M ITEAZ

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT

L

A

Parallel Programming for Multi-core Architectures
WWW.parma-itea2.org

Outline

J
l

i
by
W)

I

I

1
iy

=

II
Mgy
]||]“IIIII

III[|||
|
it

ﬂl

o Context: parallelism in embedded real-
time system design

« Extension targeting multi-cores
 Experiment & early results

e Future works

=0 hiast digite®: ,

E?iﬁﬁ

ST
ST

High -performance and
embedded real-time systems
 We have to cope with the same problems than
HPC to bridge the gap between parallelism
expressed in design (modularity) and those
available in multicore-based architectures

(performances)
— EXpress potential parallelism in programming models
* Independently of any architecture
— Map the potential parallelism to the real one available
In the underlying hardware
* From single-core implementation to multi-core ones
* In a scalable and transparent manner for the developer

— Taking into account additional embedded
requirements (real-time constraints, ...)

digitel:

kst

S

m

b

y

-time kernel

The OASIS tool chain and real

Objective: to allow design and implementation of safety-critical
multitasking applications with advanced real time functionalities

— To guarantee responses in specified times
— To ensure predictable and reproducible behaviors

— The application behavior is deterministic

e Means
— Code generation tools for real-time multitasking systems
e Compilation (semi-formal language %C including ANSI C)

e Automatic code generation & sizing
» Dedicated code & data segmentation , link edition (with MMU tables)

— Safety-oriented kernel
* Generic, time-triggered and safety-oriented

e Current targets are Motorola 68040/60, Intel IA32 , ARM, S12XE

kst

J

Some basics on OASIS

b
"5

l
[
J

 Time-Triggered Multitasking programming & execution model

— All the processing of a task take place between two known instants of the TT
system (not necessarily consecutive)

— All the data transfers between “tasks” are done at the transition between two
elementary actions (EA)

Iime interval (specified b%haviour) 1

Start date at the earliest Ts Te End date at the latest

Actual duration (quota for sizing)

 Temporal consistency of exchanged data
— [Each data protected and has only one producer

— Data on which works a processing are not sensitive between the beginning date
and the ending date

_ start X EBSK oy « Strict observation principle
> task, * Implicit & automatic update at defined
instants
Temporal L.
variable < » Automatic sizing & protected safe
buffers

task,

- X(t)=X(t,) = X(start) . "
S hist ’ digitel:

ﬂ

ST
III||||||||||[

The OASIS SMP kernel — key points

Simultaneous execution of different real-time tasks
(agents) on several cores (up to 16)

— An application compiled for single-core OASIS kernel can be

used directly with the SMP kernel
— Tasks of the app. are dynamically distributed between available
cores

* Modification of the kernel
— Detection and setup of available cores during kernel boot
— Dynamic and transparent mapping of real-time tasks to cores at

run-time
— In conformance with the OASIS time-triggered execution model
« Guarantee of time consistency between cores

» Global Earliest-Deadline-First scheduling policy

kst

Porting OASIS to IA32-SMP architecture

 Agents code :

— No shared memory or
communication outside the

System Layer
e System Layer code
— Already lock-free interruptible

code
— Requires memory fences

o Main difficulty: the pK
— Single-core arch: atomic

section
— Masked IT: not sufficient on

SMP arch.

kst

J

:
h

IIIIJIIJII||||
|||[|||

|

.|

Which code can be
executed
simultaneously ?

-

User-mode g <3:> <3:>
. () () ()
execution =) =] =]
- N w

SYSTEM LAYER

Inter-agents com.

Protected-mode <
execution

MICRO-KERNEL
Time and
watchdogs mgmt,
Online scheduling,
Task switch

digite(:

7

ﬂ

Par

ST
III||||||||||[

Porting OASIS to IA32-SMP architecture

» Design choice: allow most of the micro-kernel code

to be executed on any CPU
— Aim: balance system load between available cores
only CPUO can handle

— Asymmetric approach for time mgmt:
timer ITs - additional system load for
» global time update management
ny

« watchdog setup and handling
— But scheduler and context-switch ops. can be run on a
CPU

SMP micro-kernel features:
— Lock-free time management algorithm

— Lock-free context-switching procedure
— Atomic scheduler — fair spinlock (active wait) protection

kst

E?iﬁﬁ

ST
III||||||||||[

Study: Tracking Algorithm from DA

e Use case from Dassault Aviation: real-time
tracking of targets using particle clouds

simulations:

—requires a safe and real-time design &
execution environment

— contains parallelizable code from data and

control points of view

« So far, purely sequential C-code

kst

ST
III||||||||||[

Benchmarking with DA's tracking

application — experiment (1/3)
o Keypoint : use SMP OASIS version on a n-core arch. to

to execute the

Improve performances
— Use multiple communicating tasks

code
— 1 master task communicating with (n-1) slave tasks
helping occasionally for time-consuming operations

e Cons: overhead due to inter-task communications (no

shared memory between tasks)
* Pros: allows parallel execution of selected portions of

code on several cores
digite D& 10

kst

J

)
| “::HH"I

Wiy,

LT

|||[|||

'|

il
iy
|I|I]II

Benchmarking with DA's tracking

application — experiment (2/3)

Work done with DA: translation of the tracking algorithm

pure C code to WC in 2 steps :

1. Directly in one real-time task in WC (reference step),
defining main real-time constraints

Computation on 70.000 particles

Main loop
//K ND
MAIN N‘—____H
T, T, T, Ts T,

=0 hiast digite®:

J
[
| “::HH"I

lliy
||II]II
I

||||I|IIIIIIJ|
IIIIJIIJI|||||
III[|||
i
)

Benchmarking with DA s tracking
application — experiment (3/3)

Into one master task, slave tasks and their
Interfaces in YC

2.
communication
Application structure: 1 master task + 1 slave task

35.000 particles per task
4 temporal sync. points (messages exchanges) per loop

Main loop
//:/—\ ND
MASTER \)
T, T, T, | 8 P T T,
H ¥ |
SLAVE RQ&WW—E&&- | >
T, | T

Actual parallel computing

digitEOf”Z 12

il

J
b
].

Wty
LT
|||[|||

W

|

Early results
Same real-time behavior & results in 1-task and 2-task s versions

In computation code portions excluding communications, average
30% performance enhancement , up to the optimum (50%)

Global performances: impact due to inter-tasks communications
when the caches are empty (e.q. first

— Slight performance improvement
loop: 18% faster)
— Communication overhead when the cache is filled (max. 5%)

 Predictable overhead due to
— 1 particle size of ~ 40 bytes,
— 1 communication between tasks = 3 memory moves or more + 2 MMU
switches + 2 CPU mode switches (necessary to ensure full memory

segmentation and safety)

=» It paves the way for the next step...

kst

ST
III||||||||||[

2"d step: multi-threaded OASIS version
management

Inside a real-time task:

(]

(streaming-like)

— To allow simultaneous execution of portions of code (e.qg.
functions) on different data chunks in a temporal window

« Split/Join extensions to the OASIS programming model
— Threads are executed within a single real-time task, i.e. within

one memory context - saves context-switch time
— Execution threads share their memory - much faster comm

* On-going modifications of the entire tool chain
— YC parser and code generator (e.g. new keywords to instantiate

and terminate threads)
— Micro-kernel: handling of thread “contexts”
digite D& 14

kst

.
||l:

I [
il
| “::HH"I

||I||I'||||I|J|
IIII|I|J||||||
IIII|||
'I
i)
|
|III1II
I

Sequential (single agent) version

Main loop
T N —
MAIN
T2 T3 T4 T5 TG

st digite®:

J
[
| “::HH"I

lliy
||II]II
I

II|I||IIII||J|
IIIIJIIJI|||||
IIII|||
i
)

Parallel master/slave version

2 :
Z
O
07_| I
N

Main loop
MASTER %—J_—F—_
T, ! STy T,

TO Tl
¥ ,

\ 4

SLAVE -
iy ‘

Actual parallel computing

it digite:

|”|]||
|
]|

:m
Mm

b

III[|||
II

Wiy,
LT

Parallel threaded version

=

THREADE Dy i—
Tl T

AGENT
2 T

TO Tl
Actual parallel computing

Less synchronization points: no more time
slots dedicated to communication purposes

st digiter: .,

E?iﬁﬁ

ST
III||||||||||[

Summary

e Extension of OASIS environment to
support multicore execution of high

performance-oriented real-time

applications
—In a transparent manner
e Same application running on single- and multi-core

— Same real-time behaviour
— But allowing integration of more real-time tasks

— In an efficient manner
» Exploiting parallelism at kernel level

* Adding data-parallelism at design level
digite D& 18

kst

h
]
d
I
i

kst

Thank you for your attention

Any guestions?

|
I
liyy
1T

o

—

I
|
([T
I
I

digitEOf”Z 19

