
Using Multi-Core Architectures to Execute
High Performance-Oriented

Real-Time Applications

Ch. Aussaguèsa, E. Ohayona, K. Brifaulta and Q.V. Dinhb

aCEA LIST, Embedded Real-Time Systems Laboratory
bDassault Aviation

Parallel Programming for Multi-core Architectures
www.parma-itea2.org

International Parallel Computing Conference (ParCo’ 09)

2

Outline

• Context: parallelism in embedded real-
time system design

• Extension targeting multi-cores

• Experiment & early results

• Future works

3

High -performance and
embedded real-time systems

• We have to cope with the same problems than
HPC to bridge the gap between parallelism
expressed in design (modularity) and those
available in multicore-based architectures
(performances)
– Express potential parallelism in programming models

• Independently of any architecture
– Map the potential parallelism to the real one available

in the underlying hardware
• From single-core implementation to multi-core ones
• In a scalable and transparent manner for the developer

– Taking into account additional embedded
requirements (real-time constraints, …)

4

Context

• Objective: to allow design and implementation of safety-critical
multitasking applications with advanced real time functionalities
– To guarantee responses in specified times
– To ensure predictable and reproducible behaviors
– The application behavior is deterministic

• Means
– Code generation tools for real-time multitasking systems

• Compilation (semi-formal language ΨC including ANSI C)
• Automatic code generation & sizing
• Dedicated code & data segmentation , link edition (with MMU tables)

– Safety-oriented kernel
• Generic, time-triggered and safety-oriented
• Current targets are Motorola 68040/60, Intel IA32 , ARM, S12XE

The OASIS tool chain and realThe OASIS tool chain and real --time kerneltime kernel

5

Some basics on OASIS

• Time-Triggered Multitasking programming & execution model
– All the processing of a task take place between two known instants of the TT

system (not necessarily consecutive)
– All the data transfers between “tasks” are done at the transition between two

elementary actions (EA)

• Temporal consistency of exchanged data
– Each data protected and has only one producer
– Data on which works a processing are not sensitive between the beginning date

and the ending date

EA
Ts Te

a real time task

Time interval (specified behaviour) �

Actual duration (quota for sizing) �

… …
Start date at the earliest End date at the latest

X Є task1

P2

task1

task2

start end

X(t)=X(t0) = X(start)�
t0

• Strict observation principle
• Implicit & automatic update at defined
instants
• Automatic sizing & protected safe
buffers:

Temporal
variable

6

The OASIS SMP kernel – key points

• Simultaneous execution of different real-time tasks
(agents) on several cores (up to 16)

• No change to the OASIS programming model
– An application compiled for single-core OASIS kernel can be

used directly with the SMP kernel
– Tasks of the app. are dynamically distributed between available

cores

• Modification of the kernel
– Detection and setup of available cores during kernel boot
– Dynamic and transparent mapping of real-time tasks to cores at

run-time
– In conformance with the OASIS time-triggered execution model

• Guarantee of time consistency between cores
• Global Earliest-Deadline-First scheduling policy

7

A
gent 2

A
gent 2

A
gent 3

A
gent 3

Porting OASIS to IA32-SMP architecture

• Agents code :
– No shared memory or

communication outside the
System Layer

• System Layer code :
– Already lock-free interruptible

code
– Requires memory fences

• Main difficulty: the µK
– Single-core arch: atomic

section
– Masked IT: not sufficient on

SMP arch.

A
gent 1

A
gent 1

SYSTEM LAYER
Inter-agents com.

SYSTEM LAYER
Inter-agents com.

MICRO-KERNEL
Time and

watchdogs mgmt,
Online scheduling,

Task switch

MICRO-KERNEL
Time and

watchdogs mgmt,
Online scheduling,

Task switch

User-mode
execution

Protected-mode
execution

Which code can be Which code can be
executed executed

simultaneously ?simultaneously ?

8

Porting OASIS to IA32-SMP architecture

• Design choice: allow most of the micro-kernel code
to be executed on any CPU
– Aim: balance system load between available cores
– Asymmetric approach for time mgmt: only CPU0 can handle

timer ITs ���� additional system load for
• global time update management
• watchdog setup and handling

– But scheduler and context-switch ops. can be run on a ny
CPU

• SMP micro-kernel features:
– Lock-free time management algorithm
– Lock-free context-switching procedure
– Atomic scheduler – fair spinlock (active wait) protection

9

Study: Tracking Algorithm from DA

• Use case from Dassault Aviation: real-time
tracking of targets using particle clouds
simulations:
– requires a safe and real-time design &

execution environment
– contains parallelizable code from data and

control points of view

• So far, purely sequential C-code

10

Benchmarking with DA’s tracking
application – experiment (1/3)

• Keypoint : use SMP OASIS version on a n-core arch. to
improve performances
– Use multiple communicating tasks to execute the

code
– 1 master task communicating with (n-1) slave tasks

helping occasionally for time-consuming operations

• Cons : overhead due to inter-task communications (no
shared memory between tasks)

• Pros : allows parallel execution of selected portions of
code on several cores

11

Benchmarking with DA’s tracking
application – experiment (2/3)

• Work done with DA: translation of the tracking algorithm
pure C code to ΨC in 2 steps :

1. Directly in one real-time task in ΨC (reference step),
defining main real-time constraints

• Computation on 70.000 particles

INIT END

Main loop

MAIN
T0 T1 T2 T3 T4 T5 T6

12

2. Into one master task, slave tasks and their
communication interfaces in ΨC
Application structure: 1 master task + 1 slave task

– 35.000 particles per task
– 4 temporal sync. points (messages exchanges) per loop

INIT END

Idle

Main loop

Actual parallel computing

MASTER

SLAVE

Benchmarking with DA ’s tracking
application – experiment (3/3)

T0 T1 T2 T3 T4 T5 T6

T’2

13

Early results

• Same real-time behavior & results in 1-task and 2-task s versions

• In computation code portions excluding communications, average
30% performance enhancement , up to the optimum (50%)

• Global performances: impact due to inter-tasks communications
– Slight performance improvement when the caches are empty (e.g. first

loop: 18% faster)
– Communication overhead when the cache is filled (max. 5%)

• Predictable overhead due to
– 1 particle size of ~ 40 bytes,
– 1 communication between tasks = 3 memory moves or more + 2 MMU

switches + 2 CPU mode switches (necessary to ensure full memory
segmentation and safety)

� It paves the way for the next step…

14

2nd step: multi-threaded OASIS version

• Inside a real-time task: data-parallelism management
(streaming-like)
– To allow simultaneous execution of portions of code (e.g.

functions) on different data chunks in a temporal window

• Split/Join extensions to the OASIS programming model
– Threads are executed within a single real-time task, i.e. within

one memory context � saves context-switch time
– Execution threads share their memory � much faster comm .

• On-going modifications of the entire tool chain
– ΨC parser and code generator (e.g. new keywords to instantiate

and terminate threads)
– Micro-kernel: handling of thread “contexts”

15

INIT END

Main loop

MAIN

Sequential (single agent) version

T0 T1 T2 T3 T4 T5 T6

16

INIT END

Idle

Main loop

Actual parallel computing

MASTER

SLAVE

Parallel master/slave version

T0 T1 T2 T3 T4 T5 T6

T’2

17

INIT END

Main loop

THREADED
AGENT

Actual parallel computing

Less synchronization points: no more time
slots dedicated to communication purposes

Parallel threaded version

T0 T1 T2 T3 T5 T6

18

Summary

• Extension of OASIS environment to
support multicore execution of high
performance-oriented real-time
applications
– In a transparent manner

• Same application running on single- and multi-core
– Same real-time behaviour
– But allowing integration of more real-time tasks

– In an efficient manner
• Exploiting parallelism at kernel level
• Adding data-parallelism at design level

19

Thank you for your attention

Any questions?

