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Executive	Summary	
	
This	 deliverable	 showcases	 a	 reflection	 of	 the	 improvements	 made	 in	 the	
ExaFLOW	project	under	an	industry	perspective	regarding	necessity,	scalability,	
usability	 and	 adaptability	 to	 a	 common	 standard	 development	 process	 in	 the	
industry.	
	
We	 have	 summarized	 the	 automotive	 industry	 needs	 of	 the	 future	 regarding	
simulation	processes	and	discuss	the	developments	 from	ExaFLOW.	Finally,	we	
built	up	a	commercial	external	aerodynamics	use	case	of	a	sportscar	and	show	the	
potential	from	Nektar++	regarding	exascaling.		
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1 Introducing and discussion of the ExaFLOW developments 
	
With	the	pressure	of	the	global	megatrend	“digitalization”,	industry	tries	to	adapt	
it	to	their	development	processes.	In	the	future	we	will	have	digital	twins	which	
make	 it	quite	easy	to	 implement	design	changes,	visualize	the	results	and	even	
develop	new	products.	This	trend	gets	even	pushed	by	the	availability	of	newer	
and	faster	computation	systems	and	effects	also	the	world	of	Computational	Fluid	
Dynamics	 (CFD).	 Simulations	 in	 the	past	 included	 a	 lot	 of	model	 simplification	
which	led	to	low	results	accuracy,	because	of	the	limited	hardware	and	software	
performance.	From	the	hardware	side	it	is	in	the	future	possible	to	run	high	order	
simulation	 with	 very	 fine	 mesh	 structures	 and	 accordingly	 high	 numerical	
resolutions.	But	also	from	the	software	side	new	methods	and	workflows	have	to	
be	develop	to	make	this	possible.	We	from	the	ExaFLOW	project	believe	that	our	
developments	have	a	significant	influence	on	the	simulation	area	in	the	future	and	
will	help	to	have	more	efficient	and	accurate	simulation	as	well	as	to	be	able	to	
simulate	new	physical	phenomenons.	The	potential	in	the	product	development	
process	for	the	numerical	simulations	is	enormous.	
If	we	look	a	little	bit	more	specific	at	the	current	relationship	between	stationer	
and	 transient	 simulations	 used	 in	 the	 project	 development,	 the	 result	 in	most	
cases	 is	 only	 a	 view	 processes	 built	 up	 as	 a	 transient	 simulation.	 This	 relates	
mostly	on	the	missing	numerical	methods	or	on	the	complicate	model	preparation	
process.	 A	 big	 advantage	 brings	 here	 our	 implemented	 automatic	 mesh	
refinement	(AMR)	process.	Now	it	is	possible	to	simulate	geometry	changes	in	one	
simulation	over	the	time	and	the	user	can	look	specifically	into	local	flow	features.	
We	belief	 the	workflow	from	our	 flagship	run,	 the	 incompressible	 flow	over	an	
airfoil,	can	be	easily	adopted	to	other	simulation	cases	 in	 industry.	An	example	
from	the	automotive	sector	could	be	the	simulation	of	the	spinning	wheels	during	
a	flow	simulation	to	build	up	exactly	the	induced	vorticities,	which	has	the	most	
influence	on	the	air	drag	coefficient	from	a	vehicle.	
Let	us	assume	the	available	CPUs	numbers	in	the	industry	will	be	increased	by	a	
factor	of	ten	over	the	next	three	years,	what	is	quite	realistic.	More	and	more	high	
accurate	simulations	will	be	then	running	with	smaller	element	size	and	smaller	
time	steps.	To	keep	 the	same	realtime	of	 the	 simulation	or	even	 reduce	 it,	 it	 is	
necessary	 to	 optimize	 the	 parallelization	 processes.	 The	 performance	
optimizations	applied	in	the	ExaFLOW	project	are	an	important	step	towards	this.		
Running	 simulations	with	a	high	number	of	CPUs	brings	new	challenges	 to	 the	
preconditioning	system.	For	example,	for	a	simulation	running	on	1000	CPUs	the	
volume	mesh	with	its	physical	conditions	is	divided	in	1000	identical	groups.	Each	
group	 is	 calculated	 on	 a	 single	 core	 and	 needs	 to	 exchange	 their	 border	
information	 with	 their	 neighbor,	 what	 results	 in	 high	 communication	 traffic	
between	 each	group.	 In	 the	 future,	with	excascale	 calculation	 this	will	have	an	
even	greater	impact	on	the	simulation	speed.				In	our	mixed	CG-HDG	formulation	
we	 changed	 the	 discretization	 process	 of	 the	 spectral	 element	 methods	 to	
minimize	the	communication	costs	between	each	CPU.		
Looking	at	the	hardware	of	an	HPC	cluster,	the	system	failure	probability	is	also	
increasing	 with	 the	 number	 of	 CPUs,	 which	 will	 mean	 that	 when	 a	 running	
simulation	is	crashing	due	to	hardware	failure	every	calculated	result	gets	lost	-	
which	relates	to	a	big	problem	regarding	economic	efficiency	and	costs.	Our	fault	
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tolerance	system	implemented	in	Nektar++	is	able	to	recover	the	simulation	data	
from	a	memory	checkpoint	and	make	the	simulation	process	especially	for	high	
CPU	number	calculation	much	more	robust.	
Complex	 simulations	 like	 a	 complete	 vehicle	 with	 a	 cooling	 model,	 are	 often	
divided	into	different	modelling	zones.	To	run	this	kind	of	simulations	efficiently	
we	developed	error	control	methods	for	heterogeneous	modelling.											
Keeping	 aware	 of	 new	 trends	 regarding	 alternative	 hardware	 architectures,	
especially	GPU	hardware,	which	is	getting	cheaper	and	more	widely	used	over	the	
past	years	in	the	industry	and	thereby	more	attractive	to	the	simulation	world,	we	
showed	during	our	investigations	the	possibility	 to	run	Nek5000	on	GPUs	with	
good	performance	results.	
Finally,	with	respect	to	energy	efficiency	we	could	reduce	the	energy	consumption	
by	 20%,	what	will	 help	 for	 an	 industry	 use	 to	 achieve	 the	 CO2	 goals	 from	 the	
development	process.			

2 Introduction of the automotive use case 
	
In	 a	 billion-dollar	 market	 like	 the	 automotive	 sector	 different	 factors	 have	 an	
impact	 in	 engineering	 a	 new	 automobile.	 This	 section	 will	 describe	 the	 main	
challenges	of	a	numerical	development	process	and	shows	potential	in	improving	
it.	 The	 topics	 are,	 short	 time	 to	 result,	 economic	 efficiency,	 implementing	 new	
calculation	methods,	usability,	accuracy	and	validation.	
The	simulation	of	external	aerodynamics	surrounding	a	vehicle	is	essential	for	the	
development	 of	 an	 effective	 automotive	 design	 for	 the	 car	 body.	 The	 Reynold	
Averaged	 Navier-Stokes	 (RANS)	 approach	 is	 a	 widely	 used	 method	 for	 this	
purpose.	However,	 the	RANS	 solution	 predicts	 only	 the	mean	 flow	 field	which	
rises	 to	 difficulties	 to	 analyze	 the	 time-dependent	 phenomena	 such	 as	 vortex	
shedding	and	flow	separation.	A	promising	solution	to	overcome	this	limitation	is	
a	 Detached	 Eddy	 Simulation	 (DES)	 approach	 which	 utilizes	 both	 the	 RANS	
turbulent	model	for	the	boundary	layer	and	the	Large	Eddy	Simulation	(LES)	in	
separated	regions	to	capture	the	fully	three-dimensional	turbulent	movement	[1].	
Direct	Numerical	Simulation	(DNS)	provides	even	more	accurate	solutions	with	
resolving	all	scales	with	high	number	of	mesh	cells	and	requires	therefore	much	
higher	computational	efforts	as	compared	to	the	DES	calculation.	The	computation	
efficiency	 is	 a	 key	 parameter	 for	 effective	 use	 of	 such	 massive	 computation	
methods.	
As	a	part	of	ExaFLOW	project,	this	technical	report	is	devoted	to	describe	the	state-
of	 the	 art	modelling	 of	 a	 commercial	 software	 (Fluent)	 and	 the	 developments	
implemented	in	the	open	source	code	(Nektar++	[2])	with	the	automotive	use	case	
defined	 in	 [1].	 The	 computations	 have	 been	 performed	 on	 the	 supercomputer	
Hazel	Hen	(position	8	of	TOP500,	11/2015),	a	Cray	XC40-system	in	HLRS	[3].	
The	 simulation	 focuses	mainly	 on	 the	 rear	wake	 of	 a	 sporty	 vehicle,	 therefore	
three	 submodels	 are	 taken	 into	 account.	 By	 means	 of	 the	 submodel,	 the	
computational	performances	of	Fluent	(DES)	and	Nektar++	(Continuous	Galerkin	
method)	have	been	compared	with	different	number	of	processors.	Based	on	the	
results,	 the	 relationship	 between	 the	 computational	 time	 and	 expenses	 is	
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presented,	which	comes	up	with	the	optimal	range	of	the	number	of	cores	for	each	
computation	method.	

							

2.1 Use of the ExaFLOW developments 
For	 building	 up	 the	 automotive	 use	 case	 and	 make	 it	 comparable	 with	 a	
commercial	 workflow	 from	 the	 industry,	 the	 ExaFLOW	 developments	 were	
considered	and	used.	The	calculations	were	made	with	the	latest	software	release	
from	 Nektar++	 version	 4.4.1,	 where	 the	 improvements,	 mentioned	 in	 the	
deliverables	before,	were	 already	 implemented.	 In	our	 case	on	 the	 commercial	
side	 Ansys	 Fluent	 version	 18.01	 was	 taken.	 In	 the	 following	 sections	 both	
simulation	processes	were	introduced	and	compared.		

3 Numerical setup 
The	 numerical	 setup	 describes	 an	 overview	 about	 building	 a	 simulation	 in	
Nektar++	and	Fluent	and	shows	the	difference	between	both	software	tools.			

3.1 Geometry 
Three	Models	 are	 defined	 to	 explore	 the	 turbulent	 characteristic	 at	 the	 upper	
region	of	the	vehicle	[1].	Figure	1,	2	and	3	illustrates	the	computational	domain	
and	boundary	conditions	for	the	models.	The	size	of	the	domain	for	model	a	is	7m,	
1.3m,	and	0.15m	for	the	x,	y	and	z	direction,	respectively.	Model	B	is	mirrored	at	
the	left	side	of	model	A	and	has	a	domain	size	of	7m	x	2.6m	x	0.15m.	In	Model	C	
the	upper	front	of	the	car	body	is	also	considered,	the	size	domain	is	15.3m	x	5.2m	
x	1.8m.		

	 	

Figure	1:	Model	a	(MA)	 Figure	2:	Model	a	and	model	b	(MA	and	MB)	
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Figure	3:	Model	a,	model	b	and	model	c	(MA,	MB	&	MC)	

3.2 Mesh generation 
According	to	the	different	computational	method,	the	mesh	for	Nektar++	(finite-
element	method)	is	different	from	the	mesh	for	DES	(finite-volume	method).	In	
the	presented	use	case,	Fluent	works	with	a	structured	hexahedral	mesh	and	local	
refinement	boxes	for	a	finer	mesh	in	important	areas.	The	mesh	for	Nektar++	is	
unstructured	and	depending	of	 the	2D	surface	 sizes	quality.	Therefore,	 a	 lot	of	
effort	are	pushed	into	the	2D	geometry	conditioning.	Changing	a	finer	CFD	mesh	
can	be	done	without	generating	a	new	finer	mesh,	as	 it	 is	usual.	 In	Nektar++,	a	
simply	 increasing	 of	 the	 expansion	 factor	 for	 each	 cell	 and	 polynomial	 basis	
function	is	enough	[2].			
	

3.2.1 Finite volume mesh in fluent 
For	 the	 generation	 of	 the	 computational	 mesh,	 the	 computational	 domain	 is	
discretized	 by	 volumetric	 cells	 based	 on	 the	 2D	 surface	 mesh.	 For	 model	
computation,	the	DES	employs	the	identical	mesh	used	for	the	RANS	simulation	
by	ANSYS	Fluent.	The	typical	length	of	the	elements	for	two-dimensional	surface	
mesh	is	between	1~6mm.	7	prism	layers	are	specified	with	growing	cell	size	on	
the	exterior	surface	of	the	vehicle	to	take	into	account	the	sharp	velocity	gradient	
in	the	boundary	layer.	The	non-equilibrium	wall	function	is	utilized	for	the	first	
cell	 near	 the	 wall.	 The	 3D	 volumetric	 mesh	 is	 composed	 of	 a	 non-conformal	
hexcore	mesh	(hexaeder	and	tetrahedral)	and	can	be	observed	in	Figure	4.	The	
total	number	of	cells	is	~21	mio,	~42	mio	and	~41	mio	for	MA,	MB,	MC.	
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Figure	4:	Fluent	mesh,	plane	cut	for	MC	in	x-z	direction	at	y	=	-0.13m;	detail	view	at	the	

spoiler	

3.2.2 High oder mesh generation in Nektar++ 
Due	 to	 the	 various	 numerical	method	 in	 Fluent	 and	 Nektar++,	 at	 the	moment	
Nektar	++	is	cannot	run	with	the	same	mesh	used	in	Fluent.	Figure	5	describes	the	
pre-processing	procedure	for	Nektar++.	ANSA	pre-processor	is	used	for	the	mesh	
generation.	 Once	 the	 mesh	 is	 created	 by	 ANSA	 pre-processor,	 the	 mesh	 is	
converted	 to	 xml	 format	 for	 Nektar++.	 In	 the	 data	 converting	 procedure,	
additional	software	such	as	Starccm+	and	Tecplot	360	V2018	is	utilized.		
	

	
Figure	5:	Mesh	transformation	and	generation	process	for	Nektar++	

	
The	triangle	2D	surface	mesh	is	generated	in	Ansa	v18.1	with	a	cell	size	between	
4mm	and	40mm.	For	the	volume	mesh,	first	one	prism	layer	at	the	car	surface	with	
a	size	of	3.6mm	is	generated,	secondly	the	tetrahedral	mesh	with	the	growth	rate,	
max	shell	size	and	FLUENT	skewness	are	set	to	1.1,	40	and	0.6.	Figure	6	shows	a	
detailed	view	of	the	high	order	mesh	at	y	=	-0.13m.	
	

	
Figure	6:	Nektar++	mesh,	plane	cut	for	MC	in	x-z	direction	for	y	=	-0.13m,	detail	view	at	the	

spoiler	
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3.2.3 Number of elements 
According	 to	 the	 different	 calculation	 methods,	 mentioned	 in	 section	 3.2,	 the	
number	of	mesh	elements	are	clearly	smaller	in	Nektar++	than	in	Fluent.	But	the	
resolution	is	even	higher	because	of	the	polynomial	order	of	four	for	each	model.	
The	different	numbers	 for	each	model	and	calculation	method	are	visualized	 in	
table	1.		
	

	
Table	1:	Comparison	of	mesh	elements	between	Fluent	and	Nektar++	

	

3.3 Physical setup 
Each	model	(MA,	MB	and	MC)	is	simulated	like	a	wind	tunnel	case.	Therefore,	the	
front	is	defined	as	velocity	inlet	and	the	back	as	pressure	outlet.	To	reduce	the	wall	
effects	from	the	wind	tunnel,	on	all	side’s	symmetry	conditions	are	used.	In	Fluent	
the	symmetry	conditions	are	already	implemented	and	can	be	choosen	by	clicking.	
In	Nektar++	they	must	be	defined,	which	is	shown	in	figure	7.	For	the	velocity	in	
surface	 orthogonal	 direction	 a	Dirichlet	 condition	 and	 in	 surface	 direction	 von	
Neumann	 conditions	 are	 defined,	 all	 values	 are	 set	 to	 zero.	 A	 von	 Neumann	
condition	is	also	set	for	the	pressure	field.	
		

Nektar++	 Fluent	

	 	

Figure	7:	Comparison	of	the	boundary	implementation	between	Nektar++	and	Fluent	
	

To	simulate	a	constant	drive	with	140km/h,	the	constant	velocity	is	set	at	the	inlet	
in	 [m/s].	 The	 characteristic	 length	 of	 the	 car	 is	 2.695m	 and	 a	 high	
Reynoldsnumber	of	Re	=	6.3x106	is	used.	The	stability	parameters	in	Nektar++,	
like	 SVVDiffCoeff	 and	 SVVCUtoffRatio	 are	 slightly	 increased	 regarding	 the	
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constant	 value	 to	 2.5.	 In	 Fluent	 the	 simulation	 setup	 is	working	with	 constant	
values.	The	simulation	parameters	are	visualized	in	figure	8.	
	

Nektar++	 Fluent	

	 	

Figure	8:	Comparison,	simulations	parameters	between	Nektar++	and	Fluent	

3.4 Preprocessing 
During	 the	 preprocessing	 work	 everything	 essential	 for	 monitoring	 and	
evaluating	 the	 simulation	 over	 the	 calculation	 and	 afterwards	 must	 be	
implemented.	 Therefore,	 several	 points,	 planes,	 vorticity	 and	 functions	 were	
defined	which	are	shown	in	figure	9,	10,	11,	12	and	13.	

	 	 	

Figure	9:	Plane	z	=	1,5	m		 Figure	10:	Plane	y	=	-0,13	m	 Figure	11:	Plane	x	=	7,18	m	
	

	 	

Figure	11:	Position	of	points,	3d	view		 Figure	12:	Position	of	points,	side	view		
	
First	of	all,	in	Fluent	the	points,	planes,	and	vorticity	had	to	be	defined,	afterwards	
report	 definitions	 can	 be	 defined	 and	 automatically	 exported	 during	 the	
simulation	process.	Additionally,	they	could	be	visualized	in	the	graphic	window	
very	easily.		The	process	in	Nektar++	is	a	little	bit	different.	An	intermediate	step	
must	 be	 performed	 to	 make	 the	 Nektar++	 results	 comparable	 with	 Fluent.	
Therefore,	a	complete	solution	file	which	includes	also	the	calculated	vorticity	is	
exported	 frequently	 every	 Δt	 =	 6x10-6s	 meantime.	 Which	 means	 for	 MA	 in	
Nektar++	one	output	file	every	600	iterations	and	for	Fluent	every	6	iterations.	
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The	points	and	the	solution	file	are	implemented	as	a	filter.	In	the	figure	13,	below	
the	different	filters	and	reports	are	visualized	[9].		
	

Nektar++	 Fluent	

	

	
	
	

Figure	13:	Comparison,	implementation	process	postprocessing	between	Nektar++	and	Fluent	
	

3.5 Simulation 
The	transient	simulation	process	 is	divided	 into	three	phases,	 two	 initialization	
phases	and	one	calculation	phase,	specified	in	figure	14.	The	initial	phase	is	seen	
here	as	stabilization	process	for	the	flow	and	the	calculation	phase	is	used	for	the	
investigations.			

	
Figure	14:	Schema	of	the	simulation	process	

3.5.1 Initialization processes 
In	Nektar++	the	first	initial	phase	is	started	with	a	quite	small	timestep	size	of	t	=	
1x10-7s	 to	get	 the	turbulent	 flow	stable.	After	a	view	1000	 iteration	 it	could	be	
increased	to	t	=	2x10-6s	for	MA,	t	=	4x10-6s	for	MB	and	t	=	2.5x10-6s	for	MC.	By	
catching	 a	 usable	 timestep	 size	 the	 second	 initial	 phase	 started.	 Here	 the	
simulation	is	running	at	least	until	the	flow	in	x	direction	was	able	to	cross	the	
wind	tunnel	model	(MA	and	MB)	once.	Due	to	economic	reason,	for	MC	the	same	
initialize	setup	was	chosen.	With	a	simulation	Real	time	of	0.2s	the	initial	process	
is	finished,	and	we	assumed	to	have	a	quasi-stationary	flow	condition.	In	figure	15	
and	16,	the	velocity	magnitude	of	the	front	part	of	the	y	plane	for	Nektar++	and	
Fluent	 is	 visualized.	 It	 shows	 some	 differences	 at	 the	 back	 of	 the	 vehicle,	 the	
backwater	area	by	Nektar++	is	clearly	more	distinctive.		
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Figure	15:	MA	velocity	magnitude	in	Nektar++	at	the	front	of	plane	y	
	

	

Figure	16:	MA	velocity	magnitude	velocity	in	Fluent	at	the	front	of	plane	y	

3.5.2 Calculation phase 
With	 a	 quasi-stationary	 starting	 point	 at	 a	 Simulation-Realtime	 of	 t	 =	 0.2s	 the	
calculation	phase	initiates.	The	duration	is	defined	with	Δt	=	0.2s	and	the	end	point	
of	the	calc	phase	with	t	=	0.4s.	Regarding	to	the	different	cell	sizes	from	MA,	MB	
and	MC	and	keeping	in	mind	the	profitability	of	the	calculations	in	Nektar++,	the	
amount	 of	 iterations	 and	 the	 number	 used	 CUPs	 varies.	 In	 figure	 17	 is	 the	
calculation	setup	for	all	models	visualized.			
	

	
Figure	17:	Simulation	setup,	calc	phase	numerical	investigation	

	
In	figures	18,	19,	20	and	21	below,	the	velocity	magnitude	and	vorticity	for	MA	at	
a	Realtime	of	t	=	0.4s	from	the	front	of	plane	y	is	visualized.	Both	simulations	show	
a	 similar	 diffuse	 flow	 behavior	 at	 the	 top	 of	 the	 car	 body	 and	 also	 a	 similar	
turbulence	structure	at	the	back	of	the	vehicle.	The	enstrophy	is	slightly	a	little	bit	
more	 distinctive	 in	 Fluent.	 Reason	 to	 that	 might	 be	 the	 lower	 momentum	 in	
Nektar++	boundary	layer	which	leads	to	less	energetic	enstrophy.	

Nektar++ MA Nektar++ MB Nektar++ MC Fluent
time step size [s] 2e-6 4e-6 2.5e-6 1e-4

start time [s] 0.2 0.2 0.2 0.2
end time [s] 0.4 0.4 0.4 0.4

time step iterations 100000 50000 80000 2000
inner iterations 20

number of CPUs 1920 3840 7680 480
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Figure	18:	MA,	velocity	magnitude	in	Nektar++	at	the	front	of	the	y	plane			

	

Figure	19:	MA,	velocity	magnitude	in	Fluent	at	the	front	of	the	y	plane	
		

	

Figure	20:	MA	enstrophy	in	Nektar++	at	the	front	of	plane	y	
		

	

Figure	21:	MA	enstrophy	in	Fluent	at	the	front	of	the	y	plane	
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3.6 Postprocessing 
Since	there	is	no	user	interface	in	Nektar++,	the	visualization	and	postprocessing	
was	performed	external	in	Tecplot	360	V2018.	Therefore,	the	solution	files	from	
Nektar++	and	Fluent	were	exported	during	the	simulation	already	in	the	Tecplot	
format	*.plt.	The	physical	investigation	was	focusing	on	the	velocity	components	
and	their	behavior	during	the	simulation	time.	The	workflow	was	automated	by	
scripting	 the	 input	 and	 output	 process,	 just	 as	 the	 plane	 extracting	 and	 the	
averaging	during	simulation	time.	

3.7 Comment 
For	saving	some	calculation	time,	at	the	beginning	it	was	planned	to	use	a	steady	
RANS	 solution	 as	 an	 boundary	 condition	 for	 the	 transient	 calculation	 with	
Nektar++	and	Fluent.	 	Since	we	were	not	able	 to	run	the	FieldConvert	 function	
“interppointdatatofld”	 from	 Nektar++	 which	 should	 interpolate	 given	 values	
provided	in	a	text	*.pts	-	file	to	a	usable	inlet	*.fld	-	file	for	Nektar++,	we	decided	to	
use	 the	 described	 simulation	 process	 from	 chapter	 2.5.	 In	 a	 further	 standard	
industry	use	won’t	be	an	initial	simulation	with	a	different	software	tool.	The	time	
and	 finance	 cost	 for	 setting	 up	 that	 kind	 of	 simulation	 is	 disproportionate	
compared	to	the	simulation	cost	from	our	developed	initialization	process.	At	least	
Nektar++	can	show	here	his	potential	under	real	industry	conditions.					

4 Investigations 
The	investigation	is	focused	on	the	usability	of	Nektar++,	the	numerical	accuracy	
between	Fluent	and	Nektar++,	the	economics	efficiency	and	on	strong	and	weak	
scaling	regarding	exascale.	
	

4.1 Hdf5 format 
The	number	of	files	in	simulations	are	continuously	growing	and	slowing	down	
the	data	management	process.	In	Nektar++	the	standard	format	was	employed	to	
reduce	the	number	of	files	per	simulation	output.		
The	 improvement	 becomes	 clear	 by	 comparing	 the	 number	 of	 files	 after	 the	
calculation	has	 finished	successfully.	 	Table	2	show	 the	 total	number	of	output	
files,	 partitioning	 included,	 from	 calculations	with	3840,	 5760	 and	 7680	 cores.	
With	 the	 xml-format	 (ncores+1)	 files	 are	 generated-	with	 the	 Hdf5-format,	 only	
three	files	in	total	are	generated	for	each	MPI	Rank	(Table	2).	
	

NO.	OF	FILES	
MPI	RANKS	 3840		 5760	 7680	
XML-FORMAT	 7682	 11522	 15362	
HDF5	 3	 3	 3	

Table	2:	Comparison	of	the	number	of	files	between	xml	and	hdf5	–	format	
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4.2 Performance analysis HOM Nektar++ vs. Fluent 

4.2.1 Partitioning 
One	 of	 the	 bottlenecks	 within	 the	 calculation	 process	 with	 Nektar++,	 is	 the	
partitioning	 of	 the	 simulation	 domains.	 Up	 to	 now,	 this	 process	 is	 not	
parallelizable	 which	means	 it	 can	 only	 run	 on	 a	 single	 core.	 Hence,	 the	 more	
partitions	are	needed,	the	process	duration	will	increase	depending	on	the	core	
number	used	for	the	calculation.	For	the	following	scalability	test,	the	partitioning	
time	is	not	included	in	the	Realtime,	because	the	focus	is	there	on	weak	and	strong	
scaling	regarding	code	performance.	For	a	cost	and	time	to	result	consideration	it	
must	be	supplemented.	
In	Figure	22	the	time	courses	for	model	A	(MA),	model	B	(MB)	and	model	C	(MC)	
are	presented.	Due	to	the	long	calculation	times	(t>24h),	for	MC,	the	partitioning	
with	480	-1920	cores	is	not	considered	in	this	report.		
The	curves	of	MA	and	MB	have	nearly	linear	courses.	By	increasing	the	element	
number,	 a	 factor	 of	 2.5	 (MC/MB)	 the	 partitioning	 time	 shows	 an	 exponential	
course.	For	3840	and	5760	cores,	the	time	increases	by	a	factor	of	2.3,	for	7680	
cores	the	factor	grows	up	to	4.3.	

	

	
Figure	22:	Partitioning	time	depending	on	MPI	Ranks	

4.2.2 Input/Output (I/O) process 
The	I/O	process	includes	the	data	loading	and	writing	processes,	such	as	reading	
the	mesh	data,	the	Session,	initial	and	boundary	conditions)	as	well	as	the	final	
state	which	is	written	out	at	the	end	of	the	calculation.	Figure	22	show	I/O	times	
for	MA,	which	represents	the	time	difference	between	Realtime	and	Solvertime.		
Fluent	show	a	nearly	constant	I/O	time	of	approximately	0.14s	(480	cores)	-	0.16s	
(7680cores).	The	I/O	time	of	Nektar++	increases	at	low	MPI	Ranks	(960	cores).	
Afterwards	the	curve	decreases	drastically	for	about	82%	to	0.36h	(1920	cores)	
until	its	minimum	at	5760	cores.	The	turning	point	between	both	simulations	is	at	
3840	MPI	Ranks,	with	higher	MPI	ranks	Nektar++	is	getting	more	economically	
than	Fluent.	
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Figure	23:	I/O	time	depending	on	the	core	number	

4.2.3 Scalability test  
In	 this	 section,	 the	 results	of	 the	 scalability	 tests,	 are	presented.	This	 task	was	
performed	to	show	the	code	performance	of	Nektar++	in	contrast	to	commercial	
software.	As	already	mentioned,	the	difference	between	the	simulation	codes	are	
the	numerical	methods.	Nektar++	is	based	on	the	FEM,	Fluent	(DES)	uses	the	FVM.	
In	the	FEM	code,	the	polynomial	expansion	factors	were	set	to	3	and	2	for	velocity	
and	pressure.	Table	1	summarises	the	test	conditions	for	the	scalability	tests.	The	
calculations	were	started	at	 a	physical	 time	of	0,2s	and	ended	up	at	0,22s.	The	
different	timestep	sizes	lead	to	an	adaptation	of	their	number	(Table	3,	line	5).		
	

TESTCONDITIONS	
PARAMETER	 Nektar++	 Fluent	
INITIAL	CONDITIONS	 0.2s	 0.2s	
REYNOLDS	NUMBER	 6.3x10-6	 6.3x10-6	
TIME	STEP	SIZE	 2*10-6	 1*10-4	
NO.	OF	TIME	STEPS	 10000	 200	
PHYSICAL	TIME,	ΔT		 0.02s	 0.02s	

	
Table	3:	Testconditions	scalability	test	for	Nektar++	and	Fluent	

	

4.2.3.1 Strong scaling performance between Nektar++ and Fluent 
In	figure	24	the	Realtime	and	Solvertime	graphs	for	both	solvers	are	sketched.	By	
the	Solvertime	only	the	calculation	time	per	iteration	is	considered.	The			On	the	
x-axis	the	time	is	plotted,	the	y-axis	represents	the	number	of	cores	(MPI	Ranks).	
The	lowest	core	number	was	480	cores,	the	maximum	7680	cores.	Due	to	the	fact	
that	the	partitioning	process	is	not	parallelizable,	the	Realtime	includes	only	the	
Solvertime	added	to	the	I/O	process.	
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Figure	24:	Comparison	of	Realtime	and	Solvertime	between	Nektar++	and	Fluent,		

with	a	log	scal	on	the	time	axis		
	
Both	graphs	of	Nektar++	show	an	exponential	time	fall.	The	Real	 time	graph	of	
Nektar++	reveals	a	continuously	time	fall	a	minimum	at	7860	cores.	Its	Solvertime	
runs	nearly	parallel	to	the	Realtime	curve.	After	a	steep	gradient	towards	1920	
cores,	 the	courses	flatten	which	 indicates	a	smaller	 time	reduction	as	 for	lower	
MPI	Ranks.	In	marked	contrast	to	Nektar++,	the	Realtime	of	Fluent	decreases	until	
the	usage	of	1920	cores.	Using	more	MPI	Ranks	won’t	lead	to	a	time	reduction,	in	
contrary	it	increases.	This	fact	shows	that	there	is	a	limitation	to	increase	the	core	
number	 for	 this	specific	 test	scenario.	 	 Its	Solvertime	decreases	exponential	 till	
7680	cores	which	indicates	on	the	one	side	the	solver	runs	more	efficiently	and	on	
the	other	side	I/O	process	gets	more	complex	with	high	MPI	Ranks.	
	

	

	
	

	

Figure	25:	Speedup	Ratio	(a)	and	Parallel	Efficiency	(b)	for	MA	

In	figure	25,	the	Speedup	Ratios	for	the	scalability	test	with	the	linear	graph	are	
shown.	The	 line	graph	clearly	shows	the	super	 linear	behavior	of	Nektar++.	 Its	
curve	increases	more	rapidly	than	the	linear	one	(Super	linear	behaviour	[10]).	
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Fluent’s	 curve	 starts	with	 same	 Speedup	 ratio	 and	 increases	 till	 the	maximum	
which	is	reached	with	the	usage	of	3840	cores	(≈2,5).	For	7680	cores,	Nektar++s’	
graph	keeps	constant.	The	corresponding	code	efficiencies	are	presented	in	Figure	
25b.	Based	on	Figure	25a,	for	Nektar++,	the	best	code	efficiency	is	found	by	using	
3840	 cores.	 Between	 3840	 and	 7680	 cores	 the	 efficiency	 decreases	 keeping	 a	
value	higher	than	1.	Fluents’	curve	decrease	immediately	when	the	core	number	
rises	up.	This	fact	indicates	the	much	parallelization	capability	of	Nektar++.	

	

4.2.3.2 Weak scaling performance of Nektar++ and Fluent 
In	 this	 section	 the	 influence	 of	 the	 model	 size	 on	 the	 calculation	 time	 is	
investigated.	The	chart	in	figure	26	shows	four	lines	with	contrasting	Realtime	and	
Solvertime	for	MA	with	MB.	With	model	B	a	higher	calculation	effort	is	achieved.	
Hence,	a	significant	increase	for	both	the	Rea-	land	the	Solver	time	was	detected	
which	is	the	reason	only	cores	numbers	bigger	than	1920	cores	are	considered.	
The	curves	of	model	B	show	a	continuously	decreasing	Realtime	and	Solvertime.	
A	minimum	Realtime	is	found	for	5760.	
	

	
Figure	26:	Influence	of	model	size	on	Realtime	and	Solvertime	

	

4.3 Numerical accuracy, comparison Nektar++ vs. Fluent 
The	 previous	 section	 illustrated	 the	 reader	 scenarios	 how	 to	 reach	 the	 possible	 best	
scalability	for	the	automotive	use	case.	Besides	the	costs,	also	an	accurate	result-quality	
of	submodels	must	be	guaranteed.	Hence,	in	this	section,	the	physical	accuracy	compared	
to	Fluent	is	shown.		
As	already	mentioned,	Fluent	uses	a	DES	method	with	a	realizable	k-e	model.	Nektar++	
resolves	 the	 turbulent	 structures	 directly.	 All	 comparisons	 regarding	 the	 physical	
investigation	were	performed	with	model	A.	The	considered	time	area	starts	after	 the	
initialise	phase	at	t=0.2s	with	a	duration	of	0.2s	till	0.4s.	For	the	physical	investigation	
immediate	 solutions	were	 saved	 at	 every	 0.006s	 (333	 files).	 	 Figure	 27	 a-c	 show	 the	
submodels	with	the	three	planes	which	were	considered	in	this	investigation:	x=7.18m,	
y=-0.13m	and	z=1.5m.	
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Figure	27:	Planes	to	investigate	the	accuracy	of	Nektar++	compared	to	Fluent	

	

4.3.1 Averaged velocities 
Figure	28a	shows	the	averaged	velocities	 in	x-direction	(u)	 for	Nektar++	at	 the	
position	 of	 x=7.18m	 (view	 in	 flow	 direction).	 In	 Figure	 28b,	 the	 same	 results,	
calculated	 in	Fluent	are	presented.	 	Both	pictures	show	the	same	tendency,	 the	
highest	velocities	are	found	in	the	right	half	of	the	planes	and	decrease	to	the	left	
side.	
On	the	right	side	of	the	plane	the	results	look	very	similar	because	the	influence	of	
the	car	on	the	flow	is	low	in	this	area.	Differences	can	be	found	on	the	left	side,	
behind	the	middle	of	the	car	where	the	strongest	velocity	gradients	can	be	found.		
	
	

Nektar++	 Fluent	

	

	

Figure	28:	Averaged	velocity	𝐮"		in	x-direction	within	the	x-z	plane	at	x=7.18m	

Figure	29	shows	 the	planes	 in	x-z-direction	at	y=-0.13.	Both	snapshots	 show	a	
nearly	 identical	 velocity	 course	 above	 the	 car.	 In	 the	 return	 flow	 area	 some	
discrepancies	are	shown.	The	reason	to	that	might	be	the	application	of	the	in	the	
FV-	method,	in	Fluent.	
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Nektar++	

	

	

Fluent	

	 	
Figure	29:	Averaged	velocity	𝐮"	in	x-direction	within	the	x-z	plane	at	x=7.18m	

	
The	planes	at	z=	1.5m	in	x-y	directions	are	presented	in	Figure	30.	One	sees	that	
the	averaged	velocity	looks	nearly	similar	in	both	snapshots.		Due	to	the	car	
surface	placed	at	the	inlet	the	highest	velocities	are	found	in	this	area.	Somewhat	
more	to	the	right,	the	averaged	velocity	decreases	due	to	the	bigger	cross-section	
area.	
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Nektar++	

	

Fluent	

	
Figure	30:	Averaged	velocity		𝐮"		in	x-direction	within	the	x-y	plane	at	z=1.5m	
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4.3.2 History - velocity data 
In	order	to	compare	exact	velocities	over	time,	some	history	points	were	defined	
(Section	2.4.).	The	three	velocity	components	in	x-,	y-	and	z-components	(u,	v,	w)	
were	analyzed.	The	following	points	were	defined	for	the	velocity	comparison	in	
model	A:	
• Point	3			(7.18|-0.13|1.32)	
• Point	18	(5.04|-0.13|1.29)		

	
Figure	31:	Chosen	history	points	for	investigating	the	temporal	velocity	course	

Figure	31	show	the	places	where	Point	3	and	Point	18	are	located.	Figure	32	and	
33	present	the	several	velocity	components	for	the	considered	calculation	phase.	
It	gets	clear	that	they	have	similar	courses.	Compared	to	Fluent,	Nektar++	shows	
more	sharp	swings	in	its	course	(P	18	t=	0.25s).	Nektar++	shows	some	big	swing	
in	its	graph	which	are	only	weak	pronounced	in	Fluent’s	velocity	data.	This	fact	
might	be	due	to	lower	diffusion	of	the	numerics	but	has	to	investigated	with	high	
order	simulations.		
	

	

	

	

Figure	32:	Point	3,	history	data	of	x-,	y-	and	z-velocity	components	(u,v,w)	
	

	 	 	
Figure	33:	Point	18,	history	data	of	x-,	y-	and	z-velocity	components	(u,v,w)		

	
	

P3	(5.04|1.1|1.5)	

P18	(5.04|-0.13|1.29)		
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4.3.3 Costs 
In	 this	 section,	 the	 costs	 of	 using	 a	 high-performance	 computing	 system	 are	
estimated.	They	are	calculated	for	the	computing	System	Hazel	Hen	at	HLRS.	The	
cost	rate	is	0.89€	per	node.	One	node	includes	24	cores	and	is	only	valid	for	users	
from	 universities	 or	 research	 facilities	 in	 Germany	 [3].	 The	 user	 costs	 are	
calculated	with	Equation	1:		
	

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡𝑠 = 	0.89€	 ∙ 𝑡 ∙ 𝑛56789 	
	
where	t	means	the	total	Realtime	and	nnodes	represents	the	used	number	of	nodes.	
All	current	calculations	were	run	with	24	cores	per	node.	In	Figure	34	the	user	
costs	are	shown,	referring	to	the	scalability	results	from	section	24	for	Nektar++	
and	Fluent	(MA).	

	
Figure	34:	Comparison	of	calculation	costs	for	using	the	high-performance		

computing	system	Hazel	Hen	at	HLRS	
	
Fluents	calculation	costs	increase	monotonic	against	the	core	number.	In	contrast,	
the	application	of	Nektar++	results	in	a	cost	reduction	until	3840	cores	are	used.	
When	bigger	core	numbers	are	applied,	the	costs	increase	marginal.	Finally,	the	
results	reveal	that	based	on	the	much	remarkable	lower	Real-	times	of	Fluent	at	
low	 core	 numbers	 (Figure	 34,	480	 cores)	 these	 calculations	 are	much	 cheaper	
applied	on	this	automotive	use	case.	If	we	keep	the	cost	tendency,	which	is	related	
to	the	Realtime,	between	model	A	from	Nektar++	and	Fluent	under	consideration	
regarding	 exascale,	 the	 conclusion	will	 be,	 that	 there	 is	 an	 efficiency	 turnover	
point	where	Nektar++	gets	cheaper	than	Fluent.			
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5 Conclusion and Future Work 
The	comparison	between	Nektar++	and	Fluent	shows,	yes,	it	is	possible	to	rebuild	
an	 industry	 use	 case	 with	 a	 similar	 numerical	 accuracy	 in	 Nektar++.	 A	 high	
advantage	 is	 here	 related	 to	 developments	 during	 the	 ExaFLOW	 project.	 As	
mentioned	 in	 Section	 3.2.2.,	 the	 input	 and	 output	 process	 with	 HDF5-format	
shows	 quite	 a	 good	 performance	 by	 increasing	 the	 CPU	 numbers.	 The	
implemented	standard	HDF5-format	 reduces	 the	number	of	 files	at	 least	 about	
~66%	per	calculation,	which	makes	it	possible	to	run	the	numerical	investigation.	
Strong	scaling	effects	with	a	parallel	efficiency	better	than	a	constant	value	of	1	
confirm	the	claim	of	exascale	being	feasible.	
Currently,	in	the	industry	we	must	be	aware	of	three	main	factors,	the	total	cost	
for	running	a	simulation,	the	accuracy	of	the	results	and	finally	about	the	realtime	
of	 the	 simulation.	 Comparing	 Figure	 24	 and	 34,	 the	 main	 investigation	 result	
regarding	economic	efficiency	was	that	Nektar++	needed	7680	CPUs	and	Fluent	
980	CPUs	for	a	comparable	realtime.	Thus,	a	simulation	with	Fluent	is	eight	times	
cheaper	 than	 with	 Nektar++.	 Keep	 also	 under	 consideration,	 that	 the	 mesh	
partitioning	process	in	Nektar++	wasn’t	included	in	the	realtime	since	the	process	
was	not	parallelizable.		
Truly	not	to	be	misunderstood,	there	is	a	lot	of	potential	in	the	Nektar++	regarding	
exascaling	and	especially	when	it	is	possible	to	run	aeroacoustics	simulations.	The	
timestep	per	iteration	is	there	in	the	standard	finite	volume	method	much	smaller,	
which	 means	 Nektar++	 with	 the	 spectral	 element	 method	 could	 be	 more	
competitive	in	this	application.		
Finally,	in	a	world	of	exascale	machines,	another	focus	point	in	the	industry	gets	
more	and	more	important,	the	short	time	to	result.	An	ideal	development	process	
will	 give	 a	 directly	 feedback	 to	 the	 user	 about	 how	 a	 parameter	 change	 will	
influence	the	solution.	This	includes	from	the	calculation	side	an	almost	lifetime	
simulation	and	 is	only	achievable	by	running	the	simulation	with	an	extremely	
high	number	of	cores.	As	already	mentioned	in	Section	4.2.3.1	and	Section	4.3.3,	
Nektar++	shows	much	better	performance	in	parallel	computing	and	should	be	in	
a	future	world	of	excascale	machines	the	first	choice.	
	
In	 future	work,	a	mesh	and	calculation	study	to	optimize	a	given	geometry	can	
validate	the	numerical	repeatability	of	the	physical	solution	and	turbulent	flow.	
Finding	the	developed	workflow	for	 the	simulation	process	with	Nektar++	was	
quite	a	big	challenge.	There	can	be	done	a	lot	of	work	to	simplify	the	workflow	of	
mesh	converting	and	the	postprocessing	by	standardization.	
And	 finally,	 a	 parallelization	 of	 the	 partitioning	 from	 the	 simulation	 domains	
would	make	Nektar++	much	more	valuable	in	the	field	of	excascale.	
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