
Supporting OpenMP in a heterogeneous world

Alejandro Duran1, Eduard Ayguadé1,2, Rosa M. Badía1,3, Jesús
Labarta1,2

1Barcelona Supercomputing Center (BSC-CNS)
2Universitat Politècnica de Catalunya (UPC)

3Centro Superior de Investigaciones Científicas (CSIC)

September 2nd 2009

Outline

Outline

1 Motivation

2 Proposal

3 Implementation status

4 Conclusions

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 2 / 24

Motivation

Motivation
Architecture trends

Current trends in architecture point to heterogeneous systems with
multiple accelerators raising interest:

Cell processor (SPUs)
GPGPU computing (GPUs)
OpenCL

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 3 / 24

Motivation

Motivation
Heterogeneity problems

In these environments, the user needs to take care of a number of
problems

1 Identify parts of the problem that are suitable to offload to an
accelerator

2 Separate those parts into functions with specific code
3 Compile them with a separate tool-chain
4 Write wrap-up code to offload (and synchronize) the computation
5 Possibly, optimize the function using specific features of the

accelerator
Portability becomes an issue

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 4 / 24

Motivation

Simple example
Blocked Matrix multiply

In a SMP

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
for (i n t i =0; i < BS; i ++)

for (i n t j =0; j < BS; j ++)
for (i n t k =0; k < BS; k++)

C[i∗BS+ j] += A[i∗BS+k] ∗ B[k∗BS+ j] ;
}

f l o a t ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;

i n t main (void) {
i n t i , j , k ;

for (i = 0 ; i < NB; i ++)
for (j = 0 ; j < NB; j ++) {

A [i] [j] = (f l o a t∗) mal loc (BS∗BS∗sizeof (f l o a t)) ;
B [i] [j] = (f l o a t∗) mal loc (BS∗BS∗sizeof (f l o a t)) ;
C[i] [j] = (f l o a t∗) mal loc (BS∗BS∗sizeof (f l o a t)) ;

}
for (i = 0 ; i < NB; i ++)

for (j = 0 ; j < NB; j ++)
for (k = 0 ; k < NB; k++)

matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 5 / 24

Motivation

Simple example
Blocked Matrix multiply

In CUDA

__global__ void matmul_kernel (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) ;
#define THREADS_PER_BLOCK 16

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
. . .

/ / a l l o c a t e device memory
f l o a t ∗d_A , ∗d_B , ∗d_C ;
cudaMalloc ((void∗∗) &d_A , BS∗BS∗sizeof (f l o a t)) ;
cudaMalloc ((void∗∗) &d_B , BS∗BS∗sizeof (f l o a t)) ;
cudaMalloc ((void∗∗) &d_C , BS∗BS∗sizeof (f l o a t)) ;

/ / copy host memory to device
cudaMemcpy (d_A , A, BS∗BS∗sizeof (f l o a t) , cudaMemcpyHostToDevice) ;
cudaMemcpy (d_B , B, BS∗BS∗sizeof (f l o a t) , cudaMemcpyHostToDevice) ;

/ / setup execut ion parameters
dim3 threads (THREADS_PER_BLOCK, THREADS_PER_BLOCK) ;
dim3 g r i d (BS/ threads . x , BS/ threads . y) ;

/ / execute the kerne l
matmul_kernel <<< gr id , threads >>>(d_A , d_B , d_C) ;

/ / copy r e s u l t from device to host
cudaMemcpy (C, d_C , BS∗BS∗sizeof (f l o a t) , cudaMemcpyDeviceToHost) ;

/ / c lean up memory
cudaFree (d_A) ; cudaFree (d_B) ; cudaFree (d_C) ;

}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 5 / 24

Motivation

Simple example
Blocked Matrix multiply

In a Cell PPE

void matmul_spe (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) ;

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
for (i =0; i <num_spus ; i ++) {

/ / I n i t i a l i z e the thread s t r u c t u r e and i t s parameters
. . .
/ / Create contex t
threads [i] . i d = spe_context_create (SPE_MAP_PS, NULL) ;
/ / Load program
rc = spe_program_load (threads [i] . id , &matmul_spe)) != 0 ;
/ / Create thread
rc = pthread_create (& threads [i] . pthread , NULL,

&ppu_pthread_funct ion , &threads [i] . i d) ;
/ / Get thread c o n t r o l
threads [i] . c t l _a rea = (spe_spu_contro l_area_t ∗)

spe_ps_area_get (threads [i] . id , SPE_CONTROL_AREA) ;
}
/ / S t a r t SPUs
for (i =0; i <spus ; i ++) send_mail (i , 1) ;
/ / Wait f o r the SPUs to complete
for (i =0; i <spus ; i ++)

rc = p th read_ jo in (threads [i] . pthread , NULL) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 5 / 24

Motivation

Simple example
Blocked Matrix multiply

In Cell SPE

void matmul_spe (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C)
{

. . .
while (b locks_to_process ()) {

next_b lock (i , j , k) ;
ca lcu la te_address (baseA , A, i , k) ;
ca lcu la te_address (baseB , B, k , j) ;
ca lcu la te_address (baseC , C, i , j) ;
mfc_get (loca lA , baseA , sizeof (f l o a t)∗BS∗BS, in_tags , 0 , 0) ;
mfc_get (loca lB , baseB , sizeof (f l o a t)∗BS∗BS, in_tags , 0 , 0) ;
mfc_get (localC , baseC , sizeof (f l o a t)∗BS∗BS, in_tags , 0 , 0) ;
mfc_write_tag_mask ((1 < <(in_ tags))) ;
mfc_read_tag_s ta tus_a l l () ; /∗ Wait f o r i npu t data
f o r (i i =0; i i < BS; i i ++)

f o r (j j =0; j j < BS; j j ++)
f o r (kk =0; kk < BS; kk ++)

loca lC [i] [j]+= loca lA [i] [k]∗ l oca lB [k] [j] ;
mfc_put (localC , baseC , s i z e o f (f l o a t)∗BS∗BS, out_tags , 0 , 0) ;
mfc_write_tag_mask ((1 < <(out_tags))) ;
mfc_read_tag_s ta tus_a l l () ; /∗ Wait f o r output data
}

. . .
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 5 / 24

Proposal

Our Proposal (1)

Extend OpenMP so it allows finer task synchronizations based on
data-flow.

Not extrictly needed for heteregonity

But, in our experience it helps performance quite a bit

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 6 / 24

Proposal

Dependence clauses

Clauses
Extend the task construct

input (data-reference-list)
output (data-reference-list)
inout (data-reference-list)

data-reference is a object or subobject reference
Subobjects can be:

Field members
Array elements
Array sections

a[2:15], a[:N], a[0:][3:5]
Shaping expressions

[N] a, [N][M] a

Depedence graph
A dependece graph is built at runtime and used for scheduling.

A task is not started before all its dependencies are fulfill

It also allows for other possible optimizations

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 7 / 24

Proposal

Dependence clauses

Clauses
Extend the task construct

input (data-reference-list)
output (data-reference-list)
inout (data-reference-list)

data-reference is a object or subobject reference
Subobjects can be:

Field members
Array elements
Array sections

a[2:15], a[:N], a[0:][3:5]
Shaping expressions

[N] a, [N][M] a

Depedence graph
A dependece graph is built at runtime and used for scheduling.

A task is not started before all its dependencies are fulfill

It also allows for other possible optimizations

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 7 / 24

Proposal

Dependence clauses

Clauses
Extend the task construct

input (data-reference-list)
output (data-reference-list)
inout (data-reference-list)

data-reference is a object or subobject reference
Subobjects can be:

Field members
Array elements
Array sections

a[2:15], a[:N], a[0:][3:5]
Shaping expressions

[N] a, [N][M] a

Depedence graph
A dependece graph is built at runtime and used for scheduling.

A task is not started before all its dependencies are fulfill

It also allows for other possible optimizations

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 7 / 24

Proposal

Example
Blocked matrix multiply

Parallelization for SMP

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
/ / o r i g i n a l sequen t ia l matmul

}

f l o a t ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;

i n t main (void) {
for (i n t i = 0 ; i < NB; i ++)

for (i n t j = 0 ; j < NB; j ++)
for (i n t k = 0; k < NB; k++)
#pragma omp task inout ([BS] [BS] C)

matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 8 / 24

Proposal

Our proposal (2)

Extend OpenMP so it incorporates the concept of multiple
architectures so

it takes care of separating the different pieces
it takes care of compiling them adequately
it takes care of offloading them
it takes care of data tranfers

The user is still responsible for identifying interesting parts to offload
and optimize for the target.

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 9 / 24

Proposal

Target directive

#pragma omp target device (devicename− l i s t) [c lauses]
omp task | f unc t i on−header | func t i on−d e f i n i t i o n

Clauses
copy_in (data-reference-list)
copy_out (data-reference-list)
copy_deps
implements (function-name)

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 10 / 24

Proposal

Target directive

#pragma omp target device (devicename− l i s t) [c lauses]
omp task | f unc t i on−header | func t i on−d e f i n i t i o n

Clauses
copy_in (data-reference-list)
copy_out (data-reference-list)
copy_deps
implements (function-name)

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 10 / 24

Proposal

The device clause

Specifies that a given task (or function) could be offloaded to any
device in the device-list

Appropriate wrapping code is generated
The appropriate frontend/backends are used to prepare the outlines

If not specified the device is assumed to be smp
Other devices can be: cell, cuda, opencl, ...

If a device is not supported the compiler can ignore it

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 11 / 24

Proposal

Example
Blocked matrix multiply

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
/ / o r i g i n a l sequen t ia l matmul

}

f l o a t ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;

i n t main (void) {
for (i n t i = 0 ; i < NB; i ++)

for (i n t j = 0 ; j < NB; j ++)
for (i n t k = 0; k < NB; k++)
#pragma omp target device (smp, c e l l)
#pragma omp task inout ([BS] [BS] C)

matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 12 / 24

Proposal

Moving data

A common problem is that data needs to be moved into the accelerator
memory at the beginning and out of it at the end

copy_in and copy_out clauses allow to specify such movements
Both allow to specify object references (and subobjects) that will
copied to/from the accelarator

copy_deps specifies that input should also be treated as copy_in and
output as copy_out.

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 13 / 24

Proposal

Moving data

A common problem is that data needs to be moved into the accelerator
memory at the beginning and out of it at the end

copy_in and copy_out clauses allow to specify such movements
Both allow to specify object references (and subobjects) that will
copied to/from the accelarator

copy_deps specifies that input should also be treated as copy_in and
output as copy_out.

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 13 / 24

Proposal

Example
Blocked matrix multiply

void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
/ / o r i g i n a l sequen t ia l matmul

}

f l o a t ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;

i n t main (void) {
for (i n t i = 0 ; i < NB; i ++)

for (i n t j = 0 ; j < NB; j ++)
for (i n t k = 0; k < NB; k++)
#pragma omp target device (smp, c e l l) copy_in ([BS] [BS] A, [BS] [BS] B, [BS] [BS] C)

copy_out ([BS] [BS] C)
#pragma omp task inout ([BS] [BS] C)

matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 14 / 24

Proposal

Device specific characteristics

Each device may define other clauses that will be ignored for other
devices
Each device may define additional restrictions

No additional OpenMP
No I/O

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 15 / 24

Proposal

Taskifying functions

Proposal
Extend the task construct so it can be applied to functions

a la Cilk
Each time the function is called a task is implicitely created

If preceded by a target directive offloaded to the appropriate device

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 16 / 24

Proposal

Implements clause

implements (f unc t i on−name)

It denotes that a give function is an alternative to another one
It allows to implement specific device optimizations for a device
It uses the function name to relate to implementations

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 17 / 24

Proposal

Example
Blocked matrix multiply

#pragma omp task inout ([BS] [BS] C)
void matmul (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {

/ / o r i g i n a l sequen t ia l matmul
}

#pragma omp target device (cuda) implements (matmul)
copy_in ([BS] [BS] A, [BS] [BS] B, [BS] [BS] C) copy_out ([BS] [BS] C)

void matmul_cuda (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
/ / opt imized kerne l f o r cuda

}

/ / l i b r a r y f u n c t i o n
#pragma omp target device (c e l l) implements (matmul)

copy_in ([BS] [BS] A, [BS] [BS] B, [BS] [BS] C) copy_out ([BS] [BS] C)
void matmul_spe (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) ;

f l o a t ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;

i n t main (void) {
for (i n t i = 0 ; i < NB; i ++)

for (i n t j = 0 ; j < NB; j ++)
for (i n t k = 0; k < NB; k++)

matmul (A [i] [k] , B [k] [j] , C[i] [j]) ;
}

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 18 / 24

Proposal

Other considerations

Scheduling
The runtime chooses among the different alternatives which one
to use

Ideally taking into account resources

If all the possible resources are complete, the task waits until one
is available
If all possible devices are unsupported, a runtime error is
generated

Optimizing data transfers
The runtime can try to optimize data movement:

by using double buffering or pre-fetch mechanisms
by using that information for scheduling

Schedule tasks that use the same data on the same device
A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 19 / 24

Implementation status

Current Status

We have separate prototype implementations on the StarSs
for SMP, Cell, GPU

They take care
task offloading

task synchronization

data movement

They use several specific optimizations for each platform
Evaluation shows good performance numbers for each of the
instantiations of the model

We have an ongoing implementation of all-in-one implementation

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 20 / 24

Conclusions

Conclusions

Our proposals allows:
Improve synchronization patterns among tasks
Tag tasks and functions to be executed in a device
It takes care of:

task offloading
task synchronization
data movement

It allows to write code that is portable across multiple
environments
User still can use (or develop) optimized code for the devices

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 21 / 24

Conclusions

Future work

Finish our implementation
Work on the scheduling

In the presence of multiple accelerators which one to choose?

Implement the “OpenCL” device
Work on integrating device directive with other OpenMP directives

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 22 / 24

Conclusions

The End

Thanks for your attention!

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 23 / 24

Conclusions

Some results

Cholesky factorization

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 4000 8000 12000 16000 20000

G
F

LO
P

S

Matrix size

Cholesky factorization on 4 GPUs

GPUSs
CUBLAS

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000
G

F
LO

P
S

Matrix size

Cholesky factorization on 8 SPUs

Hand-coded (static scheduling)
CellSs

A. Duran (BSC) OpenMP for Heterogeneous Architectures September 2nd 2009 24 / 24

	Outline
	Motivation
	Proposal
	Implementation status
	Conclusions

