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e A novel algorithm is proposed to merge limited high-fidelity measured
data and continuous low-fidelity simulation results.

e The proposed method using a gappy onshore measurement results in
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Abstract

In wind resource assessments, which are critical to the pre-construction of
wind farms, measurements by LIDARs or masts are a source of high-fidelity
data, but are expensive and scarce in space and time, particularly for off-
shore sites. On the other hand, numerical simulations, using for example the
Weather Research and Forecasting (WRF') model, generate temporally and
spatially continuous data with relatively low-fidelity. A hybrid approach is
proposed here to combine the merit of measurements and simulations for the
assessment of offshore wind. Firstly a temporal data fusion using deep Multi
Fidelity Gaussian Process Regression (MF-GPR) is performed to combine the
intermittent measurement and the continuous simulation data at an onshore
location. Then a spatial data fusion using a neural network with Non-linear
Autoregression (NAR) and Non-linear Autoregression with external input
(NARX) are conducted to project the wind from onshore to offshore. The
numerical and measured wind speeds along the west coast of Denmark were
used to evaluate the method. We show that the proposed data fusion tech-
nique using a gappy onshore measurement results in accurate offshore wind
resource assessment within a 7% margin error.
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1. Introduction

In the past decades, there has been worldwide demand for renewable en-
ergy, leading to a dramatic expansion in all its sectors, with a significant
fraction generated by wind. There are over 230 GW of installed wind capac-
ity in Europe as of 2020, consisting of 190 GW onshore and 40 GW offshore.
Additionally, Europe intends to further the rise in demand for wind energy
and its capacity by 35% [1]. Before the construction of a wind farm, it is
critical to evaluate the wind speed condition of the location. Since the power
is the cube function of wind speed, minor speed changes can cause large
deviations in the output power. Moreover, the wind varies both geograph-
ically and temporally over a wide range of scales. Therefore, an accurate
assessment of the wind resource for a proposed site is highly essential and
is considered of paramount significance for a wind project to be successful
2],[3]. The assessment also helps to the selection of wind turbines and their
layouts [4].

Physical wind measuring devices include Light Detection and Ranging
(LIDARS), meteorological mast towers, Satellite Synthetic Aperture Radars
(SARs), and so forth. These equipment yield accurate results but are ex-
pensive and the data is commonly sparse in space and time. For example,
the SARs measured wind is at 10 m above the sea surface with low tempo-
ral resolution and only applies to offshore assessments; LIDARs measure the
Line-Of-Sight (LOS) velocity by computing the Doppler shift of the signal
of an infrared laser beam based on the movement of aerosols and the out-
put is usually intermittent at a fixed location; buoy systems are expensive
and require periodic maintenance, redundant systems for power, measure-
ments, and communication for the measurement at a given location. On the
contrary, numerical simulations result in wind predictions that cover large ge-
ographical areas and long time horizons continuously, but with relatively low
fidelity. The numerical models include Weather Research and Forecasting
(WRF), Global Forecast System (GFS), and European Centre for Medium-
Range Weather Forecasts (ECMRWF), etc. [5].

Such a clear complement of physical measurements and numerical infor-
mation suggests data fusion or a hybrid technique to combine the merit of
both. It would be very desirable to extend the information from coastal on-
line vertical LIDARs for the reconstruction of offshore time series as they



are easier to maintain [6]. This technique can be used to numerically ex-
tend the information from coastal measurements to the offshore time series
with low cost and high accuracy. Such techniques have been widely used
in the prediction of future developments based on various inputs [7]. For
example, Hu and Wang [8] used Empirical Wavelet Transforms (EWT), Par-
tial Auto-Correlation Function (PACF), and GPR for wind speed assess-
ments. EWT was employed to extract the meaningful data from the wind
speed series through a customized wavelet filter bank, and PACF provided
the input parameters for the GPR to simulate dynamic features and inter-
nal uncertainties. An alternative combination, i.e. Auto-Regressive (AR)
and GPR, was followed by Zhang and Wei [6]. AR was employed to cap-
ture the structure of the wind speed series, and GPR to extract the local
structures. As a supplement, Automatic Relevance Determination (ARD)
considered the importance of using different inputs; thus, various types of
covariance functions were combined to comprehend the characteristics of the
data. This hybrid method outperformed other methods including Support
Vector Machine (SVM), Artificial Neural Network (ANN), and the persis-
tence approach. Meanwhile, an improved near-surface wind speed prediction
experiment, which considered the atmospheric stability using GPR combined
with Numerical Weather Prediction (NWP), for a time horizon of 72 hours,
showed that the consideration of atmospheric stability was able to reduce the
estimated errors, thus improving power predictions [2].

Most recently, the Multi-Fidelity Gaussian Process Regression (MF-GPR)
has been demonstrated to significantly outperform the regular single fidelity
model. The strategy of MF-GPR was to go beyond the regular AR kriging
scheme and introduce more than one dataset at different fidelity levels. The
first is a high-fidelity, scarce dataset which can be the physically measured
one; the second is a low-fidelity, continuous dataset which can be generated
from numerical simulations. The literature in this area further discussed var-
ious developments; for example, the Deep MF-GPR with additional datasets,
e.g. first and second derivatives, phase-shifted oscillations, and different pe-
riodicity datasets leading to drastically improved approximations [11].

Further, wind resource assessments are commonly requested over a long-
time-interval (e.g. a few months or years) and to cover large areas, there-
fore requiring spatial-temporal fusion of numerically and physically mea-
sured wind [12]. Apart from the temporal prediction reviewed above, ANNs
are trained and tested on datasets from two different locations. Cadenas
and Rivera, considered the problem of non-linearity in the time-series us-
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Figure 1: Flow chart for spatiotemporal fusion. Ul and U2 represent the wind speed at
two positions. In the test case in this work they correspond to onshore and offshore wind,
respectively, and the continuous and sparse data is from measurements and simulations,
respectively.

ing Nonlinear Auto-Regressive with Exogenous inputs (NARX) [10]. The
method was compared with both the persistence approach and Nonlinear
Auto-Regressive (NAR). The results demonstrated that the NARX model
was the most precise of the three and justified the extra input, suggesting
that it could be suitable for spatial data fusion.

Spatiotemporal models which combine the aforementioned temporal and
spatial fusion, have been widely used in the geostatistics field, where temper-
ature and wind speed were the main variables of concern. In these models,
the temporal extrapolation is performed to predict the values out of the
measured interval at a fixed spatial point [13], followed by spatial extrap-
olation to project the estimation to a different point [14]. This sequential
extrapolation in time and space was developed in the present study for wind
resource assessment. Temporal data fusion of low and high-fidelity data from
simulations and measurements at a given location was performed using deep
MF-GPR, and spatial data fusion using a customised nonlinear autoregres-
sive ANN with exogenous inputs was conducted thereafter. As illustrated
in Figure 1, the low fidelity results (e.g from numerical simulations) are
assumed to be available across a continuous domain X x 7', where X and
T are the spatial and temporal domains, respectively. On the other hand,
high-fidelity results (e.g from the LIDAR measurements) are available in a
reduced domain X,. x T,. where X,. is a subset of X and can be discon-



tinuous and 7. is a subset of T" and can be discontinuous. Thereafter, the
objective was to combine the low and high-fidelity results to reach a data fu-
sion on the full domain X x T'. In practice, this is an assessment of offshore
wind from numerical simulations tuned by limited onshore measurements.

2. Methodology

2.1. Temporal data fusion

In this section, we introduce the algorithms for temporal data fusion by
combining the low-fidelity continuous time series and the high-fidelity in-
termittent one. In Section 2.1.1. the prototype of the Gaussian process
regression is briefly introduced and then multi-fidelity GPR is presented in
Section 2.1.2. The use of different co-variance functions such as constant, lin-
ear, squared exponential, Matern and rational quadratic, defines the method
of prediction for the Gaussian process.

2.1.1. Gaussian Process Regression (GPR)

GPR is a non-parametric, stochastic process that follows the Bayesian
approach for regression, working well on small data sets and having the
ability to provide uncertainty measurements on predictions. Predictions are
derived using a probability distribution over all possible values of a time-
series using prior functions w of training points f at observed points ¢, and
targeted values f* at unobserved points t* are calculated from a predictive
distribution, p(f*|t*, f,t), by considering all possible predictions using their
calculated posterior distribution:

p (I fot) = / p (1t w) p (w] £, 1) dw. (1)

To trace the integration process of equation (1), all terms of the equation
are assumed Gaussian. The prior function defines the Gaussian distribution:

f(t) ~ GP(m, k(t, 1)), (2)

where m is the mean function, which represents the trend of the function,
and the covariance function (kernel), k(t,t"), represents the dependence of
the structure, defined by the hyperparameters [15].



2.1.2. Multi-fidelity Gaussian Process Regression

In this section, we discuss advanced temporal data fusion using data
with multiple fidelities to enhance the accuracy of prediction. The data
sets are obtained using different techniques mathematically, the multi-fidelity
technique considers the high-fidelity model as a function of two variables (¢, s)
and then uses the low-fidelity data as the s variable:

Ju(t) = g(t, f1(1)), (3)

where in the present work f,(t) and fi(t) are the high-fidelity LIDAR mea-
surements and low fidelity WRF simulations, respectively. Such non-linear
auto-regressive Gaussian process (NARGP) has been observed to produce
highly accurate prediction when f3(¢) is non-linearly dependent on f;(t), and
GPR is then performed in a two-dimensional space.

To implement this, we adopt the co-kriging model, which uses multivari-
ate functions with respect to different levels of fidelities to reflect different
accuracies. The additional data set is later introduced to the Gaussian dis-
tribution and we add the terms of the first data set (¢, s) and the second data
set (t',s") while the mean function is zero, through:

f(t) ~ Gp(ma k((t> S)? (t/7 S/)))v (4)

Merging of two or more sets that are approximately linearly dependent by
scaling and shifting parameters was approached by Kennedy and O’Hagan
[16]. However, due to the presence of nonlinear dependencies generally be-
tween the datasets, the quality of results degraded as a major issue for linear
data fusion algorithms. To overcome and resolve the nonlinear dependencies,
space-dependent scaling factor p(z) [17] or alternatively, deep multi-fidelity
GP [18] was introduced. Yet the improvement brings further optimizations
of additional hyperparameters. Here the NARGP algorithm, an implicit au-
tomatic relevance determination (ARD) weight, is employed in the extended
space, parametrized by ¢ and s, which counts as a different scaling of the
existing hyperparameters for each dimension in the kernel [19].

Additionally, the formulation can be extended through functions of the
low-fidelity data set. The high-fidelity data can be further considered as a
function ¢, fi(t) and the derivatives of f;(t), exploiting that f;(t), has a similar
trend with fy,(¢):

fu(t) = g(t, filt), 1 (1), - fi (1)), ()
where f}(t) is the i-th derivative of the low fidelity data.
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Figure 2: (a) Architecture of the NAR (nonlinear autoregressive) model with a multi layer
perception. (b) Framework for NARX model with an exogenous variable x as the input.
q past values of x and y are considered for the prediction of y(t+1).

2.2. Spatial extrapolation

As aforementioned the target is to predict offshore wind indirectly from
onshore measured wind. Therefore apart from the temporal fusion algorithms
presented above, a spatial extrapolation is required. Here a time series neural
network is adopted to link the wind speed at the two points using a single
variable nonlinear network NAR along with NARX to have a fair performance
comparison. In practice, low-fidelity WRF data will be used to train the
network and onshore hybrid solution (obtained by temporal fusion) is served
as input to estimate the offshore wind.

2.2.1. Nonlinear Autoregression (NAR)

The NAR model is most suitable for time-series predictions where the
main source of training data is only past values of the time series itself, and
this process is called feedback delays. The network is trained in an open
loop, which uses the real target values as a response. Following, the network
becomes a closed-loop, and the predicted values are used as new response
inputs to the network. The framework of this model as seen in Figure 2(a),
a multi-layer network where the left hand side is the past delayed input values
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y(t—1),y(t—2), and y(t —p) is used to obtain the independent variable y(t).
Optimisation of the network aims to reduce the number of synapses (weights)
and neurons, and subsequently reducing the complexity of the network, and
maintaining the generalisation capabilities.

2.2.2. Nonlinear Autoregression with External Input (NARX)

NARX is a dynamically guided type of recurrent ANN, which contain one
or more feedback loops. The loops can be either local or regional, and the
use of regional loops enables a significant reduction of memory requirements
[9]. Moreover, different models of NARX networks are comprised of the same
structure and thus have a reasonable cost from a computational point of view.
The previous argument allows a NARX network to gain degrees of freedom
when it includes a time-frame forecast. As input data in subsequent periods
compared to a feed-forward network, it allows the synthesis of information
from exogenous variables and less inclusion of their remains, reducing the
number of parameters to be calculated.

Learning in NARX networks is more efficient than in other neural net-
works (the descending gradient is stronger in NARX). The model predicts a
series y(t) given specific past values of y(¢) and additional input series z(t)
as shown in Figure 2(b). Dynamically, this is expressed by:

y(n+1) = Fy(n),y(n — ¢+ 1),u(n),u(n — g+ 1)), (6)

where ¢ is the total number of delayed memory neurons, the output y(¢ + 1)
is the predicted value representing the one step ahead variable and F' is a
nonlinear function.

As it was proven essential to have at least two-thirds of the data for the
training part, the training, validation, and test divisions, were partitioned
to meet 60 percent training, 20 percent validation, and 20 percent testing,
respectively. We constructed 10 hidden neurons with 2 delays, and adopted
the Bayesian regularisation as the training algorithm trades off more compu-
tational costs for better accuracy [9].

3. Case description

To test the methods, we consider a case associated with the RUNE
project, which was a near-shore experiment conducted at the west coast
of Denmark (see Figure 3 (a)). The surrounding area is nearly flat coastal
farmland and moving northwards from position 1 to 3, the sand embankment

8
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Figure 3: (a) The location of the RUNE experiment (black rectangle) in Denmark. (b)
RUNE experimental area. Positions of the LIDARs are shown in red markers and the
dual-Doppler scans in black markers.

separating the North Sea and the grasslands transforms into cliffs covered by
grass. In this work, we use dual-Doppler scans performed nearly perpendic-
ular to the coast from about 5 km offshore to 2 km onshore. These scans
were performed by synchronising measurements from two scanning LIDARs,
which are modified versions of WLS200S Leosphere units, one located at po-
sition 1 and the other at position 3. Here, we use the dual-Doppler scans
performed at 50 m above mean sea level (amsl) during the period 2015-12-08
to 2016-02-17. Due to filtering of high noise/low signal strength and system
availability, only 114 10-min are available at all the dual-Doppler positions
shown as black markers in Figure 3 (b). Further details with regards to the
experimental campaign and the instrumentation can be found in [20].

Here we use a numerical experiment, which was part of a number of
numerical simulations performed using the WRF model v3.6 to supplement
the measurements of RUNE [22]. This particular experiment was setup with
4 nested domains, the outermost covering northwestern Europe and a 2-km
horizontal resolution innermost domain covering the west coast of Denmark.
Spectral nudging to the ERAS reanalysis is used in the upper model levels of
the outermost domain. The simulation had 8 vertical levels within the first
100 m and instantaneous output was produced every 10 min. The experiment
also used the Mellor-Yamada Janjic planetery boundary layer scheme, a sea
surface temperature product from the Danish Meteorological Institute [21],
and the CORINE land cover description. An illustration of the low fidelity
WRF simulation data set of the most onshore point can be seen in Figure
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Figure 4: (a) Low-fidelity data from numerical simulation (WRF) at the most onshore
point, (see Figure 3).(b) High-fidelity data from scanning LiDAR at the most onshore
point, (see Figure 3).

4(a), while Figure 4(b) shows the high fidelity LIDAR measurements for the
same point.

4. Data Preprocessing

EWT is used to smooth the given wind speed time-series, using an appro-
priate wavelet filter bank to GPR. In previous wind speed time series filtering
works, signals were pre-processed by either the wavelet transform (WT) or
empirical mode decomposition (EMD), both capable of removing noise from
the time series [8]. However, the EMD technique lacks any mathematical
theory and is sensitive to both sampling and noise, whilst WT is not capable
of self-adaption as the model requires parameters specified beforehand. EWT
shows promising advantages and eliminates the drawbacks of the others. The
process can be divided into five steps [8]:

Extending the signal.
Fourier transforms.
Extracting boundaries.
Building a filter bank.
Extracting the sub band.

AR
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As various studies demonstrated, we use a three-level decomposition as
it is capable of achieving good forecasting results for a non-stationary time
series, such as wind power and wind speed series.

The original wind speed signal had considerable high-frequency fluctu-
ations. The three-level decomposition attained by the EWT algorithm de-
scribes the wind speed series in a meaningful way. Three uncorrelated filter
modes were extracted from the wind speed series and a residual was also
obtained from the extraction. The reconstructed wind speed series shows a
significant decrease in fluctuations and will be served as input to the third
GPR model.

5. Results

5.1. Temporal data fusion

Table 1: Configurations and accuracy of the GPR models.
Model Basis and Kernel functions ~RMSE [m/s]

WRF - 1.24
Hybrid (1) Zero, Matern 5/2 1.15
Hybrid (2) Constant, Rational quadratic 1.01
Hybrid (3) Zero, Matern 3/2 0.86

The different data sets at the furthest onshore point of the dual-Doppler
line were merged by applying MF-GPR. The performance of the three models
was optimized, through the hyperparameters, by applying 30 iterations of
basis and kernel function combinations, including: Zero, Linear, Constant
and Matern 5/2 and 3/2; Rational Quadratic, squared Exponential, etc.
Firstly, we explored the original model, represented as Hybrid (1), where
the input information was low and high-fidelity data sets. Then, we showed
that introducing additional information sets, which are functions of the low
fidelity data set (first and second derivatives) can enhance the accuracy of
predictions, hence Hybrid (2). The third model, Hybrid (3), involved pre-
processing of the training set using the EWT reconstruction algorithm, the
regenerated first and second derivative sets of the low fidelity data, and finally
the North and East decomposed wind speed vector components. A higher
drop in RMSE was noted from the Original WRF data.
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Figure 6: RMSE curve across Windgrapher and all three hybrid models for all 36 dual-
Doppler points.

Table 1 shows the RMSE for the best performing GPRs for the three
hybrid models and WRF data using the LIDAR data as the ground truth, for
each model as well as their respective basis and kernel function configuration.
It can be seen that the third model outperformed the other two in terms of
RMSE superbly.

Figure 5 panels (a), (b) and (c¢) show the time series of the results from the
three hybrid models, respectively. Hybrid (1) showed a 9% decrease in RMSE
from WRF data, in Hybrid (2) the RMSE was reduced by about 18%, and
finally Hybrid (3) showed the largest drop compared to other hybrid models,
about 31%. Besides, panel (d) reflected a cut off to the interval between
the hours 500-600 since the start of the experiment, with an 80% confidence
interval, showing a better visualization of the performance. Finally, panel (e)
presents the deviation error between the provided high-fidelity time series of
114 points with their predicted counterparts by the hybrid techniques. It can
be seen that for some points, Hybrids (1) and (2) outperform each other with
deviations ranging from 6 to 2 m/s. On the other hand, the performance of
Hybrid (3) outperformed the other two at almost all measured points with
the deviation capped at 2 m/s and mean deviation 0.6 m/s. These results
substantiate that increasing the number of additional sets and pre-processing
the data enhanced the accuracy of the Gaussian process [17].
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Furthermore, on a separate iteration, we compare the three hybrid meth-
ods against that in Windgrapher, the leading industrial software for import-
ing, visualizing, and analyzing wind resource data. Windgrapher follows the
Measure-Correlate-Predict (MCP) algorithms including Linear Least Squares
(LLS); the method is on correlating target and reference speed data, based
on the linear least squares’ procedure.

In Figure 6, we compare the results from the three Hybrid techniques to
Windgrapher by calculating the RMSE of results across all 36 dual-Doppler
positions from the furthest offshore point to the most onshore one. On av-
erage, Hybrids (1), (2), and (3) were able to perform 12%, 14%, and 60%,
respectively, more accurately than the industrial software.

5.2. Spatial data fusion

Table 2: Configurations of the NARX and NAR Networks with the Best Performance.
Model Delays and Neurons Time steps MSE (x1072)

NAR 3, 15 Training (6176) 1.352
Validation (2058)

Test (2058) 1.559

NARX 4,12 Training (6176) 1.241
Validation (2058)

Test (2058) 1.188

The spatial data fusion aimed to project the onshore measurements to
offshore locations in light of numerical simulations, to reduce the cost of
direct offshore measurements. The first and last offshore and onshore points
in the 36 dual-Doppler line were considered as an example. An ANN was
trained using the low-fidelity WRF data at both points, and it configured
the winds’ relation at both points. The network was later tested on the high-
fidelity LIDAR data of the onshore point and generated high fidelity wind
speed results for the offshore point [15].

For the NARX model, eleven simulations were performed varying the
number of past values (delays) for the entry variables from 1 to 10, and
the number of hidden neurons from 3 to 21. The MSE of the test data set
was used to assess the performance of the network, the configuration with
the best performance was employed. The same number of simulations were

14
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Figure 7: (a) Spatial data fusion results for the offshore point. (b) Close-up of spatially
predicted data and high and low-fidelity data for validation.

carried for the NAR model; similarly, the past values varied from 1 to 10 and
the hidden neurons from 3 to 15 and the configuration with the lowest MSE
was selected.

Figure 7(a) shows the results from testing the NARX network using the
LIDAR measurements along with low-fidelity WRF data and high-fidelity
LIDAR measurements of the most offshore point. Predicted values from the
network were more accurate than the low-fidelity data, where the RMSE was
reduced from 1.23 m/s to 1.17 m/s. For a zoomed-up visualization of results,
the data-rich high-fidelity section at hours 433-600 is shown in Figure 7(b).

5.3. Spatio-temporal extrapolation

In this section, we combined temporal and spatial data fusion. The aim
was to use the intermittent measurement at the most onshore point to esti-
mate the wind at the most offshore point by exploiting the numerical data.

Temporal data fusion was performed following the same technique as
Hybrid (3) of MF-GPR from Section 2.1.2., we used the reconstructed set
from the EWT algorithm for pre-processing and five predictors for the GPR
algorithm: low-fidelity WRF data, first and second derivatives, North and
East vector components of the wind speed set of the onshore point. Again,
30-iterations were used to optimize the hyperparameters, varying the basis
and kernel functions to achieve a configuration with an RMSE of 0.96 m/s.

15
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Following, a NARX neural network was trained using the low-fidelity
WRF data of both the most onshore and offshore points with 3 delays and 12
hidden neurons. The network was later tested on the time series generated
from the temporal section using MF-GPR and the resulted RMSE of this
process was 1.183 m/s.

Figure 8(a) shows the final curve of the spatial-temporal data fusion
process, high-fidelity LIDAR data (hidden in the assessment), and 80% pre-
diction intervals. In addition, Figure 8(b) is a cut-off to show the region
with the richest LIDAR data, the results were satisfactory, as it achieved an
accurate result with an RMSE 1.29 m/s impersonating the high-fidelity data
of the most offshore point without discontinuity or using expensive LIDARs
offshore. These results outperformed the WRF simulation at the offshore
location where the RMSE was 1.46 m/s, an estimated 12% improvement.

6. Conclusions

In this work, we performed data fusion of numerical model results from
WRF simulations (low fidelity), continuous in space and time with LIDAR
measurements sparse in time and space (high fidelity) to obtain a spatial-
temporal extrapolation, suitable for the assessment of offshore wind. The
RUNE experiment performed dual-Doppler scans nearly perpendicular to
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the coast, which generated 114 10-minute measurements over three months.
Simultaneously, for low-fidelity WREF simulations, numerical simulations per-
formed using the WRF model v3.6 generated an instantaneous output every
10 minutes for the same period of 3 months.

For time-domain data fusion, the effect of pre-processing the data by ap-
plying a filter and increasing the number of predictors to include the decom-
posed vector components of wind speed showed a major drop in the RMSE.
This was because we increased the amount of information given to the re-
gression model and reduced fluctuations in the time series, which allowed for
improved GPR, hence improved assessment. We were able to represent the
high-fidelity data at unobserved regions and periods by exploiting the low-
fidelity data and its functions. The addition of extra information datasets
and pre-processing showed an improvement in the prediction performance in
terms of RMSE, with a 30% average drop compared to other models that
ignored them. For the spatial fusion part of the experiment, similarly, adding
extra information datasets to the NARX neural network showed improved
results compared to the single input model NAR. The data from the net-
work had a lower MSE for assessing offshore data, which could avoid sending
expensive equipment offshore. Furthermore, adjusting the neurons and the
number of past training values contributed to varying accuracy.

Following data fusion in both space and time, and as aforementioned,
the main aim of this study was to combine both methods and perform data
fusion in both domains: spatial-temporal extrapolation. The models were
re-run at the observed optimized levels in each method: Data from the most
onshore point underwent Hybrid (3) MF-GPR for time-domain data fusion,
and the output continuous time series was used along with data from the
offshore point for space domain data fusion. Finally, the spatial-temporal
data fusion resulted in accurate offshore wind resource assessment within
a 7% margin error for wind speed. Additionally, the results from the 36
dual-Doppler points, across the offshore-onshore segment, were compared to
Windgrapher industrial software, which analyses wind resource data. The
comparison of models favoured results from data fusion models of this paper,
as all three Hybrid models outperformed the industrial software by at least
40%. Specifically, Hybrid (3) proposed in this work by almost 60%.

Different adaptations, tests, and improvements have been left for the fu-
ture. Future work concerns further development to the multi-fidelity data
fusion algorithm, by introducing additional sources of data generated by dif-
ferent equipment or software. An example of this is the use of a second WRF
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simulation with different resolutions and features. Nevertheless, concerning
the results for one point-based prediction, we can also expect to perform 3-
dimensional area predictions with respect to time, by performing data fusion
of multiple LIDAR measurements at different locations with full grid WRF
simulation results.
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