
How to Accelerate an Application: a
Practical Case Study in Combustion

Modelling
Benedetto RISIO a,1, Alexander BERRETH a, Stéphane ZUCKERMAN b,

Souad KOLIAI b, Mickaël IVASCOT b, William JALBY b, Bettina KRAMMER b,
Bernd MOHR c, and Thomas WILLIAM d

a RECOM Services GmbH, Germany
b Université de Versailles Saint-Quentin-en-Yvelines, France

cJSC Jülich, Germany ; dGWT-TUD GmbH Dresden, Germany

Abstract. Developing parallel high-performance applications is an error-prone and time-
consuming challenge. Performance tuning can be alleviated considerably by using optimisation
tools, either by simply applying a stand-alone tool or by applying a tool chain with a number of
more or less integrated tools covering different aspects of the optimisation process. In the present
paper, we demonstrate the benefits of the latter approach on the industrial combustion modelling
software RECOM-AIOLOS. The applied tool chain comprises both low-level and high-level
analysis of the application: using the MAQAO tool, the assembly code generated by the compiler
can be analysed statically, aiming at possible optimisations on a loop level. Another important
aspect is identifying and optimising bottlenecks in memory access and cache utilisation. On a
higher level, efficient usage of parallel programming paradigms (MPI, OpenMP) is verified by
the VAMPIR and SCALASCA frameworks. Combining the different optimisation strategies
leads to a significant overall performance improvement.

Keywords. performance analysis, optimization, application, combustion

1. Introduction

The 3D-combustion modeling software RECOM-AIOLOS is a tailored application
for the mathematical modelling of industrial firing systems ranging from several
hundred kW to more than 1000 MW. In-depth validation using measurements
from industrial power plants, the extension of chemical reaction models and the
rapid development of computer technology have made RECOM-AIOLOS a well
proven and reliable tool for the prediction of industrial furnace efficiency. The
software solves approx. 100 conservation equations (mass, momentum, energy,
species concentrations, radiation) on a 10-15 million cells finite volume grid,
leading to high computational demands. Originally being designed for high-
performance computing on parallel vector-computers and massively parallel

1 RECOM Services GmbH, Nobelstrasse 15, D-70569 Stuttgart, Germany,
 Fax: +49-711-6868 9149, E-mail: info@recom-services.de

systems, the software has been ported to low-cost multi-core systems to expand
the hardware base. In the present work a suite of optimization tools (MARMOT
[1], VAMPIR [2], SCALASCA [3], MAQAO [4]) was used for performance
tuning to identify execution bottlenecks and potential improvements in a
systematic way.

2. Applied Workflow for Performance Tuning

The applied workflow for performance tuning consists of a combination of high-
level and low-level performance analysis. The total workflow for performance
tuning was executed in the following sequence:

1.) An optimized massively parallel execution across nodes was achieved by

a high-level analysis of the existing MPI-Parallelization. The tool
MARMOT was used to check the MPI-Implementation. Furthermore, the
MPI-parallel execution was analysed with the tools VAMPIR &
SCALASCA.

2.) An optimized execution on individual cores was achieved by a low-level
performance analysis for single and multi-core execution within the node.
The tools VAMPIR & MAQAO were used to assess single and multi-
core execution on a subroutine level using performance counters.
Furthermore, the tool MAQAO was also used to identify performance
bottlenecks on a loop level within critical subroutines.

3.) An optimized shared memory parallel execution within the multi-core
node has been achieved by a high-level performance analysis of hybrid
parallelism. The work focused on the investigation of the benefits of
using hybrid (OpenMP and MPI) parallel execution within the node.

3. High Level Performance Analysis of MPI-Parallelization

The MPI-performance of the RECOM-AIOLOS code on multi-core systems was
analyzed using the tools VAMPIR & SCALASCA. The performance analysis of
the original MPI-communication for a portion of the code covering 0.25 s is
shown in Fig. 1. The red zones in Fig. 1 indicate that the MPI-communication
generates an unexpectedly large number of wait events at the synchronisation
points of the application. A deeper analysis of the problem revealed, that the MPI-
processes were forced to synchronize in a prescribed sequence by using the
MPI_WAIT subroutine for synchronisation. This led to a significant overhead in
the synchronisation because some of the MPI-processes were still in computation
while others were ready for synchronisation, but because of the prescribed
synchronisation sequence had to wait for other MPI-processes to finish their
computation. The problem was solved by replacing the MPI_WAIT subroutine

with MPI_WAITALL, thus allowing the MPI-processes to synchronize as they
finish their computation.

Figure 1: Performance analysis of original MPI-communication

Figure 2. Performance analysis of modified MPI-communication

The modified MPI-communication for the same portion of the code covering
0.25 s is shown in Fig. 2. Fig. 2 shows a significant lower amount of red zones
indicating that the MPI-communication now generates a significant lower number
of wait events at the synchronization points of the application.

The savings in execution time achieved with the modified MPI-communication
(MPI_WAIT versus MPI_WAITALL) are summarized in the Fig. 3. The results
indicate, that the performance improvements increase with increasing number of
cores. Execution time savings in the order of 10 % were measured for 128 cores.

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

Sp
ee

d-
U

p

Number of CPUs/Cores

Linear

MPI on NOVA

Shared Memory within
Node – ParMa

Distributed Memory Across Nodes
– Massively Parallel (MPP)

MPP - Limitations:
- Communication
- Load Imbalance

ParMa - Limitations:
- Communication
- Load Imbalance
- Memory Access

Loss in Parallel
Efficiency: 55 %

Figure 3. Performance improvements achieved with modified MPI-communication

An MPI-performance analysis with the optimized MPI-code was performed on a
Xeon-Cluster (NOVA) using up to 128 cores. The result of this analysis is shown
in Fig. 4.

Figure 4. MPI-performance analysis on a Xeon-Cluster (NOVA)

The results shown in Fig. 4 indicate an almost linear scaling for the massively
parallel (MPP) execution across the nodes. However, a performance breakdown
can be observed within the node. A closer look at this so-called Parallel Multi-
Core (ParMa) region reveals good scaling up to four cores and a continuous
breakdown for 8 and 16 cores. The total loss in parallel efficiency when using the
entire node is 55%. The performance loss within the node is hereby the critical
factor for the entire multi-core system.

1 GFlop

• combgasif approx. 930 Mflops

• chemedc3 approx. 970 Mflops

• rbgauss approx. 400 Mflops

• apmsp approx. 410 Mflops
(about 6 % of total computing time)

1 GFlop

• combgasif approx. 820 Mflops

• chemedc3 approx. 910 Mflops

• rbgauss approx. 100 Mflops

• apmsp approx. 110 Mflops
(about 10 % of total computing time)

4. Low Level Performance Analysis for Single and Multi-Core

In order to analyze the performance breakdown within the node more deeply the
tools VAMPIR & MAQAO were used to assess the general sustained performance
in terms of MFlops achieved. The results of the performance measurements for
single core and full node utilisation are summarised in Figs. 5 and 6. The analysis
shown in Figs. 5 and 6 reveals, that the subroutines Combgasif and Combedc
(calculation of the homogeneous gas-phase and the heterogeneous particle
chemistry) that perform a large number of floating point operations in relation to
the data that is required from the memory achieve almost 930-970 MFlops of
computational speed on a single core, and the computational speed drops only
slightly to 820-910 MFlops when using 16 cores simultaneously. On the other
hand the subroutines Rbgauss and Apmsp that do a smaller number of floating
point operations in relation to the required data from the memory achieve only a
reduced computational speed of 400-410 MFlops on a single core, and the
computational speed severely drops to 100-110 MFlops when using 16 cores
simultaneously.

Figure 5. Analysis of single core performance

Figure 6. Analysis of full node performance (16 cores)

1

2

4

8

16

1 2 4 8 16

Sp
ee

d-
U

p

Number of CPUs/Cores

Combgasif Combedc Apmsp

Rbgauss powL Linear

Increasing Computation
to Memory Access Ratio

Performance Improvements
require an improved memory
access within the node

52 54

43 45 47

32 34 36 38

23 25 27

12 14 16

i

j

INC

Only the Red AN / AP Elements are required

!!Red Loop of Red-Black-Solver
!$OMP PARALLEL DO PRIVATE(INC,ANS)

DO IDO=1,NREDD
INC = INDRED(IDO)
ANS = AN(INC,1)*PHI(INC+1) &

+ AN(INC,2)*PHI(INC-1) &
+ AN(INC,3)*PHI(INC+INPD) &
+ AN(INC,4)*PHI(INC-INPD) &
+ SU(INC)

PHI(INC) = ANS/AP(INC)
ENDDO

!$OMP END PARALLEL DO

Sequential Cache Line:
Only a few elements loaded into cache are used !
This leads to a significant overhead in memory traffic !

The analysis of the parallel performance on subroutine level summarized in Fig. 7
shows, that the memory-intense routines Rbgauss and Apmsp also exhibit a severe
breakdown in parallel performance when using more than two cores
simultaneously, while scaling is almost linear for the compute-intense subroutines
Combgasif and Combedc. The function powL (power law system function) scales
ideally with increasing number of CPUs/Cores because it only performs floating
point operations without any memory access. This is somehow misleading,
because this function is called mostly within the Combgasif and Combedc
subroutine that contains the required memory access time. Taking this into
account these both routines would even scale better.

Figure 7. Parallel performance on subroutine level

The performance breakdown of the Rbgauss subroutine, which is a Gauss-Seidl
Solver with Red-Black-Ordering for resolving the data dependency within the
loop, was further analysed on the loop-level with the MAQAO tool.

Figure 8. Original implementation in Rbgauss subroutine

51 52 53 54 55

41 42 43 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

i

j

!!Red Loop of Red-Black-Solver
!$OMP PARALLEL DO PRIVATE(INC,ANS)

DO IDO=1,NREDD
INC = INDRED(IDO)
ANS = AN(IDO,1)*PHI(INC+1) &

+ AN(IDO,2)*PHI(INC-1) &
+ AN(IDO,3)*PHI(INC+INPD) &
+ AN(IDO,4)*PHI(INC-INPD) &
+ SU(INC)

PHI(INC) = ANS/AP(IDO)
ENDDO

!$OMP END PARALLEL DO

IDO

Reorientation of AN / AP Field:

The outcome of this analysis showed, that due to the internal data structure within
the code, only a few elements of the sequential cache line were used for
calculation (see Fig. 8). This led to a significant overhead in memory traffic. The
majority of the memory traffic was hereby generated through the loading of the
array AN and AP (see Fig. 8) using an indirection array. The remedy was a
reorientation of the load intensive data stream. The arrays AN and AP were stored
linearly in the memory and accessed via a direct access (see Fig. 9), leading to a
full utilisation of the data that was loaded into the cache. The reoriented
arrangement is shown in Fig. 9. The resulting performance improvement due to
the restructuring of the Rbgauss subroutine is 38 % on a subroutine level and
around 13.6 % on 16 cores for the entire application.

Figure 9. Reoriented data arrangement in Rbgauss subroutine

5. High Level Performance Analysis of Hybrid Parallelism

Another approach for better using the available memory bandwidth on a multi-
core systems was found by adapting the parallel programming model to the given
memory architecture. The adaption was done by varying the number of MPI-
processes and OpenMP threads in the parallel execution (hybrid approach). A
comparison of the performance achieved with hybrid parallel execution on
Itanium versus Xeon X7350 (Tigerton) and Nehalem is shown in Fig. 10. The
results in Fig. 10 show, that memory degradation is so severe on the Xeon system
that a variation of the number of MPI-processes and OpenMP threads hardly
effects the parallel performance, while the Itanium and the Nehalem system take
advantage from using 4 OpenMP threads on a single logical memory block.
Fig. 10 demonstrates the superiority of the memory access in a NUMA
architecture compared to a conventional bus system. Performance improvements
of roughly 15% were achieved through the usage of a hybrid parallel approach.

0

2

4

6

8

10

12

14

16

16x1 8x2 4x4 2x8 1x16

Sp
ee

du
p

MPI-Proc. x OpenMP-Threads

Xeon X7350
Itanium Montvale A1
Nehalem

Performance gain due to the use of one MPI
processwith 4 OpenMP threads per logical

memory block

One MPI process shares 2
logical memory blockswith 8

OpenMPthreads

Figure 10. Hybrid parallel performance on multi-core architectures

6. Summary

This article reveals that applying a tool chain of well selected optimization tools
allows a thorough analysis of the performance bottlenecks and the identification of
the most promising measures for performance improvements on multi-core
systems. Even for a high performance computing application like the 3D-
combustion modeling software RECOM-AIOLOS a performance gain of roughly
34% for the entire application has been achieved.

Acknowledgements
The research presented in this paper has partially been supported by the German Ministry
for Research and Education (BMBF), and the French Ministry for Economy, Industry and
Employment (DGCIS) through the ITEA2 project “ParMA” [5] (June 2007 – May 2010).

References
[1] Krammer, B.; Bidmon, K.; Müller, M.S.; Resch, M.M.: MARMOT: An MPI Analysis and

Checking Tool. In Joubert, G.R., Nagel, W.E., Peters, F.J., Walter, W.V., eds.: PARCO. Volume
13 of Advances in Parallel Computing., Elsevier (2003) 493–500

[2] Müller, M.S.; Knüpfer, A.; Jurenz, M.; Lieber, M.; Brunst, H.; Mix, H.; Nagel, W.E.: Developing
Scalable Applications with Vampir, VampirServer and VampirTrace, Advances in Parallel
Computing, Volume 15, ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

[3] Geimer, M.; Wolf, F.; Wylie, B. J. N.; Abraham, E.; Becker, D.; Mohr, B. (2008): The
SCALASCA Performance Toolset Architecture, Proceedings of the International Workshop on
Scalable Tools for High-End Computing (STHEC), Kos, Griechenland / ed.: M. Gerndt, J. Labarta,
B. Miller. - 2008. - pp. 51 – 65

[4] Djoudi, L.; Barthou, D.; Carribault, P.; Lemuet, C.; Acquaviva, J-T.; Jalby, W.: MAQAO:
Modular Assembler Quality Analyzer and Optimizer for Itanium 2, Workshop on EPIC
architectures and compiler technology, San Jose, 2005.

[5] ParMA: Parallel Programming for Multi-core Architectures - ITEA2 Project (06015).
http://www.parma-itea2.org/

