

Near-wake resolving FSI of wind turbine using high-fidelity simulation

Mohsen Lahooti, Rafael Palacios, Spencer J. Sherwin Department of Aeronautics, Imperial College London

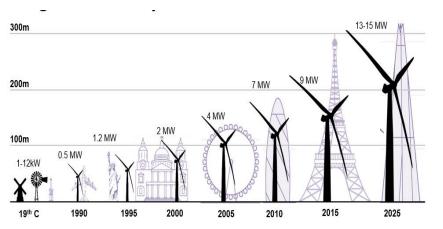
Overview

- Motivation
- Thick Strip method
- Numerical formulation
- Hybrid parallelization
- Numerical Tests
- Conclusion

Motivation

- Modern wind turbines aims at increasing output power
- Increase in size
- Large flexible blades
- Strong fluid-structure interaction

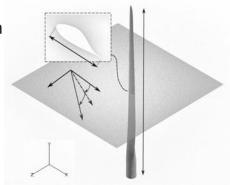
Evolution of wind turbine size and output



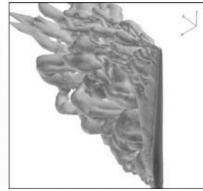
Source: Bloomberg New Energy Finance

Computational challenges in parked rotor modelling

- New design criteria: VIV of blade in parked condition
- High Re number
- Massively separated flows
- Anisotropic turbulence
- Requires high-fidelity simulation
- Number of DOF increases as $N^3 \ge Re^{9/4}$



Figures Source: González et.al (2019)

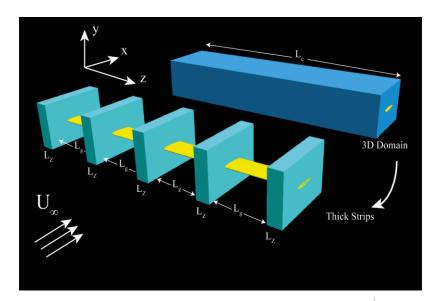


Absolute vorticity contour AVATAR 10 MW blade 95 deg AoA, Re~10M DDES (8M cells) + beams

Imperial College London

Thick strip method

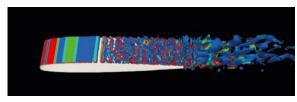
- 3D domain is modelled as several discrete fluid domains with finite length in spanwise direction, thick strips
- Each strip has a thickness of Lz
- Enables Capturing the local spanwise velocity correlations and locally 3D effects
- Strips are connected via structural dynamics



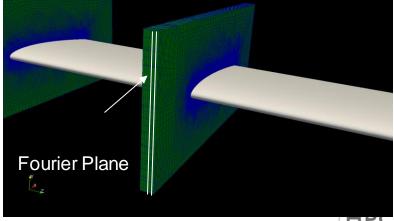
How does the thick strip method help?

- Requires minimum 8 Fourier planes per 10% of chord to estimate the forces
- Each plane have 2500 spectral elements
- blade with L=100c
 - Full 3D: Minimum 8000 planes!
 - Thick strip with 20 strips and Lz=0.2c: 320 planes
 - 96% reduction
 - Do need to understand what scale flow physics are tightly coupled

Even with use of thick strip method, still at least 10k+ cores is required for practical simulation of real flow conditions with $Re \sim O(10^6 - 10^7)$



Q-Criterion Naca0012 Lz = 0.2 Re=150,000



Numerical Formulation

Nektar++/SHARPy coupling

The Nektar++/SHARPy FSI solver has been developed for VIV of slender cables in marine applinations

We are further developing it for wind turbine applications

Fluid Flow (Nektar++)

- Navier-Stokes Eq.
- Spectral/hp element discretization

Structural dynamics (SHARPy)

 Geometrically-Nonlinear composite beams

FSI coupling (Nektar++/SHARPy)

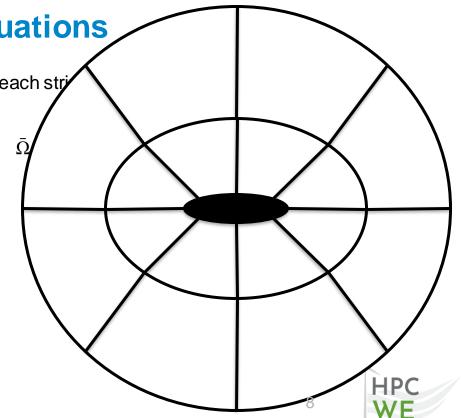
Explicit temporal coupling of two solvers

Fluid Flow: Navier-Stokes Equations

• Navier-Stokes in inertial coordinate $\overline{\mathbf{X}} = (\bar{x}, \bar{y}, \bar{z})$ in each stri

$$\frac{\partial \bar{\mathbf{u}}_n}{\partial t} + \bar{\mathbf{u}}_n \cdot \bar{\nabla} \bar{\mathbf{u}}_n = \frac{-1}{\rho} \bar{\nabla} p_n + \nu \bar{\nabla}^2 \bar{\mathbf{u}}_n$$
$$\bar{\nabla} \cdot \bar{\mathbf{u}}_n = 0$$

 Large deformation of structure would cause mesh deformation and distortion

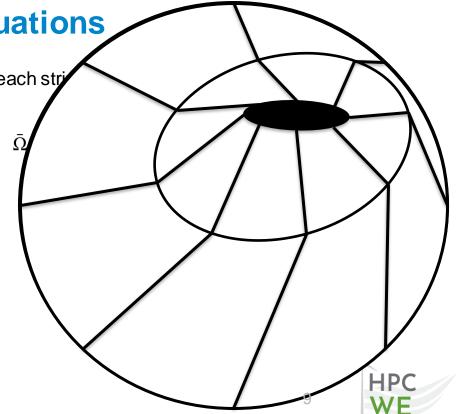


Fluid Flow: Navier-Stokes Equations

• Navier-Stokes in inertial coordinate $\overline{\mathbf{X}} = (\bar{x}, \bar{y}, \bar{z})$ in each stri

$$\frac{\partial \bar{\mathbf{u}}_n}{\partial t} + \bar{\mathbf{u}}_n \cdot \bar{\nabla} \bar{\mathbf{u}}_n = \frac{-1}{\rho} \bar{\nabla} p_n + \nu \bar{\nabla}^2 \bar{\mathbf{u}}_n$$
$$\bar{\nabla} \cdot \bar{\mathbf{u}}_n = 0$$

 Large deformation of structure would cause mesh deformation and distortion



Mapping: Transformed NS equations

- Avoiding dynamic re-meshing
- Coordinate transformation
- Non-inertial body-fitted coordinates

Inertial coordinate

Non-inertial body-fitted coordinate
$$\mathbf{X}(t) = (x(t), y(t), z(t))$$

$$\overline{\mathbf{X}} = (\bar{x}, \bar{y}, \bar{z})$$

$$J = |\frac{\partial \overline{\mathbf{X}}}{\partial \mathbf{X}}| = |\frac{\partial \overline{x}_i}{\partial x_i}|$$

Navier-Stokes eq. in transformed coordinates

$$\frac{\partial \mathbf{u}_n}{\partial t} = \mathbf{N}(\mathbf{u})_n - \mathbf{G}(p)_n + \mathbf{L}(\mathbf{u})_n$$

$$\mathbf{D}(\mathbf{u})_n = 0$$

$$\mathbf{N}(\mathbf{u})_n = -u^j u^i_{,j} + V^j u^i_{,j} - u^j V^i_{,j}$$

$$\mathbf{G}(p) = g^{ij}p_j$$

$$\mathbf{L}(\mathbf{u}) = \nu g^{jk} u^i_{,jk}$$

$$\mathbf{D}(\mathbf{u}) = \frac{1}{J} \nabla \cdot (J u^j)$$

$$V^{j} = -\frac{\partial x^{j}}{\partial t}$$

Imperial College London

Spectral/hp element method [Nektar++]

• Approximation of u(x,y) using tensor product of basis functions in xy domain

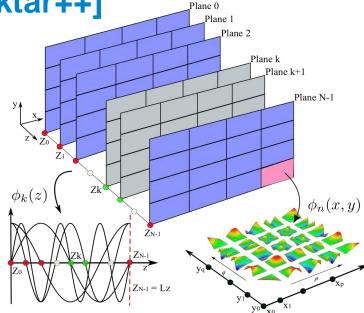
$$u^{\delta}(x,y) = \sum_{n} \phi_{n}(x,y)\hat{u}_{n} = \sum_{n} \phi_{p}(x)\phi_{q}(y)\hat{u}_{pq}$$
$$u^{\delta}(x,y) = \sum_{n} \phi_{pq}(x,y)\hat{u}_{pq}$$

• Approximation of u(z) using Fourier expansion

$$u^{\delta}(z) = \sum_{n} \phi_{n}(z)\hat{u}(z_{j}) = \sum_{n=0}^{N-1} \hat{u}_{k} e^{ikz_{j}}$$

• Final approximation to discrete variable $u^{\delta}(x, y, z)$

$$u^{\delta}(x,y,z) = \sum_{pqk} \phi_{pq}(x,y) \phi_k(z) \hat{u}_{pqk}$$



Source of figure: Bolis 2013

Spectral/hp discretization of N.S. equations

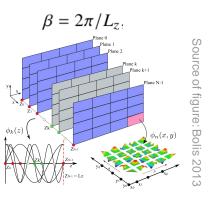
Using Fourier expansions with total number of M modes

$$\mathbf{u}_{n}\left(\mathbf{x},t\right) = \sum_{m=0}^{M-1} \hat{\mathbf{u}}_{nm}\left(x,y,t\right) e^{i\beta mz} \qquad p_{n}\left(\mathbf{x},t\right) = \sum_{m=0}^{M-1} \hat{p}_{nm}\left(x,y,t\right) e^{i\beta mz}$$

Navier-Stokes equation: Set of 2D decoupled equation for each mode

$$\frac{\partial \hat{\mathbf{u}}_{nm}}{\partial t} + \widehat{\mathbf{N}(\mathbf{u}_n)}_m = \frac{-1}{\rho} \tilde{\nabla} \hat{p}_{nm} + \nu \tilde{\nabla}^2 \hat{\mathbf{u}}_{nm} + \hat{\mathbf{f}}_{nm} \qquad \tilde{\nabla} \cdot \hat{\mathbf{u}}_{nm} = 0$$

- Spatial discretization using high order spectral/hp element
- Pressure-velocity system solved using stiffy stable high-order velocity correction scheme



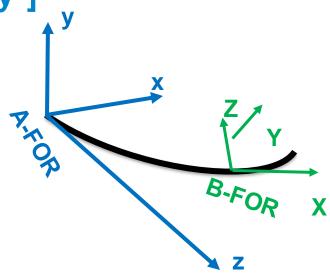
Imperial College London

Structural dynamics [SHARPy]

- Long rotor blades approximated by beam
- Geometrically-exact composite beam equation
- Non-linear and high deformation
- Representing the structure using two frame of reference (FOR)
- Using Hamiltonian principle and FEM discretization, final form of discrete equation

$$\mathcal{M}_{\eta}(\eta)\ddot{\eta} + \mathbf{Q}_{gyr}(\eta) + \mathbf{Q}_{stif}(\eta) = \mathbf{Q}_{ext}(\eta)$$

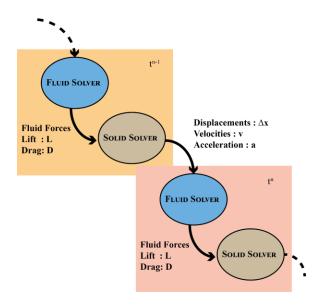
- η is state variable (displacements and rotations)
- Gyr, strif and ext: gyroscopic, stiffness and external forces



A-FOR is body fixed
B-FOR is local frame attached to elements

Imperial College London

FSI Loose Coupling



Get **x**, **v** and **a** from SHARPy

Update domain mapping, calculate source terms for Navier Stokes Equation

Solve Flow Fields

strip-wise integration of surface tractions

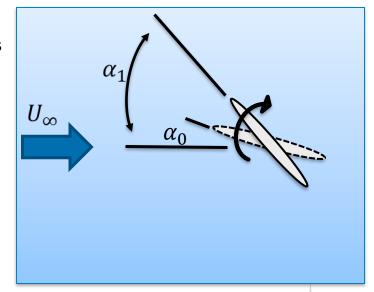
consistent interpolation to structural nodes

Solve structure dynamics

send **x**, **v** and **a** to Nektar++

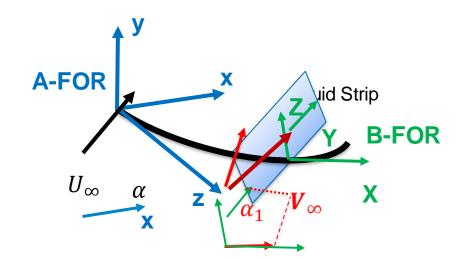
New feature of the FSI solver: Structural torsion

- Rotation of structure changes the effective angle of attach and hence fluid forces and moments
- Nektar++/SHARPy coupling have been used for marine Viv of slender cables
- Having only translational mapping (in old solver) flow can not see this effect.
 - Using rotational mapping
 - Correction of inlet velocities



Inlet velocity correction

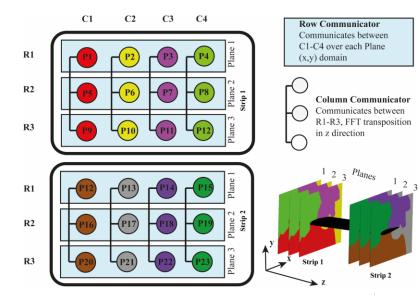
- From Solution of structure, Cartesian rotation vector Ψ is computed at each structural node
- Rotation matrix is computed at those nodes
 C^{AB}(Ψ)
- New velocities computed at each structural nodes $\mathbf{V}_{\infty} = \mathbf{C}^{AB}(\Psi) \cdot \mathbf{U}_{\infty}$
- Computed velocities are interpolated to the location of strips



- Velocity vector is modified at inlet boundary of each strips
- Suitable for final static deformation.
- For dynamic response simulation, rotational mapping will be incorporated into solver.

Efficient use of resources by leveraging Hybrid parallelization

- MPI communicator splits down into Cartesian like array
- Rows communicators for domain decomposition
- Column communicators for FFT transposition
- Each column further breaks down into rows (strips) and columns (Fourier planes in each strips)



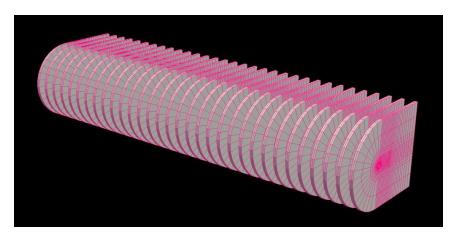
Allows us to leverage multi-core architecture with a direct solver

Numerical Tests

Flow over slender cable

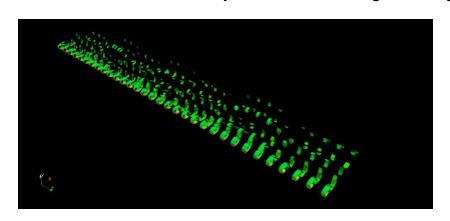
- Re = 500
 - $L^* = \frac{L}{D} = 32\pi$
 - 16 strips
 - $L_z^* = \pi/8$
 - 283 spectral elements
 - NumModes = 6
 - $\frac{\rho_{cylinder}}{\rho_{fluid}} = 1.64$
- $\frac{EI}{\rho U^2 D^4} = 264$ $\frac{EA}{\rho U^2 D^2} = 2.52 \times 10^8$

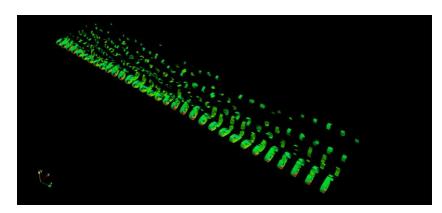
Reproducing the problem from Bao et al. 2016.



Thick strips distribution along the cable

Vorticity contours showing traveling waves as a result of cable motion





$$t^* = 112$$

$$t^* = tU_{\infty}/D$$

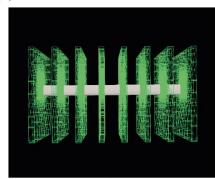
$$t^* = 450$$

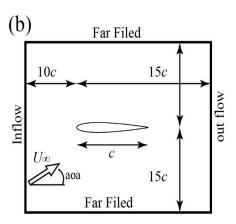
Static deformation of slender blade

- Re = 1.56×10⁵
- Blade section NACA0012
- L = 16 m
- 8 Strips
- 8 Fourier planes per strips
- $L_z^* = 0.1$
- $U_{\infty} = 25 \, m/s$
- $g = 9.754 \, m/s^2$

The problem definition is taken from Smith et al. 2001. Simpson and Palacios 2013

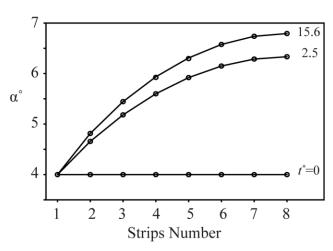
(a)



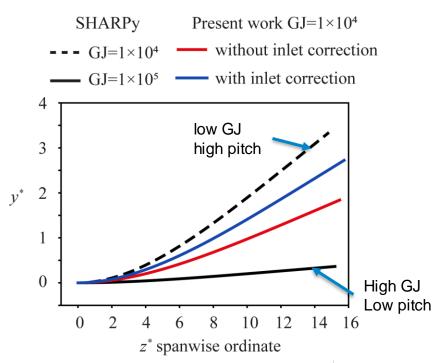


- a) Solution domain consisting of the blade and thick strips
- b) Schematic of the solution domain (side view) with domain dimensions and boundary conditions

Deformation in vertical plane and evolution of AoA



Change of angle of attack for each strip over the time



Effect of blade torsional motion on deformation

Conclusion

- High-Fidelity FSI simulation tool using Nektar++/SHARPy coupling
- Efficient LES approach using thick strips methods
- Targeting massively separated flows with high angle of attach for blades in parked conditions
- Efficient use of computational resources via hybrid parallelization
 - Looking to leverage effort in vectorization by Nektar++ team
 - Collaboration with EPCC, University of Edinburgh for profiling and scaling test of the FSI code
- Adding rotational mapping for coordinate transformations and torsional movement of structure
- Development of fluid solver to support non-constatnt cross sections along the structure

References

- González Horcas S., Madsen M.H.A., Sørensen N.N., Zahle F. (2019). Suppressing Vortex Induced Vibrations of Wind Turbine Blades with Flaps. In: Ferrer E., Montlaur A. (eds) Recent Advances in CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11887-7
- Smith, M., Patil, M. and Hodges, D., 2001. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect ratio wings. In 19th AIAA Applied Aerodynamics Conference (p. 1582).
- Simpson, R.J. and Palacios, R., 2013. Numerical aspects of nonlinear flexible aircraft flight dynamics modeling. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 1634).
- Bolis, A., 2013. Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies, PhD dissertation, Imperial College London.

Near-wake resolving FSI of wind turbine using high-fidelity simulation

Mohsen Lahooti, Rafael Palacios, Spencer J. Sherwin Department of Aeronautics, Imperial College London

