LES Simulations of Wind Turbines in a Turbulent Atmospheric Boundary Layer

Flavio C. C. Galeazzo

Andreas Ruopp

Ralf Schneider

HLRS – University of Stuttgart

14.09.2020

Outline

- Introduction
- Simulation approach
 - Turbulent ABL
 - Wind turbine
- Codes
- Benchmark
- Results
- Conclusion / Next steps

Introduction

- The main objective is to perform a VVUQ study of the integration of meso- and microscale simulations, i.e., weather to wind turbine scale
- VVUQ Verification, Validation and Uncertainty Quantification
 - Verification: Are equations solved correctly?
 - Validation: Are the right model/equations for the intended application being used?
 - Uncertainty Quantification: Determine the probability distribution of code outputs, given uncertainty in input factors
- In the first year, focus on Verification and Validation preparing the framework for the UQ

 We are interested in the interaction of wind turbines in wind parks

- Large Eddy Simulation (LES) is the most appropriate approach
 - Predict the wake of wind turbines with high fidelity
 - Resolve the large turbulent structures
 - Requires large computational time: HPC

Hasager, C. B., Rasmussen, L., Peña, A., Jensen, L. E., & Réthoré, P-E. (2013). Wind Farm Wake: The Horns Rev Photo Case. *Energies*, *6*, 696-716.

- Turbulent ABL
 - Mean velocity profile given by logarithmic function
 - Two different approaches to model the large-scale turbulent structures

$$u_{\text{mean}}(z) = \frac{u^*}{\kappa} \ln \left(\frac{z}{z_0} \right)$$

- Precursor simulation
 - The results of a simulation without the wind turbines is stored and used as inflow condition
 - Pro: very good turbulence representation
 - Contra: needs more computational time difficult to match experimental values

• Turbulent ABL

- Mean velocity profile given by logarithmic function
- Two different approaches to model the large-scale turbulent structures

$$u_{\text{mean}}(z) = \frac{u^*}{\kappa} \ln \left(\frac{z}{z_0} \right)$$

• Synthetic turbulence

- Synthetic turbulent structures are generated and used in the inflow condition
- Pro: saves computational time allow fine adjustment of desired quantities
- Contra: not readily available in all codes

Klein, M., Sadiki, A., & Janicka, J. (2003). A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. *Journal of Computational Physics*, *186*(2), 652–665.

- Wind turbine
- Actuator line model
 - Divide the turbine blades in smaller elements, and retrieve the forces exerted by the turbine on the air from 2D airfoil data.
 - Non-uniform velocity and load distributions are modelled

Source: Yu Z. 2018, Appl. Sci. 2018, 8, 434

Codes

WInc3D

- Open source Developed by the partner Imperial College London
- Finite Difference Method 6th order discretization
- Scalability up to 100k ranks [1]
- Actuator line model for wind turbines
- Use in neutral ABL
- https://github.com/ImperialCollegeLondon/WInc3D
 - [1] Laizet, S. & N. Li (2011). Incompact3d: A powerful tool to tackle turbulence problems with up to O(10^5) computational cores. Int. J. for Numerical Methods in Fluids 67(11), 1735–1757.

- OpenFOAM with turbinesFOAM
 - Open source
 - Finite Volume Method 2nd order discretization
 - Scalability up to 5k ranks [2]
 - Actuator line and actuator disc models for wind turbines
 - Use in neutral, stable and unstable ABL
 - https://github.com/turbinesFoam

[2] Culpo, M. (2011), Current Bottlenecks in the Scalability of OpenFOAM on Massively Parallel Clusters, PRACE-1IP Whitepaper

Benchmark

- Experimental data: The SWiFT Benchmark
 - International Energy Agency (IEA) Wind Task
 31, operated by Sandia National Laboratories
 - Flat terrain
 - Variable-speed, variable-pitch, modified Vestas
 V27 wind turbine generator
 - Meteorological tower collected freestream atmospheric measurements
 - Rear-facing, nacelle-mounted scanning LIDAR measured the wake
 - Power and loads measurements were collected at the wind turbine

https://wakebench-swift.readthedocs.io/en/latest/

Benchmark

- Measurements of nearly neutral, stable and unstable atmosphere available
- Neutral ABL used for the validation
- High-frequency measurements of the inflow conditions and turbine operation were first averaged over a 10-minute period.
- Each 10-minute period selected for the benchmarks is referred to as an ensemble. There are 6 different ensembles for the neutral ABL

Parameter – neutral ABL	
Velocity at hub height	8.7 m/s
Turbulence intensity at hub height	10.7 %
Wind speed profile exponent	0.3224
Roughness length	0.05 m
Friction velocity	0.45 m/s

$$u(z) = \frac{u^*}{\kappa} \ln \left(\frac{z}{z_0} \right)$$

Verification – Winc3D

- 1. Inconsistency related to how the blade elements are computed from the input data.
 - Error is relevant, as imply not using the full length of the blade
- 2. The random noise generator had a bias toward positive values horizontal velocity component (uz)
- Both bugs have been corrected, publishing is ongoing

- Verification OpenFOAM with turbinesFOAM
- Similar inconsistency as Winc3D, related to how the blade elements are computed from the input data
 - Corrected code published and available https://github.com/turbinesFoam/turbinesFoam/pull/302

Simulation setup	WInc3D	OpenFOAM with turbinesFOAM
Simulation type	LES	
SGS model	Smagorinsky	WALE
Method	Finite Difference Method	Finite Volume Method
Grid type	Structured	Unstructured
Discretization	6 th order in space 3 th order in time	2 nd order in space and time
Wind turbine model	Actuator line model	

Validation

- Rotor diameter D=27m
- Grid spacing = 2m
 - Approx. 13 elements per rotor diameter
- ~ 4.9 million hexahedral elements
- Time step = 0.05s
- Simulation time = 600s (as the measurements)

Vertical profiles

- Mean wind velocity U_{mean}
- Turbulent kinetic energy TKE
- Mean velocity shows good agreement for both simulations
- TKE is underpredicted

HPC WE

- Generator power over time (left)
- Mean value and standard deviation (right)
- Mean power is overpredicted
 - +9.6% WInc3D
 - +27.7% OpenFOAM
- While standard deviations are underpredicted
 - Corroborates with underpredicted TKE

 Possible cause: the mean velocity changes considerably in the 10-minutes interval

 Solution: implemented a variable-velocity inflow condition, based on a moving average of the experimental data

Vertical profiles

- Mean wind velocity U_{mean}
- Turbulent kinetic energy TKE
- Same parameters of synthetic turbulence as previous simulation
- Mean velocity profile remain in good agreement
- TKE in much better agreement with the experimental data
 - Observed fluctuations are not only turbulent in nature – TKE maybe inappropriate nomenclature

The varying mean velocity affects the power output and rotor speed

- Generator power over time (left)
- Mean value and standard deviation (right)

- Power prediction in better agreement using new BC
 - From +27.7% overprediction to +6%
- Standard deviations also with better agreement

- HPC resources
 - Vulcan cluster, 2 nodes with 40 cores of Intel Xeon Gold 6138 @ 2.0GHz (Skylake) processors
 - OpenFOAM utilizes fewer resources than WInc3D
 - 25% of the WInc3D computing time when considering precursor + main run
 - 55% of the WInc3D computing time when considering main run only
 - WInc3D using a different inflow BC is currently being investigated

	Main run [CPU-hours]
WInc3D - precursor	403.9
WInc3D - main	505.1
OpenFOAM	255.1

Conclusion

- Successful verification of two CFD codes for wind turbine simulation
 - WInc3D and OpenFOAM with turbinesFOAM module
 - Code corrections to be published
- Successful validation using experimental data from the SWiFT Benchmark
- Development of a variable-velocity inflow condition
- Next steps
 - Investigate the influence of mesh refinement in the results
 - Considering the differences of WInc3D and OpenFOAM regarding grid generation and discretization order
 - Proceed with the Uncertainty Quantification (UQ) study

Thank you

Flavio C. C. Galeazzo

Andreas Ruopp

Ralf Schneider

HLRS – University of Stuttgart

