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Motivation

Multi-core, heterogeneous (MCH) execution environments

Difficult to program with lower-level interfaces

Heterogeneous computation adds complexity (e.g., GPU)

 Performance is harder measure, analyze, and understand

Higher-level programming support

 Facilitates MCH application development

 Provides abstract computation / execution model

Distances developer from performance factors

 Integrate performance tools with MCH programming system

 Performance analysis in context of high-level model

Automation of instrumentation and measurement

Enable performance feedback for optimization
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Integration of HMPP and TAU / TAUcuda

HMPP Workbench

High-level system for programming

multi-core and GPU-accelerated systems

 Portable and retargetable

TAU Performance System®

 Parallel performance instrumentation,

measurement, and analysis system

Target scalable parallel systems

TAUcuda

CUDA performance measurement

 Integrated with TAU

HMPP–TAU = HMPP + TAU + TAUcuda
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HMPP Workbench (www.caps-entreprise.com)

 C and Fortran GPU programming directives

 Define and execute GPU-accelerated versions of functions

 Implement efficient communication patterns

 Build parallel hybrid applications with OpenMP and MPI

 Open hybrid compiling workbench

 Automatically generated CUDA computations

 Use standard compilers and 
hardware vendor tools

 Drive the whole compilation 
workflow

 HMPP runtime library

 Dispatch computations on 
available GPUs

 Scale to multi-GPUs systems
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TAU Architecture

TAU Performance System Project (tau.uoregon.edu)

Tuning and Analysis Utilities

 16+ year project effort

HPC performance system framework

 Integrated, scalable, and flexible

 Parallel programming paradigms

 Integrated performance toolkit

 Instrumentation, measurement, 

analysis, and visualization

 Portable performance profiling and 

tracing facility

 Performance data management and 

data mining
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TAUcuda CUDA Performance Measurement
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CUDA kernel invocations are asynchronous

Difficult for CPU to measure concurrency (kernel begin/end)

TAUcuda built on CUDA event interface (cudaEventRecord)

Allow “events” to be placed in streams and processed

 events are timestamped

CUDA runtime reports GPU timing in event structure

Events are reported back to CPU when requested

 use begin and end events to calculate intervals

CPU retrieves events in a non-blocking and blocking manner

Associates TAU event context with CUDA events

Can be used to capture CPU-side “waiting time”

 ParCo ’09 paper on TAUcuda (A-GPU2: GPU Programming)
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Integration Challenges

 Instrumentation model

HMPP generates code

 host code and target code

Links with runtime library

Must insert instrumentation

before/during code generation

 Instrument runtime library

Events should support analysis

Measurement APIs

Target TAU and TAUcuda

Make generic interface with weak binding

Need to be compatible with execution model (e.g., threading)
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Integration Challenges (2)

Analysis model

 Portray meaningful and consistent performance views

 support HMPP computation abstraction

 Show all aspects of accelerator execution

 data transfers

 kernel operations

 Present asynchronous and concurrent operation

Generate useful performance metrics
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HMPP–TAU Instrumentation Workflow

Goal

Automated, seamless instrumentation of HMPP applications

 Instrumentation support for codelet target generation

Workflow

Replace compiler with TAU compiler 

 allows instrumentation of application-level events

 Indicate HMPP compiler (as TAU’s compiler target)

 TAUcuda instrumentation automatically generated

 placed in codelet around CUDA kernel statements 

HMPP TAU management

Default support in the HMPP runtime

Activated using compiler flags
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HMPP-TAU Event Instrumentation/Measurement
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HMPP-TAU Compilation Workflow
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Performance Measurement Results

TAU measurements (Host CPU)

 Performance profile

 exclusive/inclusive, callpath

 Performance trace

Timing and hardware counter data

HMPP CPU, CUDA data transfer, and runtime events

TAUcuda measurements (GPU)

CUDA kernel performance profiles

 exclusive/inclusive, nested

Kernel execution time data

CPU waiting time and “finalize” time

Works with multiple CPUs and GPUs
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Case Study: Conway’s Game of Life (GoL)

GoL is a cellular automata that computes on an

orthogonal grid of cells each

Cell has state

Life or death

Next state (life) determined by state of nearest neighbors

 Simple HMPP program

One kernel

Demonstrate and validate HMPP – TAU functionality

HMPP events

Codelet events

TAUcuda events

Effects of different problem sizes
14
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GoL HMPP Source Code
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#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <strings.h>
#include "gol.h"

int main(int argc, char **argv) {
world_t *w;
int m,n,iters,seed;
int last;
int sz;
char *wA, *wB;

if (argc != 5) usage(argv[0]);
m = atoi(argv[1]);
n = atoi(argv[2]);
iters = atoi(argv[3]);
seed = atoi(argv[4]);
srand( seed );
w = newWorld(m,n);
init(w);
sz = m*n;
wA = w->worldA;
wB = w->worldB;

#pragma hmpp iterate callsite, args[0-1].size={sz}, &
#pragma hmpp iterate              args[4].size={1}
iterate(wA,wB,m,n,&last,iters,0,m,0,n);

destroyWorld(w);
exit(EXIT_SUCCESS);

}

#pragma hmpp iterate codelet, args[0-1].io = inout, &
#pragma hmpp iterate               args[2-3].io = in,    &
#pragma hmpp iterate               args[4].io   = inout, &
#pragma hmpp iterate               args[5-9].io = in,    &
#pragma hmpp iterate               target=CUDA
void iterate(char *wA, char *wB, int n, int m, int *last,

int iters, int m_lo, int m_hi, int n_lo, int n_hi) {
int i,j,iter;
char *cur, *prev, *tmp;

cur = wB; prev = wA; *last = iters%2;
for (iter=0;iter<iters;iter++) {

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

int sum =
prev[MODIDX(j ,i+1,n,m)] +
prev[MODIDX(j+1,i+1,n,m)] +
prev[MODIDX(j-1,i+1,n,m)] +
prev[MODIDX(j ,i-1,n,m)] +
prev[MODIDX(j+1,i-1,n,m)] +
prev[MODIDX(j-1,i-1,n,m)] +
prev[MODIDX(j+1,i  ,n,m)] +
prev[MODIDX(j-1,i  ,n,m)];

if (prev[IDX(j,i,n)] == 0 && sum == 3)
cur[IDX(j,i,n)] = 1;

else {
if (sum < 2 || sum > 3) cur[IDX(j,i,n)] = 0;
else cur[IDX(j,i,n)] = prev[IDX(j,i,n)];

}}}

#pragma hmppcg parallel
for (i=m_lo;i<m_hi;i++) {
for (j=n_lo;j<n_hi;j++) {

prev[IDX(j,i,n)] = cur[IDX(j,i,n)];
}}}}

Loop 1

Loop 2
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GoL Scaling Experiments

TAU events: HMPP and codelet events

 Problem sizes: 1000x1000, …, 5000x5000 
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GoL Scaling Experiments (2)

TAUcuda events

TAU Context: hmppStartCodelet
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Case Study: Benefit of Data/Execution Overlap

Matrix-vector multiplication

 Single codelet sequentializes data transfer and execution

Two codelets allow overlap

Demonstrate all levels of events and profiling+tracing
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Data/Overlap Experiment (Execution Trace)
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Data/Overlap Experiment (Execution Profile)
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Data/Execution Overlap (Full Environment)
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Conclusions and Future Work

MCH programming environments must integrate parallel 

performance technology to enable performance analysis

 Initial HMPP-TAU integration with TAUcuda (alpha version)

Two week intense effort to build prototype

Automatic instrumentation implemented in HMPP Workbench

Demonstrated benefits of performance tool integration

 Improve approach for TAU management of HMPP threads

Better merge TAU and TAUcuda performance data

Take advantage of other tools in TAU toolset

 Performance database (PerfDMF), data mining (PerfExplorer)

Extend to OpenCL codelets as TAUcuda makes available

Real applications (e.g., seismic modeling, neuroinformatics)
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