
Outline Motivation for STEP STEP in action Experiments and results Conclusion

From OpenMP to MPI: first

experiments of the STEP

source-to-source transformation

D. Millot, A. Muller, C. Parrot, F. Silber-chaussumier

Institut TELECOM / TELECOM SudParis

ParCo09 - PPTMA

From OpenMP to MPI with STEP (1/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Outline

◮ Motivation for STEP

◮ STEP in action

◮ Experiments and results

◮ Conclusion

From OpenMP to MPI with STEP (2/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

From OpenMP to distributed execution

◮ Why program with OpenMP ?
◮ high level programming
◮ keep sequential program structure
◮ rather comfortable

◮ Why distributed execution of OpenMP ?
◮ OpenMP restricted to shared-memory architectures
◮ current platforms mostly distributed memory architectures
◮ such platforms (clusters, grids...) require message passing

programming

◮ Why not message passing programming ?
◮ development and debugging reserved to experts
◮ fragmented code compared to sequential one
◮ hard to maintain code when application evolves

⇒ need to conciliate ease of programming and scalable execution

From OpenMP to MPI with STEP (3/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Efforts towards distributed OpenMP

◮ With Distributed Shared Memory (DSM)
◮ OMNI OpenMP
◮ OpenMP on Treadmarks
◮ Cluster OpenMP (Intel)

◮ Hybrid approach (DSM/MPI)
◮ PaRADE project

◮ Source-to-source transformation
◮ CETUS infrastructure

From OpenMP to MPI with STEP (4/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Why STEP ?

◮ Avoid DSM

◮ Avoid early choice of execution platform architecture

◮ Ease maintenance of parallel versions while application evolves

◮ Use a generic expression of parallelism through annotation

◮ Ease parallelisation by non experts

◮ Allow easy hybrid programming (MPI + OpenMP)

◮ Take advantage of the high quality analyses of the PIPS
workbench from CRI/Mines-ParisTech

From OpenMP to MPI with STEP (5/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

STEP execution model

!$omp
parallel do

!$omp end
parallel do

MPI

Worksharing

Sequential
part

Parallel
part

Sequential
part

P2 P3P1

C1 C2 C3

S SS

Distributed execution

S

From OpenMP to MPI with STEP (6/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Design decisions for STEP

◮ Data are allocated for all processes

◮ Sequential regions are redundantly executed

◮ Parallel loops are partitioned among all processes

◮ Modified shared data are exchanged at the end of openMP
constructs

◮ parallel, do, sections, master and barrier directives are
processed

◮ Data dependencies and arrays region analysis are computed by
PIPS (Scientific Programs Interprocedural Paralleliser)

From OpenMP to MPI with STEP (7/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Work to be done by STEP

◮ Identify parallel sections and share the corresponding work,
identify synchronisation points

◮ Make the OpenMP implicit data sharing explicit

◮ Generate a code with calls to the MPI primitives

From OpenMP to MPI with STEP (8/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

STEP in action

◮ STEP/PIPS usage in brief
◮ source $PIPS DIR/pipsrc.sh
◮ cd in the source directory and run run step.script

◮ STEP three transformation phases
◮ directives management and outlining
◮ array regions analysis
◮ MPI code generation

From OpenMP to MPI with STEP (9/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Directives management

◮ Why ?
◮ identify parallel sections through parsing
◮ determine how to share the work
◮ identify synchronisation constraints on data

◮ How ?
◮ create procedures for the OpenMP constructs
◮ replace the block of statements of directives by a call to the

corresponding procedures (outlining)

◮ Benefits
◮ execution of the parallel code in different contexts made easier
◮ data dependence analysis allowed
◮ code structure kept

From OpenMP to MPI with STEP (10/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

STEP outlining

Before outlining After outlining
PROGRAM P1
INTEGER I,N,F1
PARAMETER (N=10)
INTEGER T(N,2),A(N-1)
...
!$OMP PARALLEL DO
DO 20 I=1,N-1

A(I)=F1(T,I)
20 CONTINUE
!$OMP END PARALLEL DO
...
END

PROGRAM P1
INTEGER I,N,F1
PARAMETER (N=10)
INTEGER T(N,2),A(N-1)
...

C !$OMP PARALLEL DO
CALL P1DO20(I,1,N-1,N,A,T)

C !$OMP END PARALLEL DO
...
END

SUBROUTINE P1DO20(I,I L,I U,N,A,T)
INTEGER I,I L,I U,N,F1
INTEGER A(1:N-1),T(1:N, 1:2)
DO 20 I=I L,I U

A(I)=F1(T,I)
20 CONTINUE
END

From OpenMP to MPI with STEP (11/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Array regions analysis

◮ Why ?
◮ determine the array regions to communicate at the different

synchronisation points
◮ reduce the amount of communicated data when possible

◮ How ?
◮ PIPS inter-procedural analysis of the program internal

representation (IR)
◮ computation of the READ, WRITE, IN, OUT array regions
◮ computation of bounding boxes

◮ Benefits
◮ respect of data dependence
◮ easy construction of MPI derived datatypes and efficient data

transfers

From OpenMP to MPI with STEP (12/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Labelling array regions

c := b
b := a

section S
a := .

 . := c

From OpenMP to MPI with STEP (13/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Labelling array regions

READ
c := b
b := a

section S
a := .

 . := c

WRITE

From OpenMP to MPI with STEP (13/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Labelling array regions

IN

READ
c := b
b := a

section S
a := .

 . := c

WRITE

From OpenMP to MPI with STEP (13/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Labelling array regions

OUT

IN

READ
c := b
b := a

section S
a := .

 . := c

WRITE

From OpenMP to MPI with STEP (13/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Over-approximation/overlap of array regions

Overlap Overlap

approx.

Over

No
overlap

Overlap

RegionCiRegionCi−1 RegionCi+1

From OpenMP to MPI with STEP (14/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

MPI code generation

◮ Uses the modified IR and the analyses results

◮ Combines complementary information
◮ directives
◮ regions
◮ AST after outlining

◮ Translates each directive into a new “MPI procedure”
◮ work decomposition
◮ generation of the necessary MPI types
◮ distribution of the work among processes
◮ insertion of the necessary communications

From OpenMP to MPI with STEP (15/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

MPI code generated by STEP

PROGRAM P1

include “step.h”

...

CALL STEP Init

CALL P1 DO20 MPI (I, 1,N-1, N, A, T)

...

CALL STEP Finalize

END

SUBROUTINE P1 DO20 MPI (I , I L , I U , N, A, T)

include “step.h”

...

C Loop splitting

CALL STEP SizeRank (STEP Size, STEP Rank)

CALL STEP SplitLoop (I L, I U, 1, STEP Size, I STEP SLI)

C Region computing

CALL STEP Comp Reg(A STEP SR, I STEP SLI, ...)

C Where the work is done

I IND = STEP Rank+1

I LOW = I STEP SLI(LOWER, I IND)

I UP = I STEP SLI(UPPER, I IND)

CALL P1 DO20 (I IND, I LOW, I UP, N, A, T)

C Regions communications

CALL STEP AllToAllRegion (A STEP SR, STEP Rank, ...)

END

From OpenMP to MPI with STEP (16/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

The conditions of the experiments

◮ The benchmarks: real codes
◮ FT: 3D-heat equation resolution by FFT
◮ MG: Poisson equation resolution by multi-grid method
◮ MD: molecular dynamics simulation
◮ Matmul: usual matrix product

◮ The execution platform: a typical cluster
◮ NOVA Bull Cluster
◮ 14 computing nodes available
◮ quad-socket Xeon quad-core E710 Tigerton 1.6 Ghz nodes
◮ 48 GB FBD DDR2 SDRAM per node
◮ Infiniband 20 GB/s interconnect

◮ Objective
◮ compare MPI generated by STEP with hand-written MPI,

OpenMP and Cluster OpenMP

From OpenMP to MPI with STEP (17/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

The results

◮ Poor results for FT and MG
◮ sequence of (4 to 6) parallel loops iterated
⇒ frequent communications

◮ uselessly communicated data
⇒ avoid using STEP

◮ Cluster OpenMP not successful either (deadlock/wrong
results)

◮ Good results for MD
◮ 500 iterations for 500 to 1000 particles
◮ OpenMP better than STEP, but STEP better than Cluster

OpenMP

◮ Good results for Matmul
◮ matrix size from 1000 to 10000 (doubles)
◮ STEP better than both OpenMP and Cluster OpenMP

From OpenMP to MPI with STEP (18/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

MD results (1/2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

MD N500-I500

SpeedUpMax
OMP
KMP
STEP

Speedup for 500 particles

From OpenMP to MPI with STEP (19/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

MD results (2/2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

MD N1000-I500

SpeedUpMax
OMP
KMP
STEP

Speedup for 1000 particles

From OpenMP to MPI with STEP (20/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Matmul results (1/4)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-1000

SpeedUpMax
OMP
KMP
STEP

Speedup for size 1000

From OpenMP to MPI with STEP (21/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Matmul results (2/4)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-2000

SpeedUpMax
OMP
KMP
STEP

Speedup for size 2000

From OpenMP to MPI with STEP (22/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Matmul results (3/4)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-4000

SpeedUpMax
OMP
KMP
STEP

Speedup for size 4000

From OpenMP to MPI with STEP (23/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Matmul results (4/4)

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 4 21

sp
ee

du
p

number of cores

matrix multiplication N-8000

SpeedUpMax
OMP
KMP
STEP

Speedup for size 8000

From OpenMP to MPI with STEP (24/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Conclusion

What these experiments have shown about the STEP tool:

◮ operational and easy to use

◮ generates MPI source code from a program decorated with
OpenMP directives

◮ favourably compares to ClusterOMP on some benchmarks

◮ relevant for applications with a high comp/comm ratio

◮ needs more complete region analyses

From OpenMP to MPI with STEP (25/26)

Outline Motivation for STEP STEP in action Experiments and results Conclusion

Perspectives

◮ Improved communications
◮ delay communication of data until they are required
◮ split parallel loops in more chunks than the number of nodes

◮ Multi-level parallelism for clusters of multicores
◮ keep OpenMP directives in the generated MPI code
◮ let STEP decide the best execution mode for a parallel section:

either distributed or shared memory
◮ give the user a choice

◮ User guidance
◮ allow application designers to guide STEP decisions

From OpenMP to MPI with STEP (26/26)

	Outline
	Motivation for STEP
	

	STEP in action
	
	

	Experiments and results
	
	

	Conclusion
	

