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1 Introduction

In this document we present simulation setups that will be used within the ExaFLOW
project to test Nek5000 in terms of code development. We will consider two main con-
figurations: jet in cross-flow and incompressible flow around a NACA4412 wing section.

The so-called jet in cross-flow (JCF) refers to a configuration in which fluid exits
a nozzle and interacts with a boundary layer developing over a flat plate (Figure 1).
This case has been extensively studied both experimentally and theoretically over the
past decades due to its high practical relevance. It is also considered a canonical flow
problem with complex, fully three-dimensional dynamics which makes the JCF a perfect
tool for testing numerical methods and simulation capabilities. Recent reviews on this
flow configuration are given in Karagozian (2010), Mahesh (2013). Part of this setup is
an inflow pipe, which for some tests will be treated separately.

Figure 1: Vortical structures (λ2 isolevels Jeong & Hussain (1995)) of the base flow for
JCF setup including the pipe.

The second configuration under consideration is the incompressible flow around a
wing section, represented by a NACA4412 profile. This is an extremely interesting flow
case due to the various interacting phenomena present in wings, as observed in Figure
2: laminar-turbulent transition, wall-bounded turbulence under pressure gradients, flow
separation and turbulent wake flow. Whereas previous numerical studies of flow around
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wings included low-order direct numerical simulations (DNSs) Rodrguez et al. (2013)
and large-eddy simulations (LESs) Alferez et al. (2013), as well as high-order DNSs at
low Reynolds numbers Shan et al. (2005), we have recently completed a high-order DNS
Vinuesa et al. (2015) at an unprecedented Reynolds number of Rec = 400, 000 (where Rec
is defined in terms of freestream velocity U∞ and chord length c). Since a wider scale sepa-
ration is observed at progressively higher Reynolds numbers, the computing requirements
increase dramatically, especially at Reynolds numbers representative of those in academic
wind tunnel tests, i.e., from 400, 000 up to 1 or 2 million. Hence, this configuration is an
excellent test case to evaluate the performance of the various algorithmic developments
envisioned in the ExaFLOW project, and to benefit from Exascale capabilities.

Figure 2: Turbulent structures identified by means of isocontours of the λ2 criterion
Jeong & Hussain (1995) extracted from the NACA4412 wing case.

2 Numerical algorithm

The incompressible Navier-Stokes equations are solved using a spectral element method
(SEM) implemented in Nek5000 Fischer, Lottes & Kerkemeier (2008), Fischer & Patera
(1994), which is an open-source code developed at the Argonne National Laboratories
(Chicago, USA). In SEM the computational domain is decomposed into a set of non-
overlapping, high-order, hexahedral sub-domains (elements), where the governing equa-
tions are cast into weak form and discretised in space by the Galerkin approximation.
C0 continuity of the variables at the element faces is enforced by direct stiffness sum-
mation. Following the PN − PN−2 approach the velocity and pressure spaces are locally
(within element) spanned by Lagrange polynomial interpolants of order N and N − 2
respectively. To ensure flow incompressibility pressure correction scheme is used with the
preconditioner based on the additive Schwarz method Fischer (1997). Time integration
is based on a generalised BDFk/EXTk scheme. Other discretisation and time integration
methods are implemented in Nek5000 as well (e.g. PN −PN and characteristics), however
for the ExaFLOW project we will focus on the approach described above.

3 Parallel scaling

Nek5000 is parallelised using the message passing interface (MPI) library. It utilises
the natural parallelism of the SEM distributing elements between processors and per-
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forming direct stiffness summation in parallel. Parallel performance is improved by use
of specialised coarse-grid solvers based on projection scheme (XXT) or algebraic multi-
grid (AMG) Fischer, Lottes, Pointer & Siegel (2008). Nek5000 has demonstrated scal-
ability on more than one million ranks, with as few as 5000 grid points per process
Fischer, Lottes & Kerkemeier (2008). Results of strong scaling tests of Nek5000 in a
number of distributed memory systems are presented in Figure 3.

Figure 3: Wall time per time-step for a fixed problem size as a function of number of
cores; runs on the systems HECToR (EPCC Edinburgh, UK; •), Triolith (NSC, Sweden;
•) and Lindgren (PDC, Sweden; ◮). Green line shows the linear scaling. The test case
is the turbulent pipe flow described below in Table 1, case 3, with a total of 2.2 billion
grid points.

4 Standard input/output

The set of required files to start a simulation consists of ###.rea, ###.re2, ###.restart
and rs8###0.f0000i, where ### denotes the corresponding setup name (jet crf for JCF
and naca wing for flow around NACA4412 wing section) and i = 1, 2, 3, 4. ###.rea
contains the simulation parameters, organised in the following sections:

• real parameters

• passive scalar data

• logical parameters

• mesh description

• restart conditions

• history points

• output specifications

###.re2 is a binary file containing mesh structure and boundary condition information.
The initial condition is stored in the set of files ###.restart and rs8###0.f0000i. A
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comprehensive description of configuration files and runtime parameters can be found at
http://nek5000.github.io/NekDoc/Nek_users.html.

In the JCF case two additional files are required: hpts.in (storing positions of velocity
probes) and ###.upar (containing user-defined parameters). ###.upar has following
structure:

&USERPAR ! probe wr i t i n g f requency
UPRMPRB= 50 ,
/

&CHKPOINT ! checkpo in t parameters
CHKPTSTEP= 50000 ,
IFCHKPTRST=F,
/

The simulation output consists of the instantaneous velocity fields saved as ###n.f0000i
(binary files). In the case of the wing, additional binary files with the format stat000i
are generated, which correspond to turbulence statistics at a number of locations around
the wing. In addition to this, it is also possible to use probes to store time histories of
various quantities (such as velocity and vorticity components or pressure). The binary
files containing the output of the time history series have the format pts###n.f0000i.

5 Jet in cross-flow

Figure 4: Vortical structures (λ2 isolevels Jeong & Hussain (1995)) of the JCF for the
steady configuration (left) and a periodic vortex shedding (right). Results of the simplified
JCF setup without the pipe.

The JCF is characterised by three independent non-dimensional parameters: free-
stream Reynolds number (Reδ⋆

0
), pipe diameter D and jet to free-stream velocity ratio

R. As the ratio R increases, the flow evolves from a stable (and thus steady) configu-
ration consisting of (steady) counter-rotating vortex pair (CVP) and horseshoe vortices
(left panel in Figure 4), through simple periodic vortex shedding (a limit cycle; right
panel in Figure 4) to more complicated quasi-periodic behaviour, before finally becoming
turbulent.

In our simulations we consider a circular perpendicular pipe attached to the flat plate
(Figure 1) with diameter D = 3δ⋆

0
, where δ⋆

0
is the displacement thickness at a position
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7.124δ⋆
0
upstream from the centre of the pipe orifice (note that δ⋆o is adopted as length

unit). The free-stream Reynolds number is Reδ⋆
0
= 200 and the velocity ratio R is chosen

to be close the first bifurcation (between 0.62 and 0.67) making the flow sensitive to the
mesh modifications.

Figure 5: Low (left) and high (right) resolution meshes for JCF. In this Figure we show
the mesh structure at the connection between the circular pipe and the rectangular box.
The boundaries of the spectral elements are represented by thick lines, whereas the thin
ones show the location of the Gauss–Lobatto–Legendre (GLL) points within elements.

The computational domain is composed of a rectangular box and a circular pipe. The
mesh structure at the connection between both parts is shown in Figure 5. The size
of the rectangular box is set to Lx = 150, Ly = 20, Lz = 30 and is periodic in the
spanwise direction. The resolution in this part of the domain is not uniform and we use
domain decomposition into elements to reduce the total number of grid points where high
resolution is not needed. We keep highest resolution (smallest elements) in the orifice
vicinity, and reduce it at larger distances by smooth element stretching. The pipe centre
is located 30 units downstream the cross-flow inflow. To investigate the efficiency of
adaptive mesh refinement we use number of meshes with different element structure at
the pipe inlet but similar resolution at the far field (two examples presented in Figure 5).
The lower resolution mesh (left in Figure 5) will the subject of mesh adaptation, and the
high resolution one (right in Figure 5) will provide a reference solution for correctness
checks. An additional parameter to control the resolution in the whole domain is the
polynomial order N , which will vary from 5 to 11. The total number of grid points will
vary between simulations, since the total number of elements and the local polynomial
order will be a subject of adaptation.

In our simulations we concentrate on the stability of JCF investigated by linear and
non-linear impulse response. In this case we start from evaluation of the steady state
for given mesh and parameter set using Selective Frequency Damping. Next we add
perturbation to the steady state and measure an amplitude of the strongest mode in the
perturbed filed. Its time evolution allows us to calculate the mode growth rate, which
is a parameter defining linear stability of the system and error measure for our AMR
implementation. Figure 6 gives time evolution of the amplitude of the strongest mode for
different velocity ratios R with fixed polynomial order N = 5 (left panel) and variable N
with fixed R = 0.65 (right panel). All presented the simulations were performed on low
resolution mesh with low amplitude white noise added as perturbation at time t = 100.
The initial transient growth is clearly visible and is followed by exponential decay (stable
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Figure 6: Time evolution of the amplitude of the strongest mode for different velocity
ratio R with fixed polynomial order N = 5 (left). Right panel shows resolution study
for R = 0.65 and N ranging from 5 to 9. The transient growth followed by exponential
decay/growth phase are clearly visible. For N = 5 the bifurcation point is located at
R = 0.64.

system) or growth (unstable system). Right panel in Figure 6 shows dependency of the
growth rate on the mesh resolution, which makes this setup good test case for AMR.

5.1 Turbulent pipe flow

An integral component of the jet in cross-flow configuration, i.e., the turbulent flow
through a straight pipe, will be analyzed independently in some of the cases. This is due
to the geometrical simplicity of the pipe, which will allow to perform certain tests more
easily than in the full JCF setup. A total of three pipe cases are considered, at friction
Reynolds numbers Reτ (based on pipe radius and friction velocity uτ =

√

τw/ρ, where
τw is the wall shear stress and ρ the fluid density) of 180, 550 and 1,000, as summarized
in Table 1. The idea is to perform DNSs on the three cases, the first one being aimed
at small tests, whereas the remaining two will be used for larger scale runs. Availabe
scaling tests for this configuration can be found in Figure 3. A detailed view of the
computational mesh from case 2 is shown in Figure 7, and instantaneous visualizations
of the streamwise velocity from cases 2 and 3 can be observed in Figure 8. Note that in
all cases a length of 25R is considered in the periodic streamwise direction, which is long
enough to capture the largest turbulent scales. A complete description of the pipe flow
setup can be found in El Khoury et al. (2013).

Case # Simulation Reτ # grid points

1 DNS 180 19× 106

2 DNS 550 437× 106

3 DNS 1,000 2.2× 109

Table 1: Summary of pipe cases for ExaFLOW project

The strong scaling of the turbulent pipe flow has been performed on several super-
computers for all the Reynolds numbers previously presented. The results for the case
Reτ = 550 on the Cray-XC40 computer “Beskow” at PDC (KTH) are shown in Figure
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Figure 7: Quarter section of the computational mesh corresponding to case 2 from Table
1, at Reτ = 550. Spectral element boundaries are shown with thicker lines, whereas thin
ones represent the individual GLL points. Polynomial order N = 7 was consider in this
particular setup.

Figure 8: Instantaneous streamwise velocity U normalized with pipe bulk velocity Ub

corresponding to cases (left) 2 and (right) 3 from Table 1, at Reτ = 550 and 1,000
respectively. Note that the velocity varies from 0 (black) to 1.3 (white).

9. The communication, computation and total time for 20 timesteps, excluding I/O, are
plotted as a function of the number of nodes. The corresponding number of cores (and
MPI ranks) is found by multiplying the number of nodes by 32. The scaling has been
performed for both coarse grid solvers XXT and AMG. In general, the difference between
XXT and AMG is small but can lead up to a 10% reduction in total time in favor of AMG.
We define the strong scaling limit as the point where computation and communication
times are equal. On Beskow, it is reached for about 20000− 50000 gridpoints per core.
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Figure 9: Strong scaling of the turbulent flow in a pipe for Reτ = 550 on Beskow.
AMG (blue), XXT (red), communication (dashed), computation (solid), total time (�),
computational linear scaling (green).

6 Incompressible flow around a NACA4412 wing sec-

tion

We will consider a total of 5 test cases based on the incompressible turbulent flow around
a NACA4412 wing section, at Reynolds numbers Rec ranging from 50,000 to 1,000,000, all
of them with 5◦ angle of attack. The airfoil geometry includes a sharp trailing edge, ob-
tained by modifying the corresponding coefficient in the NACA airfoil equation. Initially
a RANS simulation is performed by means of the code EDGE developed at FOI Eliasson
(2002), which uses the explicit algebraic Reynolds stress model (EARSM) by Wallin and
Johansson Wallin & Johansson (2000). The RANS domain extends up to 200c in every
direction, and this RANS solution is used to extract an accurate velocity distribution in
the near field corresponding to the time-averaged flow at a given angle of attack. This
distribution is then imposed as Dirichlet boundary conditions on the DNS domain. We
considered a C-mesh topology of radius c centered at the leading edge of the airfoil, with
total domain lengths of 6.2c in the horizontal (x), 2c in the vertical (y) and 0.1c in the
spanwise (z) directions, see Figure 10. Periodicity is imposed in the spanwise direction,
and the natural stress-free boundary condition at the outlet. The computational mesh

was optimized based on distributions of the Kolmogorov scale η = (ν3/ε)
1/4

, where ν is
the kinematic viscosity and ε is the local isotropic dissipation. The design criterion was
h ≡ (∆x ·∆y ·∆z)1/3 < 4− 5η everywhere in the domain, which ensures that the mesh
is fine enough to capture the smallest turbulent scales. Note that the flow is tripped
at x/c = 0.1 on both suction and pressure sides, using the volume forcing approach by
Schlatter and Örlü Schlatter & Örlü (2012). The initial condition is the RANS solution,
and the flow is initially run for around three flow-over times with polynomial order N = 5.
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Figure 10: Schematic three-dimensional layout of the set up for direct numerical simula-
tion. The chord length is denoted as c. The domain extends to up 5c downstream, and
1c upstream, top and bottom from the leading edge. The red lines mark the boundaries
where the Dirichlet condition was used. The blue line indicates the boundaries with the
stress-free condition. The incoming flow has an angle of attack of 5◦, and the Cartesian
coordinate system is aligned with the chord.

After this point the polynomial order is progressively increased up to the final value of
N = 11. A full description of the setup is given by Vinuesa et al. Vinuesa et al. (2015)
for a case with Rec = 400, 000, where 1.85 million spectral elements with N = 11 were
used, which leads to a total of 3.2 billion grid points. An instantaneous visualization of
the flow field, together with the spectral element mesh from the Rec = 400, 000 case, are
shown in Figure 12. The smoothness of even the smallest vortical structures shows that
the setup is appropriate to simulate all the relevant flow features.

The wing cases under consideration for the ExaFLOW project are summarized in
Table 2, including a 2D simulation at low Reynolds number, and both direct numerical
and large-eddy simulation cases, in order to cover a wide range of scaling effects. Note
that the LES is based on the approach proposed by Schlatter et al. Schlatter et al. (2004),
where a dissipative relaxation term is added to the right-hand side of the Navier–Stokes
equations. This terms provides all the necessary drain of energy out of the coarsely
discretized system, and previous validations in zero pressure gradient boundary layers
Eitel-Amor et al. (2014) show excellent agreement between DNS and LES.

Scaling tests performed at the Cray-XC40 computer “Beskow” at PDC (KTH) are
shown in Figure 11, for case 3 from Table 2 (left) and for a configuration similar to case
2 with a total of 120 million grid points (right). In order to establish a good measure of
scaling, we report the time required to perform one GMRES (generalized minimal residual
method) iteration for the pressure solve. Doing so, we can characterize code performance
by isolating it from other factors contributing to the total time per time-step, such as I/O
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Case # Simulation Rec # grid points

1 2D 50,000 88× 103

2 DNS 100,000 82× 106

3 DNS 400,000 3.2× 109

4 LES 400,000 530× 106

5 LES 1,000,000 6.0× 109

Table 2: Summary of wing cases for ExaFLOW project

Figure 11: Strong scaling results performed on the “Beskow” system at PDC (KTH).
Test cases with a total of (left) 3.2 billion and (right) 120 million grid points.

operations, different tolerances etc. Note that in case 3 the best performance is achieved
when running on 32,768 cores (with around 100,000 grid points per core), and in the
modified case 2 the best scaling is observed on 4,096 cores, with a total of 30,000 grid
points per core.
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Figure 12: Instantaneous vortical structures visualized with the λ2 criterion
Jeong & Hussain (1995), colored with chordwise velocity, ranging from -0.1 (dark blue)
to 1.5 (red). The flow is tripped at 10% chord on both sides. The angle of attack is 5◦

and the chord Reynolds number is Rec = 400, 000. The spectral element mesh is also
shown, but not the individual grid points within elements.
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