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Abstract. This paper presents a method and the associated tools to design and 
implement embedded real-time systems that execute high-performance-oriented 
applications on multi-core architectures. After presenting the OASIS design, 
compilation and execution framework, the paper focuses on the principles of the 
modifications performed on the safety-oriented real-time kernel to execute 
transparently and consistently multitasking applications on multi-cores. It then 
gives the first results of benchmarking performed on a Dassault Aviation’s HPC 
application called “2D-tracking algorithm”. It concludes on the future works 
towards the introduction of data-parallelism in the OASIS parallel time-triggered 
programming and underlying execution models. 
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Introduction 

Recently, major processor manufacturers introduced support for multi-processors on a 
single chip (Multi-Core), and many hardware vendors started to develop and market 
Multi-processor system-on-chip (MPSoC). These multiprocessors become fairly 
popular and attractive for embedded systems as they bring more performance in 
offering higher parallel computation capability and lower power consumption [1].  
This tendency accelerates the emergence of high-performance embedded applications 
and emphasizes the use of parallel programming models integrating different levels of 
parallelism where a trade-off between expressed parallelism and automatic 
parallelization is necessary. So, embedded real-time (RT) applications are starting to 
run on Symmetric Multi-Processing (SMP) systems. But, extending an existing 
Operating System (OS) to support SMP systems is not a trivial task [2]. To take 
advantage of a SMP architecture, an OS needs to take into account the shared memory 
facility, the migration & load-balancing between processors, and the communication 
between tasks. Besides, implementing all the SMP mechanisms and considering how 
they interfere is particularly laborious when the chosen OS is a hard real-time one [3], 
raising the issues of synchronization and predictability. For embedded real-time 
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applications, a key problem is to be able to bridge the gap between parallelism 
expressed in design (modularity) and those available in multi-core based architecture 
(performance). Use of multi-core architectures in embedded systems should impact as 
less as possible the software design and the run-time behaviour, especially when real-
time constraints are at stake. Like in High-Performance Computing (HPC), the concern 
for embedded high-performance real-time systems is to allow increasing performance 
from single-core architectures to multi-core ones. But, it means that executing 
embedded applications on single-core or multi-core systems should provide the same 
results/outputs in real time and that it should be possible to add new functionalities (e.g. 
real-time tasks) to existing embedded applications with all real-time constraints still 
fulfilled. 
After reviewing in section 1 related work on several common Real-Time Operating 
Systems (RTOS) and their extensions to multi-core architectures, we present our 
research work to extend the OASIS (see section 2) hard real-time kernel for HPC-
oriented embedded systems. The design of the OASIS kernel to take full advantage of 
SMP multi-cores will then be presented in section 3. Before concluding and addressing 
future works, section 4 will provide the results of the first experiments with an HPC-
based 2D-object tracking application provided by Dassault Aviation and ported to 
OASIS-SMP. 

1. Related works 

Several approaches exist to design a SMP RTOS. A first idea consists in proposing a 
monolithic kernel, in which the entire operating system is run in kernel space as 
supervisor mode. All OS services run along with the main kernel thread, residing in the 
same memory area. An example is VxWorks, where the kernel and tasks run in one 
address space. This allows tasks switching to be very fast and eliminates the need for 
system call traps. Monolithic systems are easier to design and implement than other 
solutions, and are extremely efficient when well written. However, the main 
disadvantages of monolithic kernels are the dependencies between system components, 
and the fact that large kernels become very difficult to maintain (lack of modularity). 
A second approach consists in running the RTOS on top of a micro-kernel, which only 
implements core services such as process scheduling, inter-process communication, 
low-level network communication, and interrupt dispatching. All other services, such 
as device drivers or file systems, are implemented as user processes making the kernel 
smaller and faster. Some examples are the QNX Neutrino or L4Linux. These user-
space implementations are easier to debug, while memory accesses violations can be 
detected and isolated. Another advantage is scalability. However, performance can be a 
weak point since micro-kernel architectures place an heavy load on inter-process 
communication and context switching. 
A third idea consists in modifying a SMP kernel to dedicate some processors to real-
time tasks. Those asymmetric kernels, such as APRIX[4], ASMP-Linux [8] or ARTiS 
[5], consider real-time processes and related devices as privileged and shield them from 
other system activities. Piel et Al. [6] extend a standard SMP Linux kernel with a real-
time scheduler, and propose a migration mechanism in order to allow flexibility in the 
processor allocation. Even though their work provides a comprehensive performance 
evaluation, it considers an event-driven real-time system, not suitable for hard real-time 
operations, while simultaneously addressing the cohabitation matter (i.e. mixing real-
time and generic purpose tasks within the same system).Both problems addressed 



jointly raise major resource management issues such as the denial of service problem, 
not resolved in their approach. 
A fourth approach is based on virtualized clusters, where each processor runs a 
modified version of the Linux kernel, and where the kernels cooperate in a virtual high-
speed and low-latency network. An example is Adeos nano-kernel [7]. In a similar 
approach Kagström et Al. [9] address the SMP extension of an existing OS. A micro-
kernel is added to every slave processor and the main single-processor system is kept 
almost unchanged. Benchmarks results along with a minimal kernel hacking are 
provided. Their work is close to our, as they consider asymmetric SMP OS. 

2. OASIS Principles 

OASIS [10][12] defines a method and a set of tools to design and implement 
multitasking deterministic real-time systems. It consists in a programming language, 
named ψC and an execution environment, for the hard real-time embedded systems, 
that uses a fully parallel time-triggered execution model beyond the classical TT 
paradigm [13].  ψC allows a formal description of the different real-time tasks (called 
agents) in an application, where pure algorithmic parts written in ANSI C are combined 
with an observable temporal behaviour described in a declarative way. The execution 
environment offers a safety-oriented real-time kernel (for single-core architectures) and 
an associated tool chain for the implementation of the OASIS model. 
 
The OASIS model brings some novelties in comparison with the classical so-called TT 
approach: it allows asynchronism by the coexistence of different time scales between 
the agents in order to make the application design easier. It facilitates the 
decomposition of the application into parallel agents defined in elementary activities 
(see [12]). Time management in the OASIS kernel is entirely lock-free to avoid the 
overhead, contention problems, deadlocks and the possibility of processes priority 
inversion.  
The OASIS communication model is composed of two mechanisms: periodic data 
flows (called temporal variables), and message boxes. These non-blocking 
communication mechanisms are completely described in an interface that links the 
programming model to the underlying execution environment. 
The OASIS model implies no assumptions on the scheduling algorithm. As it has a TT 
approach, there are neither precedence constraints nor resource protocols, and only 
temporal constraints are required. The Earliest Deadline First (EDF) algorithm [17] can 
be used as it is a simple, sufficient and optimal one [11]. 

3. Design of OASIS-SMP 

3.1. Objectives – Target architecture 

The aim of the OASIS-SMP extension is to allow the programmer to benefit 
transparently from the computation power increase supplied by the multi-processors. 
The OASIS time-triggered execution model is preserved, and the issue of task 
dispatching between execution cores is hidden from the programmer: no modification 
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is required to the OASIS programming model, and therefore to the application ΨC 
source code. Ultimately, the new kernel is even able to run on different CPUs multiple 
agents of an OASIS application that was compiled for the original single-core version. 
The IA-32 OASIS kernel has been modified to be able to run on Intel SMP 32bit 
platform. This is a very popular architecture in the mass-market of personal computers, 
where the different identical cores share a single memory bus for a Uniform Memory 
Access topology. The choice was motivated by the commonness of the architecture, 
and the fact that a robust IA-32 single-core version of OASIS is already available. 

3.2. Scheduling policy 

Obviously, the choice of the scheduling algorithm is critical when designing a “hard” 
real-time operating system. In order to map automatically and transparently the 
different agents of an application to the available cores, the chosen scheduling policy 
for the SMP version is a fairly intuitive extension of EDF – Global-EDF [18]. The 
priority index of a task is still defined by the time remaining before its deadline2, only 
if n cores are available, then the n first tasks with the highest priority are distributed 
among the CPUs.  
In the general case, Global-EDF is not an optimal multi-processor algorithm [19]. 
Although other algorithms may be later considered (see [16]), it provides a fast, easy to 
implement policy, and it is totally transparent to the user. 

3.3. Software parallelization analysis 

The following figure shows the general software architecture of an OASIS system, 
separated in three layers. 

 
The user agents: each agent is a real-time task 

defined by the programmer. The OASIS 
execution model forbids memory sharing: inter-
task communications are “services” handled 
only by the kernel (see below). Therefore, 
synchronization between agents –e.g. resource 
sharing– is ensured by their temporal 
behaviour: no locks are allowed. The OASIS 
design ensures that agents may safely be 
executed simultaneously (or interleaved, on the 
single-core version). This also explains why the 
application source code requires no 
modification for execution on the SMP version. 

The system layer: this part of the OASIS kernel ensures safety-oriented sanity checks 
and inter-agents communication. The system layer and especially the 
communication mechanisms were originally written to be entirely interruptible. 
Therefore, executing instances of the system layer for different agents on 
different cores simultaneously does not raise any new problem3. 
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The micro-kernel: it includes among other things the scheduler and the context-
switcher. It also updates the global real-time clock and handles the watchdogs for 
time-triggered events. All these modules may not be executed simultaneously and 
require atomic execution to ensure the consistency of the micro-kernel data 
structures. This property is implemented by a fair active-waiting spinlock 
protecting the whole micro-kernel. 

3.4. Time management – Asymmetric kernel architecture 

Global time management and time-triggered events are handled by a specific CPU, 
chosen arbitrarily at boot-time, referred further as CPU0. Conversely, software system 
calls (or “traps”) may happen on any CPU, leading to the execution of the scheduler. A 
re-scheduling arms a new watchdog that will be handled by CPU0. Therefore, most of 
the micro-kernel code – the scheduler and the context switcher – may be executed on 
any CPU. Only time management parts run on CPU0.  
The SMP architecture is made asymmetric by this choice, since CPU0 suffers from a 
micro-kernel execution overhead. However this choice is a fair compromise between: 

−−−− a symmetric architecture, where each CPU would update its local time, requiring 
a synchronization protocol; 

−−−− a completely asymmetric architecture, where one control-CPU would be devoted 
to handling all micro-kernel operations for the other computation-CPUs. 

4. Running a HPC application on OASIS-SMP 

4.1. Parallelizing Dassault Aviation’s tracking algorithm 

The HPC application provided by Dassault Aviation is a sequential implementation of 
a tracking algorithm, relying on Bayesian’s probabilistic methods to detect moving 
objects in a two-dimensional field based on real-time radar data. The implementation 
consists of a global loop refining iteratively a cloud of particles, used for objects 
detection. The application is so compute-intensive on single-core architectures that its 
present usage is only as a background computation, i.e. to be run only when there are 
enough computer resources left. On the other hand, this code is locally and globally 
highly parallelizable. 
OASIS provides a safe and real-time execution environment for this application, where 
parallelism can be expressed at a task level in order to improve performances. 
Therefore, porting Dassault’s implementation to a ΨC application basically requires: 

1. Defining a temporal behaviour of the application, i.e. splitting the code into 
different elementary activities with an associated deadline; 

2. Expressing task-parallelism by defining several communicating agents that 
share the computation load and are executed simultaneously on different cores 
by the OASIS-SMP kernel. 

A master-slave approach was used to split the application into different agents: one 
master agent runs the code, discharging punctually a part of its work to one or more 
slave agents. As seen before, the OASIS kernel requires that communication between 
the master and its slaves go through specific kernel mechanisms, which ensure memory 
isolation between the agents. Since shared memory is prohibited, all communications 



require copying data between source and destination buffers. For that reason, 
communication overheads are expected. In order to minimize them, only the heaviest 
computation section within the loop is parallelized, while the sole master agent 
executes the rest sequentially. 
The ΨC version of Dassault Aviation’s application defines 5 temporal synchronization 
points and 2 actual data exchanges between the master and its agents. The deadlines 
associated to each time window are based on performance measurement of the original 
C code executed in a Linux environment. The sum of each of these deadlines defines a 
global end-to-end real-time constraint inferior to 1 second per iteration, following 
Dassault's requirements. 
Note that when the master is executing sequential portions of the code, the slave agents 
have basically nothing to do, and are automatically put at rest by the scheduler. See 
Figure 1 – Architecture of the ΨC application. 

4.2. Benchmarks results 

The OASIS-SMP micro-kernel implements utility system calls to retrieve easily the 
actual CPU time used by an agent during its last temporal slot (independently from the 
associated deadline). In order to compare relevant execution times, Dasssault 
Aviation's application was ported into two ΨC versions: 

a) a first task-parallelized version following the master/slave software architecture 
described in the previous section, with one master agent and one slave agent. 

b) A sequential version made of a single agent, with the same temporal behaviour as 
the master agent of the previous application (i.e. defining the same temporal 
synchronization points). 

 
Figure 1 – Architecture of the ΨC application 

A first observation is that both applications have the exact same real-time behaviour, as 
expected with the OASIS runtime environment. 
The following figure 2 (left chart) shows the global speedup of the master/slave version 
against the sequential version for the first loop iterations. It appears that performances 
are globally not impacted by parallelization. The slight performance variations are due 
mainly to cache filling effects for the first iterations, then to the fluctuant complexity of 
the floating-point computations. 
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Figure 2 – Left: global speedup with parallel ΨC application 

Right: local speedup, focusing on parallelized sections only – communication are not considered 

The figure 2 (right chart) shows a measured speedup comparison on purely parallelized 
elementary activities, i.e. on time slots where no communication is made between the 
master and the slave, only computation (parallel versus sequential). The parallel 
version shows significant performances improvement, close to optimum (x2). 

 
In conclusion, communications between the master and the slave show overheads, as 
expected: indeed, one OASIS communication system call requires three memory 
moves or more and two MMU switches. However, the performance improvement 
observed on purely parallel section is very promising and opens the road to more 
efficient parallelization methods. 

5. Conclusions and future works towards data-parallelism 

This paper presented the principles of extending a safety-oriented real-time kernel, 
OASIS, to take full advantage of multi-processors on a single chip in terms of 
performances. The extension of OASIS runtime environment to exploit parallelism at 
the kernel level allows supporting the execution of multitasking embedded applications 
on multi-cores in a transparent and consistent way: the same application is running on 
single- and multi-cores with the same real-time behaviour, but allowing the integration 
of more real-time tasks in an efficient manner. The modifications of the micro-kernel 
were presented, as well as the first results of the OASIS-SMP kernel use on a high-
performance oriented real-time application provided by Dassault Aviation.  
The results presented in section 4 are consistent with the expectations, in both temporal 
behaviour and global performances perspectives. They also show that task-parallelism 
is not always sufficient to take fully advantage of a multi-core architecture.  
Due to their safeness based on memory isolation, OASIS’s inter-agents communication 
mechanisms are also costly. In order to workaround this limitation, an agent should be 
able to split into several execution threads sharing the same memory context. A single 
agent, splitting on demand into multiple memory sharing execution threads, would then 
replace the master-slave software architecture. 
A new extension of the OASIS-SMP kernel implementing such capability is currently 
being tested and already shows very promising results. Future directions to improve 
performances include implementing the extension of the ΨC language to express and 
take advantage of the data-parallelism. Another direction could be the evaluation of the 
performance impacts of OASIS-SMP on specific embedded parallel applications from 
the points of view of cache/memory accesses or inter-processor interrupts. 
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