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Outline

• Context: parallelism in embedded real-
time system design

• Extension targeting multi-cores

• Experiment & early results

• Future works
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High -performance and 
embedded real-time systems

• We have to cope with the same problems than 
HPC to bridge the gap between parallelism 
expressed in design (modularity) and those 
available in multicore-based architectures 
(performances) 
– Express potential parallelism in programming models 

• Independently of any architecture
– Map the potential parallelism to the real one available 

in the underlying hardware
• From single-core implementation to multi-core ones
• In a scalable and transparent manner for the developer

– Taking into account additional embedded 
requirements (real-time constraints, …)
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Context

• Objective: to allow design and implementation of safety-critical 
multitasking applications with advanced real time functionalities
– To guarantee responses in specified times
– To ensure predictable and reproducible behaviors
– The application behavior is deterministic

• Means
– Code generation tools for real-time multitasking systems

• Compilation (semi-formal language ΨC including ANSI C)
• Automatic code generation & sizing
• Dedicated code & data segmentation , link edition  (with MMU tables)

– Safety-oriented kernel
• Generic, time-triggered and safety-oriented
• Current targets are Motorola 68040/60, Intel IA32 , ARM, S12XE

The OASIS tool chain and realThe OASIS tool chain and real --time kerneltime kernel
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Some basics on OASIS

• Time-Triggered Multitasking programming & execution model
– All the processing of a task take place between two known instants of the TT 

system (not necessarily  consecutive) 
– All the data transfers between “tasks” are done at the transition between two 

elementary actions (EA) 

• Temporal consistency of exchanged data
– Each data protected and has only one producer
– Data on which works a processing are not sensitive between the beginning date 

and the ending date

EA
Ts Te

a real time task

Time interval (specified behaviour) �

Actual duration (quota for sizing) �

… …
Start date at the earliest End date at the latest

X Є task1

P2

task1

task2

start end

X(t)=X(t0) = X(start)�
t0

• Strict observation principle
• Implicit & automatic update at defined 
instants
• Automatic sizing & protected safe 
buffers:

Temporal
variable
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The OASIS SMP kernel – key points

• Simultaneous execution of different real-time tasks
(agents) on several cores (up to 16)

• No change to the OASIS programming model
– An application compiled for single-core OASIS kernel can be 

used directly with the SMP kernel
– Tasks of the app. are dynamically distributed between available 

cores

• Modification of the kernel
– Detection and setup of available cores during kernel boot
– Dynamic and transparent mapping of real-time tasks to cores at 

run-time
– In conformance with the OASIS time-triggered execution model

• Guarantee of time consistency between cores
• Global Earliest-Deadline-First scheduling policy
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A
gent 2

A
gent 2

A
gent 3

A
gent 3

Porting OASIS to IA32-SMP architecture

• Agents code : 
– No shared memory or 

communication outside the 
System Layer

• System Layer code :
– Already lock-free interruptible 

code
– Requires memory fences

• Main difficulty: the µK
– Single-core arch: atomic 

section 
– Masked IT: not sufficient on 

SMP arch.

A
gent 1

A
gent 1

SYSTEM LAYER
Inter-agents com.

SYSTEM LAYER
Inter-agents com.

MICRO-KERNEL
Time and

watchdogs mgmt,
Online scheduling,

Task switch

MICRO-KERNEL
Time and

watchdogs mgmt,
Online scheduling,

Task switch

User-mode
execution

Protected-mode
execution

Which code can be Which code can be 
executed executed 

simultaneously ?simultaneously ?
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Porting OASIS to IA32-SMP architecture

• Design choice: allow most of the micro-kernel code 
to be executed on any CPU
– Aim: balance system load between available cores
– Asymmetric approach for time mgmt: only CPU0 can handle 

timer ITs ���� additional system load for 
• global time update management
• watchdog setup and handling

– But scheduler and context-switch ops. can be run on a ny 
CPU

• SMP micro-kernel features:
– Lock-free time management algorithm
– Lock-free context-switching procedure
– Atomic scheduler – fair spinlock (active wait) protection
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Study: Tracking Algorithm from DA

• Use case from Dassault Aviation: real-time 
tracking of targets using particle clouds 
simulations: 
– requires a safe and real-time design & 

execution environment
– contains parallelizable code from data and 

control points of view

• So far, purely sequential C-code
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Benchmarking with DA’s tracking 
application – experiment (1/3) 

• Keypoint : use SMP OASIS version on a n-core arch. to 
improve performances
– Use multiple communicating tasks to execute the 

code
– 1 master task communicating with (n-1) slave tasks 

helping occasionally for time-consuming operations

• Cons : overhead due to inter-task communications (no 
shared memory between tasks)

• Pros : allows parallel execution of selected portions of 
code on several cores
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Benchmarking with DA’s tracking 
application – experiment (2/3) 

• Work done with DA: translation of the tracking algorithm 
pure C code to ΨC in 2 steps :

1. Directly in one real-time task in ΨC (reference step), 
defining main real-time constraints

• Computation on 70.000 particles

INIT END

Main loop

MAIN
T0 T1 T2 T3 T4 T5 T6
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2. Into one master task, slave tasks and their 
communication interfaces in ΨC
Application structure: 1 master task + 1 slave task

– 35.000 particles per task
– 4 temporal sync. points (messages exchanges) per loop

INIT END

Idle

Main loop

Actual parallel computing

MASTER

SLAVE

Benchmarking with DA ’s tracking 
application – experiment (3/3)

T0 T1 T2 T3 T4 T5 T6

T’2
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Early results

• Same real-time behavior & results in 1-task and 2-task s versions

• In computation code portions excluding communications, average 
30% performance enhancement , up to the optimum (50%)

• Global performances: impact due to inter-tasks communications
– Slight performance improvement when the caches are empty (e.g. first 

loop: 18% faster)
– Communication overhead when the cache is filled (max. 5%)

• Predictable overhead due to
– 1 particle size of ~ 40 bytes,
– 1 communication between tasks = 3 memory moves or more + 2 MMU 

switches + 2 CPU mode switches (necessary to ensure full memory 
segmentation and safety)

� It paves the way for the next step…
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2nd step: multi-threaded OASIS version

• Inside a real-time task: data-parallelism management 
(streaming-like)
– To allow simultaneous execution of portions of code (e.g. 

functions) on different data chunks in a temporal window

• Split/Join extensions to the OASIS programming model
– Threads are executed within a single real-time task, i.e. within 

one memory context � saves context-switch time
– Execution threads share their memory � much faster comm .

• On-going modifications of the entire tool chain
– ΨC parser and code generator (e.g. new keywords to instantiate 

and terminate threads)
– Micro-kernel: handling of thread “contexts”
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INIT END

Main loop

MAIN

Sequential (single agent) version

T0 T1 T2 T3 T4 T5 T6
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INIT END

Idle

Main loop

Actual parallel computing

MASTER

SLAVE

Parallel master/slave version

T0 T1 T2 T3 T4 T5 T6

T’2
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INIT END

Main loop

THREADED
AGENT

Actual parallel computing

Less synchronization points: no more time 
slots dedicated to communication purposes

Parallel threaded version

T0 T1 T2 T3 T5 T6
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Summary

• Extension of OASIS environment to 
support multicore execution of high
performance-oriented real-time 
applications
– In a transparent manner

• Same application running on single- and multi-core
– Same real-time behaviour
– But allowing integration of more real-time tasks

– In an efficient manner
• Exploiting parallelism at kernel level
• Adding data-parallelism at design level
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Thank you for your attention

Any questions?


