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Motivation

Multi-core, heterogeneous (MCH) execution environments

Difficult to program with lower-level interfaces

Heterogeneous computation adds complexity (e.g., GPU)

 Performance is harder measure, analyze, and understand

Higher-level programming support

 Facilitates MCH application development

 Provides abstract computation / execution model

Distances developer from performance factors

 Integrate performance tools with MCH programming system

 Performance analysis in context of high-level model

Automation of instrumentation and measurement

Enable performance feedback for optimization
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Integration of HMPP and TAU / TAUcuda

HMPP Workbench

High-level system for programming

multi-core and GPU-accelerated systems

 Portable and retargetable

TAU Performance System®

 Parallel performance instrumentation,

measurement, and analysis system

Target scalable parallel systems

TAUcuda

CUDA performance measurement

 Integrated with TAU

HMPP–TAU = HMPP + TAU + TAUcuda
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HMPP Workbench (www.caps-entreprise.com)

 C and Fortran GPU programming directives

 Define and execute GPU-accelerated versions of functions

 Implement efficient communication patterns

 Build parallel hybrid applications with OpenMP and MPI

 Open hybrid compiling workbench

 Automatically generated CUDA computations

 Use standard compilers and 
hardware vendor tools

 Drive the whole compilation 
workflow

 HMPP runtime library

 Dispatch computations on 
available GPUs

 Scale to multi-GPUs systems
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TAU Architecture

TAU Performance System Project (tau.uoregon.edu)

Tuning and Analysis Utilities

 16+ year project effort

HPC performance system framework

 Integrated, scalable, and flexible

 Parallel programming paradigms

 Integrated performance toolkit

 Instrumentation, measurement, 

analysis, and visualization

 Portable performance profiling and 

tracing facility

 Performance data management and 

data mining
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TAUcuda CUDA Performance Measurement
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CUDA kernel invocations are asynchronous

Difficult for CPU to measure concurrency (kernel begin/end)

TAUcuda built on CUDA event interface (cudaEventRecord)

Allow “events” to be placed in streams and processed

 events are timestamped

CUDA runtime reports GPU timing in event structure

Events are reported back to CPU when requested

 use begin and end events to calculate intervals

CPU retrieves events in a non-blocking and blocking manner

Associates TAU event context with CUDA events

Can be used to capture CPU-side “waiting time”

 ParCo ’09 paper on TAUcuda (A-GPU2: GPU Programming)
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Integration Challenges

 Instrumentation model

HMPP generates code

 host code and target code

Links with runtime library

Must insert instrumentation

before/during code generation

 Instrument runtime library

Events should support analysis

Measurement APIs

Target TAU and TAUcuda

Make generic interface with weak binding

Need to be compatible with execution model (e.g., threading)
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Integration Challenges (2)

Analysis model

 Portray meaningful and consistent performance views

 support HMPP computation abstraction

 Show all aspects of accelerator execution

 data transfers

 kernel operations

 Present asynchronous and concurrent operation

Generate useful performance metrics
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HMPP–TAU Instrumentation Workflow

Goal

Automated, seamless instrumentation of HMPP applications

 Instrumentation support for codelet target generation

Workflow

Replace compiler with TAU compiler 

 allows instrumentation of application-level events

 Indicate HMPP compiler (as TAU’s compiler target)

 TAUcuda instrumentation automatically generated

 placed in codelet around CUDA kernel statements 

HMPP TAU management

Default support in the HMPP runtime

Activated using compiler flags
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HMPP-TAU Event Instrumentation/Measurement

User 

Application

TAU

C

U

D

A

TAUcuda

HMPP 

Runtime HMPP 

CUDA 

Codelet

Measurement
• User events
• HMPP events
• Codelet events

Measurement
• CUDA stream

events
• Waiting information
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HMPP-TAU Compilation Workflow
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Performance Measurement Results

TAU measurements (Host CPU)

 Performance profile

 exclusive/inclusive, callpath

 Performance trace

Timing and hardware counter data

HMPP CPU, CUDA data transfer, and runtime events

TAUcuda measurements (GPU)

CUDA kernel performance profiles

 exclusive/inclusive, nested

Kernel execution time data

CPU waiting time and “finalize” time

Works with multiple CPUs and GPUs
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Case Study: Conway’s Game of Life (GoL)

GoL is a cellular automata that computes on an

orthogonal grid of cells each

Cell has state

Life or death

Next state (life) determined by state of nearest neighbors

 Simple HMPP program

One kernel

Demonstrate and validate HMPP – TAU functionality

HMPP events

Codelet events

TAUcuda events

Effects of different problem sizes
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GoL HMPP Source Code
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#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <strings.h>
#include "gol.h"

int main(int argc, char **argv) {
world_t *w;
int m,n,iters,seed;
int last;
int sz;
char *wA, *wB;

if (argc != 5) usage(argv[0]);
m = atoi(argv[1]);
n = atoi(argv[2]);
iters = atoi(argv[3]);
seed = atoi(argv[4]);
srand( seed );
w = newWorld(m,n);
init(w);
sz = m*n;
wA = w->worldA;
wB = w->worldB;

#pragma hmpp iterate callsite, args[0-1].size={sz}, &
#pragma hmpp iterate              args[4].size={1}
iterate(wA,wB,m,n,&last,iters,0,m,0,n);

destroyWorld(w);
exit(EXIT_SUCCESS);

}

#pragma hmpp iterate codelet, args[0-1].io = inout, &
#pragma hmpp iterate               args[2-3].io = in,    &
#pragma hmpp iterate               args[4].io   = inout, &
#pragma hmpp iterate               args[5-9].io = in,    &
#pragma hmpp iterate               target=CUDA
void iterate(char *wA, char *wB, int n, int m, int *last,

int iters, int m_lo, int m_hi, int n_lo, int n_hi) {
int i,j,iter;
char *cur, *prev, *tmp;

cur = wB; prev = wA; *last = iters%2;
for (iter=0;iter<iters;iter++) {

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

int sum =
prev[MODIDX(j ,i+1,n,m)] +
prev[MODIDX(j+1,i+1,n,m)] +
prev[MODIDX(j-1,i+1,n,m)] +
prev[MODIDX(j ,i-1,n,m)] +
prev[MODIDX(j+1,i-1,n,m)] +
prev[MODIDX(j-1,i-1,n,m)] +
prev[MODIDX(j+1,i  ,n,m)] +
prev[MODIDX(j-1,i  ,n,m)];

if (prev[IDX(j,i,n)] == 0 && sum == 3)
cur[IDX(j,i,n)] = 1;

else {
if (sum < 2 || sum > 3) cur[IDX(j,i,n)] = 0;
else cur[IDX(j,i,n)] = prev[IDX(j,i,n)];

}}}

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

prev[IDX(j,i,n)] = cur[IDX(j,i,n)];
}}}}

Loop 1

Loop 2
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GoL Scaling Experiments

TAU events: HMPP and codelet events

 Problem sizes: 1000x1000, …, 5000x5000 
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GoL Scaling Experiments (2)

TAUcuda events

TAU Context: hmppStartCodelet
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Case Study: Benefit of Data/Execution Overlap

Matrix-vector multiplication

 Single codelet sequentializes data transfer and execution

Two codelets allow overlap

Demonstrate all levels of events and profiling+tracing
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Data/Overlap Experiment (Execution Trace)
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Data/Overlap Experiment (Execution Profile)
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Data/Execution Overlap (Full Environment)
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Conclusions and Future Work

MCH programming environments must integrate parallel 

performance technology to enable performance analysis

 Initial HMPP-TAU integration with TAUcuda (alpha version)

Two week intense effort to build prototype

Automatic instrumentation implemented in HMPP Workbench

Demonstrated benefits of performance tool integration

 Improve approach for TAU management of HMPP threads

Better merge TAU and TAUcuda performance data

Take advantage of other tools in TAU toolset

 Performance database (PerfDMF), data mining (PerfExplorer)

Extend to OpenCL codelets as TAUcuda makes available

Real applications (e.g., seismic modeling, neuroinformatics)
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