
Allen D. Malony1,2, Shangkar Mayanglambam1

Sameer Shende1,2, Matt Sottile1

1Computer and Information Science Department, University of Oregon

2ParaTools, Inc.

Laurent Morin, Stephane Bihan, Francois Bodin

CAPS Entreprise

Performance Tool Integration in Programming

Environments for GPU Acceleration:

Experiences with TAU and HMPP

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Outline

Motivation

HMPP Workbench

TAU and TAUcuda

 Instrumentation model

Case studies

Game of Life

Double buffering optimization

 Future work

2

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Motivation

Multi-core, heterogeneous (MCH) execution environments

Difficult to program with lower-level interfaces

Heterogeneous computation adds complexity (e.g., GPU)

 Performance is harder measure, analyze, and understand

Higher-level programming support

 Facilitates MCH application development

 Provides abstract computation / execution model

Distances developer from performance factors

 Integrate performance tools with MCH programming system

 Performance analysis in context of high-level model

Automation of instrumentation and measurement

Enable performance feedback for optimization
3

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration of HMPP and TAU / TAUcuda

HMPP Workbench

High-level system for programming

multi-core and GPU-accelerated systems

 Portable and retargetable

TAU Performance System®

 Parallel performance instrumentation,

measurement, and analysis system

Target scalable parallel systems

TAUcuda

CUDA performance measurement

 Integrated with TAU

HMPP–TAU = HMPP + TAU + TAUcuda

4

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP Workbench (www.caps-entreprise.com)

 C and Fortran GPU programming directives

 Define and execute GPU-accelerated versions of functions

 Implement efficient communication patterns

 Build parallel hybrid applications with OpenMP and MPI

 Open hybrid compiling workbench

 Automatically generated CUDA computations

 Use standard compilers and
hardware vendor tools

 Drive the whole compilation
workflow

 HMPP runtime library

 Dispatch computations on
available GPUs

 Scale to multi-GPUs systems

5

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

TAU Architecture

TAU Performance System Project (tau.uoregon.edu)

Tuning and Analysis Utilities

 16+ year project effort

HPC performance system framework

 Integrated, scalable, and flexible

 Parallel programming paradigms

 Integrated performance toolkit

 Instrumentation, measurement,

analysis, and visualization

 Portable performance profiling and

tracing facility

 Performance data management and

data mining

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

TAUcuda CUDA Performance Measurement

7

CUDA kernel invocations are asynchronous

Difficult for CPU to measure concurrency (kernel begin/end)

TAUcuda built on CUDA event interface (cudaEventRecord)

Allow “events” to be placed in streams and processed

 events are timestamped

CUDA runtime reports GPU timing in event structure

Events are reported back to CPU when requested

 use begin and end events to calculate intervals

CPU retrieves events in a non-blocking and blocking manner

Associates TAU event context with CUDA events

Can be used to capture CPU-side “waiting time”

 ParCo ’09 paper on TAUcuda (A-GPU2: GPU Programming)

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration Challenges

 Instrumentation model

HMPP generates code

 host code and target code

Links with runtime library

Must insert instrumentation

before/during code generation

 Instrument runtime library

Events should support analysis

Measurement APIs

Target TAU and TAUcuda

Make generic interface with weak binding

Need to be compatible with execution model (e.g., threading)

8

HMPP annotated
application

HMPP
preprocess

or

Generic host
compiler

template
generator

target
generator

nvcc

main function

HMPP
codelet

Binary host
application

HMPP runtime

HMPP annotated
native codelet

Dynamic library
HMPP codelet

HMPP runtime
interface

CUDA codelet

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Integration Challenges (2)

Analysis model

 Portray meaningful and consistent performance views

 support HMPP computation abstraction

 Show all aspects of accelerator execution

 data transfers

 kernel operations

 Present asynchronous and concurrent operation

Generate useful performance metrics

9

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP–TAU Instrumentation Workflow

Goal

Automated, seamless instrumentation of HMPP applications

 Instrumentation support for codelet target generation

Workflow

Replace compiler with TAU compiler

 allows instrumentation of application-level events

 Indicate HMPP compiler (as TAU’s compiler target)

 TAUcuda instrumentation automatically generated

 placed in codelet around CUDA kernel statements

HMPP TAU management

Default support in the HMPP runtime

Activated using compiler flags

10

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP-TAU Event Instrumentation/Measurement

User

Application

TAU

C

U

D

A

TAUcuda

HMPP

Runtime HMPP

CUDA

Codelet

Measurement
• User events
• HMPP events
• Codelet events

Measurement
• CUDA stream

events
• Waiting information

11

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

HMPP-TAU Compilation Workflow

12

TAU compiler

HMPP compiler

Generic compiler

TAU instrumenter

CUDA compiler

TAU-instrumented

HMPP annotated

application

HMPP annotated

application

CUDA generator

TAUcuda instrumenter

TAUcuda-

instrumented

CUDA codelets

TAU/TAUcuda library

HMPP runtime library

TAUcuda-

instrumented CUDA

codelet library

TAU-instrumented

HMPP application

executable

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Performance Measurement Results

TAU measurements (Host CPU)

 Performance profile

 exclusive/inclusive, callpath

 Performance trace

Timing and hardware counter data

HMPP CPU, CUDA data transfer, and runtime events

TAUcuda measurements (GPU)

CUDA kernel performance profiles

 exclusive/inclusive, nested

Kernel execution time data

CPU waiting time and “finalize” time

Works with multiple CPUs and GPUs

13

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Case Study: Conway’s Game of Life (GoL)

GoL is a cellular automata that computes on an

orthogonal grid of cells each

Cell has state

Life or death

Next state (life) determined by state of nearest neighbors

 Simple HMPP program

One kernel

Demonstrate and validate HMPP – TAU functionality

HMPP events

Codelet events

TAUcuda events

Effects of different problem sizes
14

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL HMPP Source Code

15

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <strings.h>
#include "gol.h"

int main(int argc, char **argv) {
world_t *w;
int m,n,iters,seed;
int last;
int sz;
char *wA, *wB;

if (argc != 5) usage(argv[0]);
m = atoi(argv[1]);
n = atoi(argv[2]);
iters = atoi(argv[3]);
seed = atoi(argv[4]);
srand(seed);
w = newWorld(m,n);
init(w);
sz = m*n;
wA = w->worldA;
wB = w->worldB;

#pragma hmpp iterate callsite, args[0-1].size={sz}, &
#pragma hmpp iterate args[4].size={1}
iterate(wA,wB,m,n,&last,iters,0,m,0,n);

destroyWorld(w);
exit(EXIT_SUCCESS);

}

#pragma hmpp iterate codelet, args[0-1].io = inout, &
#pragma hmpp iterate args[2-3].io = in, &
#pragma hmpp iterate args[4].io = inout, &
#pragma hmpp iterate args[5-9].io = in, &
#pragma hmpp iterate target=CUDA
void iterate(char *wA, char *wB, int n, int m, int *last,

int iters, int m_lo, int m_hi, int n_lo, int n_hi) {
int i,j,iter;
char *cur, *prev, *tmp;

cur = wB; prev = wA; *last = iters%2;
for (iter=0;iter<iters;iter++) {

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

int sum =
prev[MODIDX(j ,i+1,n,m)] +
prev[MODIDX(j+1,i+1,n,m)] +
prev[MODIDX(j-1,i+1,n,m)] +
prev[MODIDX(j ,i-1,n,m)] +
prev[MODIDX(j+1,i-1,n,m)] +
prev[MODIDX(j-1,i-1,n,m)] +
prev[MODIDX(j+1,i ,n,m)] +
prev[MODIDX(j-1,i ,n,m)];

if (prev[IDX(j,i,n)] == 0 && sum == 3)
cur[IDX(j,i,n)] = 1;

else {
if (sum < 2 || sum > 3) cur[IDX(j,i,n)] = 0;
else cur[IDX(j,i,n)] = prev[IDX(j,i,n)];

}}}

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

prev[IDX(j,i,n)] = cur[IDX(j,i,n)];
}}}}

Loop 1

Loop 2

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL Scaling Experiments

TAU events: HMPP and codelet events

 Problem sizes: 1000x1000, …, 5000x5000

16

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

GoL Scaling Experiments (2)

TAUcuda events

TAU Context: hmppStartCodelet

17

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Case Study: Benefit of Data/Execution Overlap

Matrix-vector multiplication

 Single codelet sequentializes data transfer and execution

Two codelets allow overlap

Demonstrate all levels of events and profiling+tracing

18

Vout

Min

Vin Vin

1 2 3 4 5

C1 C2 C1 C2 C1

Min VoutVin Vin 1 2 3

C1 C2

4

C1

5

C2 C1

time time

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Overlap Experiment (Execution Trace)

19

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Overlap Experiment (Execution Profile)

20

TAUcuda

events

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Data/Execution Overlap (Full Environment)

21

Performance Tool Integration in Programming Environments for GPU Acceleration: Experiences with TAU and HMPPParco 2009

Conclusions and Future Work

MCH programming environments must integrate parallel

performance technology to enable performance analysis

 Initial HMPP-TAU integration with TAUcuda (alpha version)

Two week intense effort to build prototype

Automatic instrumentation implemented in HMPP Workbench

Demonstrated benefits of performance tool integration

 Improve approach for TAU management of HMPP threads

Better merge TAU and TAUcuda performance data

Take advantage of other tools in TAU toolset

 Performance database (PerfDMF), data mining (PerfExplorer)

Extend to OpenCL codelets as TAUcuda makes available

Real applications (e.g., seismic modeling, neuroinformatics)
22

