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Motivation

*  Modernwind turbines aims at increasing
output power

* Increasein size
« Large flexible blades
«  Strong fluid-structure interaction

Evolution of wind turbine size and output
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New design criteria: VIV of blade in parked condition
High Re number

Massively separated flows

Anisotropic turbulence /v
Requires high-fidelity simulation

Number of DOF increases as N3 > Re®/* J\

FLOPS scales « Re?

Figures Source: Gonzalez et.al (2019)

Absolute vorticity contour
AVATAR 10 MW blade

95 deg AoA, Re~10M
DDES (8M cells) + beams
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Thick strip method

« 3D domain is modelled as several discrete fluid
domains with finite length in spanwise direction,
thick strips

«  Each strip has a thickness of Lz

3D Domain

* Enables Capturing the local spanwise velocity
correlations and locally 3D effects 4/

Thick Strips

«  Strips are connected via structural dynamics

HPC
WE



Imperial College NN pepartment of
LOE‘)ldon 9 R\%\ERO?\IAUHCS

How does the thick strip method help?

Requires minimum 8 Fourier planes per 10% of chord
to estimate the forces

Each plane have 2500 spectral elements
blade with L=100c

Full 3D: Minimum 8000 planes!

Thick strip with 20 strips and Lz=0.2c: 320
planes

96% reduction

Do need to understand what scale flow physics
are tightly coupled

Even with use of thick strip method, still at
least 10k+ cores is required for practical
simulation of real flow conditions with
Re~0(10° — 107)

Fourier Plane

Q-Criterion
Naca0012
Lz=0.2
Re=150,000
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*  Fluid Flow (Nektar++)
— Navier-Stokes Ea.

N u m erlcal — Spectral/hp element discretization
Form UIatlon « Structural dynamics (SHARPYy)

— Geometrically-Nonlinear composite
beams

Nektar++/SHARPY coupling
«  FSl coupling ( Nektar++/SHARPy )

The Nektar++/SHARPy FSl solverhas been — Explicit temporal coupling of two solvers
developed for VIV of slender cables in marine
applincations

We are further developing it for wind turbine

licati
applications HPC
WE
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Fluid Flow: Navier-Stokes Equations

*  Navier-Stokes in inertial coordinate X = (%, j, 7) in each sty

ou,,
ot

+a,-Va, = —Vp, + vV2i,
p

V-u,=0

«  Large deformation of structure would
cause meshdeformationand distortion
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Fluid Flow: Navier-Stokes Equations

«  Navier-Stokes in inertial coordinate X = (%, y, ) in each sty

ou,,
ot

+a,-Va, = —Vp, + vV2i,
p

V-u,=0

«  Large deformation of structure would
cause meshdeformationand distortion
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Mapping: Transformed NS equations

Navier-Stokes eq.in transformed coordinates

* Avoiding dynamic re-meshing ou,,
«  Coordinate transformation o1 = N(u), = G(p)» + L(u),
*  Non-inertial body-fitted coordinates
D(u), =0
Inertial coordinate Non-inertial bodv-fitted coordinate | N(u), = —u/u’, + V/u'; - 'V
X = (%£7.2) X(1) = (0.0, 20) | o= e,

1

D(u) = 7v - (Ju)
. I
c%cJ

0X
J: — | =
|8X| |

HPC
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Spectral/hp element method [ Nektar++]

°-  Approximation of u(x,y) using tensor product of basis
functions in xy domain

uB(x’y) = Z‘n (abn(x!y)ﬁn:Zn ¢P(x)¢q(y)ﬁpq
ua(x! y) = Zn (.bpq(xr y)ﬁpq

Approximation of u(z) using Fourier expansion

ub(2) = 3, ¢p(D(z;)=XN=3 0y e%2

Final approximation to discrete variable u® (x, y, z)

u6 (x! Y, Z) = quk (abpq (x! y)(.bk (Z)ﬁqu

Source of figure: Bolis 2013

11 WE



Imperial College NG TN wormener
o
London NN AERONAUTICS

Spectral/hp discretization of N.S. equations

* Using Fourier expansions with total number of M modes

M-1 M-1 _
u, (x,1) = Z Unm (x,y,f)efﬁmz Pn (X, I) = Z ﬁnm (x,y,r) er,Bmz
m=0 m=0 %
*  Navier-Stokes equation: Set of 2D decoupled equation for each mode 13
ah —_— _1 ~ ~ ~ — ~ %
S + N(un)m = _vﬁnm + szﬁnm +fom V. Upm = 0 ©
ot o S
«  Spatial discretization using high order spectral/hp element =
*  Pressure-velocity system solved using stiffy stable high-order velocity correctionscheme
HPC
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Structural dynamics [ SHARPy |

* Longrotor blades approximated by beam
«  Geometrically-exact composite beam equation

*  Non-linear and high deformation

*  Representing the structure using two frame of 7\4\
reference (FOR) @)

«  Using Hamiltonian principle and FEM P B
discretization, final form of discrete equation 'FOR X

M?;(?ﬂﬁ + ngr(ﬂ) + Q.s-:if(ﬂ) = Qex:(1)

© I} isstate variable (displacements and rotations)
- Gyr, strif and ext: gyroscopic, stiffness and A-FORis bodyfixed
external forces B-FOR s local frame attached to elements
HPC
WE
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FSI Loose Coupling

=~

~

Fluid Forces Displacements : Ax
Lift : L SoLID SOLVER Velocmes_: v
Drag: D Acceleration : a

Fluid Forces

SoLID SOLVER |
A
.

Get x, vand a from SHARPy

Update domain mapping, calculate source terms for Navier
Stokes Equation

Solve Flow Fields

strip-wise integration of surface tractions

consistentinterpolation to structural nodes

Solve structure dynamics

Lift : L
Drag: D
send x, v and a to Nektar++
Loose coupling typically robust for high mass ratio HPC
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New feature of the FSI solver: Structural torsion

«  Rotation of structure changes the
effective angle of attach and hence fluid forces and moments
*  Nektar++/SHARPY coupling have been used for marine aq
Viv of slender cables
*  Having only translational mapping
(in old solver) flow can not see this effect. #
— Using rotational mapping
— Correctionofinlet velocities

HPC
WE
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Inlet velocity correction

®+  From Solution of structure, Cartesian rotation
vector W is computed at each structural node

+  Rotation matrix is computed at those nodes
CAB (l_p)

*  New velocities computed at each structural
nodes V,, = C43(¥) - U,,

+  Computed velocities are interpolated to the
location of strips

Velocity vector is modified at inlet boundary of each strips

Suitable for final static deformation.
For dynamicresponse simulation, rotational mapping will be incorporated into solver.

HPC
WE
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Efficient use of resources by leveraging Hybrid

parallelization

*  MPI communicator splits down
into Cartesian like array

*  Rows communicators for domain
decomposition

¢ Column communicators for FFT
transposition

* Each column further breaks
down into rows ( strips ) and
columns ( Fourier planes in each
strips)

R1

R2

R1

R2

P)

Q)
(8]

0
u

]
=

® OO ®
® |© ®®|:
ev@e®]
® ©®0®|
® © ©®
o ® 0@

Row Communicator

Communicates between
C1-C4 over each Plane
(x,y) domain
Column Communicator
.O Communicates between
R1-R3, FFT transposition
-O in z direction

Allows us to leverage multi-core architecture with a direct solver

HPC
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Numerical Tests
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Flow over slender cable

°« Re =500
- L*=1=32m
- 16 strips
© Ly ="/

- 283 spectral elements
* NumModes =6
Pcylinder — 1.64

P fluid
. EI EA 3
Suzps = 264 o5 = 25210

Thick strips distribution along the cable

HPC
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Vorticity contours showing traveling waves as a result of cable motion
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Static deformation of slender blade

Re = 1.56x10°

Blade section NACAO0012
L=16m

8 Strips

8 Fourier planes per strips
L, =01

Uyp, =25m/s

g = 9.754 m/s?

(a)

(b) Far Filed
A
P 10c o 15¢ _
g Y
= A A
= <~
Ux ¢
aoa 15¢
Far Filed Y

a) Solution domain consisting of the blade and thick strips
b) Schematic of the solution domain (side view) with

domain dimensions and boundary conditions

HPC
WE
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Deformation in vertical plane SHARPy ~ Present work GI=1x10*
and eVO| ut|on Of AOA === GJ=1x10* = without inlet correction
— GJ=1x10° = with inlet correction
4
7 1 low GJ ,
15.6 3 high pitch 3
2.5 | //
6 * E
: y 2
a
5 1
1 =0 0 | High GJ
- . - T - . - . Low pitch
1 2 3 4 5 6 7 8§ 0 2 4 6 8 10 12 14 16
Strips Number z" spanwise ordinate
Change of angle of attack for each strip over the time Effectof blade torsional motion on deformation
HPC
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Conclusion

«  High-Fidelity FSI simulation tool using Nektar++/SHARPY coupling
- EfficientLES approach using thick strips methods
«  Targeting massively separated flows with high angle of attach for blades in parked conditions
- Efficientuse of computational resources via hybrid parallelization
— Looking to leverage effortin vectorization by Nektar++ team
— Collaboration with EPCC, University of Edinburgh for profiling and scaling test of the FSI code
«  Adding rotational mapping for coordinate transformations and torsional movement of structure
- Development of fluid solverto supportnon-constatnt cross sections along the structure

HPC
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