
Parallel Programming for
Multi-core Architectures

Jean-Marc MOREL a for the ParMA Project Partners b

a Bull SAS, France
b France, Germany, Spain, UK

Abstract. This paper gives an overview of the European ITEA2 project named
ParMA (“Parallel Programming for Multi-core Architectures”), which aims at de-
veloping advanced technologies for exploiting multi-core architectures both for
conventional High Performance Computing (HPC) and for Embedded Computing.
It presents the main components of the ParMA technology and describes how ap-
plication developers applied it and improved the performance of their applications.

Keywords. Keywords. parallel programming, multi-core, performance analysis,
code optimization, (embedded) high-performance computing.

1. Introduction

Figure 1.: Intel CPU Introductions

The ParMA project has
been proposed in 2006
when it was acknowl-
edged that the “free
lunch was over” as
Herb Sutter stressed
it in his famous arti-
cle [1]: “because the
microprocessor serial
processing speed is
reaching a physical
limit, processor manu-
facturers will turn en
masse to hyperthread-
ing and multi-core
architectures, forcing
software developers to
develop massively mul-
tithreaded programs to
harness the power of
such processors”. In-
deed, the number of cores per chip doubles every 18 months, instead of clock frequency
as shown in Figure 1.



On the other hand, research and industry do need more powerful and more cost ef-
fective technical and scientific computing systems either to solve big challenges (e.g.
global warming studies, bio-informatics) or to design new products in a more effective
manner (e.g. using car crash simulation to spare the cost of hardware prototypes). Effi-
cient parallel computing appears to be paramount to meet these challenges.

Therefore, the ParMA project (see http://www.parma-itea2.org/) has
been launched mid-2007 to develop and leverage parallel programming techniques and
tools enabling to take advantage of multi-core architectures. The aim is to build a soft-
ware development environment intended, on the one hand, to significantly improve the
performance of HPC applications (thus the modelling and simulation of more complex
models) and, on the other hand, to prepare to develop power- intensive embedded appli-
cations that could not be envisaged so far.

In the following sections, we present the ParMA approach, the main components of
the ParMA technology (focusing on the elements that are not presented in the companion
papers [2,3,4,5,6,7]), and the first results obtained on industrial applications, while the
list of partners with their main contribution is given in Table 1 on the last page.

2. The ParMA Approach

The advent of various types of massively and multilevel parallel architectures presents
several real challenges:

• Since most existing HPC applications are designed as a set of independent pro-
cesses communicating and synchronising through calls to MPI (Message Passing
Interface) primitives with each process being bound to a processor, programming
paradigms and tools must be developed to help restructure these applications so
that they can fully benefit from the multilevel parallelism offered by new archi-
tectures;

• Due to the huge number of threads that multi-core processors will be able to run in
parallel, dramatic improvements must be achieved in the way threads are allocated
and monitored to minimise memory access – i.e. data exchanges between threads;

• Because of the increased complexity resulting from the huge number of threads,
more powerful programming, debugging and performance analysis tools are
needed . They should also be more easy to use, and should help optimize applica-
tions using different forms of parallel architectures in various contexts (e.g. SMP,
NUMA, MPSoC).

• Since embedded systems will also be built with multi-core processors, multilevel
parallel design, programming and execution models must be defined and tools
must be developed accordingly; including tools to design efficient interconnecting
networks for MPSoC.

• Because each domain – simulation, virtual reality, avionics, etc. – has its own
characteristics and specific constraints, the proposed approaches must be experi-
mented and validated with different applications from various domains.

To meet the above challenges, ParMA proposed a holistic approach and we split the
technical work into four inter-connected work packages as shown in Figure 2.



Figure 2. The ParMA cooperation schema

3. The ParMA Technology

As it is acknowledged that there is no silver bullet to port a compute-intensive application
on a multi-core architecture and get better performance, several key enablers need to be
combined and leveraged that include:

• Algorithms that are more accurate and converge faster
• Methods and tools to detect and extract parallelism (thread extraction),
• New parallel programming models and extended directives to express parallelism,
• Easy to use and scalable performance-analysis tools,
• Powerful correctness checker and debugger,
• Code optimization tools,
• Optimized libraries for multithread / multi-core, and
• Enhanced software infrastructure with optimized thread management, job schedul-

ing, etc.

Thus, the ParMA project organized to advance the state-of-the-art in these various
aspects:

3.1. Algorithms that are more accurate and converge faster
Several partners recognized the need to start by identifying critical algorithms that could
not take advantage from parallelism or could not scale properly and to replace them by
new ones which can well exploit multi-core architectures thereby yielding faster and
more accurate results. CEA- LIST for instance, developed innovative algorithms of col-
lision detection (based on Bounding Volume Hierarchy) and object motion management.



They designed and tested a task calibration scheme to get a set of homogeneous tasks
(with respect to compute time) matching the number of available cores while limiting
the overhead to pay for synchronisation and task management. The main challenge was
to organize the tasks (threads) to get optimal load balancing.

In an industrial test case carried out on an 8 core machine with an initial speed-up
of 1.7, their extraction parallelism (using a mix of temporal coherency and geometrical
properties) enabled to deliver a speed-up of 6.9.

Several other similar experiences have been made that, in particular, led to adopting
solvers that are more efficient and more scalable on multi-core architectures.

3.2. Methods and tools to detect and extract parallelism
Methods and tools to detect and extract parallelism are of course much needed to par-
allelize a sequential application. Therefore CAPS (http://www.caps-entreprise.com/) de-
veloped a thread extraction tool that helps identify possible threads using profiling in-
formation: hot paths and memory transfers (data size and dependencies). This extraction
facility is part of the HMPP tool which enables to map domain specific and critical com-
putations on specialized processors (hardware accelerators such as GPU or FPGA) while
generic computations are allocated on generic cores (CPUs). This mapping is specified
by mean of OpenMP-like compiler directives that are used to generate codelets that en-
capsulate hardware-specific code, while determining which data are local or shared to
minimize data transfers.

3.3. New parallel programming models and enriched directives to express parallelism
Evolving parallel programming models to help application developers express paral-
lelism to get optimal binary code on multi-core architectures is also an important re-
search path in ParMA. In addition to HMPP directives mentioned above, two extensions
have been designed and are being implemented:

• The STEP approach [4] to transform an OpenMP program to an MPI program so
that it can be executed on distributed-memory platforms.

• The introduction of data parallelism in the OASIS parallel time-triggered pro-
gramming and execution model for embedded system, evaluated with an intense-
computing application provided by Dassault Aviation [5].

3.4. Easy to use and scalable performance-analysis tools
Easy to use and scalable performance-analysis tools are of the utmost importance to
help developers understand how their parallel application behaves on a given multi -core
architecture. These tools point out the performance bottlenecks, and help identify how to
remove these bottlenecks and more generally how to optimize the code or reduce the time
spent in inter- processes communications. See [7] for more details about the performance
toolset (Scalasca + Vampir) that has been extended, enhanced, and integrated in ParMA.

3.5. Powerful correctness checker and debugger
Powerful correctness checker and debugger is also a much needed category of tools when
dealing with highly parallel code, in particular when this code must execute in various
contexts (on different platforms, using different MPI libraries, etc.). Whereas various
tools exist that address different problems (for instance DDT from Allinea to debug the
code and Marmot from HLRS and TU Dresden to check MPI correctness), it appears



tedious for the user to run them separately. ParMA enabled to efficiently integrate and
combine these tools to ease their use. In particular, an “Interface for Integrated MPI Cor-
rectness Checking” [6] was designed, allowing to easily combine any MPI correctness
checker with performance analysis tools.

3.6. Code optimisation tools
Parallelism enables to distribute the work on different processors but optimal perfor-
mance cannot be obtained without code optimisation. First, the developer needs facili-
ties to identify which resources are saturated (e.g. the memory bandwidth) and which
part of the code should be changed. Then, guidance is needed to find out what should be
changed (e.g. the algorithm, the data layout, the directives, or the compiler options) and
in which way. UVSQ designed a semi- automated methodology to analyze performance
and guide the optimization process [2] using both static analysis (with the MAQAO tool)
and dynamic analysis (with Hardware Performance monitoring and memory traces).

3.7. Optimized libraries for multithread / multi-core
As an important part of the executing time is spent in functions from various libraries, for
instance the BLAS1 library that contains routines for performing basic vector and ma-
trix operations, optimizing performance-critical and complex routines such as DGEMM
(matrix-matrix multiply) is both challenging and rewarding. So, UVSQ explored the im-
pact of data prefetching on multi-core Xeon platform and devised efficient workarounds
that led to an optimized parallel version of two building block functions, matrix_init
and memcpy2D which perform significantly better than the Intel£s implementation.
Thus, these functions can be used to replace the corresponding routines of the Intel MKL
when there is an important need of them, typically in iterative solvers.

3.8. Optimized software infrastructure
An optimized software infrastructure is more than needed to ensure efficient communi-
cations (data exchanges) among interrelated processes and threads that execute concur-
rently. For example, an optimized implementation of MPI (Message Passing Interface)
must be topology- aware in order to use the most efficient way of moving data between
two threads depending on their relative position in the hierarchical architecture (an HPC
cluster being usually composed of several groups / islands of computing-nodes, each
node containing several sockets, each socket containing several cores, and each core be-
ing possibly multithreaded). For intra-node communication for instance, Bull designed
an efficient shared and cache memory management that minimizes buffer copy and opti-
mizes bandwidth. To be optimal, different protocols depending on the size of the message
to be transmitted are implemented. Other optimizations include (1) improved scheduling
policies, (2) synchronisation of daemons on all nodes to reduce their disturbances thus
improving MPI collective operations, and (3) enhanced resources and job management
to ensure that all cores of a cluster are consistently and optimally exploited.

The need for efficient communications also exists in embedded systems where multi-
core processors are making their way. As traditional bus-based interconnects prove to
be insufficient to support the increasing volume of data exchange between the multiple
processors on a MPSoC (Multi-Processor System-on-Chip), inter-processors communi-

1BLAS stands for Basic Linear Algebra Subprograms. It is part of the Intel Math Kernel Library (MKL)



cations in embedded systems should now be based on the Network-on-Chip (NoC) con-
cept. UAB developed the NoCMaker tool that helps NoC developers to design an effi-
cient network for a given embedded system architecture and the set of applications that
will run on it. NoCMaker enables to simulate and analyze not only the performance of
the designed NoC but also its area and energy consumption because those who embrace
the manycore wave also expect superior energy efficiency (MOPS/mW).

Finally, to enable Indra to develop a custom on-chip SDR (Software Defined Radio,
an example of power-intensive embedded application), Robotiker designed and imple-
mented a NoC-based MPSoC platform using a FPGA2.

It has the following components:
– Soft-core IP processors (Pi)

Xilinx Microblaze soft-core processor
– Distributed memory subsystem (Mi)
– Network Interface Controller (NICi)
– Driver for Network Interface Controller
– NoC communication architecture
– On-Chip Message Passing Interface

(ocMPI)
Note that this on-chip message passing interface implements a subset of the MPI

standard which has been adapted to the embedded system environment [8].
The embedded system developers also adopted OTF (the Open Trace Format) which

has been designed as the common trace format for the performance analysis tools (e.g.
Vampir), thereby enabling to also benefit from these tools.

4. First Results Obtained on Industrial Applications

ITEA projects being industry-driven, the validation and uptake of the developed technol-
ogy by industrial partners is quite important. As such, the ParMA project includes sev-
eral numerical simulation software editors and several compute-intensive application de-
velopers who started to experiment with the initial version of the ParMA tools. They run
a series of performance measurements to identify performance bottlenecks, understand
the behavior of their code on multi-core architecture, assess its scalability, and when pos-
sible compare the performance of MPI versus OpenMP code version. Most often, these
results were analyzed with the help of HPC experts from the labs who in addition gave
some hints on how the code should be restructured or the compilation options changed to
get better performance. Of course several cycles (measure, analyze, optimize the code)
are generally needed to obtain satisfactory results. Hereafter are some examples.

CEA-LIST / LSI developed an efficient parallel dose exposure simulation and, us-
ing Vampir and Scalasca to identify bottlenecks, succeeded to reach 0.4s response time
on a 16-core platform (instead of 5s on a scalar machine), thus enabling user interactivity.
However, scalability can be further improved.

GNS GNS restructured the assembly phase of its metal forming simulation appli-
cation INDEED (INnovative DEEp Drawing) and got improved performance (30%) by
minimizing the sequential code in the assembly phase and by a better load balancing.

2An FPGA (Field-Programmable Gate Array) is a semiconductor device containing programmable logic
components called “logic blocks”, and programmable interconnects.



Besides, the combined use of Scalasca and Vampir enabled GNS to optimize the adaptive
mesh refinement and load balancing phases. See more details in [7].

MAGMA had two versions of its MAGMAsolid solver: (1) A SMP version (i.e. for
shared-memory architecture only) that did not scale well (speedup limited to 3.5 on 8
or 16 cores) and (2) an MPI version that scaled well on distributed memory architecture
with a large number of processors (speedup ∼45x using 64 cores) but was about four
times slower than the SMP version on a 1- to 8-core shared memory architecture. Thus,
MAGMA application developers carried out a detailed performance analysis of the MPI
version to get a unique and efficient product. They first identified that they should switch
from a CG (Conjugate Gradient) based solver to an ADI (Alternating Direction Implicit)
based solver (∼2x faster). Then, they found out that they could improve the cache effi-
ciency by reorganizing the data structures (eliminating 6 temporary arrays) and enable
the compiler to better optimize the code by removing function calls in inner loops. Still
with the help of the performance analysis tools, MAGMA also obtained 3.5x perfor-
mance increase for its MAGMAfill module by redesigning central communication rou-
tines using asynchronous communication and by optimizing the checkpointing strategy.
As a result, MAGMA customers are now provided with a unique scalable solution (2x to
4x faster) on whatever architecture they use.

RECOM’s objective in ParMA was to adopt a hybrid parallel programming model,
allowing for the combination of distributed memory parallelization across nodes and data
parallel execution within the nodes. For this, an OpenMP- and MPI-Implementation, as
well as a hybrid parallel version using a combined MPI- and OpenMP-parallel program-
ming model was implemented and installed on the project platform where detailed per-
formance analysis could be carried out using different combinations of MPI processes
and OpenMP threads in each MPI process. For instance, using Vampir, RECOM appli-
cation developers identified and removed a synchronization bottleneck, obtaining a 10%
performance improvement. They also studied with the help of the MAQAO tool how to
improve memory access as well as memory utilisation for some memory-intense rou-
tines, and could achieve performance gains of about 34% for the entire application. See
more details in [3].

5. Conclusion and Future Work

In this paper we described the overall approach of the ParMA team to consistently ad-
vance the various techniques and tools that are needed to speed-up compute-intensive
applications and to get them scalable on modern multi-core architectures. Efficient team-
work between HPC application developers and performance tools providers enabled to
find out pr oblems, their cause, and most often a solution that significantly improves the
performance of the application, up to 4x faster in some cases. So, from now on, applica-
tion partners can provide their customers with new, very efficient and scalable solutions.
Besides, embedded applications developers started to experiment with parallelization of
their code, taking advantage from the experience, the techniques, and the tools from the
HPC world: they designed ocMPI after MPI, adopted OTF (Open Trace Format), and can
benefit from the performance analysis tools such as Vampir. Our plan is to consolidate
these early results and to further disseminate them during the few months before the end
of the project.



Acknowledgments

This work has partially been supported by the French Ministry of Industry (DGCIS),
the German Ministry for Research and Education (BMBF), and the Spanish Ministry of
Industry through the ITEA2 project “ParMA” (No 06015, June 2007 – May 2010).

The ParMa Consortium

Ctry Partner Category (Industrial, Lab, University) Main contribution
FR Bull I: HPC platform provider Provide common HPC platform

FR CAPS I: Accelerate HPC code using GPU Develop thread extraction tool

FR CEA-LIST L: Safety real-time embedded system Extend programming model

FR Dassault Aviation I: Aircraft design Experiment with critical code

FR IT SudParis U: Institut Telecom Sud Paris Transform OpenMP to MPI

FR UVSQ U: University of Versailles St-Quentin Optimize code with MAQAO

DE GNS I: Metal forming simulation software Experiment with INDEED

DE GWT I: HPC software tool editor Develop Vampir with TUD

DE HLRS U: University of Stuttgart Develop MPI correctness tool

DE JSC L: Jülich Supercomputing Center Develop Scalasca

DE MAGMA I: Casting process simulation software Experiment with MAGMASoft

DE RECOM I: 3D combustion modeling software Experiment with AIOLOS

DE TU Dresden U: Technische Universität Dresden Develop Vampir with GWT

ES INDRA I: Avionics systems (e.g. SDR) Experiment with Soft. Radio

ES Robotiker L: Embedded Systems Develop MPSoC platform

ES UAB U: Universitat autonoma de Barcelona Develop NoCMaker tool

UK Allinea I: HPC software tools Editor Develop debugger (DDT)
Table 1. The ParMA consortium

.

References

[1] Sutter, H. 2005. The free lunch is over: A fundamental turn toward concurrency in software, Dr. Dobb’s
Journal, 30(3).

[2] Andres Charif-Rubial, Souad Koliai, William Jalby, Bettina Krammer, Quang Dinh: An Approach to
Application Performance Tuning (Proceedings of Parco 2009).

[3] Benedetto Risio, Alexander Berreth, Stephane Zuckerman, Souad Koliai, Mickael Ivascot, William
Jalby, Bettina Krammer, Bernd Mohr, Thomas William: How to Accelerate an Application: a Practical
Case Study in Combustion Modelling (Proceedings of Parco 2009).

[4] Daniel Millot, Alain Muller, Christian Parrot, Frédérique Silber-Chaussumier: From OpenMP to MPI:
first experiments of the STEP source-to-source transformation (Proceedings of Parco 2009).

[5] Christophe AUSSAGUES, Emmanuel OHAYON, Karine BRIFAULT, Quang V. DINH: Using Multi-
Core Architectures to Execute High Performance-Oriented Real-Time Applications (Proceedings of
Parco 2009).

[6] Tobias Hilbrich, Matthias Jurenz, Hartmut Mix, Holger Brunst, Andreas Knüpfer, Matthias S. Müller,
Wolfgang E. Nagel : An Interface for Integrated MPI Correctness Checking (Proceedings of Parco 2009).

[7] Thomas William, Hartmut Mix, Bernd Mohr, Felix Voigtländer, René Menzel: Enhanced Performance
Analysis of Multi-core Applications with an Integrated Tool-chain (Proceedings of Parco 2009).

[8] Jaume Joven, David Castells-Rufas: a lightweight MPI-based programming model and its HW support
for NoC-based MPSoC. DATE’09 (Design Automation and Test in Europe), April 2009, Nice, France.


