
From OpenMP to MPI: first experiments

of the STEP source-to-source

transformation tool

Daniel MILLOT a Alain MULLER a Christian PARROT a

Frédérique SILBER-CHAUSSUMIER a

a Institut TELECOM, TELECOM SudParis, Computer Science Department,
91011 Évry, France 1

Abstract. The STEP tool allows source-to-source transformation of pro-
grams, from OpenMP to MPI, for execution on distributed-memory
platforms. This paper describes tests of STEP on popular benchmarks,
and analyses the results. These experiments provide both encouraging
feedback and directions for improvement of the tool.

Keywords. source-to-source transformation, parallel execution, OpenMP,
distributed execution of OpenMP programs, MPI

1. Introduction

In order to have good performance, HPC applications must be tuned to the tar-
get platform, be it a multicore, a cluster of multicores or a computation grid.
When an end-user wants to adapt his sequential application for execution on a
particular multiprocessor platform, he has to choose between two programming
paradigms: shared variables or message-passing, which usually means OpenMP
directives or calls to MPI communication primitives. As multiprocessor architec-
tures nowadays tend mainly to use distributed memory, for scalability reasons,
message-passing programming appears more suitable at first sight. Yet, as the
distribution of both data and computation among the nodes of the target plat-
form must be made explicit, this is reserved to expert parallel programmers. The
resulting code is also generally much more intricate and fragmented, thus less
easy to maintain and evolve securely, whereas OpenMP only requires high-level
expression of parallelism, which does not corrupt the given code too much.

The STEP tool [1] is an attempt to reconcile the relative simplicity of
OpenMP programming with the effectiveness of MPI programs that can be tuned
further by experts. Based on the PIPS [2] workbench for program analysis and
transformation, STEP generates MPI source code from a code annotated with
OpenMP directives, thanks to the powerful inter-procedural array region anal-
yses of PIPS. Being a source-to-source transformation tool, STEP enables the

1{daniel.millot, alain.muller, christian.parrot, frederique.silber-chaussumier}@it-sudparis.eu

programs of legacy applications to evolve easily and reliably without the burden
of restructuring the code so as to insert calls to message passing API primitives.

This paper is organized as follows: section 2 recalls the main decisions for the
design of STEP and gives some details on how it works. Section 3 then describes
the experiments we have made with different scientific applications and comments
on the results. Section 4 suggests some directions for improvement of the STEP
tool and concludes.

2. The STEP tool

The state of the art section of the IWOMP’08 paper presenting STEP [1] de-
scribes several other attempts to provide distributed execution of OpenMP pro-
grams [3,4,5,6,7,8]. The STEP tool has been developed in the PIPS (Inter-
procedural Parallelisation of Scientific Programs) workbench [2], which provides
powerful code transformations and analyses of Fortran codes (inter-procedural
analyses, array regions analyses, etc). For a first prototype, we chose a simple
parallel execution model, as shown in Figure 1: each MPI process executes the se-
quential code (between parallel sections) together with its share of the workshare
constructs; all data are allocated for all processes and updated at the end of each
workshare construct by means of communications, so as to be usable later on.

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

End //

Begin //

OpenMP MPI processes

S S S

Figure 1. Execution model

 . := c

c := b

a := .

b := a

section S

READWRITE

IN

OUT

Figure 2. READ, WRITE,
IN and OUT tags

The STEP OpenMP-to-MPI transformation is achieved through three suc-
cessive phases: outlining (directed by OpenMP directives), computation of array
regions to communicate (through region analysis) and MPI parallel code genera-
tion.

2.1. Outlining

This first phase prepares for the execution of the code of parallel sections in dif-
ferent contexts by the MPI processes: the code of each parallel section is replaced
by a call to a procedure with the section code as its body (one procedure per such
section). This code transformation keeps the semantics of the original program.
For instance, the code of the loop labelled 20 in Listing 1 is outlined and replaced
by a call to a new subroutine (called P1_DO20 in Listing 2).

Listing 1: Before outlining

PROGRAM P1
INTEGER I ,N, F1
PARAMETER (N=10)
INTEGER T(N, 2) , A(N−1)
. . .

!$OMP PARALLEL DO

DO 20 I = 1 , N−1
A(I) = F1(T, I)

20 CONTINUE

!$OMP END PARALLEL DO

. . .
END

Listing 2: After outlining

PROGRAM P1
INTEGER I ,N, F1
PARAMETER (N=10)
INTEGER T(N, 2) , A(N−1)
. . .

!$OMP PARALLEL DO

CALL P1_DO20(I , 1 , N−1, N, A, T)
!$OMP END PARALLEL DO

. . .
END

SUBROUTINE P1_DO20(I , I_L , I_U, N, A, T)
INTEGER I , I_L , I_U, N, F1
INTEGER A(1 :N−1) , T(1 :N, 1 : 2)
DO 20 I = I_L , I_U

A(I) = F1(T, I)
20 CONTINUE

END

The parameters of the new procedure are composed of:

• loop parameters that is to say the loop index and the loop bounds (see
parameters I, I_L and I_U in Listing 2),

• variables, arrays and parameters used in the outlined statements (see pa-
rameters N , A and T in Listing 2).

2.2. Region analysis

The purpose of this second phase is to determine the data that processes must
exchange at the end of each parallel section, in order to build the corresponding
MPI messages. It is based on PIPS array regions analyses.

For each array accessed in a parallel section, PIPS associates a convex poly-
hedron (or region) which it tags as READ (resp. WRITE) [9] containing all the
array elements which are read (resp. written) by statements of the parallel section
(see READ/WRITE tags in Figure 2). Furthermore, PIPS associates also an
array region tagged as IN (resp. OUT) containing imported elements that are
read in the parallel section after having been written previously by another code
section (resp. exported elements used afterwards in the program continuation).
As they are inter-procedural, PIPS analyses apply not only to the code of the
parallel section under analysis, but also to procedures called in the section. The
READ, WRITE, IN or OUT region tag is exact when all the elements of the
region can themselves be tagged in the same way. Otherwise, the region is an
over-approximation.

Combining tags, generated thanks to the previous analyses, STEP can min-
imize the size of the COMM(A) region to be communicated between processes
at the end of a given workshare construct for a given array A, in order to ensure
data coherency. COMM(A) is necessarily a subregion of OUT (A), and should be
restricted to WRITE(A):

COMM(A) = OUT (A) ∩ WRITE(A).

As it is an intersection of convex polyhedrons, a COMM region itself is a con-
vex polyhedron. To make the message construction simpler, we use a rectangular
hull of COMM regions as the message payload.

When at the end of a parallel section a process receives an array region which
it has not altered at all during the execution of the section, the region is copied
into the array straightforwardly. Otherwise, a comparative scan of both a resident
copy and the received region of the array allows to decide which part of the data
in the received message should be copied into the array. This time consuming
operation must be done at runtime and reduces performance.

2.3. MPI code generation

Using the source code resulting from the outlining phase and the COMM regions
provided by the analysis phase, STEP finally generates MPI code. For instance,
a new procedure (with a name suffixed by _MPI) is created to replace the
procedure generated from a “parallel do” directive when outlining. Listing 3 shows
that the call to procedure P1_DO20 of Listing 2 is replaced by a call to procedure
P1_DO20_MPI. The new procedure successively:

• splits the loop, in order to distribute work between the MPI processes
according to their rank (lines 15 to 17);

• determines COMM regions for the different arrays accessed in the loop,
according to the loop splitting (line 20);

• calls the initially outlined procedure with bounds adapted to the loop slice
of each process (lines 23 to 26);

• exchanges COMM regions with other processes (line 29).

Listing 3: MPI source file generated by STEP

1 PROGRAM P1
2 i n c l ude " step . h"
3 C de c l a r a t i o n s
4 CALL STEP_Init
5 . . .
6 CALL P1_DO20_MPI(I , 1 , N−1, N, A, T)
7 . . .
8 CALL STEP_Finalize
9 END

10
11 SUBROUTINE P1_DO20_MPI(I , I_L , I_U, N, A, T)
12 i n c l ude " step . h"
13 C de c l a r a t i o n s
14
15 C Loop s p l i t t i n g
16 CALL STEP_SizeRank(STEP_Size , STEP_Rank)
17 CALL STEP_SplitLoop (I_L , I_U, 1 , STEP_Size , I_STEP_SLICES)
18
19 C SEND reg ion computing
20 CALL STEP_Compute_Regions (A_STEP_SR, I_STEP_SLICES , . . .)
21
22 C Where the work i s done
23 I_IND = STEP_Rank+1
24 I_LOW = I_STEP_SLICES(LOWER, I_IND)
25 I_UP = I_STEP_SLICES(UPPER, I_IND)
26 CALL P1_DO20(I_IND , I_LOW, I_UP, N, A, T)
27
28 C Regions communications
29 CALL STEP_AllToAllRegion (A_STEP_SR, STEP_Rank, . . .)
30 END

3. Using STEP on scientific computations

In this section, we give results of experiments conducted in order to identify
the conditions for a relevant usage of the STEP tool and point up its benefits
and drawbacks. Different types of executions are compared for a collection of
applications. They are denoted as follows:

• SER is execution of the serial code;
• OMP is execution of an OpenMP version of the code;
• STEP is execution of the code generated by STEP from the OpenMP

version;
• KMP is execution of the OpenMP version through usage of the Intel Clus-

ter OpenMP suite [10]. Cluster OpenMP is based upon a software layer im-
plementing a distributed shared memory (DSM) which allows an OpenMP
application to run on a cluster of multiprocessors (without any modification
in the case of a Fortran code, which is our case);

• MPI is execution of a hand-written MPI version of the code.

The performance of the execution denoted STEP is compared with executions
SER and OMP systematically, with MPI when available, and with KMP when
this can give workable results.

Some of the applications have been selected because they are reference bench-
marks while others have because they illustrate properties of STEP. First we
have chosen two reference NAS benchmarks [11]: FT solves the PDE system of
the 3D heat equation by using FFT; MG solves the Poisson equation with peri-
odic boundary conditions by a multigrid method. These two applications differ
in their communication patterns: all computing nodes need to communicate in
FT whereas only some need to in MG. SER, OMP and MPI are applicable for
both benchmarks. We selected also the molecular dynamics simulation application
MD, for which an OpenMP version is available [12], because of its high computa-
tion/communication (comp/comm) ratio. Finally we chose the standard matrix
product of square matrices Matmul which allows to adjust the comp/comm ratio.

The execution platform was a cluster with 20 GB/s Infiniband interconnect
and 14 nodes available, with 48 GB RAM memory each and 4 Xeon-1.6 GHz
quadcores (thus making it 16 cores per node). For the distributed-memory execu-
tions (MPI, KMP and STEP), only one core per node is used, other cores being
inactive. For shared-memory executions (OMP), the applications run on cores of
the same node. For optimal execution of the NAS benchmarks (MG and FT), the
number of computing nodes we used was a power of 2, which meant respectively
two, four and eight nodes on our target cluster. For both benchmarks, KMP did
not succeed (dead lock for one and false results for the other) and is thus not
compared to the other executions. KMP also produced large standard deviations
of the execution time for benchmarks for which it could compute correct results,
probably due to some cache effect of the DSM system. The execution time for
each execution type is the average of the execution times over ten runs.

An in depth study of the code generated by STEP for all the selected bench-
marks shows that the array region analysis optimizes the size of the MPI messages
sufficiently (no over-approximation) to avoid any time consuming comparative
scan at runtime, a benefit of minimising the size of messages.

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

MD N500-I500

SpeedUpMax
OMP
KMP
STEP

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

MD N1000-I500

SpeedUpMax
OMP
KMP
STEP

Figure 3. Speedup for MD

Figure 3 shows that STEP is very efficient for MD which has a high com-
p/comm ratio. In contrast to MD, for both MG and FT, although the MPI and
OpenMP expressions of parallelism are rather similar for the former and different
for the latter, the results of STEP are worse than those of SER. The performance
analysis tool Vampir [13] has shown how small the comp/comm ratio of these
benchmarks is for STEP, which is the reason for this result.

In the case of MG, the volume of data communicated could be reduced, thus
the comp/comm ratio increased. Indeed, with the current execution model, data
can be tagged COMM and communicated but not accessed by the next code
section; worse, it can even be communicated many times uselessly, i.e. without
being used. To get around this problem, STEP could use another execution model
with “producer” and “consumer” parallel sections being tied more closely. Such
a model would require a more in depth array region analysis, not only comput-
ing OUT (A) ∩ WRITE(A) = COMMO(A), but also IN(A) ∩ READ(A) =
COMMI(A) to determine whether a section consumes data from array A or not
(a code section producing COMMO regions and consuming COMMI ones). This
would relax synchronisation of memory updates, delaying communication of data
until required, and allow overlap of communication by computation. It could also
be effective for FT, with a slight simplification of the given source code in order
to ease the work of STEP.

The influence of the comp/comm ratio over the efficiency of STEP can be
assessed by means of Matmul, the ratio increasing with the matrix size. Figure 4
shows that the speedup increases faster with the comp/comm ratio for STEP and
KMP than for OMP. The STEP speedup is also better than the KMP one for the
smallest value of the comp/comm ratio (N=1000). Fewer memory pages means
more competition for access when the number of client processes of the Cluster
OpenMP DSM system increases.

All these experiments confirm that STEP is relevant for applications with
high comp/comm ratio. Of course, STEP performance cannot compete with those
of MPI code written by an expert MPI programmer. On the contrary, the use of
STEP has been shown to lead to interesting speedups, compared to that of OMP
or KMP, for a certain class of applications.

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-1000

SpeedUpMax
OMP
KMP
STEP

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-2000

SpeedUpMax
OMP
KMP
STEP

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-4000

SpeedUpMax
OMP
KMP
STEP

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-8000

SpeedUpMax
OMP
KMP
STEP

Figure 4. Speedup for matrix multiplication

4. Conclusion and future work

We have presented the source-to-source transformation tool called STEP which
generates MPI source code, from a program annotated with OpenMP directives.
We have also presented the results of experiments with STEP on typical scientific
applications. STEP relies on PIPS inter-procedural region analyses, the quality of
which allows STEP to reduce both the volume of data that need to be communi-
cated and the extent of time consuming scan at runtime when updating arrays at
the end of parallel sections. The experiments have shown that STEP is relevant
for applications with a high enough comp/comm ratio and given some hints for
future work.

Namely, the current execution model of STEP requires systematic data up-
dates, that may be very expensive for some applications. As illustrated by MD,
a high comp/comm ratio can compensate for these updates and lead to interest-
ing speedups. The execution model of STEP could then evolve as suggested in
the previous section with more complete region analyses in order to optimize the
volume of communicated data.

Besides, in the short term, we plan to allow STEP to deal with multilevel
parallelism and generate hybrid MPI/OpenMP code. Coarse-grain parallelism
could be dealt with by means of calls to MPI primitives, and exploited across dis-
tributed memory nodes, whereas fine-grain parallelism could be expressed through
OpenMP directives, and exploited within each multicore node. The resulting par-

allel code should be relevant for clusters of multicores. As PIPS analyses could
compute the comp/comm ratio for each parallel section, STEP could decide the
best execution mode for a parallel section, either distributed or shared memory.

Since it simplifies the production of a parallel code adapted to distributed
memory architectures, STEP can be used by the designer of an application
straightforwardly. Therefore, an objective of STEP in the long term is to build on
the designer’s expertise to guide STEP in certain decisions, in order to improve
the quality of the source code it produces.

5. Acknowledgements

The research presented in this paper has partially been supported by the French
Ministry for Economy, Industry and Employment (DGCIS) through the ITEA2
project “ParMA” [14] (No 06015, June 2007 – May 2010).

References

[1] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier. STEP: a distributed OpenMP
for coarse-grain parallelism tool. In Proc. International Workshop on OpenMP ’08,
OpenMP in a New Era of Parallelism, Purdue University, USA, IWOMP, 2008.

[2] C. Ancourt, B. Apvrille, F. Coelho, F. Irigoin, P. Jouvelot, and R. Keryell. PIPS — A
Workbench for Interprocedural Program Analyses and Parallelization. In Meeting on data
parallel languages and compilers for portable parallel computing, 1994.

[3] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Compiler for an SMP
Cluster. In Proceedings of First European Workshop on OpenMP (EWOMP), 1999.

[4] A. Basumallik, S.J. Min, and R. Eigenmann. Towards OpenMP Execution on Software
Distributed Shared Memory Systems. In International Workshop on OpenMP: Experi-

ences and Implementations, WOMPEI’2002, 2002.
[5] R. Eigenmann, J. Hoeflinger, R. H. Kuhn, D. Padua, A. Basumallik, S.J. Min, and J. Zhu.

Is OpenMP for Grids. In NSF Next Generation Systems Program Workshop held in
conjunction with IPDPS, 2002.

[6] Y.S. Kee, J.S. Kim, and S. Ha. ParADE: An OpenMP Programming Environment for
SMP Cluster Systems. In Conference on High Performance Networking and Computing,
2003.

[7] T. Boku, M. Sato, M. Matsubara, and D. Takahashi. OpenMPI - OpenMP like tool for
easy programming in MPI. In Sixth European Workshop on OpenMP, 2004.

[8] A. Basumallik, S.J. Min, and R. Eigenmann. Programming Distributed Memory Systems
Using OpenMP. In 12th International Workshop on High-Level Parallel Programming

Models and Supportive Environments, 2007.
[9] B. Creusillet. Array region analyses and applications. PhD thesis, École Nationale

Supérieure des Mines de Paris, 1996.
[10] J. Hoeflinger. Extending OpenMP to Clusters. Technical report, Intel Corporation, 2006.
[11] NAS parallel benchmarks. http://www.nas.nasa.gov/Resources/Software/npb.html.
[12] B. Magro. OpenMP samples. Kuck and Associates Inc. (KAI),

http://www.openmp.org/samples/md.f.
[13] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller, and

W. E. Nagel. The vampir performance analysis tool-set. In Tools for High Performance
Computing, 2008.

[14] ParMA: Parallel Programming for Multi-core Architectures. ITEA2 Project (06015)
http://www.parma-itea2.org.

