
Methodology for Application Performance
Tuning

Andres Charif-Rubial, Souad Koliai, Bettina
Krammer, William Jalby, UVSQ

Quang Dinh, Dassault-Aviation

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
2

Outline

• Motivation

• Methodology

– Static analysis: MAQAO tool

– Dynamic analysis: Hardware performance counters / MAQAO

– DECAN (Decremental performance analysis)

• Example

– ITRSOL by Dassault

• Conclusions

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
3

Motivation

• How to optimise use of resources (CPU, RAM,
I/O,…)?

– Identify hotspots using different tools (see following talks…)

– Platform dependent

• How much can be gained by optimising? When to
stop optimising?

– What is the theoretical peak performance of your code?

– Cost of further optimisation: is it worth spending a lot of time
on squeezing out 5% performance gain?

– Using a different algorithm might sometimes be the better
solution

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
4

Methodology (semi-automatic)

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
5

Static analysis with MAQAO

• Modular Assembly Quality Analyzer and Optimizer

– Parses assembly code and builds the structure of code (call
graph,…)

– Correlation with source code if available

• Supports Itanium and x86 platforms

• Main metrics:

– Vectorisation instruction usage (load, store, add, multiply)
 Developer e.g. to insert directives if compiler failed to vectorise

– Performance estimation for full vectorisation

– Execution port usage

– Performance estimation in L1 (number of cycles spent for one loop
iteration assuming all operands are in L1)  optimal lower bound for
execution

– Similar: Performance estimation in L2/RAM (stride 1)

– Loop attribute profiling (number of iterations, instructions per
iteration)

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
6

Static analysis with MAQAO

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
7

Dynamic analysis

• hardware performance counters

– ~1200 counters on Xeon

– Intel PTU

• Memory traces (MAQAO)

– Detect stride access

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
8

Decremental Analysis (DECAN)

• Concept:
– measure original code (timing, cache miss rates)

– Remove one or more instructions (may lead to incorrect
results, instructions causing crash or alternating control flow
are not removed)

• Source level (check with MAQAO that compiler optimisation is still the
same)

• Assembly level

– Measure again and find impact of this specific instruction

• Helps identify the loads with poor memory acess
patterns

– Optimisation strategies: data reshaping, add software
prefetch instructions

• DECAN is tedious: automation at binary level in future

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
9

Example: ITRSOL by Dassault

• Iterative solver for Navier-Stokes equation

• Most time-consuming subroutine: EUFLUXm

– Sparse matrix-vector product

– Two groups of 4-level-nested loops

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
10

Example: ITRSOL by Dassault

do cb=1,ncbt

igp = isg

isg = icolb(icb+1)

igt = isg + igp

c$OMP PARALLEL DO DEFAULT(NONE)

c$OMP& SHARED(igt,igp,nnbar,vecy,vecx,ompu,ompl)

c$OMP& PRIVATE(ig,e,i,j,k,l)

do ig=1,igt

e = ig + igp

i = nnbar(e,1)

j = nnbar(e,2)

cDEC$ IVDEP

do k=1,ndof

cDEC$ IVDEP

do l=1,ndof

vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)

vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)

enddo

enddo

enddo

enddo

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
11

Example: ITRSOL by Dassault

• Static analysis (MAQAO): no vectorisation (SSE instructions)
done by compiler

– Loads cannot be vectorised due to non unit stride

– But add/multiply could have been

– Execution port usage: execution units ports can be improved, loads
port a bottleneck

• Dynamic analysis

– Loop attribute profiling: 2 innermost loop bounds (ndof) are small (4-
10), outer loop bounds larger and vary throughout execution

– Memory tracing: 2 innermost loops access arrays row-wise

– Indirect addressing for accessing first dimension of arrays

– PTU: 2-dim arrays in L2, 3-dim arrays from RAM

• DECAN: not performed (static and dynamic analysis sufficient)

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
12

Example: ITRSOL by Dassault

• Optimisation:

– Hardwire ndof (2 innermost loop bounds):

• Replace ndof by its proper value (4) helps compiler fully unroll the 2

innermost loops

– Loop interchange

• Second loop (ig) becomes innermost loop

• Arrays now accessed column-wise

• But: still no vectorisation due to indirect addressing

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
13

Example: ITRSOL by Dassault

• Experimental platform:

– Compute node with 4 Xeon X7350 (Tigerton), quad-core 2.93
GHz

– 2 4MB L2 caches shared between 2 cores

– 32kB L1 data cache (private to each core)

– 48 GB RAM

– Intel compilers v 10.1

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
14

Example: ITRSOL by Dassault

Unicore results

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
15

Example: ITRSOL by Dassault

Multicore results

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
16

Conclusions and future work

• Semi-automatic performance analysis by combining
tools for static and dynamic analysis (MAQAO,
hardware performance counters) enables successful
low-level code optimisation for real-world applications
(factor of 2)

• This process can be further automated (e.g. analysis
of memory traces, DECAN)

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
17

Thanks for your attention.

LRC IT@CA

Parco’09, Lyon, France

2 September 2009
18

Backup

