Using Multi-Core Architectures to Execute
High Performance-Oriented
Real-Time Applications

C. AUSSAGUES?, E. OHAYON, K. BRIFAULT?and Q. DINH
8CEA LIST, Embedded Real Time Systems Laboratory
PDassault Aviation, DGT/DPR (General Technical DiEuture Research Business)

Abstract. This paper presents a method and the associabésd tto design and
implement embedded real-time systems that exedgtegerformance-oriented
applications on multi-core architectures. After qenating the OASIS design,
compilation and execution framework, the paper $asuon the principles of the
modifications performed on the safety-oriented -temé kernel to execute
transparently and consistently multitasking appiies on multi-cores. It then
gives the first results of benchmarking performedaoDassault Aviation’'s HPC
application called “2D-tracking algorithm”. It condes on the future works
towards the introduction of data-parallelism in BASIS parallel time-triggered
programming and underlying execution models.

Keywords. Embedded high-performance computing, real-timétiroares.

Introduction

Recently, major processor manufacturers introdwszgaport for multi-processors on a
single chip (Multi-Core), and many hardware vendstiaated to develop and market
Multi-processor system-on-chip (MPSoC). These miruditessors become fairly
popular and attractive for embedded systems as lingg more performance in
offering higher parallel computation capability dodrer power consumption [1].

This tendency accelerates the emergence of highfpsance embedded applications
and emphasizes the use of parallel programming lsdaiegrating different levels of
parallelism where a trade-off between expressedallpism and automatic
parallelization is necessary. So, embedded re@-(iRT) applications are starting to
run on Symmetric Multi-Processing (SMP) systemst, Bextending an existing
Operating System (OS) to support SMP systems isantivial task [2]. To take
advantage of a SMP architecture, an OS needs ¢oitiédk account the shared memory
facility, the migration & load-balancing betweeropessors, and the communication
between tasks. Besides, implementing all the SMBhamisms and considering how
they interfere is particularly laborious when th@sen OS is a hard real-time one [3],
raising the issues of synchronization and predilityab For embedded real-time

1 cea LIST, Embedded real time systems laboratoyintPCourrier 94, Gif-sur-Yvette, F-91191
France, E-mail: christophe.aussagues@cea.fr

applications, a key problem is to be able to bridge gap between parallelism
expressed in desigmpdularity) and those available in multi-core based archirect
(performancg Use of multi-core architectures in embeddedesystshould impact as
less as possible the software design and the mmiehaviour, especially when real-
time constraints are at stake. Like in High-Perfance Computing (HPC), the concern
for embedded high-performance real-time systenis &low increasing performance
from single-core architectures to multi-core on&ut, it means that executing
embedded applications on single-core or multi-@ystems should provide the same
results/outputs in real time and that it shoulgbssible to add new functionalities (e.g.
real-time tasks) to existing embedded applicatiott all real-time constraints still
fulfilled.

After reviewing in section 1 related work on seVezammon Real-Time Operating
Systems (RTOS) and their extensions to multi-carehitectures, we present our
research work to extend the OASIS (see sectiona?) heal-time kernel for HPC-
oriented embedded systems. The design of the OR&l%I to take full advantage of
SMP multi-cores will then be presented in sectioB&ore concluding and addressing
future works, section 4 will provide the resultstbé first experiments with an HPC-
based 2D-object tracking application provided bys&zailt Aviation and ported to
OASIS-SMP.

1. Related works

Several approaches exist to design a SMP RTOSisAifiea consists in proposing a
monolithic kernel, in which the entire operatingstgm is run in kernel space as
supervisor mode. All OS services run along withriten kernel thread, residing in the
same memory area. An example is VxWorks, wherek#érael and tasks run in one
address space. This allows tasks switching to log feest and eliminates the need for
system call traps. Monolithic systems are easieddsign and implement than other
solutions, and are extremely efficient when wellitten. However, the main
disadvantages of monolithic kernels are the depaside between system components,
and the fact that large kernels become very diffimumaintain (lack of modularity).

A second approach consists in running the RTOSprof a micro-kernel, which only
implements core services such as process schedititgg-process communication,
low-level network communication, and interrupt disghing. All other services, such
as device drivers or file systems, are implemeatedser processes making the kernel
smaller and faster. Some examples are the QNX Meutr L4Linux. These user-
space implementations are easier to debug, whil@ane accesses violations can be
detected and isolated. Another advantage is stiyablowever, performance can be a
weak point since micro-kernel architectures placehaavy load on inter-process
communication and context switching.

A third idea consists in modifying a SMP kerneldedicate some processors to real-
time tasks. Those asymmetric kernels, such as APIRIASMP-Linux [8] or ARTIS
[5], consider real-time processes and related devés privileged and shield them from
other system activities. Piel et Al. [6] extendtanslard SMP Linux kernel with a real-
time scheduler, and propose a migration mechanisander to allow flexibility in the
processor allocation. Even though their work presidh comprehensive performance
evaluation, it considers an event-driven real-tspstem, not suitable for hard real-time
operations, while simultaneously addressing theabithtion matter (i.e. mixing real-
time and generic purpose tasks within the sameesysBoth problems addressed

jointly raise major resource management issues aadhe denial of service problem,
not resolved in their approach.

A fourth approach is based on virtualized clustevhere each processor runs a
modified version of the Linux kernel, and where kieenels cooperate in a virtual high-
speed and low-latency network. An example is Adeaso-kernel [7]. In a similar
approach Kagstrom et Al. [9] address the SMP eitensf an existing OS. A micro-
kernel is added to every slave processor and the snagle-processor system is kept
almost unchanged. Benchmarks results along withiginmal kernel hacking are
provided. Their work is close to our, as they cdasasymmetric SMP OS.

2. OASISPrinciples

OASIS [10][12] defines a method and a set of totsdesign and implement
multitasking deterministic real-time systems. Insists in a programming language,
namedyC and an execution environment, for the hard liead-tembedded systems,
that uses a fully parallel time-triggered executiowdel beyond the classical TT
paradigm [13]. yC allows a formal description of the different réiate tasks (called
agents) in an application, where pure algorithnaicgpwritten in ANSI C are combined
with an observable temporal behaviour described declarative way. The execution
environment offers a safety-oriented real-time ké(for single-core architectures) and
an associated tool chain for the implementatiothefOASIS model.

The OASIS model brings some novelties in comparisith the classical so-called TT
approach: it allows asynchronism by the coexistasfcdifferent time scales between
the agents in order to make the application deségsier. It facilitates the

decomposition of the application into parallel agedefined in elementary activities
(see [12]). Time management in the OASIS kernedriirely lock-free to avoid the

overhead, contention problems, deadlocks and thesilgiity of processes priority

inversion.

The OASIS communication model is composed of twachmaisms: periodic data
flows (called temporal variables), and message $ox&hese non-blocking

communication mechanisms are completely describedni interface that links the
programming model to the underlying execution emvinent.

The OASIS model implies no assumptions on the adirgalgorithm. Asithasa TT

approach, there are neither precedence constnaimtgsesource protocols, and only
temporal constraints are required. The Earliestdiyea First (EDF) algorithm [17] can

be used as it is a simple, sufficient and optinmad [L1].

3. Design of OASIS-SMP

3.1.0bjectives — Target architecture

The aim of the OASIS-SMP extension is to allow theopgrammer to benefit
transparentlyfrom the computation power increase supplied [y rthulti-processors.
The OASIS time-triggered execution model is presdyvand the issue of task
dispatching between execution cores is hidden fitmenprogrammemo modification

is required to the OASIS programming model, andefloee to the application’C
source codeUltimately, the new kernel is even able to rundifferent CPUs multiple
agents of an OASIS application that was compiledHe original single-core version.
The 1A-32 OASIS kernel has been modified to be ableun on Intel SMP 32bit
platform. This is a very popular architecture ie thass-market of personal computers,
where the different identical cores share a simgéanory bus for a Uniform Memory
Access topology. The choice was motivated by th@rmonness of the architecture,
and the fact that a robust I1A-32 single-core versibOASIS is already available.

3.2.Scheduling policy

Obviously, the choice of the scheduling algorithsrcritical when designing a “hard”
real-time operating system. In order to map autaaly and transparently the
different agents of an application to the availatiees, the chosen scheduling policy
for the SMP version is a fairly intuitive extensiof EDF — Global-EDF [18]. The
priority index of a task is still defined by thengé remaining before its deadlfn@nly

if n cores are available, then thdfirst tasks with the highest priority are distried
among the CPUs.

In the general case, Global-EDF nst an optimal multi-processor algorithm [19].
Although other algorithms may be later considess ([16]), it provides a fast, easy to
implement policy, and it is totally transparenthe user.

3.3.Software parallelization analysis

The following figure shows the general softwarehiétecture of an OASIS system,
separated in three layers.

The user agentseach agent is a real-time task
defined by the programmer. The OASIS
execution model forbids memory sharing: inter-UeSXi"C"J”ti"odne {
task communications are “services” handled
only by the kernel (see below). Therefore,

synchronization between agents —e.g. resource

sharing— is ensured by their temporal SYSTEM LAYER
behaviour: no locks are allowed. The OASIS _ . Inter-agents com.
design ensures that agents may safely beecution 4 MICRO-KERNEL
executed simultaneously (or interleaved, on the Jatchdogs ma
single-core version). This also explains why the Task switch

application source code requires no
modification for execution on the SMP version.

The system layethis part of the OASIS kernel ensures safetyrieid sanity checks
and inter-agents communication. The system layed aspecially the
communication mechanisms were originally writtenbi entirely interruptible.
Therefore, executing instances of the system ldgerdifferent agents on
different cores simultaneously does not raise awy probleni.

2 The lower the priority index, the more the taskri®rity.
3 This property is true thanks to the memory coesisy model of the Intel processors, which is strong
enough for this application.

The micro-kernel it includes among other things the scheduler #me context-
switcher. It also updates the global real-time kland handles the watchdogs for
time-triggered events. All these modules may nogkeruted simultaneously and
require atomic execution to ensure the consistesfcyhe micro-kernel data
structures. This property is implemented by a faative-waiting spinlock
protecting the whole micro-kernel.

3.4.Time management — Asymmetric kernel architecture

Global time management and time-triggered evengshandled by a specific CPU,
chosen arbitrarily at boot-time, referred furtherGPUO. Conversely, software system
calls (or “traps”) may happen on any CPU, leadim¢he execution of the scheduler. A
re-scheduling arms a new watchdog that will be lkahy CPUO. Therefore, most of
the micro-kernel code — the scheduler and the sbsteitcher — may be executed on
any CPU. Only time management parts run on CPUO.
The SMP architecture is made asymmetric by thiscehsince CPUO suffers from a
micro-kernel execution overhead. However this chdsca fair compromise between:
— a symmetric architecture, where each CPU would tepitis local time, requiring
a synchronization protocol;
— a completely asymmetric architecture, where ond¢rob@PU would be devoted
to handling all micro-kernel operations for theatihomputation-CPUs.

4. Running a HPC application on OASIS-SM P

4.1.Parallelizing Dassault Aviation’s tracking algoritt

The HPC application provided by Dassault Aviatisraisequential implementation of
a tracking algorithm, relying on Bayesian’s proliabc methods to detect moving
objects in a two-dimensional field based on reaktiradar data. The implementation
consists of a global loop refining iteratively sowtl of particles, used for objects
detection. The application is so compute-intensimesingle-core architectures that its
present usage is only as a background computatertp be run only when there are
enough computer resources left. On the other hioigl,code is locally and globally
highly parallelizable.

OASIS provides a safe and real-time execution enwirent for this application, where
parallelism can be expressed at a task level iardmdimprove performances.
Therefore, porting Dassault’'s implementation 8@ application basically requires:

1. Defining a temporal behaviour of the applicatioe, isplitting the code into
different elementary activities with an associaleddline;

2. Expressing task-parallelism by defining several oamicating agents that
share the computation load and are executed sinedtesly on different cores
by the OASIS-SMP kernel.

A master-slave approach was used to split the egdn into different agents: one
master agent runs the code, discharging punctaapgrt of its work to one or more
slave agents. As seen before, the OASIS kerneiresjthat communication between
the master and its slaves go through specific keneehanisms, which ensure memory
isolation between the agents. Since shared mensopyohibited, all communications

require copying data between source and destinabofiers. For that reason,
communication overheads are expected. In orderin@mize them, only the heaviest
computation section within the loop is parallelizeghile the sole master agent
executes the rest sequentially.

The WC version of Dassault Aviation’s application define temporal synchronization
points and 2 actual data exchanges between thesmesd its agents. The deadlines
associated to each time window are based on peafarenmeasurement of the original
C code executed in a Linux environment. The sumazh of these deadlines defines a
global end-to-end real-time constraint inferior Xosecond per iteration, following
Dassault's requirements.

Note that when the master is executing sequentigigms of the code, the slave agents
have basically nothing to do, and are automaticpily at rest by the scheduler. See
Figure 1 — Architecture of th&C application

4.2.Benchmarks results

The OASIS-SMP micro-kernel implements utility systealls to retrieve easily the
actual CPU time used by an agent during its last tempslatl(independently from the
associated deadline). In order to compare relevexgcution times, Dasssault
Aviation's application was ported into tWéC versions:
a) a first task-parallelized version following the rresslave software architecture
described in the previous section, with one masgent and one slave agent.
b) A sequential version made of a single agent, withsame temporal behaviour as
the master agent of the previous application @&fining the same temporal
synchronization points).

INIT END

.
MASTER _—_?.-_—H
: ‘ b

’ \ ’
/ M e

Idle '
T e L T T s e B

A_I_A

Actual parallel computing

a) Task-parallelized Application

INIT END

N e ————— e ————

b) Equivalent sequential Application

Figure 1 — Architecture of tH&C application

A first observation is that both applications hélve exact same real-time behaviour, as
expected with the OASIS runtime environment.

The following figure 2 (left chart) shows the gldlspeedup of the master/slave version
against the sequential version for the first logpations. It appears that performances
are globally not impacted by parallelization. Thigtg performance variations are due
mainly to cache filling effects for the first itéians, then to the fluctuant complexity of
the floating-point computations.

X105 Y098 D X104

X 1,00 ot —

Speedup
Speedup

0,80 — — — X 0,80 +— — — —

X 0,60 — — — X 0,60 +— — — —

X 0,40 — — — X 0,40 +— — — —

0,20 — — — X 0,20 +— — — —

Loop Index Loop Index

Figure 2 L eft: global speedup with parall$iC application
Right: local speedup, focusing on parallelized sectmrig — communication are not considered
The figure 2 (right chart) shows a measured speeduparison on purely parallelized
elementary activities, i.e. on time slots wherecoommmunication is made between the
master and the slave, only computation (parallelsw® sequential). The parallel
version shows significant performances improvemense to optimum (x2).

In conclusion, communications between the mastdrtha slave show overheads, as
expected: indeed, one OASIS communication systelnrequires three memory
moves or more and two MMU switches. However, thefgpmance improvement
observed on purely parallel section is very prongsand opens the road to more
efficient parallelization methods.

5. Conclusions and future workstowards data-parallelism

This paper presented the principles of extendingafety-oriented real-time kernel,

OASIS, to take full advantage of multi-processors @ single chip in terms of

performances. The extension of OASIS runtime emvirent to exploit parallelism at

the kernel level allows supporting the executiomofititasking embedded applications
on multi-cores in a transparent and consistent wag/:same application is running on
single- and multi-cores with the same real-timeawsdur, but allowing the integration

of more real-time tasks in an efficient manner. Tinedifications of the micro-kernel

were presented, as well as the first results ofQA&SIS-SMP kernel use on a high-
performance oriented real-time application provibgdassault Aviation.

The results presented in section 4 are consistiéhttiie expectations, in both temporal
behaviour and global performances perspectivesy @l show that task-parallelism
is not always sufficient to take fully advantageaahulti-core architecture.

Due to their safeness based on memory isolatior§ISA inter-agents communication
mechanisms are also costly. In order to workarahigllimitation, an agent should be
able to split into several execution threads slgatfire same memory context. A single
agent, splitting on demand into multiple memoryrstgaexecution threads, would then
replace the master-slave software architecture.

A new extension of the OASIS-SMP kernel implementiuch capability is currently

being tested and already shows very promising tesBlture directions to improve

performances include implementing the extensiothefPC language to express and
take advantage of the data-parallelism. Anothezation could be the evaluation of the
performance impacts of OASIS-SMP on specific emeedgarallel applications from

the points of view of cache/memory accesses or-precessor interrupts.

6. Acknowledgements

The research presented in this paper has partimbn supported by the French
Ministry for Economy, Industry and Employment (D@} Ithrough the ITEA2 project
"ParMA™ (n°06015, June2007--May 2010). The authors waikiel to thank V. David
and M. Lemerre for their involvement in these woaksl their relevant comments.

References

[1] R. Sasanka, S.V. Adve, Y-K. Chen and E. Debes &hergy efficiency of CMP vs. SMT for
multimedia workloadsin ICS’04: Proc. of the 18annual international conference of Supercomputing
(2004), 196—206.

[2] W. Wolf, The future of Multiprocessor Systems-@hips in DAC’'04: Proceedings of the #annual
conference of Design Automati(2004), 681—685.

[3] J. A. Stankovic, R. RajkuméaReal-Time Operating Systenkduwer Academic Publishers, 2004.

[4] M. Seo, H. Seok Kim, J. Chan Maeng, J. Kim andRydl, An Effective Design of Master-Slave
Operating System Architecture for Multiprocessor Heaided Systems, iAdvances in Computer
Systems Architecturéecture Notes in Computer Science, Berlin, vé674 (2007).

[5] P. Marquet, E. Piel, J. Soula and J-L. Dekeyseplementation of ARTIS, an asymmetric real-time
extension of SMP Linuxn Proc. of the 8 Real-time Linux Workshg{2004).

[6] E. Piel, P. Marquet, J. Soula, J-L. Dekeyserlfime systems for multiprocessor architectpias
IPDPS’06 : Proc. of the 2Dinternational parallel and distributed processiSymposiunf2006), 8—
16.

[7] K. Yaghmour, A practival approach to Linux ClustersSMP hardwaré[ech. report of ADEOS Project
(2002), 1—12.

[8] E. Betti, D.P. Bovet, M. Cesati, and R. GioioE4JRASIP Embedded Systems Jourhird real-time
performances in multiprocessor-embedded systemsgy UBBMP-Linux, Hindawi Publishing Corp.
2008.

[9] S. Kagstrom, H. Grahn, L. Lundbergoftw. Pract. Exper. Jounralhe application kernel approach — a
novel approach for adding SMP support to unipramesperating systems, John Wiley & Sons Inc.,
2006.

[10] V. David, C. Aussagués, C. Cordonnier, M. Aji andélcoigne, OASIS: a new way to design safety
critical applications", irR1st IFAC/IFIP Workshop on Real-Time Programm{idgRTP'96), 1996.

[11] C. Aussagues. V. David, A method and a techniqueddel and ensure timeliness in safety critical
real-time systemsn Intl Conference of Engineering of Complex Corap&ystem$1998), 2—12.

[12] D. Chabrol, G. Vidal-Naquet, V. David, C. Aussaguaisd S. Louise, OASIS: a chain of development
for safety-critical real-time systemis, Proc. of Embedded Real-Time Software ConferéBa S'04),
(2004).

[13] H. Kopetz, The Time-Triggered Model of ComputatisnRTSS'98: Proc. of the geal-time Systems
Symposiun(1998), 168—178.

[14] H. Kopetz, The Time-Triggered Architecturgy ISORC'98: Proc. of the ®1LIEEE International
Symposium on Object-Oriented Real-Time Distrib@ethputing(1998), 22—29.

[15] C. Liu, J. LaylandJournal of the ACMScheduling algorithms for multiprogramming in ardh real-
time environment, ACM Publisher, 1973.

[16] Lemerre, M., David, V., Aussagues, C., and Vidagliet, G. 2008. Equivalence between Schedule
Representations: Theory and ApplicatioimsProceedings of the 2008 IEEE Real-Time and Eied
Technology and Applications Symposium - VoluméApil 22 - 24, 2008). RTAS. IEEE Computer
Society, Washington, DC, 237-247.

[17] Lamport, L. 1990. Concurrent reading and writingciicks ACM Trans. Comput. Sys, 4 (Nov.
1990), 305-310

[18] John Carpenter, Shelby Funk, Philip Holman, Anaridigasan, James Anderson, and Sanjoy Baruah.
A categorization of real-time multiprocessor scHeduproblems and algorithmdn Hand-book on
Scheduling Algorithms, Methods, and Modé&kapman Hall/CRC, Boca, 2004.

[19] Cynthia A. Phillips, Clif Stein, Eric Torng, and Joel Wein. Optimal timetical scheduling via
resource augmentation (extended abstraTtTOC '97: Proc. of the #8annual ACM symposium on
theory of computing, pages 140-1842w York, NY, USA, 1997. ACM

4 http://www.parma-itea2.org/

