
Allen D. Malony1,2, Shangkar Mayanglambam1

Sameer Shende1,2, Matt Sottile1

1Computer and Information Science Department, University of Oregon

2ParaTools, Inc.

Laurent Morin, Stephane Bihan, Francois Bodin

CAPS Entreprise

Performance Tool Integration in Programming

Environments for GPU Acceleration:

Experiences with TAU and HMPP

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Outline

Motivation

HMPP Workbench

TAU and TAUcuda

 Instrumentation model

Case studies

Game of Life

Double buffering optimization

 Future work

2

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Motivation

Multi-core, heterogeneous (MCH) execution environments

Difficult to program with lower-level interfaces

Heterogeneous computation adds complexity (e.g., GPU)

 Performance is harder measure, analyze, and understand

Higher-level programming support

 Facilitates MCH application development

 Provides abstract computation / execution model

Distances developer from performance factors

 Integrate performance tools with MCH programming system

 Performance analysis in context of high-level model

Automation of instrumentation and measurement

Enable performance feedback for optimization
3

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration of HMPP and TAU / TAUcuda

HMPP Workbench

High-level system for programming

multi-core and GPU-accelerated systems

 Portable and retargetable

TAU Performance System®

 Parallel performance instrumentation,

measurement, and analysis system

Target scalable parallel systems

TAUcuda

CUDA performance measurement

 Integrated with TAU

HMPP–TAU = HMPP + TAU + TAUcuda

4

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP Workbench (www.caps-entreprise.com)

 C and Fortran GPU programming directives

 Define and execute GPU-accelerated versions of functions

 Implement efficient communication patterns

 Build parallel hybrid applications with OpenMP and MPI

 Open hybrid compiling workbench

 Automatically generated CUDA computations

 Use standard compilers and
hardware vendor tools

 Drive the whole compilation
workflow

 HMPP runtime library

 Dispatch computations on
available GPUs

 Scale to multi-GPUs systems

5

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

TAU Architecture

TAU Performance System Project (tau.uoregon.edu)

Tuning and Analysis Utilities

 16+ year project effort

HPC performance system framework

 Integrated, scalable, and flexible

 Parallel programming paradigms

 Integrated performance toolkit

 Instrumentation, measurement,

analysis, and visualization

 Portable performance profiling and

tracing facility

 Performance data management and

data mining

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

TAUcuda CUDA Performance Measurement

7

CUDA kernel invocations are asynchronous

Difficult for CPU to measure concurrency (kernel begin/end)

TAUcuda built on CUDA event interface (cudaEventRecord)

Allow “events” to be placed in streams and processed

 events are timestamped

CUDA runtime reports GPU timing in event structure

Events are reported back to CPU when requested

 use begin and end events to calculate intervals

CPU retrieves events in a non-blocking and blocking manner

Associates TAU event context with CUDA events

Can be used to capture CPU-side “waiting time”

 ParCo ’09 paper on TAUcuda (A-GPU2: GPU Programming)

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration Challenges

 Instrumentation model

HMPP generates code

 host code and target code

Links with runtime library

Must insert instrumentation

before/during code generation

 Instrument runtime library

Events should support analysis

Measurement APIs

Target TAU and TAUcuda

Make generic interface with weak binding

Need to be compatible with execution model (e.g., threading)

8

HMPP annotated
application

HMPP
preprocess

or

Generic host
compiler

template
generator

target
generator

nvcc

main function

HMPP
codelet

Binary host
application

HMPP runtime

HMPP annotated
native codelet

Dynamic library
HMPP codelet

HMPP runtime
interface

CUDA codelet

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration Challenges (2)

Analysis model

 Portray meaningful and consistent performance views

 support HMPP computation abstraction

 Show all aspects of accelerator execution

 data transfers

 kernel operations

 Present asynchronous and concurrent operation

Generate useful performance metrics

9

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP–TAU Instrumentation Workflow

Goal

Automated, seamless instrumentation of HMPP applications

 Instrumentation support for codelet target generation

Workflow

Replace compiler with TAU compiler

 allows instrumentation of application-level events

 Indicate HMPP compiler (as TAU’s compiler target)

 TAUcuda instrumentation automatically generated

 placed in codelet around CUDA kernel statements

HMPP TAU management

Default support in the HMPP runtime

Activated using compiler flags

10

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP-TAU Event Instrumentation/Measurement

User

Application

TAU

C

U

D

A

TAUcuda

HMPP

Runtime HMPP

CUDA

Codelet

Measurement
• User events
• HMPP events
• Codelet events

Measurement
• CUDA stream

events
• Waiting information

11

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP-TAU Compilation Workflow

12

TAU compiler

HMPP compiler

Generic compiler

TAU instrumenter

CUDA compiler

TAU-instrumented

HMPP annotated

application

HMPP annotated

application

CUDA generator

TAUcuda instrumenter

TAUcuda-

instrumented

CUDA codelets

TAU/TAUcuda library

HMPP runtime library

TAUcuda-

instrumented CUDA

codelet library

TAU-instrumented

HMPP application

executable

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Performance Measurement Results

TAU measurements (Host CPU)

 Performance profile

 exclusive/inclusive, callpath

 Performance trace

Timing and hardware counter data

HMPP CPU, CUDA data transfer, and runtime events

TAUcuda measurements (GPU)

CUDA kernel performance profiles

 exclusive/inclusive, nested

Kernel execution time data

CPU waiting time and “finalize” time

Works with multiple CPUs and GPUs

13

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Case Study: Conway’s Game of Life (GoL)

GoL is a cellular automata that computes on an

orthogonal grid of cells each

Cell has state

Life or death

Next state (life) determined by state of nearest neighbors

 Simple HMPP program

One kernel

Demonstrate and validate HMPP – TAU functionality

HMPP events

Codelet events

TAUcuda events

Effects of different problem sizes
14

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL HMPP Source Code

15

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <strings.h>
#include "gol.h"

int main(int argc, char **argv) {
world_t *w;
int m,n,iters,seed;
int last;
int sz;
char *wA, *wB;

if (argc != 5) usage(argv[0]);
m = atoi(argv[1]);
n = atoi(argv[2]);
iters = atoi(argv[3]);
seed = atoi(argv[4]);
srand(seed);
w = newWorld(m,n);
init(w);
sz = m*n;
wA = w->worldA;
wB = w->worldB;

#pragma hmpp iterate callsite, args[0-1].size={sz}, &
#pragma hmpp iterate args[4].size={1}
iterate(wA,wB,m,n,&last,iters,0,m,0,n);

destroyWorld(w);
exit(EXIT_SUCCESS);

}

#pragma hmpp iterate codelet, args[0-1].io = inout, &
#pragma hmpp iterate args[2-3].io = in, &
#pragma hmpp iterate args[4].io = inout, &
#pragma hmpp iterate args[5-9].io = in, &
#pragma hmpp iterate target=CUDA
void iterate(char *wA, char *wB, int n, int m, int *last,

int iters, int m_lo, int m_hi, int n_lo, int n_hi) {
int i,j,iter;
char *cur, *prev, *tmp;

cur = wB; prev = wA; *last = iters%2;
for (iter=0;iter<iters;iter++) {

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

int sum =
prev[MODIDX(j ,i+1,n,m)] +
prev[MODIDX(j+1,i+1,n,m)] +
prev[MODIDX(j-1,i+1,n,m)] +
prev[MODIDX(j ,i-1,n,m)] +
prev[MODIDX(j+1,i-1,n,m)] +
prev[MODIDX(j-1,i-1,n,m)] +
prev[MODIDX(j+1,i ,n,m)] +
prev[MODIDX(j-1,i ,n,m)];

if (prev[IDX(j,i,n)] == 0 && sum == 3)
cur[IDX(j,i,n)] = 1;

else {
if (sum < 2 || sum > 3) cur[IDX(j,i,n)] = 0;
else cur[IDX(j,i,n)] = prev[IDX(j,i,n)];

}}}

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

prev[IDX(j,i,n)] = cur[IDX(j,i,n)];
}}}}

Loop 1

Loop 2

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL Scaling Experiments

TAU events: HMPP and codelet events

 Problem sizes: 1000x1000, …, 5000x5000

16

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL Scaling Experiments (2)

TAUcuda events

TAU Context: hmppStartCodelet

17

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Case Study: Benefit of Data/Execution Overlap

Matrix-vector multiplication

 Single codelet sequentializes data transfer and execution

Two codelets allow overlap

Demonstrate all levels of events and profiling+tracing

18

Vout

Min

Vin Vin

1 2 3 4 5

C1 C2 C1 C2 C1

Min VoutVin Vin 1 2 3

C1 C2

4

C1

5

C2 C1

time time

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Overlap Experiment (Execution Trace)

19

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Overlap Experiment (Execution Profile)

20

TAUcuda

events

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Execution Overlap (Full Environment)

21

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Conclusions and Future Work

MCH programming environments must integrate parallel

performance technology to enable performance analysis

 Initial HMPP-TAU integration with TAUcuda (alpha version)

Two week intense effort to build prototype

Automatic instrumentation implemented in HMPP Workbench

Demonstrated benefits of performance tool integration

 Improve approach for TAU management of HMPP threads

Better merge TAU and TAUcuda performance data

Take advantage of other tools in TAU toolset

 Performance database (PerfDMF), data mining (PerfExplorer)

Extend to OpenCL codelets as TAUcuda makes available

Real applications (e.g., seismic modeling, neuroinformatics)
22

