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• Modern wind turbines aims at increasing 

output power 

• Increase in size

• Large flexible blades

• Strong fluid-structure interaction

Motivation

Source: Bloomberg New Energy Finance

Evolution of wind turbine size and output
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Source: powermag.com
https://www.powermag.com/ge-is-acquiring-worlds-largest-wind-turbine-blade-manufacturer/



•

Computational challenges in parked rotor modelling

Absolute vorticity contour

AVATAR 10 MW blade

95 deg AoA, Re~10M

DDES (8M cells) + beams
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Figures Source: González et.al (2019)



• 3D domain is modelled as several discrete fluid

domains with finite length in spanwise direction,
thick strips

• Each strip has a thickness of Lz

• Enables Capturing the local spanwise velocity

correlations and locally 3D effects

• Strips are connected viastructural dynamics

Thick strip method
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• Requires minimum 8 Fourier planes per 10% of chord 

to estimate the forces 

• Each plane have 2500 spectral elements

• blade with L=100c 

– Full 3D: Minimum 8000 planes!

– Thick strip with 20 strips and Lz=0.2c : 320 

planes

– 96% reduction

– Do need to understand what scale flow physics 

are tightly coupled 

How does the thick strip method help?

Q-Criterion

Naca0012

Lz = 0.2

Re=150,000
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Fourier Plane



Nektar++/SHARPy coupling

Numerical 

Formulation

• Fluid Flow (Nektar++)

– Navier-Stokes Eq.

– Spectral/hp element discretization

• Structural dynamics (SHARPy)

– Geometrically-Nonlinear composite 

beams

• FSI coupling ( Nektar++/SHARPy )

– Explicit temporal coupling of two solvers
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The Nektar++/SHARPy FSI solver has been 

developed for VIV of slender cables in marine 
applincations

We are further developing it for wind turbine 

applications



Fluid Flow: Navier-Stokes Equations

• Navier-Stokes in inertial coordinate                   in each strip 

• Large deformation of structure would 

cause mesh deformation and distortion

8



Fluid Flow: Navier-Stokes Equations

• Navier-Stokes in inertial coordinate                   in each strip 

• Large deformation of structure would 

cause mesh deformation and distortion

9



• Avoiding dynamic re-meshing

• Coordinate transformation

• Non-inertial body-fitted coordinates

Mapping: Transformed NS equations

Inertial coordinate Non-inertial body-fitted coordinate

Navier-Stokes eq. in transformed coordinates
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Spectral/hp element method [ Nektar++]

•
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Source of figure: Bolis 2013



Spectral/hp discretization of N.S. equations
• Using Fourier expansions with total number of M modes

• Navier-Stokes equation: Set of 2D decoupled equation for each mode

• Spatial discretization using high order spectral/hp element

• Pressure-velocity system solved using stiffy stable high-order velocity correction scheme
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• Long rotor blades approximated by beam

• Geometrically-exact composite beam equation

• Non-linear and high deformation

• Representing the structure using two frame of 

reference (FOR)

• Using Hamiltonian principle and FEM 

discretization, final form of discrete equation

• is state variable (displacements and rotations)

• Gyr, strif and ext: gyroscopic, stiffness and 

external forces

Structural dynamics [ SHARPy ]

X
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z
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A-FOR is body fixed

B-FOR is local frame attached to elements
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FSI Loose Coupling Get x, v and a from SHARPy

Update domain mapping, calculate source terms for Navier 
Stokes Equation

Solve Flow Fields

strip-wise integration of surface tractions

consistent interpolation to structural nodes

Solve structure dynamics 

send x, v and a to Nektar++

Loose coupling typically robust for high mass ratio 
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New feature of the FSI solver: Structural torsion

• Rotation of structure changes the

effective angle of attach and hence fluid forces and moments

• Nektar++/SHARPy coupling have been used for marine

Viv of slender cables

• Having only translational mapping 

(in old solver) flow can not see this effect.

– Using rotational mapping

– Correction of inlet velocities

𝛼0
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•

Inlet velocity correction

Fluid Strip

X

Y

Z

z

y

xA-FOR

B-FOR

x

𝛼𝑈∞

• Velocity vector is modified at inlet boundary of each strips

• Suitable for final static deformation. 

• For dynamic response simulation, rotational mapping will be incorporated into solver.
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• MPI communicator splits down 

into Cartesian like array

• Rows communicators for domain 

decomposition

• Column communicators for FFT 

transposition

• Each column further breaks 

down into rows ( strips ) and 

columns ( Fourier planes in each 

strips)

Efficient use of resources by leveraging Hybrid 

parallelization

Allows us to leverage multi-core architecture with a direct solver17



Numerical Tests
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•

Flow over slender cable

Thick strips distribution along the cable
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Reproducing the problem from 

Bao et al. 2016. 



𝑡∗

= 112
Τ𝑡∗ = 𝑡𝑈∞ 𝐷

Vorticity contours showing traveling waves as a result of cable motion
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•

Static deformation of slender blade

a) Solution domain consisting of the blade and thick strips 

b) Schematic of the solution domain (side view) with 

domain dimensions and boundary conditions
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The problem definition is taken from 

Smith et al. 2001.
Simpson and Palacios 2013



Deformation in vertical plane

and evolution of AoA

Effect of blade torsional motion on deformation
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Change of angle of attack for each strip over the time

High GJ

Low pitch

low GJ

high pitch



Conclusion

• High-Fidelity FSI simulation tool using Nektar++/SHARPy coupling

• Efficient LES approach using thick strips methods

• Targeting massively separated flows with high angle of attach for blades in parked conditions

• Efficient use of computational resources via hybrid parallelization

– Looking to leverage effort in vectorization by Nektar++ team 

– Collaboration with EPCC, University of Edinburgh for profiling and scaling test of the FSI code 

• Adding rotational mapping for coordinate transformations and torsional movement of structure

• Development of fluid solver to support non-constatnt cross sections along the structure
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