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Abstract. Developing parallel high-performance applications is an error-prone and time-
consuming challenge. Performance tuning can be alleviated considerably by using optimisation 
tools, either by simply applying a stand-alone tool or by applying a tool chain with a number of 
more or less integrated tools covering different aspects of the optimisation process. In the present 
paper, we demonstrate the benefits of the latter approach on the industrial combustion modelling 
software RECOM-AIOLOS. The applied tool chain comprises both low-level and high-level 
analysis of the application: using the MAQAO tool, the assembly code generated by the compiler 
can be analysed statically, aiming at possible optimisations on a loop level. Another important 
aspect is identifying and optimising bottlenecks in memory access and cache utilisation. On a 
higher level, efficient usage of parallel programming paradigms (MPI, OpenMP) is verified by 
the VAMPIR and SCALASCA frameworks. Combining the different optimisation strategies 
leads to a significant overall performance improvement. 
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1. Introduction 

The 3D-combustion modeling software RECOM-AIOLOS is a tailored application 
for the mathematical modelling of industrial firing systems ranging from several 
hundred kW to more than 1000 MW. In-depth validation using measurements 
from industrial power plants, the extension of chemical reaction models and the 
rapid development of computer technology have made RECOM-AIOLOS a well 
proven and reliable tool for the prediction of industrial furnace efficiency. The 
software solves approx. 100 conservation equations (mass, momentum, energy, 
species concentrations, radiation) on a 10-15 million cells finite volume grid, 
leading to high computational demands. Originally being designed for high-
performance computing on parallel vector-computers and massively parallel 
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systems, the software has been ported to low-cost multi-core systems to expand 
the hardware base. In the present work a suite of optimization tools (MARMOT 
[1], VAMPIR [2], SCALASCA [3], MAQAO [4]) was used for performance 
tuning to identify execution bottlenecks and potential improvements in a 
systematic way. 

2. Applied Workflow for Performance Tuning 

The applied workflow for performance tuning consists of a combination of high-
level and low-level performance analysis. The total workflow for performance 
tuning was executed in the following sequence: 

 
1.) An optimized massively parallel execution across nodes was achieved by 

a high-level analysis of the existing MPI-Parallelization. The tool 
MARMOT was used to check the MPI-Implementation. Furthermore, the 
MPI-parallel execution was analysed with the tools VAMPIR & 
SCALASCA. 

2.) An optimized execution on individual cores was achieved by a low-level 
performance analysis for single and multi-core execution within the node. 
The tools VAMPIR & MAQAO were used to assess single and multi- 
core execution on a subroutine level using performance counters. 
Furthermore, the tool MAQAO was also used to identify performance 
bottlenecks on a loop level within critical subroutines. 

3.)  An optimized shared memory parallel execution within the multi-core 
node has been achieved by a high-level performance analysis of hybrid 
parallelism. The work focused on the investigation of the benefits of 
using hybrid (OpenMP and MPI) parallel execution within the node. 

3. High Level Performance Analysis of MPI-Parallelization 

The MPI-performance of the RECOM-AIOLOS code on multi-core systems was 
analyzed using the tools VAMPIR & SCALASCA. The performance analysis of 
the original MPI-communication for a portion of the code covering 0.25 s is 
shown in Fig. 1. The red zones in Fig. 1 indicate that the MPI-communication 
generates an unexpectedly large number of wait events at the synchronisation 
points of the application. A deeper analysis of the problem revealed, that the MPI-
processes were forced to synchronize in a prescribed sequence by using the 
MPI_WAIT subroutine for synchronisation. This led to a significant overhead in 
the synchronisation because some of the MPI-processes were still in computation 
while others were ready for synchronisation, but because of the prescribed 
synchronisation sequence had to wait for other MPI-processes to finish their 
computation. The problem was solved by replacing the MPI_WAIT subroutine 



with MPI_WAITALL, thus allowing the MPI-processes to synchronize as they 
finish their computation. 

 

 

 

 

 

 
 

 

 
Figure 1: Performance analysis of original MPI-communication 

 

 

 

 

 

 

 

 

 
Figure 2. Performance analysis of modified MPI-communication 

The modified MPI-communication for the same portion of the code covering 
0.25 s is shown in Fig. 2. Fig. 2 shows a significant lower amount of red zones 
indicating that the MPI-communication now generates a significant lower number 
of wait events at the synchronization points of the application. 

The savings in execution time achieved with the modified MPI-communication 
(MPI_WAIT versus MPI_WAITALL) are summarized in the Fig. 3. The results 
indicate, that the performance improvements increase with increasing number of 
cores. Execution time savings in the order of 10 % were measured for 128 cores. 
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Figure 3. Performance improvements achieved with modified MPI-communication 

An MPI-performance analysis with the optimized MPI-code was performed on a 
Xeon-Cluster (NOVA) using up to 128 cores. The result of this analysis is shown 
in Fig. 4. 

 

 

 

 

 

 

 

 

Figure 4. MPI-performance analysis on a Xeon-Cluster (NOVA) 

The results shown in Fig. 4 indicate an almost linear scaling for the massively 
parallel (MPP) execution across the nodes. However, a performance breakdown 
can be observed within the node. A closer look at this so-called Parallel Multi-
Core (ParMa) region reveals good scaling up to four cores and a continuous 
breakdown for 8 and 16 cores. The total loss in parallel efficiency when using the 
entire node is 55%. The performance loss within the node is hereby the critical 
factor for the entire multi-core system. 



1 GFlop

• combgasif approx. 930 Mflops

• chemedc3 approx. 970 Mflops

• rbgauss approx. 400 Mflops

• apmsp approx. 410 Mflops
(about 6 % of total computing time)

1 GFlop

• combgasif approx. 820 Mflops

• chemedc3 approx. 910 Mflops

• rbgauss approx. 100 Mflops

• apmsp approx. 110 Mflops
(about 10 % of total computing time)

4. Low Level Performance Analysis for Single and Multi-Core 

In order to analyze the performance breakdown within the node more deeply the 
tools VAMPIR & MAQAO were used to assess the general sustained performance 
in terms of MFlops achieved. The results of the performance measurements for 
single core and full node utilisation are summarised in Figs. 5 and 6. The analysis 
shown in Figs. 5 and 6 reveals, that the subroutines Combgasif and Combedc 
(calculation of the homogeneous gas-phase and the heterogeneous particle 
chemistry) that perform a large number of floating point operations in relation to 
the data that is required from the memory achieve almost 930-970 MFlops of 
computational speed on a single core, and the computational speed drops only 
slightly to 820-910 MFlops when using 16 cores simultaneously. On the other 
hand the subroutines Rbgauss and Apmsp that do a smaller number of floating 
point operations in relation to the required data from the memory achieve only a 
reduced computational speed of 400-410 MFlops on a single core, and the 
computational speed severely drops to 100-110 MFlops when using 16 cores 
simultaneously. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Analysis of single core performance 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Analysis of full node performance (16 cores) 
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+ AN(INC,2)*PHI(INC-1)     &
+ AN(INC,3)*PHI(INC+INPD)  &
+ AN(INC,4)*PHI(INC-INPD)  &
+ SU(INC)
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ENDDO

!$OMP END PARALLEL DO

Sequential Cache Line:
Only a few elements loaded into cache are used !
This leads to a significant overhead in memory traffic ! 

The analysis of the parallel performance on subroutine level summarized in Fig. 7 
shows, that the memory-intense routines Rbgauss and Apmsp also exhibit a severe 
breakdown in parallel performance when using more than two cores 
simultaneously, while scaling is almost linear for the compute-intense subroutines 
Combgasif and Combedc. The function powL (power law system function) scales 
ideally with increasing number of CPUs/Cores because it only performs floating 
point operations without any memory access. This is somehow misleading, 
because this function is called mostly within the Combgasif and Combedc 
subroutine that contains the required memory access time. Taking this into 
account these both routines would even scale better. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Parallel performance on subroutine level 

The performance breakdown of the Rbgauss subroutine, which is a Gauss-Seidl 
Solver with Red-Black-Ordering for resolving the data dependency within the 
loop, was further analysed on the loop-level with the MAQAO tool.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Original implementation in Rbgauss subroutine  
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!!Red Loop of Red-Black-Solver
!$OMP PARALLEL DO PRIVATE(INC,ANS)

DO IDO=1,NREDD
INC = INDRED(IDO)
ANS = AN(IDO,1)*PHI(INC+1)     &

+ AN(IDO,2)*PHI(INC-1)     &
+ AN(IDO,3)*PHI(INC+INPD)  &
+ AN(IDO,4)*PHI(INC-INPD)  &
+ SU(INC)

PHI(INC) = ANS/AP(IDO)
ENDDO

!$OMP END PARALLEL DO

IDO

Reorientation of AN / AP Field:

The outcome of this analysis showed, that due to the internal data structure within 
the code, only a few elements of the sequential cache line were used for 
calculation (see Fig. 8). This led to a significant overhead in memory traffic. The 
majority of the memory traffic was hereby generated through the loading of the 
array AN and AP (see Fig. 8) using an indirection array. The remedy was a 
reorientation of the load intensive data stream. The arrays AN and AP were stored 
linearly in the memory and accessed via a direct access (see Fig. 9), leading to a 
full utilisation of the data that was loaded into the cache. The reoriented 
arrangement is shown in Fig. 9. The resulting performance improvement due to 
the restructuring of the Rbgauss subroutine is 38 % on a subroutine level and 
around 13.6 % on 16 cores for the entire application. 

 
 
 
 

 

 

 

 
Figure 9. Reoriented data arrangement in Rbgauss subroutine  

5. High Level Performance Analysis of Hybrid Parallelism 

Another approach for better using the available memory bandwidth on a multi-
core systems was found by adapting the parallel programming model to the given 
memory architecture. The adaption was done by varying the number of MPI-
processes and OpenMP threads in the parallel execution (hybrid approach). A 
comparison of the performance achieved with hybrid parallel execution on 
Itanium versus Xeon X7350 (Tigerton) and Nehalem is shown in Fig. 10. The 
results in Fig. 10 show, that memory degradation is so severe on the Xeon system 
that a variation of the number of MPI-processes and OpenMP threads hardly 
effects the parallel performance, while the Itanium and the Nehalem system take 
advantage from using 4 OpenMP threads on a single logical memory block. 
Fig. 10 demonstrates the superiority of the memory access in a NUMA 
architecture compared to a conventional bus system. Performance improvements 
of roughly 15% were achieved through the usage of a hybrid parallel approach. 
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Figure 10. Hybrid parallel performance on multi-core architectures 

6. Summary 

This article reveals that applying a tool chain of well selected optimization tools 
allows a thorough analysis of the performance bottlenecks and the identification of 
the most promising measures for performance improvements on multi-core 
systems. Even for a high performance computing application like the 3D-
combustion modeling software RECOM-AIOLOS a performance gain of roughly 
34% for the entire application has been achieved. 
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