Blade-resolved and actuator line CFD simulations of the flow through the NREL 5 MW wind turbine

Dr Bruno Souza Carmo, Rodolfo Curci Puraca & Dr Lucas Franceschini

Escola Politécnica - University of São Paulo

HPCWE Workshop - 14 September 2020

Agenda

- Blade-resolved simulations using OpenFOAM
 - Rotor simulations using URANS
 - Turbine simulations using URANS
- Actuator line simulations using WInc3D
 - Fixed TSR simulations of single turbine and two turbines side by side
 - Single controlled turbine simulations for different wind speeds
 - Moving turbine (prescribed motions) simulations

Blade-resolved simulations - OpenFOAM

- Open source CFD that uses finite volume method
- Used Solvers:
 - SIMPLE
 - Newtonian flows
 - Steady
 - Turbulent
 - Simulation initialization
 - OpenFOAM: simpleFoam
 - Turbulence model
 - $k-\omega SST$

- SIMPLE iterative
 - Newtonian flows
 - Unsteady
 - Turbulent
 - OpenFOAM: pimpleFOAM

Blade-resolved simulations performed

- 1. 5 MW NREL Rotor with uniform wind speed of 10 m/s
- 2. 5 MW NREL wind turbine with profile speed of 10 m/s at 80 m

Calculations performed for the two simulations

- Simulation Initialization
 - 10 Steps in PotentialFoam
 - 500 Iterations steady SimpleFoam
 - Velocity, pressure and turbulence parameters -> Tolerance of 10^{-7} per step
- Simulation running
 - Max. Courant Number: 0.94
 - Average Time-step: $2.7x10^{-4}$ s
 - Max. of 20 pimple iterations per time-step
 - Stops when velocity, pressure and turbulence parameters are lower than a tolerance of $10^{-6}\,$
 - 1 velocity and pressure calculation per pimple iteration

Rotor mesh and domain

- NREL 5MW
- Rigid blade
- AMI (Arbitrary Mesh Interface) -Sliding Mesh
- 9,274,703 cells

Mesh Cells

Mesh Domain

Mesh details

buffer layer

log-law region

- SnappyHexMesh
- First cell length $2x10^{-3} m$
- Grow rate 1.2
- 6 layers
- Tip Y+ 400
 - Logarithm region
 - Wall-Function
- Max. Aspect Ratio: 83

Airfoils Cells

Rotor simulation results

- Wind velocity: Uniform 10 m/s
- 50 seconds simulated
- Performance
 - 240 processors in 10 nodes
 - 35 days of simulation
- Wake formation
 - Speed decreases from 10 m/s to 5 m/s
 - 300 m downstream from the rotor the wake is still strong

Rotor simulations results details

- It is possible to see how each blade part has different relative velocity
- The flow starts to detach from the airfoil located at R = 60 m

Rotor simulation results

Power: 3.27 MW – FAST: 3.57 MW

Thrust: 624.2 kN – FAST: 663.1 kN

 Vorticity plot: show vortices in the blade tips and some points in the middle of the blade → energy loss

Turbine simulations – mesh and domain

- Ground, tower and nacelle modelled
- Rigid blade
- AMI Sliding Mesh
- 12,008,991 cells
- Same characteristics of rotor mesh next to the blade

Turbine simulation results

- Wind velocity: 10 m/s at 80 m
 - $v(h) = v(80) \cdot \frac{\log(\frac{h}{r})}{\log(\frac{80}{r})}$
 - Ground roughness (r): 0.01 m
- 20 seconds simulated
- Performance
 - 240 processors in 10 nodes
 - 20 days of simulation
- Wake formation and wind profile

Turbine simulation results details

- Figures show the blade at two different critical locations
 - High position → higher wind velocity
 - Low position → lower wind velocity and tower interference
- High position
 - R = 50 and $60 \text{ m} \rightarrow \text{stall}$
- Low position
 - R = 40, 50 and 60 m \rightarrow stall

Turbine simulation results

• Power: 1.67 MW

Thrust: 505.2 kN

- Vorticity plot: vortices in the blade tips and in points in the middle of the blade even more than in the Rotor simulation → energy loss
- Presence of stall in the blade next to the tip

Mesh improvements - rotor

- Ongoing work
- Finer mesh
- Tip Y+ = 180
- 10 layers
- Fix of non-parallel cells in relation to the blade chord
- Mirroring of the blades
- AMIs to pass the information between the mirrored blades

Mesh improvements - turbine

- Ongoing work
- More elements between the tower and blade sliding interface
- Total cells: 20 M
- Utilization of PISO iterative for the unsteady solution
- Simulations are currently running

Actuator line simulations with WInc3D

- WInc3D: Extension from Incompact3D for wind energy applications
- High-order finite diferences
- Cartesian, structured mesh
- Great scalability
- Simulations of NREL 5 MW turbine:
 - Fixed TSR simulations of single turbine and two turbines side by side
 - Single controlled turbine simulations for different wind speeds
 - Moving turbine (prescribed motions) simulations

Mesh refinement studies

- Size of domain: $(3D \times 3D \times (0.5D + 1.7D))$
- TSR = 7.55 ("optimal") e $U_{\infty} = 11.4 \ m/s$ ("rated")
- Discretization $\Delta x = \Delta y = \Delta z = h = h_0 2^{-i}$, where $h_0 \approx 6$, i = 0,1,2

Mesh refinement studies

Side-by-side, co-rotation

1.5*D*

2*D*

Side-by-side, counter-rotation

D

Two turbines in parallel

Co-Rotation

Counter-Rotation

Simulation with control on isolated turbine HPC

Simulation with WInc3D

- Movement of the platform may modify the structure on the wake
- This could favour turbulent structures, shortening the wake
- Simulations performed with code WInc3D, high-order finite differences
- Large Eddy Simulation w/ actuator line method
- Heave, surge and pitch movements are simulated at rated TSR
- Frequency of motion at half of the rotation frequency
- Linear amplitudes (heave/surge) of 4 m and pitch of 4°

Unperturbed solution (no movement, no incoming turbulence)

Surge

Pitch

Heave

- Movement of turbine does trigger turbilence earlier
- Main instability mechanism is vortex "pairing"
- Further work: investigate the effect of motion using smaller amplitudes

Acknowledgements

- FAPESP (Grant 2019/01507-8)
- Imperial College team
- KTH team

