A first implementation is capable of detecting violations if they actu-
ally occur in a run made with MARMOT. As most of these violations
occur due to missing thread synchronization it is likely that they don’t
appear in every run of the application. To detect whether there is a run
that violates one of the MPI restrictions it is necessary to analyze the
OpenMP usage. Thus we introduced artificial data races that only occur
if the application violates one of the MPI rules. By this design all tools
capable of detecting data races can also detect violations to some of the
MPI rules. To confirm this idea we used the Intel R© Thread Checker.

1 Introduction

1.1 Hybrid MPI Applications

The MPI standard states that MPI calls should only block the calling thread.
This was refined in the MPI-2 standard by introducing the so called level of
thread support (thread level). Each MPI implementation supports the lowest
level and may support a higher one. The levels are:

MPI THREAD SINGLE: only one thread exists
MPI THREAD FUNNELED: multiple threads may exist but only the

main3 thread performs MPI calls
MPI THREAD SERIALIZED: multiple threads exist and each thread may

perform MPI calls as long as no other thread
is calling MPI

3 The thread that initialized MPI.

MPI THREAD MULTIPLE: multiple threads may call MPI simultane-
ously

The application specifies a desired thread level and passes it to the MPI imple-
mentation, which might return a lower level. The level returned is referred to as
provided thread level and must not be violated.

1.2 Restrictions for Hybrid MPI Applications

Besides the definition of the thread level there are further restrictions mentioned
in the MPI standard. Here we present the restrictions that are currently checked
by our MPI checker. This list is incomplete, e.g. most MPI-2 calls are currently
unsupported. The currently checked restrictions are:

(I) The call to MPI FINALIZE should occur on the same thread that initialized
MPI. We call this thread the main thread. The call should occur only after
all the process threads have completed their MPI calls, and have no pending
communications or I/O operations. [2, page 194 lines 24-29]

(II) A program where two threads block, waiting on the same request, is erroneous.
Similarly, the same request cannot appear in the array of requests of two
concurrent MPI WAIT{ANY|SOME|ALL} calls. In MPI, a request can only
be completed once. Any combination of wait or test which violates this rule
is erroneous. [2, page 194 lines 32-36]

(III) A receive call that uses source and tag values returned by a preceding call to
MPI PROBE or MPI IPROBE will receive the message matched by the probe
call only if there was no other matching receive after the probe and before
that receive. In a multithreaded environment, it is up to the user to enforce
this condition using suitable mutual exclusion logic. This can be enforced
by making sure that each communicator is used by only one thread on each
process. [2, page 194f line 46ff]

(IV) Finally, in multithreaded implementations, one can have more than one, con-
currently executing, collective communication call at a process. In these situ-
ations, it is the usere’s responsibility to ensure that the same communicator
is not used concurrently by two different collective communication calls at
the same process. [3, page 130 lines 37-41]

We will refer to these restrictions by using their respective number. The ad-
ditional restriction that the provided thread level may not be violated will be
referred to as (V). To our knowledge none of the available MPI Checkers does
check any of these restrictions. The MPI checkers we looked at are: Umpire[4],
MPI-Check[5] and Intel R© Message Checker[6].

2 Example

For restriction (II) we give an example violation in Table 1. Violations to this
restriction are only possible if the thread level MPI THREAD MULTIPLE is

Process 1
Thread 1 Thread 2

MPI Isend(msg,&request)
#pragma omp barrier #pragma omp barrier
MPI Wait(request) MPI Test(request)

Table 1. Violation to restriction (II), assuming that request is a shared variable.

available. This applies to most of the restrictions. In the example, process 1 has
two threads that are simultaneously performing an MPI Wait and an MPI Test
call. Both calls are using the same request. This violates restriction (II). As one
can see if the MPI Test call is performed before the MPI Wait call the error
won’t occur whereas simultaneous execution yields an error.

3 Constraints for the Restrictions

In order to create checks for restrictions (I) to (V) we want to define constraints
that implicate whether one of the restrictions is violated. These constraints can
be used to implement checks and to verify whether the implemented checks
can detect every instance of the problem. If a run of an application matches
any of these constraints this implies that there is a violation to the respective
restriction. The constraints are:

violation to (I):
If and only if one of the following holds:
(A) for a thread calling MPI Finalize holds: “MPI Is thread main() ==

False”
(B) one thread is performing an MPI Finalize call while another thread is

also calling MPI
(C) an MPI call is issued after the call to MPI Finalize is finished

violation to (II):
If and only if a thread performs a Wait4 or Test5 call using Request X
while another thread is also using Request X in a Wait or Test call.

violation to (III):
If and only if one of the following holds:
(A) one thread is performing a Probe6 call that will return the value X

as source and the value Y as tag and another thread is performing a
Recieve7 call with source and tag values that match X and Y at the
same time

(B) a thread is performing a Receive call with source and tag values returned
by a Probe call of another thread that did not receive that message yet

4 An MPI Wait{ANY|ALL|SOME} call.
5 An MPI Test{ANY|ALL|SOME} call.
6 An MPI Iprobe or an MPI Probe call.
7 An MPI Recv, MPI IRecv, MPI Sendrecv, MPI Sendrecv replace or (MPI Start)

call.

Fig. 1. Execution of an MPI call when using a wrapper.

(C) one thread is receiving a message with source and tag values returned
by a Probe it called and another thread is receiving a message with
matching source and tag values at the same time (assumed that the
probed message was not yet received)

violation to (IV):
If and only if a thread performs a collective call using communicator X
while another thread is within a collective call using communicator X

violation to (V):
If and only if one of the following holds:
(A) provided is MPI THREAD SINGLE, omp in parallel() returns true and

omp get num threads() returns a value greater than 1 while the appli-
cation is in an MPI call

(B) provided is MPI THREAD FUNNELED and MPI Is thread main() re-
turns false while application is in an MPI call

(C) provided is MPI THREAD SERIALIZED and two threads are calling
MPI simultaneously

One might have compressed constraints (A)-(C) of restriction (III) into one
constraint which detects whether a Receive call is issued between a Probe and
a Receive call of another thread (all using the same source and tag values). But
we will see later that this decomposition is useful when creating artificial data
races.

4 Applying an MPI Checker to a Hybrid Application

4.1 Instrumenting the Application

Runtime MPI checkers have to monitor all performed MPI calls and check their
parameters and results. This is usually achieved by intercepting the MPI calls
and executing additional code before and after execution of the MPI call. For
this purpose the MPI standard specifies the so called Profiling Interface. For
each MPI call “MPI X” there is a second function “PMPI X” that executes the
same call. Thus it is possible to create wrappers that catch each MPI call and
execute additional code before and after calling the appropriate PMPI call. This

is illustrated in Fig. 1. We will refer to the code executed before the PMPI Call as
the pre execution code and to the code after the PMPI call as the post execution
code.

4.2 Propositions on Correctnes

Using pre and post execution code in an environment in which multiple threads
are calling MPI simultaneously might change the order in which MPI calls are
issued by the threads. Imagine a pre execution code that synchronizes the threads
such that only one thread is calling MPI at a time. That would prohibit violations
to most of the above mentioned restrictions. It is desirable that the pre and post
execution code is designed such that it does not change the semantics of the
application. This especially requires that if there is a run of the application
in which the commands are executed in a certain order between the threads
then there is a run with the wrapper attached in which the commands of the
application are executed in the same order. We propose several rules for the pre
and post execution code that should enforce preservation of semantics:

– the code must not enforce serialization or a certain ordering of the MPI calls
made on the threads of each process

– the code must not enforce an ordering of the MPI calls of different processes
– execution may only take a finite time
– parameters passed to the MPI call must not be modified
– no data that is used by the application or the MPI library must be changed
– no input files used by the application or the MPI library must be changed

We assume that as long as the code within the wrappers does not violate any of
these restrictions all errors that appear in the application may still appear when
the wrapper is used. However, the probabilities of errors to occur during a run
with or without wrapper might differ.

4.3 Synchronization

Our MPI checker uses process local data to store whether certain MPI events
have occurred and to track the usage of MPI resources. In a multi threaded
environment it is necessary to protect these data against unsynchronized access.
To do so we introduced a mutual exclusion mechanism that is executed in the pre
and post execution code. The scheme used is shown in Fig. 2. Before any process
global data is used in the pre execution code the synchronization is started with
a call to “enterMARMOT”. It is stopped at the end of the pre execution code
by calling “enterPMPI”. The same scheme is used for the post execution code.
To implement the mutual exclusion we use OpenMP locks. This synchronization
should not violate any of the above propositions thus all MPI errors of the
Application can still appear when our MPI wrappers are used.

Fig. 2. Scheme of the applied synchronization within MARMOT.

5 First Implementation of Checks

As a first approach we implemented checks that detect violations if they actu-
ally occur in a run with MARMOT. Therefore we added pre and post execution
code. Note that some of the code might be executed before the mutual exclu-
sion starts and might thus require additional synchronization. Implementation
of most checks is straightforward and requires only a few lines of code. To im-
plement checks for the constraints of restrictions (II) and (IV) we register used
requests and communicators. We illustrate the used technique for the case of
the communicators. In the pre execution code of all collective calls we check
whether the given communicator is already registered as used. If that’s the case
we return an error, otherwise we register the communicator as used. In the post
execution code we remove the communicator from the registration. In order to
create a check for the constraints of restriction (III) we use a mechanism that
registers source and tag values returned by a probe. These values are registered
until the message is received. If the receiving thread was not the thread that
probed for the message we issue a warning. With these checks we were able to
detect violations to the restrictions in small test applications.

6 Detection with Artificial Data Races

6.1 General Design

The problem of the first detection is that it can only detect violations if they
actually appear in a run made with MARMOT. It is desirable to also detect
whether it is possible that a violation might ever appear. For the MPI calls of a
hybrid application different runs may have a different execution order of the MPI
calls and it might happen that certain MPI calls are issued by different threads.

The execution order is important for constraint (B) and (C) of restriction (I), for
all constraints of restrictions (II), (III), (IV) and for constraint (C) of restriction
(V). For all other constraints it is only of interest which thread is calling MPI
or how many threads are used. Note that for the constraints of restriction (III)
it is also important which threads are performing the MPI calls.

Assume that each thread writes one and the same variable in the pre execution
code of the Wrapper. Then there is a data race[7] on this variable if it is possible
that two threads are issuing an MPI call simultaneously. This idea can be used to
create artificial data races that only exist if a violation to one of the constraints
is given. As there are tools that are capable to detect data races it is possible
to determine whether a violation of one of the constraints occurs by detecting
the associated data race. This technique can be applied to all the constraints
that require an unsynchronized execution of MPI calls to happen. As detecting
the violations relies on detecting a data race with a third party tool, results will
only be as good as the tool applied.

Another aspect of this design is that it is necessary to create these races either
before the synchronization starts or to stop and restart the synchronisation for
the race.

6.2 Detection of thred level Violation

For constraint (C) of this restriction it is simply necessary to write a variable in
the pre execution code of each MPI call. Note that most tools that detect data
races have a fixed output format and will thus only issue an error that there is
a data race on a certain variable. To influence this output we can only change
the name of the variable that caused the data race. For this constraint we use
the variable “App Needs MPI THREAD MULTIPLE”.

6.3 Detection of Wrong Communicator Usage

To detect a violation to constraint (IV) it is necessary to detect whether it is
possible that two collective calls use the same communicator simultaneously.
Thus we have to design a data race that only occurs when this restriction is
violated. We achieved this by mapping each communicator to an index. The
index is used to write the corresponding entry of an array. In this way we only get
a data race if two collective calls use the same communicator simultaneously. The
pre execution code code used has the following structure (this code is executed
before the synchronisazion starts):

beginCritical()
id = communicator2id(comm)
endCritical()
writeCommVarIndexed(id)

It is necessary to create a critical section here as mapping a communicator
to an index requires the usage of an internal list that stores all the known
communicators and their respective indizes. This list must only be used by one
thread at a time to avoid unintended data races.

Case 1

Thread 1 Thread 2

MPI Probe MPI Recv
MPI Recv

Case 2

Thread 1 Thread 2

MPI Probe
omp barrier omp barrier
MPI Recv MPI Recv

Case 3

Thread 1 Thread 2

MPI Probe MPI Recv
omp barrier omp barrier
MPI Recv

Case 4

Thread 1 Thread 2

MPI Probe
omp barrier omp barrier
– MPI Recv
omp barrier omp barrier
MPI Recv

Table 2. Different instances of violations to restriction (III)

6.4 Detection of MPI Probe Invalidation

To detect violations to this restriction it is necessary to create checks for the
associated constraints (A),(B) and (C). To illustrate the need to check all three
constraints we present four different instances of this problem in table 2. Assume
that all calls are using the same values for source, tag and comm. For each of
these instances one of the three constraints is violated. Especially note that in all
cases except the fourth either constraint (A) or constraint (C) is violated. Due
to the synchronization present in the fourth case constraint (B) will be violated
for all runs of this case. Thus the already implemented detection for constraint
(B) is sufficient. So it is only necessary to create data races for constraints (A)
and (C). Detecting violations to (A) is hard as the result of the Probe call might
differ between runs. Thus it would be necessary to know all the possible return
values of the Probe call. We avoided this as restriction (III) only yields a warning.
Thus we only created data races that do not cover all instances of the problem
and that might be hard to detect by a tool. Better data races could be created
by using a more complicated scheme. The simple data races use the following
pre and post execution codes:

Post execution code for all Probe calls:
conflict_index = getNextIndex()
registerNewProbe(returned_source,returned_tag,comm,conflict_index)
endSynchronization()
writeProbeVarIndexed(conflict_index)
beginSynchronization()

Pre execution code for all Receive calls:
FORALL probes B in registered probes {

if (matchesProbe(B,my_source,my_tag,my_comm)) {
endSynchronization()
writeProbeVarIndexed(B->conflict_index)

beginSynchronization()
unregisterProbe(B)

}
}

With this design there is a data race between two simultaneously executed Re-
ceive calls if one of them is invalidating a Probe call. There is also a data race if
a Receive call is called in parallel to a Probe call that returned source and tag
values matched by the receive. This race is hard to detect as not all runs will
enter the code in the if statement.

6.5 Detection of Wrong Request Usage

A data race for the constraint of restriction (II) can be constructed as in the
case of restriction (IV). Again it is necessary to map each request to an index
in an array of variables. Some of the Wait and Test calls can use an array of
Requests. In this case one has to map each request to an index and write the
respective variable.

6.6 Detection of Erroneus MPI Finalize

In order to create checks for the constraints of restriction (I) it is only necessary
to create a data race for constraint (B). This is achieved by reading a variable
for each MPI call and writing it in the pre execution code of MPI Finalize. Thus
if the application has the possibility to execute another MPI call in parallel to
MPI Finalize then there exists a data race.

7 Results with Intel R© Thread Checker

The Intel R© Thread Checker is a tool capable of detecting data races and thus
should be able to detect the artificial races. We used small test codes that violate
one of restrictions (I)-(V) to test this approach. In almost all the tests Thread
Checker detected the data race. Only some violations to restriction (III) could
not be detected. We want to present the gained output for a violation to restric-
tion (IV). The output is shown in Table 3. As the data race is caused by code
within our MPI checker the output points to source code of MARMOT. In order
to find out where the error occurred in the application one has to use the stack
trace feature of Thread Checker.

But usage of this tool also has disadvantes. OpenMP applications using
source code instrumentation of Thread Checker are only executed on one thread.
Thus for our MPI checker only one thread is visible which makes it impossible to
directly detect violations to the restrictions. When using binary instrumentation
of Thread Checker, execution uses multiple threads but the results of the tool
are less precise. We could still detect the data races in this case but the results
do not contain the variable names used within MARMOT which makes it hard
to interpret the results.

Intel(R) Thread Checker 3.0 command line instrumentation driver (23479) Copyright (c) 2006 Intel
Corporation. All rights reserved.
ID ... Severity

Name
Count ... Description 1st Access[Best] ...

...
2 ... Error 1 ... Memory write of this→App -

Comm In Two Collective Calls[]
at “mpo TCheck Races.cc”:105
conflicts with a prior memory
write of this→App Comm In -
Two Collective Calls[] at “mpo -
TCheck Races.cc”:105 (output
dependence)

“mpo TCheck -
Races.cc”:105

...

...
Table 3. Thread Checker output for a violation to restriction (IV).

8 Conclusion

We presented an approach to find bugs in hybrid OpenMP/MPI applications
that violate restrictions in the MPI standard. A first implementation in the MPI
checker MARMOT is able to detect violations that actually occur in a run. In
order to detect race conditions and thus potential violations we introduced a
technique with artifical data races. Construction of these races is only necessary
for a subset of the constraints. The data races are detectable by appropriate
shared memory tools. We demonstrated our approach with the Intel R© Thread
Checker.

References

1. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: An MPI Anal-
ysis and Checking Tool. In Joubert, G.R., Nagel, W.E., Peters, F.J., Walter, W.V.,
eds.: PARCO. Volume 13 of Advances in Parallel Computing., Elsevier (2003) 493–
500

2. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. http://www.mpi-forum.org/docs/mpi-20.ps (1997)

3. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-10.ps (1995)

4. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with
umpire. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM), Washington, DC, USA, IEEE Computer Society
(2000) 51

5. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in
MPI programs. Concurrency and Computation: Practice and Experience 14(11)
(2002) 911–932

6. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of MPI programs with Intel R© Message Checker.
In: SE-HPCS ’05: Proceedings of the second international workshop on Software
engineering for high performance computing system applications, New York, NY,
USA, ACM (2005) 78–82

7. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formal-
izations. ACM Lett. Program. Lang. Syst. 1(1) (1992) 74–88

