
An Interface for Integrated MPI
Correctness Checking

Parallel Programming for Multi-core Architectures
www.parma-itea2.org

ParCO 2009: Hilbrich, Jurenz, Mix, Knüpfer, Brunst, Müller, Nagel

• Introduction to MPI Correctness Checking
• Motivation
• UniMCI
• Marmot and UniMCI

Content

2An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

• Marmot and UniMCI
• VampirTrace and UniMCI
• Example
• Performance Results

Short Intro to MPI Correctness Tools

– Various runtime MPI Correctness Tools exist:
• E.g.: MPI-Check, ISP, MPIDD, Umpire, and Marmot

– Detect usage error of MPI, e.g.:

MPI_Type_contiguous(2, MPI_INT, &newtype);
MPI_Send(buf, count, newtype, target, tag ,MPI_COMM_WORLD);

3An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

Error: Usage of un-comitted datatype

Application

Correctness Tool

MPI

calls MPI_X(…)

calls PMPI_X(…)

– These tools intercept MPI calls to perform checks
• Possible by using the MPI Profiling Interface

– Tool is linked to
application as a library:

Motivation

– A multitude of MPI tools exists
– Sometimes users need multiple tools at once

• E.g.: Correlate an MPI usage error with an event trace
=> Requires an MPI correctness and a trace tool

– Users are reluctant to compile, link, and run multiple
times

4An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

times
– Correctness tools usually provide no detailed history

for detected errors
– We address:

• Tool combinations where MPI correctness tools are utilized
• How to execute both MPI tools at the same time
• How to combine tool outputs

UniMCI – Overview

– UniMCI: Universal MPI Correctness Interface
– Provides MPI correctness checking to MPI tools,

independent of the actual MPI correctness tool
– Allows MPI tools to utilize all MPI correctness tools

that support UniMCI:

5An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

Without UniMCI

With UniMCI

Host Tool

Guest Tool 1
(Correctness Tool)

Guest Tool N
One tool integration for
each correctness tool

…

Host Tool UniMCI

Guest Tool 1
(Correctness Tool)

Guest Tool N
One integration with UniMCI

…

UniMCI – Multiple MPI Tools Issue

– MPI Profiling Interface may only be used by one tool
� Host and guest tool can’t both intercept MPI calls

– UniMCI offers two solutions

(A) Name-shifted Interface
• Host tool calls extra

(B) Usage of P^nMPI
• P^nMPI forwards to both

6An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

• Host tool calls extra
functions provided by
UniMCI

• E.g.:

MPI_X(…) {
UniMCI_check_pre__MPI_X(…)
PMPI_X (…)
UniMCI_check_post__MPI_X(…)
}

• P^nMPI forwards to both
tools:

• Currently as prototype

Application

P^nMPI

Host Tool

Guest Tool

MPI

UniMCI – Correctness Events

– Host tool needs to handle detected MPI usage errors
– Errors need to be returned before they cause a crash
– UniMCI uses a simple message record with:

• Event Type (Note, Warning, Error)
• Info about the MPI call causing the event

7An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

• Textual error description
• A reference to the MPI Standard (optional)
• List of involved ranks (for non local errors)

– Messages retrieved as follows:
• Name-shifted interface: host querries after the check calls
• P^nMPI: host is informed via a callback function

Marmot and UniMCI

– First correctness tool with UniMCI support
– Marmot primarily checks for process local errors

• Invalid arguments
• Non-portable constructs
• Erroneous usage of MPI resources (e.g. requests)

8An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

– Global checks executed on a dedicated process
• Disabled to provide a more lightweight Marmot

VampirTrace and UniMCI

– VampirTrace: a performance event tracing tool
– VT uses UniMCI to highlight correctness events
– UniMCI installation detected with “unimci-config” tool:

• Gives information about required compilers, flags, and
libraries

9An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

– VT uses the name-shifted interface
– Easy integration, as most VT wrappers generated
– Correctness messages are stored as markers
– Markers are displayed in VampirServer

Example – Overview

– Artificial example with a correctness error
– Communication pattern:

Receives an index used in the next send call

Uses index to select datatype:

10An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

– Repeated in multiple iterations
– Afterwards slaves send further message to master

Uses index to select datatype:
MPI_Send (…, types[index], …);

Example – Execution

– Execution on an Altix4700 with SGI MPT:
$ mpirun -np 3 example.exe
> I am rank 2 of 3 processes
> I am rank 1 of 3 processes
> I am rank 0 of 3 processes
> Rank 1 of 3 finished!
> MPI: On host neptun, Program …/example.exe, Rank 0, Process 8570

received signal SIGSEGV(11)

• Send call from Master that uses index
• Obvious: index is wrong
• But, why ? Marmot provides no insight !

11An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

– With Marmot:

received signal SIGSEGV(11)
• But, why ? Marmot provides no insight !
• Problem: correctness tool provides no

history of the events that lead to an error!

Example – VT+UniMCI+Marmot

– Still crashes with VT, but trace contains details:

12An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

Performance Results

– Performance tests with SPEC MPI2007 to:
• Demonstrate applicability to various applications
• Provide data on performance overheads

13An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

Conclusions

– UniMCI provides an interface for MPI correctness
checking

– Usage with name-shifted interface or P^nMPI

– Marmot implements UniMCI

14An Interface for Integrated MPI Correctness Checking Tobias Hilbrich

– VampirTrace uses UniMCI to provide MPI checking

– Visualization of correctness events with markers

– Performance impact of VT + UniMCI + Marmot
combination acceptable for a range of application

