An Interface for Integrated MPI
Correctness Checking

Tobias HILBRICH #, Matthias JURENZ“b7 Hartmut MIX P, Holger BRUNST P,
Andreas KNUPFER P, Matthias S. MULLER P, and Wolfgang E. NAGEL®

aGWT-TUD GmbH
Chemnaitzer StrafSe 48b, 01187 Dresden, Germany
tobias. hilbrich@zih.tu-dresden.de

b Center for Information Services and High Performance Computing (ZIH)
Technische Univeristit Dresden, D-01062 Dresden, Germany
{matthias.jurenz, hartmut.miz, ...} @tu-dresden.de

Abstract. Usage errors of the widely accepted Message-Passing Interface
(MPI) are common and complicate the development process of parallel
applications considerably. Some of these errors are hard to track, espe-
cially when they only occur in certain application runs or on certain
platforms. Runtime correctness checking tools for MPI simplify the de-
tection of these errors. However, they usually need the MPI profiling
interface for their analysis. This paper addresses two issues related to
correctness tools: First, due to the exclusive usage of the MPI profiling
interface, it is not possible to use such tools in conjunction with other
MPI tools, which are also based on the profiling interface. Second, cor-
rectness checking tools usually lack the ability to provide a detailed his-
tory of the events leading to an error, whereas such a history is provided
naturally by tracing frameworks. We introduce the Universal MPI Cor-
rectness Interface (UniMCI) to overcome the first problem. This inter-
face provides functions that invoke correctness checking and return de-
tected errors in a manner that is independent of the correctness checker
in use. Furthermore, we demonstrate the applicability of UniMCI with
an implementation that uses the Marmot correctness checker and an ex-
emplary integration of the interface into the VampirTrace performance
analysis framework. As a result, we can provide a history for detected
correctness events, which provides detailed information for debugging.
Finally, we present a study using the SPEC MPI2007 benchmark to
demonstrate the feasibility and applicability of our approach.

Keywords. Correctness checking, Message-Passing Interface, Tools,
Marmot, Vampir

Introduction

Usage of the widely accepted Message-Passing Interface (MPI) standard [1] is
simplified by a variety of tools for performance optimization, debugging, or other
tasks. Using multiple tools simultaneously can help pinpoint issues faster, e.g.,
the combination of a tracing and a correctness tool can provide the history that
leads to a correctness event and add further details to a detected error. Thus, it
simplifies the identification of the root cause of an error.

Such runtime tools usually employ the MPI profiling interface (PMPI), which
enables an interception of MPI calls along with an associated analysis of these

MPI Checker 1

MPI Checker 1

[Host Tool MPI Checker 2| [Host Tool |-{ Unimar MPI Checker 2 |
(a) Integrations without UniMCI (b) Integrations with UniMCI

Figure 1. Integrating a host tool with correctness checking tools.

calls. The usage of the profiling interface is exclusive, therefore, a simultaneous
usage of two tools is not immediately possible. The P*MPI [2] tool already solves
this problem by allowing multiple tools to intercept MPI calls. Further problems
of combining two tools are: First, the output of both tools should be merged
into one combined output. And second, tools incorporating correctness outputs
should not depend upon a specific MPI correctness tool, but rather use a generic
interface that works with any correctness tool.

Our contribution is the design and implementation of the so called Universal
MPI Correctness Interface (UniMCI) that addresses these problems. This paper
is structured as follows: Section 1 introduces UniMCI and its design. Section 2
presents a tool combination of the correctness checker Marmot [3] and the tracing
tool VampirTrace [4], to show the applicability of UniMCI. Section 3 provides an
example application that demonstrates some of the benefits of this tool combina-
tion. We present a performance study for the VampirTrace-Marmot combination
in Section 4, as such tool combinations have an impact on performance. Finally,
we present related work and our conclusions in Sections 5 and 6.

1. UniMCI

Tool integration is necessary to incorporate MPI correctness checking function-
ality into another MPI tool, e.g., into a performance tool. We refer to the tool
using the functionality of a correctness tool as the host tool, whereas the tool
being used for correctness checking is referred to as the guest tool. One possi-
ble solution to combine a host and a guest tool is an integration that is specific
to these two tools, e.g., a certain performance tool is integrated with a certain
correctness tool. However, this direct approach would require the host tool to
provide one integration for each guest tool. To avoid these extensive development
costs and to simplify tool integration, we present the Universal MPI Correctness
Interface (UniMCI). It provides correctness checking functionality independent
of the actual correctness tool that is used. As a result, the host tool only needs
one UniMCI integration to utilize any correctness checking tool that implements
UniMCI. This is illustrated in Figures 1(a) and 1(b).

UniMCI is designed to be as portable and as independent of other tools as
possible. As the MPI profiling interface can only be used by one tool at a time,
a method is needed that allows both the host and the guest tool to analyze each
MPI call. UniMCI offers two distinct solutions for this problem: first, name-shifted
functions to pass MPI call arguments to the guest tool, and second, a prototype
solution with P"MPI [2]. The P"MPI based solution will be released with a
future UniMCI version and simplifies the tool coupling. However, it requires that
a P"MPI installation is present and that both the host and the guest tool support
P"MPI, which usually requires both tools to be available as a shared library. We
will only present details for the name-shifted interface due to space considerations.

/*Wrapper for MPI_Sendx/

int MPI_Send (voidx* buf, int count, MPI_Datatype type, int dest, int tag,
MPI_Comm comm)

{

UNIMCI.check_pre.MPI_Send (buf, count, type, dest, tag, comm, FILE, LINE, ID);
check_unimci-return () ;

PMPI_Send (buf, count, type, dest, tag , comm);

UNIMCI.check_-post_MPI_Send (buf, count, type, dest, tag, comm, FILE, LINE, ID);
check_unimci-return () ;

}

/*Error evaluation function=x/
void check_unimci_return ()

UNIMCI_-MSG s*msg;
while (UNIMCI_has_msg ())

UNIMCI_pop_-msg (&msg);
/*Do something with msg, e.g., log it into outputx/
UNIMCI_msg_free (&msg);
}
}

Figure 2. Host tool using UniMCI, with name-shifted interface.
The name-shifted interface provides two functions for each MPI call: one to

analyze the initial arguments of the MPI call, called pre check, and one to analyze
the results of the MPI call, called post check. All runtime MPI checkers will
need an analysis of the initial MPI call arguments to detect errors in the given
arguments, which is invoked with the pre check function of UniMCI. The post
check is usually needed for MPI calls that create resources, e.g., MPI_Isend, which
creates a new request. MPI correctness tools have to add these new resources to
their internal data structures, in order to be aware of all valid handles and their
respective state. By splitting the analysis of the MPI call into two parts it is
possible to return check result to the host tool before the actual MPI call is issued,
which is important to guarantee that errors are handled before the application
might crash.

Results of checks are returned with additional interface functions that have
to be issued after each check function. A simple correctness message record is
used to return problems detected by the guest tool. Figure 2 provides an example
of how a host tool can use UniMCI in its MPI wrappers. Note that even though
the number of additional source lines needed for UniMCI seems high, most MPI
wrappers are created by wrapper generators, which simplifies the integration of
the extra code. The additional arguments FILE, LINE, and ID are used to provide
source information to the guest tool. FILE and LINE identify the source code
location of the wrapped MPI call. The ID argument is used to pass an identifier
to the guest tool that is used in correctness messages resulting from this call. This
functionality may be used by the host tool to correlate correctness events with
past MPI calls. Future versions of the interface will contain extensions and rules to
handle asynchronous correctness checking tools and multi-threaded applications.
2. Marmot-VampirTrace with UniMCI
This section presents details on a first correctness tool that supports UniMCI and
a first host tool that utilizes the interface. As a guest tool, we use Marmot [3],
a portable MPI checker, which is already integrated into various tools, IDE’s,
and debuggers. As a host tool, we choose VampirTrace [4], a performance event
tracing tool.

Master —1— MPI_Reduce(OP=SUM) } MPI_| Y, &status) HMP_ : MPI_SOURCE) }
Slave (Type A)—— wmpi_Reduce(0P=SUM) MPI_) MPI_f)
Slave (Type B) — MPI_Reduce(OP=SUM)

Master: get #participants Ping—pong with each participant.

Slave Type A participates, Master repeats once for each participant.

Slave Type B not.

Figure 3. Communication pattern for master and slaves in example 4.

Marmot executes various local checks to detect MPI usage errors and non-
portable constructs. Further, one of the MPI processes is used to execute global
checks, e.g., a timeout based deadlock detection. This process is also informed
about each MPI call, which causes significant overhead. As tool combinations with
performance tools will become impractical if the execution of the guest tool is too
expensive, a low overhead version of Marmot was used for the implementation of
UniMCI by disabling this global process. This does not affect Marmot’s powerful
local checks.

Marmot’s implementation of UniMCI is mostly straightforward. As a first
step, Marmot’s core functionality was refactored in order to clearly separate pre
checks from post checks. Further, a new logger was introduced to store MPI
messages for retrieval by the host tool. In order to provide the necessary functions
to retrieve Marmot’s messages, we extended Marmot’s external interface. The
name-shifted interface is implemented with generated functions that are very
similar to Marmot’s regular MPI wrappers. Marmot’s global process is disabled
to remove its performance bottleneck.

The first host tool that uses UniMCI is VampirTrace. It detects the presence
of a UniMCI installation during its configure step. If an installation is available
it queries the provided unimci-config tool for the libraries and flags needed to
compile and link with UniMCI. VampirTrace uses the name-shifted interface in
its MPI wrappers. This is an optional feature of VampirTrace and is controlled
with environmental variables.

VampirTrace stores UniMCI correctness events in a separate marker file. Each
marker is associated with a timestamp and a process. Further, each marker has a
type, a name, and a textual message. This data is used during visualization with
VampirServer [5]. Each marker is added to the global timeline at its respective
process and timestamp. Detailed information can be retrieved by clicking on the
visualized marker.

3. Example

To demonstrate the benefits of a VampirTrace and Marmot combination, we
present an artificial example with an MPI usage error. The usual synthetic MPI
usage error is simple to solve and becomes obvious when the error is detected
by a correctness tool. However, some errors are more complex and result from a
series of MPI calls. VampirTrace is able to visualize such a history of calls, which
simplifies debugging in its presence. As a result, here we present an error which
is more complicated to track.

For space considerations we can’t present the full example code here, rather
we will highlight the parts that are related to the correctness error. The exam-

33

for (i = 0; i < num_participating_slaves; i++4)

34| {

35
36
37

MPI_Recv (&buf, 1, MPI.INT, MPI_LANY_SOURCE, tag, MPI.COMM._WORLD, &status);
MPI_Send (sendbuf[buf], 1, type[buf], status.MPI.SOURCE, tag, MPI.COMM.WORLD) ;
}

Figure 4. Example of a complex potential MPI error (master process).

View Chart Filter
B R D = (Felr) O) ¥
ErLeIEESBOYE - =
Timeline @% Marker View x|
- - x |= I Error =
124.1 ms 124.4 ms 124.7 ms 1250ms ! A ! 2| 5 MARMOT Error
1 (S
x| = [Warning x
= - Function Legend ax
1 - - M Application
5 ? M MPI
Process 1 FIVT_API
i 1 B \:\% :

Masterdimeline

(b) Detail information for process 1, zoomed into the area labeled B in (a).
Figure 5. Vampir visualization for the example from Figure 4
ple uses a master slave communication were the communication pattern is re-
peated in multiple iterations. The communication used for each of the iterations
is schemed in Figure 3. Each slave computes whether it is going to participate in
this iteration’s communication or not. Slaves that participate are of type A and
will do a ping-pong communication with the master process, whereas slaves that
do not participate are of type B. An MPI _Reduce is used to determine the total
number of slaves that are going to participate in an iteration. The master repeats
a wildcard receive and a send, in order to implement the ping-pong communi-
cation with each of the participating slaves. Figure 4 presents the lines of code
that are used by the master process to implement the ping-pong communication.
Note that the send uses a datatype and a buffer based on the value received in
the preceding wildcard receive. Finally, an additional communication is started
after all the iterations ended. During this final communication each slave sends
one message to the master, whereas the master calls MPT_Recv once for each slave.

This code contains a potential MPI error, which manifests for some, but not
all runs. The application is likely to crash if the error manifests. When Marmot
is used without any other tool and the error manifests, it is able to detect the
MPI call that causes the application crash. Marmot detects the usage of an in-
valid datatype(MPI_DATATYPE NULL) in the MPI_Send call of line 36 on the master
process. However, this output is only of limited use, as the datatype used in this
call depends on the value received in the MPI Recv call of line 35. As this is a
wildcard receive, it is unclear which value was received there.

When using the UniMCI based Marmot and VampirTrace integration, it is
possible to analyze the series of events that lead to this situation. Figure 5(a)
shows a VampirServer visualization for a trace file that contains the error. It shows
a global timeline of the process activities. The light gray bars represent MPI calls,
whereas the dark gray areas represent the execution of the actual application.

Depicted is a zoomed-in part of the area in which the error occurred. The Marmot
messages are represented with little triangles on the respective MPI calls that
caused the message. Two areas of the timeline are highlighted as A and B in the
figure. The second triangle in area A is the marker that points to the detected
error. The error text is displayed to the right of the timeline. The line from area
B to area A in Figure 5(a) shows the message that was received by the MPI Recv
call of line 35. As discussed above, this call determines which datatype is used
by the MPI_Send call that causes the error. Figure 5(b) shows details for the area
B from the timeline in Figure 5(a). It identifies the individual activities of the
process that sends this message (process 1). The presence of the MPI_Finalize
call after the send call reveals that this send call should not have matched the
receive of the master process. It is not a send call from one of the iterations, but
rather the send call from the final communication that is executed after all the
iterations have ended. This reveals the source of the error, a slave of type B, which
does not participate in the ping-pong communication of the last iteration, may
already enter the final communication. Thus, the master process may receive a
wrong message in line 35.

Solutions to this problem are either synchronization calls, e.g., usage of a
MPI Barrier or different tags for the communications.

4. Performance Results

This section presents a performance study for the VampirTrace and Marmot com-
bination introduced in this paper. Both tools incur an overhead at runtime to
perform their respective analyses, of interest is whether the combined overhead
limits the applicability of the tool combination. We use the SPEC MPI2007 [6]
benchmark as a challenging test suite. It contains 13 different application codes
from various fields of science. The benchmark uses three different sizes for its
data sets, from which we use the largest one (mref). All applications are strong
scaling, which allows us to analyze the impact of message sizes on the total tool
overhead. For our experiments we use 32, 64, and 128 MPI processes with three
different versions of the benchmarks. One version without any tools, one version
that only uses VampirTrace, and one version with the VampirTrace-Marmot inte-
gration from this paper. As all of the codes in the SPEC MPI12007 benchmark are
widely used production codes, the presence of MPI usage error is very unlikely.
We use an SGI Altix 4700 to run our experiments.

Figure 6 presents the slowdown of VampirTrace and the VampirTrace-Marmot
combination for all of the SPEC MPI2007 applications at different scales. Both
VampirTrace and the tool combination incur an overhead of less than 10% for all
applications when using 32 processes. Only 121.pop is an exception that is known
to be very challenging for MPI runtime tools, as it uses a very high amount of
small messages.

For the applications 113.GemsFDTD, 115.fds4, 122.tachyon, and 126.lammps,
the tool combination still has a low overhead at a scale of 128 processes. For
the remaining applications the overhead increases with scale. As these are strong
scaling problems it is expected that the tool overhead increases with scale. This
results from a decreased average message size. As intercepting and analyzing MPI
calls with VampirTrace and Marmot is independent of the message size, the over-
head per MPI call increases, as the actual communication takes less time. Both

300 I
VampirTrace s
i _VampirTrace+Marmot =
250 i
200 1
g |
§ 1
<] 1
S 150 1
; 1]
o 1
2 i
100 1
50 f-i-f = i : i
:l: | Bt , _ 1 e s i | if _ 54 s
NS0 NS0 NS00 NS00 NS0 NS0 NS0 NS0 NS0 NS00 NS0 NS0 NSO
MON MON MON MON MON MON MON MON MON MON MON MON MON
— — — - — — — — — — — — -
o o %] = S
= 3 e 3 (r\:‘_ S Q g E = g > =
£ k] o he} o > £ s QL © 5] IS ~
g = 3 f=% = d o = o @ ™
< 7} [1) H 5} £ ~ @ o IS —
=} @] — g o]] o~ o> : 7] 3
=1 = £ — N = = — a < - 4
~ — o © N Q N
o L N ~ < — @ o
— 0} — —] -~]
] ®©
—
= S

Figure 6. Slowdown for SPEC MPI12007 with 32 to 128 tasks.

104.milc and 137.lu cause VampirTrace and Marmot to incur a higher overhead
at increased scale. Whereas for 107.leslie3d, 128.GAPgeofem, 129.tera_tf, 130.s0-
corro, and 132.zeusmp?2 the increase in Marmot’s overhead is dominating. This
results from increased complexity of correctness checks. A common case where
this happens is the usage of one or multiple MPI request for each process. With in-
creased scale, the total number of concurrently existing requests increases, which
adds complexity to the verifications of MPI_Request arguments. These overheads
may be reduced in future Marmot releases as its performance was — up to now —
only of second concern, as long as its usage was still feasible.

5. Related Work

Employing UniMCI as an interface for MPI correctness checking is a reliable and
portable way of integrating correctness data into other tools. Future versions of
the interface will also offer a P"MPIT [2] based interface that further simplifies the
usage of UniMCI. Additional guest tools that might implement this interface are
MPI-Check [7], Umpire [8], and ISP [9]. Some of these tools provide more powerful
global checks, e.g., Umpire and ISP. As a result, an UniMCI implementation from
these tools would provide UniMCI users with a larger set of correctness features.

Usage of UniMCI may also affect a variety of different host tools. Other per-
formance tools, besides VampirTrace, that might use UniMCI are Scalasca [10]
and Tau [11]. With a UniMCI integration, these tools may provide MPI correct-
ness checking to users that are not aware of the underlying guest tools. Especially
an integration of UniMCI into Scalasca is very promising, as both Scalasca and
Marmot use the same output format.

6. Conclusions

This paper presents UniMCI, a universal interface for incorporating runtime MPI
correctness checking functionality into host tools such as tracing frameworks. Two
distinct modes of usage provide a straightforward integration of UniMCI into

existing tools. The first mode uses a name-shifted interface, whereas the second
mode uses P"MPI. We demonstrate the applicability of UniMCI with a sample
implementation of the interface in the Marmot correctness checker and the Vam-
pirTrace monitoring tool. Extensions to VampirServer enable the visualization of
identified correctness events collected by VampirTrace.

A detailed example demonstrates the advantage of a VampirTrace and Mar-
mot combination based on UniMCI. This example shows that understanding
source code errors is simplified when using a combined output of these two tools. A
further contribution of this paper is a performance study for the SPEC MPI2007
benchmark. While the concurrent usage of Marmot and VampirTrace adds up
their respective overheads, we demonstrate the applicability of this tool combi-
nation for multiple applications with up to 128 MPI processes.

Acknowledgments

The research presented in this paper has partially been supported by the Ger-
man Ministry for Research and Education (BMBF) through the ITEA2 project
“ParMA” [12] (No 06015, June 2007 — May 2010).

References

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version
2.1. http://www.mpi-forum.org/docs/mpi21-report.pdf, September 2008.

[2] M. Schulz and B.R. de Supinski. PVMPT Tools A Whole Lot Greater Than the Sum of
Their Parts. In Supercomputing 2007 (SC’07), 2007.

[3] B. Krammer, K. Bidmon, M.S. Miiller, and M.M. Resch. MARMOT: An MPI Analysis
and Checking Tool. In G. R. Joubert, W. E. Nagel, F. J. Peters, and W. V. Walter,
editors, PARCO, volume 13 of Advances in Parallel Computing, pages 493-500. Elsevier,
2003.

[4] A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.S. Miiller, and
W.E. Nagel. The Vampir Performance Analysis Tool-Set. In Tools for High Performance
Computing, pages 139—155. Springer Verlag, July 2008.

[5] H. Brunst, D. Kranzlmiiller, and W.E. Nagel. Tools for Scalable Parallel Program Analysis
- Vampir NG and DeWiz. The International Series in Engineering and Computer Science,
Distributed and Parallel Systems, 777:92-102, 2005.

[6] SPEC MPI2007 Benchmark Suite for MPI.
http://www.spec.org/mpi2007/.

[71 G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva. Deadlock detection in
MPI programs. Concurrency and Computation: Practice and Experience, 14(11):911-932,
2002.

[8] J.S. Vetter and B.R. de Supinski. Dynamic Software Testing of MPI Applications with
Umpire. Supercomputing, ACM/IEEE 2000 Conference, pages 51-51, 04-10 Nov. 2000.

[9] S.S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R.M. Kirby. ISP: A Tool for Model
Checking MPI Programs. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming, pages 285-286, New York,
NY, USA, 2008. ACM.

[10] F. Wolf, B. Wylie, E. Abraham, D. Becker, W. Frings, K. Fuerlinger, M. Geimer, M. Her-
manns, B. Mohr, S. Moore, and Z. Szebenyi. Usage of the SCALASCA Toolset for Scalable
Performance Analysis of Large-Scale Parallel Applications. In Tools for High Performance
Computing, pages 157—167. Springer Verlag, July 2008.

[11] D. Brown, S. Hackstadt, A. Malony, and B. Mohr. Program Analysis Environments for
Parallel Language Systems: The TAU Environment. In In Proceedings of the 2nd Work-
shop on Environments and Tools for Parallel Scientific Computing, pages 162-171, 1994.

[12] ParMA: Parallel Programming for Multi-core Architectures - ITEA2 Project (06015).
http://www.parma-itea2.org/.

