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Executive Summary

This document contains an initial assessment of the ExaFLOW algorithms formulated in
WP1 and implemented in WP2, in the context of the five use cases that were defined as part
of Deliverable 3.1. The use cases feature simulations of a jet in crossflow, both incompressible
and compressible flow past a NACA4412 airfoil, an automotive simulation, and flow past
various aspects of a race car such as the Imperial Front Wing design. The specific algorithmic
developments from WP1/WP2 that have been used in each use case are given, along with a
discussion on the effects that these algorithmic improvements have had on the use case with
respect to the initial results presented in Deliverable 3.1. The report also provides feedback
to WP1 and WP2 in light of these effects, and a plan for the next 6–12 months is formulated.

The key findings from the use cases are as follows. For the NACA-4412 compressible use
case, preliminary studies have shown that the application of the error indicators developed
in WP1/WP2 has helped to uncover where more grid resolution is required in the flow
simulation, namely around the wake and developing boundary layers. For the jet in cross-
flow and incompressible NACA-4412 use cases, it has been shown that the AMG solver for
preconditioning the pressure equation is significantly faster than XXT for large cases; the
AMG setup using the Hypre library is more than one order of magnitude faster than the
Matlab version; and the setup should be parallelized and incorporated directly into Nek5000.
For the automotive use case, there is a need to increase accuracy and be able to select a
bigger domain size. Finally, for the Imperial Front Wing use case, initial scaling results with
the new algorithmic developers show good speed-up for small-scale runs.
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1 Introduction

Work package (WP) 3 concentrates on analysing the efficiency of the methods, formulated in
WP1 and implemented in WP,2 through a set of synthetic and real-world benchmarks/use
cases. The use cases have been chosen according to the requirements from our industrial
partners to ensure that the project will have impact both in academia and industry. This
document comprises an initial evaluation of the following five such use cases:

• Jet in crossflow (KTH Royal Institute of Technology)

• NACA4412 airfoil in incompressible flow (KTH Royal Institute of Technology and
University of Stuttgart)

• NACA4412 airfoil in compressible flow (University of Southampton)

• Automotive use case (Automotive Simulation Center Stuttgart and Adam Opel AG)

• Imperial Front Wing and related cases (Imperial College London and McLaren Racing
Limited)

Preliminary results are presented which help to highlight the benefits of the new algo-
rithms developed. Each section also states the feedback that will be given to WP1 and WP2
in light of the initial evaluation, and an outlook for each use case and the applied algorithms
for the next 6–12 months is provided. It is worth noting that, while the use cases are intended
to fully exercise the various codes and expose known issues relating to exascale computing,
the results presented here are only expected to provide a preliminary assessment of the new
algorithms and are therefore not large-scale ‘flagship’ calculations which push the limits of
the algorithms and available computing resources; this will come later at PM36 as part of
Deliverable 3.3.

2 NACA-4412 airfoil in compressible flow

The error indicators formulated as part of Task 1.2 of WP1 (see Deliverable 1.2 for details)
have been successfully applied to the simulation of compressible flow past an airfoil. Note
that for the initial assessment of the error indicator algorithms, results from a NACA-0012
wing profile were considered instead of the NACA-4412 profile originally mentioned in the
Use Case document.

The airfoil incidence α was set to 5◦, the Reynolds number based on the aerofoil chord
Rec was 5 × 104, and Mach number M was 0.4. The computational domain is composed
of three blocks, as can be seen in Figure 1(a). Block 2 is a C-type structured grid fitted
around the airfoil surface; it interfaces with the structured blocks 1 and 3, which resolve
the wake of the airfoil. Since block 1 and block 3 both contain the wake line, the wake line
solution at each time step is obtained by averaging between the solutions obtained in the
two blocks. This is necessary because flow asymmetries near the airfoil trailing edge and/or
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small differences in initial conditions will cause the wake line solutions in the two blocks to
diverge. Table 1 gives the dimensions and number of grid points used.

Block 1

Block 3

Block 2

↑
wake line

ξ

η

W

R

a) b)

Figure 1: Computational domain arrangement. (a) multi-block domain set up, (b) compu-
tational grid, showing only one in every 10 grid points.

R/c W/c S/c Nfoil Nwake Nξ Nη Nz

7.3 5.0 0.4 1799 1602 3401 692 240

Table 1: Numerical grid details. Note that Nfoil and Nwake are the number of grid points
around the aerofoil and along the wake line in the ξ direction.

The simulation was performed using the legacy Fortran-based SBLI code. The error
indicators were implemented in a Python program, which read in the solution fields stored
as a binary file and computed the error severity values at each error block, with each block
comprising 163 grid points. The z-component of vorticity was used to compute the error
severity.

2.1 Initial evaluation

The error severity values for the integer-based measure Ii are shown in Figure 2, and were
computed at time-step 500,000 once the flow became fully developed. The uniform flow away
from the aerofoil is well-resolved as suggested by Ii values of 0 or 1. However, a significant
number of Ii = 2 values can be seen along the boundary layers either side of the aerofoil.
Furthermore, a cluster of high values are present near the trailing edge where eddy shedding
occurs. This suggests that more resolution would be required in these areas to adequately
resolve the wake.
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Figure 2: Contours of velocity magnitude in a two-dimensional slice (in the x–y plane at z
= 0) from a NACA-0012 aerofoil simulation. Circles filled with blue, green, yellow and red
indicate Ii error severity values of 0, 1, 2 and 3, respectively.

With respect to the goals of ExaFLOW, the error indicators have suggested where more
resolution needs to be placed and also where the grid may be coarsened, thereby facilitating
the highly efficient simulation of large-scale industry-relevant problems.

2.2 Feedback provided to WP1/WP2

One major limitation is currently the run-time of the error indicator algorithm. For the
Taylor-Green vortex test case discussed in Deliverable 1.2 the run-time more than doubled
for the 643 grid case. Further work is therefore required in WP1/WP2 to improve the
efficiency of the implementation.

The simulation presented here was performed with the legacy Fortran-based SBLI code,
since several features needed to perform such a simulation in the new OpenSBLI code [7] are
not yet available, such as generalised coordinates and characteristic boundary conditions.
Work to implement these features in OpenSBLI as part of WP2 is on-going.

Finally, while the error indicators have been implemented within the OpenSBLI auto-
mated model development framework, this implementation has so-far been done ‘by hand’
(i.e. writing the C code that computes the error indicators without any help from OpenS-
BLI’s code generator and manually calling it from the model’s automatically-generated C
kernels). Further work in WP2 is necessary to automatically produce the C code that com-
putes these indicators.

2.3 Outlook and future work

The application of the error indicators has helped to uncover where more grid resolution is
required in the flow simulation. Therefore, over the next 6 months, we will produce a refined
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grid, re-run the simulation and re-apply our error indicators to investigate to what extent
the error severity has decreased. We also aim to present this work at the ParCFD 2017
conference; an abstract has been submitted and accepted for presentation [8].

3 Jet in cross-flow and incompressible NACA-4412 air-

foil

This section describes the evaluation of the AMG setup for Nek5000 using Hypre for the jet
in cross-flow and incompressible NACA-4412 airfoil use cases.

3.1 Initial evaluation: Timing results when using the Hypre setup
for the AMG solver

As already described in WP2, the preconditioner for the pressure equation includes the
resolution of a coarse grid problem on the elements’ vertices, which can be solved using an
algebraic multigrid (AMG) method or using a direct solver called XXT. The use of AMG
first requires a setup step performed by an external Matlab code. This code is now replaced
by a faster one, written in C and using the Hypre library for linear algebra. In this section,
we compare the timing results for the three possible ways to solve the coarse grid solver:
AMG with Matlab setup, AMG with Hypre setup and XXT. The computational times for
both AMG setups and the total time per timestep during a simulation are presented for
several test cases: the turbulent flow in a pipe at Reτ = 550, the jet in crossflow and the
NACA4412 airfoil.

3.1.1 Test cases

As a brief reminder, the name, number of elements and polynomial order for each case is
summarized in table 2. The turbulent flow in a straight pipe has been used previously for
scaling tests and is part of the jet in crossflow. The two other cases are part of the reference
test cases within ExaFLOW.

Case name Number of el. Pol. order

Pipe Reτ = 550 853632 7
Jet in crossflow 47960 7

Wing DNS 1847664 11

Table 2: Summary of the test cases
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3.1.2 AMG setup

The total time to perform the setup when using Hypre and Matlab is compared for all test
cases. The algorithms for the Matlab setup have been presented as part of WP2. The
coarsening method for the Hypre setup is the Falgout-CLJP one. Therefore, both setups
produce a different coarsening and different interpolation operators. However, the algorithm
and the tolerance for computing the smoother are the same for both setups. The total setup
time ttot is split in 5 parts:

• Time to read the binary files written out by Nek5000 and setup the matrix A0: tini,

• Time to perform coarsening: tcrs,

• Time to perform interpolation: tint,

• Time to compute the smoother: tsmo,

• Time to export the data: texp,

• Rest: tres.

When using the Hypre setup, we do not have access to separate timings for coarsening and
interpolation and the combined time for both parts is therefore presented. All setups are
performed on the same local machine (CPU: Intel Core I7 990 Extreme, RAM: 24gb) in
serial and timings are shown in table 3.

Matlab Pipe 550 Jet Wing DNS

ttot 2231.04 98.64 3755.92
tini 6.03 0.34 14.65
tcrs 123.11 6.68 657.17
tint 2044.2 89.22 2938.28
tsmo 37.2 1.48 65.21
texp 20.46 0.83 79.33
tres 0.02 0.09 1.28

Hypre Pipe 550 Jet Wing DNS

ttot 77.15 2.42 182.1
tini 2.38 0.14 5
tcrs+ 24.54 1.3 56.4
tint
tsmo 19.85 0.72 34.9
texp 30.37 0.26 85.4
tres 0.01 0 0.4

Table 3: Setup times (in seconds)

For all three cases, the total setup time has been reduced by more than one order of
magnitude. The decrease is most significant for the coarsening and interpolation steps,
which are almost two orders of magnitude faster. Timing for the smoother is also reduced
by half, which is a priori unexpected, given the fact that they are the same. The reason
behind this is still unknown but might be due to a better implementation in C compared to
Matlab. Reading the matrix data is also faster with the C code than with Matlab. Exporting
the data, on the other hand, is performed in the same way for both setups and leads therefore
to roughly similar timings.
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The significant gain in setup time will hopefully foster users to use AMG for large cases
instead of XXT, which is sometimes the first choice because of the bottleneck induced by
the setup despite an expected higher total computational time.

3.1.3 Execution time

Despite the reduction in setup time, the use of Hypre for the AMG setup can be validated
only if it yields to similar results in terms of total computational time in the case of real,
massively parallel simulations. As the AMG solver used for the coarse grid problem is the
same irrespectively of the setup method, it is expected that differences are small. We verify
this by running some simulations of the aforementioned test cases for both setups. We
also compare the results with XXT. The simulations have been performed on Beskow, the
Cray XC40 supercomputer from the PDC centre for high performance computing at KTH,
Stockholm. For each case, the timings reported are the average wall-clock times per timestep.
Input and output are ignored. The average is obtained over 20 timesteps and each simulation
is performed once.

Pipe Reτ = 550 The computation, communication and total times for simulations of the
pipe Reτ = 550 as a function of the number of cores are plotted in figure 3. This case is large
enough for AMG to take advantage over XXT (> 100, 000 elements and > 10, 000 cores).
Indeed, it is observed that all AMG setups lead to roughly the same computation time, while
XXT is systematically slightly higher. On the other hand, communication time using XXT
is globaly lower than for the AMG setups for large number of cores. The total time for XXT
is always greater than for the AMG, by a few percents.



D3.2: Use Case Perspective of Algorithmic Developments 12

2048 4096 8192 16384 32768

No. of cores

0.1

0.4

1

2.5

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(a)

2048 4096 8192 16384 32768

No. of cores

0.1

0.25

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(b)

2048 4096 8192 16384 32768

No. of cores

0.2

0.5

1.5

3

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(c)

Figure 3: Timings for the pipe Reτ = 550. (a) Computation; (b) Communication; (c) Total.

Jet in Crossflow The computation, communication and total times for simulations of the
jet in a crossflow for several numbers of cores are presented in figure 4. Both AMG setups
lead to very similar results. XXT is slower on 256 and 512 cores but performs better on 1024
cores. Given the relatively low numbers of elements (< 100, 000) and cores (< 10, 000), we
do not observe a clear advantage of AMG over XXT. Furthermore, each case is run using a
different node allocation on the computer, which makes it difficult to draw clear conclusions
that are independent on the computational environment. The main conclusion is that the
AMG setup using Hypre performs as well as the Matlab version.



D3.2: Use Case Perspective of Algorithmic Developments 13

256 512 1024

No. of cores

0.2

0.4

0.8

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(a)

256 512 1024

No. of cores

0.07

0.1

0.15

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(b)

256 512 1024

No. of cores

0.25

0.5

1

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(c)

Figure 4: Timings for the jet in crossflow. (a) Computation; (b) Communication; (c) Total.

Incompressible NACA4412 airfoil The computation, communication and total times
as well as the time for solving the coarse grid solver in the case of the NACA4412 airfoil
are presented in figure 5. The computations have been performed on 16, 384 cores only
and the same node allocation has been used, making the comparison less dependent on the
environment. As expected for a case that large, AMG clearly outperforms XXT. The time
for solving the coarse grid solver is reduced by a factor 3, while the total computational time
is reduced by about 10%.



D3.2: Use Case Perspective of Algorithmic Developments 14

0

2.5

5

7.5

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(a)

0

0.5

1

1.5

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(b)

0

5

10

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(c)

0

0.4

0.8

1.2

T
im

e 
/ 

st
ep

 (
s)

XXT

AMG Matlab

AMG Hypre

(d)

Figure 5: Timings for the NACA4412 airfoil on 16,384 cores. (a) Computation; (b) Commu-
nication; (c) Total; (d) Coarse grid solver (AMG Matlab: 26 Chebyshev iterations. AMG
Hypre: 33 Chebyshev iterations).

The difference between both AMG setups may be explained by the difference in the
number of Chebyshev iterations for the AMG solver. Indeed, both setups have different
coarsening and interpolation algorithms, leading to different numbers of levels and different
operators. With Matlab, the total number of Chebyshev iterations is 26 and it is 33 with
Hypre. As a global communication operation is performed per iteration, this has a direct
impact on the computational time for the coarse grid solver. Let us mention that the number
of levels and the number of Chebyshev iterations could be indirectly changed by tuning the
tolerances for the setup.

3.2 Feedback provided to WP1/WP2

The simulations of large test cases using Nek5000 show that the use of the algebraic multigrid
(AMG) solver as a preconditioner should be favored over the direct solver XXT. In the
particular case of the NACA4412 wing, run on 16384 cores, the gain in total computational
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time reached approximately 10%. In order to facilitate the use of AMG, the setup phase,
currently performed by an external serial code using the Hypre library, should be parallelized
and incorporated directly in Nek5000.

3.3 Outlook and future work

The desciption of the algorithm for the AMG setup and its implementation using Hypre
haved been presented as part of WP2. In this section, we have shown that the setup time is
reduced by at least one order of magnitude, while the computational times are similar. This
new setup facilitates the use of AMG for large cases, which allows a significant reduction in
computational resources. Indeed, based on simulations of the NACA4412 airfoil, it has been
shown that the use of AMG is preferred over XXT for large cases. The decrease in total
computational time reaches approximately 10% for this case. For small cases however, no
clear advantage of AMG over XXT has been observed.

In the future, large simulations (N > 1 × 105) on massively parallel computers (P >
1 × 104) will be preferably performed using AMG.

4 Automotive use case

The simulation of external aerodynamics surrounding a vehicle is essential for the develop-
ment of an efficient car body design. The Reynold Averaged Navier-Stokes (RANS) approach
is a widely used method for this purpose. However, the RANS predicts only the mean flow
field which gives rise to difficulties to analyze the time-dependent phenomena such as vor-
tex shedding and flow separation. A promising solution to overcome this limitation is the
Detached Eddy Simulation (DES) approach which utilizes both the RANS turbulent model
for the boundary layer and the Large Eddy Simulation (LES) in separated region to capture
the fully three-dimensional turbulent movement [4]. Direct Numerical Simulation (DNS)
provides even more accurate solutions with resolving all scales with a high number of mesh
cells and requires therefore much higher computational efforts as compared to the DES cal-
culation. The computation efficiency is a key parameter for effective use of such massive
computation methods.

This section describes the state-of the art modelling of a commercial software (Fluent)
and the first development implemented in the ExaFLOW open source code (nektar++ [1])
with the automotive use case defined in [4]. The computations have been performed on the
supercomputer Hazel Hen (position 8 of TOP500, 11/2015), a Cray XC40-system in HLRS
[5].

The simulation focuses only on the rear wake of a sporty vehicle so that the half-left
part of rear vehicle region namely submodel is only taken into account. By means of the
submodel, the computational performances of Fluent (DES) and nektar++ (Continuous
Galerkin method) have been compared with different number of processors. Based on the
results, the relationship between the computational time and costs is presented, which comes
up with the optimal range of the number of cores for each computation method.
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4.1 Problem definition

A submodel is defined to explore the turbulent characteristic at the rear upper region of the
vehicle. Due to the lateral symmetric of the car body, only the left-half part is chosen for
computation. Figure 6 illustrates the computational domain and boundary conditions for
the submodel. The size of the domain is 7m, 1.3m, and 0.15m in the x-, y- and z-direction,
respectively. The RANS simulation of the complete vehicle [4] was performed with ANSYS.

Figure 6: Computational domain of submodel and its boundary conditions.

Fluent version 14.0 with a Reynolds number of 6.3 × 106 based on the vehicle speed of
140 km/h and 2.695 m wheel base. Since the submodel is generated from the computational
domain for the RANS simulation, the velocity fields outside from submodel already exist
as a result of RANS calculation. Therefore, the velocity at the boundary is imposed from
the RANS results except for symmetric plane and outflow region. Vehicle surface is set as a
no-slip boundary condition.

4.1.1 Computational meshes

For generation of the computational meshes, the 3D computational domain is discretized by
volumetric cells projected from a 2D surface mesh. For DES simulation, the identical mesh
used for the RANS simulation (ANSYS Fluent) has been employed. The typical length of
the elements of the two-dimensional surface mesh is between 1-6 mm. 7 prism layers with a
growing cell size are defined on the exterior surface of the vehicle to take into account the
sharp velocity gradient in the boundary layer. A non-equilibrium wall function is utilized
for the first cell near the wall. The 3D volumetric mesh is composed of a non-conformal
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Hexcore mesh (Hexaeder and Tetraeder) [4]. The total number of cells is 20,424,186 for DES
calculation.

Since the mesh used for DES simulation (finite-volume method) is not compatible with
nektar++ (finite-element method), a new mesh is required for the simulation of the submodel
wih nektar++.

Figure 7: Pre-processing procedure of nektar++ for submodel computation.

Figure 8: Computational mesh cells for submodel. Surface mesh on the vehicle (a), zoom-in
near the vehicle surface (b), volume mesh on xz plane (c) and yz plane (d).
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Figure 7 explains the pre-processing procedure for nektar++. ANSA pre-processor is
used for the mesh generation. Once the mesh is created by ANSA pre-processor, the mesh is
converted to xml format for nektar++. In the data converting procedure, additional software
such as Star-ccm+, Tecplot and the nektar++ tool ‘NekMesh’ is utilized.

According to the different computational method, the mesh for nektar++ (finite-element
method) is different from the mesh for DES (finite-volume method). In nektar++, within
each cell a polynomial basis function is defined, which is a feature of spectral/hp method
implemented in the code [1]. Increasing the expansion factor of the polynomial the mesh
resolution can be refined flexibly without regeneration of a new mesh. Figure 8 shows the
computational mesh of nektar++ for the submodel domain.

As for the DES mesh, the 2D surface mesh ( Figure 8 (a) ) is firstly generated. The size
of two-dimensional mesh cells is in the range between 3mm and 40mm. Pentahedrons are
generated in boundary layer region by an extrusion of the surface mesh Figure 8 (b). The
biggest surface mesh size is bigger than that of DES mesh using the polynomial expansion
factor of 3 for velocity. Therefore, only one boundary layer cell is applied to the mesh in the
boundary layer region and it as shown in Figure 8 (b). The height for boundary layer mesh
is set to 0.6 mm. No wall function is required.

The rest of the 3D computational domain is discretized by a tetrahedral mesh ( Figure
8 (b) ). In ANSA pre-processor, the growth rate, Max shell size and FLUENT skewness are
set to 1.1, 40 mm and 0.6 respectively, resulting in total number of elements of 2,266,492.
Figure 8 (c) and (d) show the mesh on a certain xy and yz plane inside the subdomain.

4.1.2 Imposed boundary condition

The boundary conditions for the submodel simulation with nektar++ are extracted from
the RANS results obtained with ANSYS Fluent. Figure 9 shows the data transformation
process of velocity boundary condition from Fluent to nektar++. Due to the mismatch
of the mesh utilized for Fluent and nektar++, the Fluent velocity fields at the boundaries
are interpolated to the boundary mesh of nektar++. The Kriging method is employed
for the interpolation without drift option. In the boundary condition, Tecplot plays also
a crucial role for data exchange between Fluent and nektar++ (see Figure 9). After the
interpolation, the nektar++ tool ‘FieldConvert’ transforms the boundary conditions into
the nektar++ format. Figure 10, Figure 11, Figure 12 and Figure 13 display the velocity
components and pressure at each boundary and compares the original field from Fluent and
the interpolated field for nektar++. This comparison figures out that there is no significant
difference between two velocity fields.
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Figure 9: Data exchange process for imposing velocity boundary conditions.

Figure 10: Imposed velocity from Fluent to nektar++ for inflow boundary condition.
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Figure 11: Imposed velocity from Fluent to nektar++ for left boundary condition.

Figure 12: Imposed velocity from Fluent to nektar++ for top boundary condition.
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Figure 13: Imposed velocity from Fluent to nektar++ for bottom boundary condition.

4.2 Strong scalability test

As mentioned earlier, the computational methods which fully take into account the evolution
of three-dimensional turbulent behaviors such as DES, LES and DNS require huge computa-
tion cost according to the temporal and spatial resolution of those approaches. Using a code
with a good scalability behavior would enable more efficient computation in order to meet
the fast turnaround times (<36 hours) required from the automotive industry. To find the
optimal number of processors for massive computation, the computation time with respect
to the number of cores namely strong scalability test has been carried out.

The strong scalability test is firstly conducted for a DES calculation of the submodel by
ANSYS Fluent 17 in the HLRS facility [5]. The Reynolds number for this calculation [4]
is Re = 6.3 × 106 and the boundary conditions are shown in Figure 10–13. The time step
size is set to 1 × 10−4 and it is computed till 500 time steps ( 0.05s) only for the scalability
analysis.

The strong scalability test has been performed by nektar++ as well. For nektar++
the zero initial velocity is specified and Reynolds number is set to 1,000. The influence
of Reynolds number has also been investigated with Reynolds number of 10,000. There is
almost no noticeable difference between the computation times for both Reynolds numbers.
In the future, the Reynolds number will be increased to reach Re = 6.3×106 as used for DES
simulation. The expansion factors used are 3 and 2 for velocity and pressure, respectively.
The calculation runs till 5000 iteration with time step size of 1 × 10−5 so that it comes up
with the same physical time 0.05s as the Fluent scalability test.
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4.2.1 Real time comparison

The real time represents the waiting time for user from the job submission till the end of
the job. Details about the other times are described in the next subsection, 4.2.2. Figure
14 shows the real time of both scalability tests. In Fluent calculation, the computation time
shows decreasing aspect by increasing number of cores till 960 cores, but does not further
decrease when more than 1000 cores are used. This represents that there is a limitation to
increase the number of cores for this specific test scenario. Using more than 1000 cores is
not further reducing the computation time, but the computational time stays around the
constant value. The average real time for the range 960-7680 cores is 1.58h. The real time
values of nektar++ are much smaller than those of fluent DES simulation. As the processor
number increases, the real time is decreasing till the 3840 number of cores. With more than
this number of cores, the real time is increasing again. The average time of nektar++ for
the range 960-7680 cores is 0.55h and is almost three times smaller than the time required
for the Fluent DES simulation.

Figure 14: Comparison of real time between fluent DES and nektar++ for the physical time
of 0.05s with different number of processors.

In addition, the original use case description [4] reports that the computational time for
DES simulation is 8 days for 0.4s of physical time using 192 cores. The DES calculation
covers whole rear part of the vehicle without symmetric condition, while the submodel used
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in this report considers only the left-half of the rear vehicle region. Thus, the size of the
domain in [4] is twice the domain size contemplated here. Considering that the equivalent
computation time for DES (physical time= 0.05s) is approximately 12h. This industrial
simulation was not performed on HLRS but on an internal cluster at GM Tech Center.

4.2.2 Solver time vs real time

As described in section 4.2.1, there is another time for the computation in nektar++ namely
solver time. This solver time represents the time required for the nektar++ solver IncNavier-
StokesSolver to accomplish one specific number of time steps. This information is written
at each output frequency specified by user and finally the sum of these times is also written
as Time-integration at the end of output file. The solver time is therefore always less than
the real time. The solver time for the first time step is given in Figure 15 with different
number of processors. The time for 1st time step is much longer than the average time per
time step. The time for first time step may contain all the time required for preparation
of the calculation such as decomposition before starting the solver. Therefore, this time is
excluded for the average solver time evaluation.

Figure 15: The solver time required for the first time step and average time per time steps
obtained from the calculation of 5000 time steps with different MPI ranks.
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Figure 16: Average solver time per time step from three different calculations with different
time steps (1,000, 5,000 and 100,000).
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Figure 17: Variation of solver time during the calculation. Comparison between the cases
with initial condition and restart after 100,000 time steps.

Figure 16 compares the average solver time per time step with respect to the number
of processors. This average solver time is evaluated by dividing the Time-integration by
number of time steps. As depicted in Figure 16, the average solver time is decreasing as MPI
rank increases. Even if the slope of decrease is being smaller, the solver time is gradually
decreasing as the number of core increases. For 5000 time steps, using more than 5760 cores
requires less than 1s per time step while the time for 5760 and 7680 cores are almost similar.
In order to investigate the influence of time step, three different calculations with different
numbers of time steps are repeated for the scalability plot. With more time steps the average
solver time is slightly being shorter. This behavior can be explained with the solver time
variation during the calculation.

Figure 17 presents the solver time obtained each output frequency of the solver. The case
started from initial condition (u=v=w=0) shows longer solver times and bigger oscillation of
those times than the case restarted after 100,000 time steps. In the case with initial condition
(u=v=w=0) the solver time is decreasing as calculation goes on, while the solver time for
the case that started with the restart-File looks almost in the uniform range. It represents
that the solver requires more time when the velocity fields are far different from the physical
condition and the time becomes shorter as the solution is converging by iterative procedure.
This corresponds to the decrease of average solver time in Figure 16 as well. Hence, the
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decrease of average solver time appears with increasing time steps, but actually the solver
time is independent from the number of time steps.

4.3 Initial evaluation

The usual output method of nektar++ is the xml-based format which writes separate files
per each MPI rank. Recently, hdf5 method, a hierarchical method with a combined output
file, is implemented to nektar++ [11]. This implementation has been accomplished during
this project period. As an evaluation of the new development the scalability test for hdf5
has been also performed to compare the computational time from the original xml-based
format.

4.3.1 Improvement of real time

The computation times with two different output formats (xml, hdf5) in nektar++ are
compared in this section. Figure 19 shows the results of strong scalability test for nektar++
with both output formats. This plot compares the total solver time and real time with
increasing the number of processors. As already shown in Figure 16, the solver time using
the xml format is decreasing as MPI rank increases. Hdf5 results show also similar trends
of solver time against increasing number of cores. However, the real times for both methods
deviate remarkably. The real time of xml format starts increasing with more than 3840 cores
so that this number of cores is optimal to minimize computation time using this format.
In contrary, the real time with hdf5 format is gradually declining by increasing number
of processors. The new output format shows notable reduction of computation time for
high MPI ranks. The computation times depicted in Figure 19 and the reduction rate (see
Equation 1 below) with hdf5 format are given in Figure 18.

Reduction rate = (Hdf5 real time - Xml real time)/(Xml real time) × 100 (1)

The real time of hdf5 format with highest MPI ranks is 64% smaller than that of xml
format. However, hdf5 requires longer time where the number of CPUs is smaller than 1920.
With smallest number of cores, the real time of hdf5 format is almost four times longer than
the real time of xml format. Currently, the hdf5 format is therefore suitable only for use
more than 3000 processors.

Figure 18: Total solver time and real time for strong scalability test of nektar++
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Figure 19: Total solver time and real time with respect to the number of cores. Comparison
between Xml (black colored) and hdf5 (red colored) output format.

4.3.2 Energy consumption and cost analysis

Based on the computational time for different number of cores, the actual energy consump-
tion, the required electricity cost and the cost required for the use of high performance
computing (HPC) are described in this section.

Energy consumption and Electricity cost: The CrayPat performance analysis tool
[3] is utilized for the energy consumption measurement. Each case of strong scalability test is
repeated with this measuring tool. Hdf5 format is employed for this investigation. Figure 20
presents the energy consumption against increasing number of cores and corresponding real
time and electricity cost. The energy usage is decreasing as the number of cores increases.
The noticeable point is that the energy consumption is directly proportional to the real time
used for the computation as shown in Figure 20 as well. Using more number of cores requires
less energy computation due to the less time for computation.

Based on this result, the approximate cost for electricity is also given in Figure 20. The
cost refers to the tariff information (26.3 Cent/kWh) from one of the electricity provider
in Germany (Stadtwerke Karlsruhe [13]). The relation between the energy and the cost is
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defined by Equation 2:

Cost [Euro] = 0.263
1

kWh
[Euro] = 0.073

1

MJ
[Euro] (2)

Figure 20: Energy consumptions and corresponding real times and costs for 5000 time steps
of nektar++ with respect to the MPI rank.

The use of more cores offers definite benefits for the cost of energy till 4000 cores. After
this number of cores, the cost remains in a certain range. The average energy consumption
for 3840, 5760 and 7680 cores is 11.99MJ and the corresponding real time and cost are 0.27h
and 0.88 Euros, respectively.

Cost of the HPC usage: Additionally, the cost of use of high performance computing
system is also estimated from the user point of view. The formulation of user cost [6] is given
by Equation 3,

Cost = 0.89[Euro] × Time [h] × Number of Nodes (3)

where the time represents the real time of computation. This cost rate (0.89 Euros) is
only valid for the users at one university and research facility in Germany [6].

Current calculation uses 20 processors per node. Based on this formula Equation 3, Figure
21 (a) compares the user cost for both output formats. The user cost with xml format is
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gradually increasing as MPI rank grows, while the hdf5 format shows non-monotonic behavior
against the number of processors. In Figure 19, the real time of hdf5 increases drastically
with lower number of cores. It makes the concave shape of the cost distribution with hdf5
format. As shown in the scalability analysis, this user cost analysis also clearly shows that
there is an intersection between two output formats. Hdf5 format is appropriate only with
more than approximate 3000 number of core, while xml is economic with less number of
cores. With a linear extrapolation of the number of processor per node, it is found out that
using 24 processors per node would further reduce the user cost as shown in Figure 21 (a).

Figure 21: Cost for user of high performance computing facility. Solid line: current calcu-
lation with 20 cores per node, dashed line: imaginary line for calculation with 24 cores per
node.

According to the real time of Fluent scalability test, Figure 21 (b) shows the user cost
for the DES calculation with respect to the MPI rank. This shows monotonic increasing of
the cost against the number of cores. This is explained by the real time behavior shown in
Figure 14. With more than 1000 cores, the real time does not change much with increasing
number of cores. Therefore, the user cost is directly related to the increasing number of
cores. This cost is even higher than that for the xml format of nektar++.

4.4 Feedback provided to WP1/WP2

Based on the real time and energy cost described in the previous subsection, using more
processors is better to reduce the time and corresponding electricity usage. The required
times and energies for 3840 cores and 7680 cores are almost similar. However, with con-
sideration of HPC user cost, approximate 4000 number of cores is an optimal number for
the current version of the solver using the Hdf5 Format. In order to be able to increase the
mesh resolution in the automotive use case a better solver performance using more than 7680
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cores is required. The completely successfully integration of the hybrid CG-HDG approach
could help to solve this requirement. Even more increasing the performance of the solver
significantly will enable a flexible choice of the computational domain (bigger domain size).

5 Imperial Front Wing

One of our goals here in McLaren as industrial partners is to demonstrate that the algo-
rithms developed within the ExaFLOW consortium will potentially help improve the ac-
curacy and/or throughput of our production CFD simulations on complex geometries. To
that end, we have proposed and are actively setting up large demonstration cases with high
geometrical complexity as part of WP3, and we are in the process of running additional wind
tunnel experiments to provide a transient experimental dataset to compare against. Those
demonstration cases will however require a significant amount of HPC resources to be run
and obtain accurate statistics, and it is important for shorter term development/testing to
provide a subset of test cases which could be run more often and on more limited resources.

5.1 Submodels

5.1.1 Wing tip vortex

The wing tip vortex was studied experimentally by [2], and later numerically, amongst other
sources, by [9, 10], albeit at reduced Reynolds numbers. [10] kindly provided a mesh and a
solution checkpoint.

5.1.2 McLaren Front Wing without the wheel

The second test case under consideration is based on the McLaren 17D race car, and was
studied experimentally by [12], hence providing validation data for the simulations. In order
to provide a step further in complexity when compared to the naca wing tip cases whilst
maintaining a reasonnable turnaround time, we elected to run the front wing in isolation,
as [12] provides experimental data for this configuration. This alleviates most of the CFL
restrictions related to the tyre contact patch handling.
This geometry is also being used as a test case for Imperial College’s high order mesher
NekMesh ([14]), and we will now be assessing the effect of near wall resolution on the
solution.

5.2 Numerical setup

The exact numerical setup used for both those test cases is now provided, and both setup
files and checkpoints are available on demand. Both cases were run using the Incompressible
Navier Stokes solver of Nektar++, and the setup parameters used are reproduced in listing 2
and 3 for the wing tip and front wing case respectively. To ensure the numerical experiments
are repeatable, the git hash of the version of the code used is reproduced in listing 1.
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Figure 22: Speedup against core count for the naca wing tip and McLaren front wing without
wheels from 1024 to 8192 cores

Listing 1: Git hash of the version of Nek++ used
commit 61 ce4a4bfcbc3b57d5be509352f5a2660a65b945
Author: ssherw <s . sherwin@imper ia l . ac . uk>
Date: Sat Oct 22 17 : 1 8 : 2 7 2016 +0100

Updates to make merge in to cur rent master work . Al l but one r e g r e s s i o n t e s t working f o r IncNSSolver

The next step is to quantify the runtime of the code on those two cases on a range of core
counts.

5.3 Scaling test

5.3.1 Initial result

An initial scaling test was performed on both submodels on our local cluster, reported on
Fig. 22. The wing tip case was run using sixth order accuracy for both velocity and pres-
sure (see listing 2), while the front wing case was run at third order for velocity and second
order for pressure. Both cases are using the SpectralVanishingViscosity flag in Nektar++ to
improve stability, and the number of global degrees of freedom for both cases is respectively
27.5 × 106 and 18.2 × 106.
Fig. 22 shows that the low order case drops earlier than the wing tip case when increasing
the core count. In order to assess whether this is solely due to the lower number of degrees
of freedom or to the polynomial order chosen, a few more options will now be tested. It is
also worth mentioning that this initial scaling test was run only once at each core count.
Finally, we used a deprecated option for the partitionning weightings ”uniform”, and were
advised to use the ”dof” option instead.
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Config name Geometry NumModes NumPoints Global DOFs PartitionWeights
ifw32 Front wing 3, 2 5 18.2 × 106 Uniform
ifw43 Front wing 4, 3 6 18.2 × 106 Uniform

ifw32qp Front wing 3, 2 6 18.2 × 106 Uniform
ifw43qp Front wing 4, 3 7 64.5 × 106 Uniform
ifw43dof Front wing 4, 3 6 64.5 × 106 Dof
naca66 Naca 6, 6 10 27.5 × 106 Uniform

naca66qp Naca 6, 6 11 27.5 × 106 Uniform
naca66dof Naca 6, 6 11 27.5 × 106 Dof

Table 4: Configurations considered for the scaling test

5.3.2 Second battery of tests

The protocol for the second scaling test is as follows. On both models, and for each config-
uration considered, a simulation of a hundred time steps was run and the cpu time per time
step was computed after discarding the first 10 iterations. Each of those runs is then repeated
three times and the mean is computed. To assess the effect of polynomial order, quadra-
ture points and partition weightings on the runtime, we devised the list of configurations
presented in table 4

Fig. 23 shows the results of those test. The front wing case was only ran up to 4096 cores
due to limited resources, and some points are removed from the curves because of insufficient
number of repeats.
The first point worth mentioning is the rather low scatter on the repeats, as shown by
the tight clustering on Fig. 23 top two graphs. Secondly, the alternative option ”dof” for
partition weightings was proven to improve the performance on the wing tip case, but there
is a crossover on the front wing case where it only seems beneficial at the higher end of the
core count range.
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Figure 23: Scaling test: CPU time per time step (left) and speedup (right) against core
count for the naca wing tip case (top) and the McLaren front wing without wheel (bottom)
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Listing 2: naca wing tip setup
<SOLVERINFO>

<I PROPERTY=”SolverType” VALUE=”Veloc i tyCorrect ionScheme ”/>
<I PROPERTY=”EQTYPE” VALUE=”UnsteadyNavierStokes ”/>
<I PROPERTY=”AdvectionForm” VALUE=”Convective ”/>
<I PROPERTY=”Pro j e c t i on ” VALUE=”Galerk in ”/>
<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder2”/>
<I PROPERTY=”GLOBALSYSSOLN” VALUE=” I t e ra t i v eS ta t i cCond ”/>
<I PROPERTY=”SuccessiveRHS” VALUE=”30”/>
<I PROPERTY=” Spec t ra lhpDea l i a s ing ” VALUE=”True”/>
<I PROPERTY=”PRECONDITIONER” VALUE=”FullLinearSpaceWithDiagonal ”/>
<I PROPERTY=”WeightPart i t ions ” VALUE=”NonUniform”/>
<I PROPERTY=” Spec t ra lVan i sh ingV i s co s i t y ” VALUE=”TRUE”/>

</SOLVERINFO>
<PARAMETERS>

<P> TimeStep = 1e−5 </P>
<P> NumSteps = 100 </P>
<P> Kinvis = 1.2/1200000 </P>
<P> I t e r a t i v eSo l v e rTo l e r an c e = 1e−8 </P>
<P> SVVDiffCoeff = 0 .1 </P>
<P> SVVCutoffRatio= 0 .5 </P>

</PARAMETERS>
<EXPANSIONS>
<E COMPOSITE=”C[ 0 ] ”

BASISTYPE=”Modified A , Modified A , Modif ied B”
NUMMODES=” 6 ,6 ,6 ”
POINTSTYPE=”GaussLobattoLegendre , GaussLobattoLegendre , GaussRadauMAlpha1Beta0”
NUMPOINTS=” 10 ,9 ,9 ”
FIELDS=”u , v ,w, p”/>

<E COMPOSITE=”C[ 1 ] ”
BASISTYPE=”Modified A , Modified B , Modif ied C”
NUMMODES=” 6 ,6 ,6 ”
POINTSTYPE=”GaussLobattoLegendre , GaussRadauMAlpha1Beta0 , GaussRadauMAlpha2Beta0”
NUMPOINTS=” 10 ,9 ,9 ”
FIELDS=”u , v ,w, p”/>

</EXPANSIONS>

Listing 3: McLaren front wing (no wheel)
<SOLVERINFO>

<I PROPERTY=”SolverType” VALUE=”Veloc i tyCorrect ionScheme ”/>
<I PROPERTY=”EQTYPE” VALUE=”UnsteadyNavierStokes ”/>
<I PROPERTY=”AdvectionForm” VALUE=”Convective ”/>
<I PROPERTY=”Pro j e c t i on ” VALUE=”Continuous”/>
<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder2”/>
<I PROPERTY=”GLOBALSYSSOLN” VALUE=” I t e ra t i v eS ta t i cCond ”/>
<I PROPERTY=”SuccessiveRHS” VALUE=”30”/>
<I PROPERTY=” Spec t ra lhpDea l i a s ing ” VALUE=”True”/>
<I PROPERTY=”PRECONDITIONER” VALUE=”FullLinearSpaceWithDiagonal ”/>
<I PROPERTY=”WeightPart i t ions ” VALUE=”NonUniform”/>
<I PROPERTY=” Spec t ra lVan i sh ingV i s co s i t y ” VALUE=”TRUE”/>

</SOLVERINFO>
<PARAMETERS>

<P> TimeStep = 1.00 e−5 </P>
<P> NumSteps = 100 </P>
<P> Lin f = 0.24 </P>
<P> Re = 5.0 e4 </P>
<P> Kinvis = Lin f /Re </P>
<P> I t e r a t i v eSo l v e rTo l e r an c e = 1e−8 </P>
<P> SVVDiffCoeff = 2 .5 </P>
<P> SVVCutoffRatio = 0 .4 </P>

</PARAMETERS>
<EXPANSIONS>

<E COMPOSITE=”C[ 0 ] ” BASISTYPE=”Modified A , Modified A , Modif ied B” NUMMODES=” 3 ,3 ,3 ” POINTSTYPE=”
GaussLobattoLegendre , GaussLobattoLegendre , GaussRadauMAlpha1Beta0” NUMPOINTS=” 5 ,5 ,4 ” FIELDS=”u , v ,w”
/>

<E COMPOSITE=”C[ 0 ] ” BASISTYPE=”Modified A , Modified A , Modif ied B” NUMMODES=” 2 ,2 ,2 ” POINTSTYPE=”
GaussLobattoLegendre , GaussLobattoLegendre , GaussRadauMAlpha1Beta0” NUMPOINTS=” 5 ,5 ,4 ” FIELDS=”p” />

<E COMPOSITE=”C[ 1 ] ” BASISTYPE=”Modified A , Modified B , Modif ied C” NUMMODES=” 3 ,3 ,3 ” POINTSTYPE=”
GaussLobattoLegendre , GaussRadauMAlpha1Beta0 , GaussRadauMAlpha2Beta0” NUMPOINTS=” 5 ,4 ,4 ” FIELDS=”u , v ,
w” />

<E COMPOSITE=”C[ 1 ] ” BASISTYPE=”Modified A , Modified B , Modif ied C” NUMMODES=” 2 ,2 ,2 ” POINTSTYPE=”
GaussLobattoLegendre , GaussRadauMAlpha1Beta0 , GaussRadauMAlpha2Beta0” NUMPOINTS=” 5 ,4 ,4 ” FIELDS=”p” /
>

</EXPANSIONS>
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5.4 Infinite pipe flow case

Most of Imperial’s effort has concentrated on the development of a combined CG-DG method.
The idea is to apply a discontinuous Galerkin discretization for elliptic problems to entities
which are not mesh elements, but groups of elements (patches). Each patch is spanned
by a C0-continuous basis and discretized by a standard Galerkin approach. The solution
within each patch is reconstructed from values on its boundary in manner known from hybrid
discontinuous Galerkin method (HDG). When considering a mesh with a single patch, this
step can be interpreted as a weak enforcement of Dirichlet boundary conditions which is
different from existing penalty-based approaches such as Nitsches method.

Imperial/McLaren plan to investigate the effect of weak boundary conditions on solver
stability in turbulent flows, especially when the flow features are not fully resolved. Given
the fact that the weak enforcement of no-slip condition on wall boundaries allows for the
computed velocity to differ from imposed values to larger extent than in strong case, we
would like to understand whether this relaxation of constraints would render the solver more
stable in applications where stability has been previously an issue. From the perspective
of WP3, this is particularly important in studying the McLaren F1 car simulations, where
the contact patch between moving tyre and stationary road induces large pressure gradients
that can affect the stability of the simulation. Over the coming period the use of these
weakly-imposed boundary conditions will be evaluated with respect to this use case.

5.4.1 Initial evaluation

As an initial test in three-dimensions, Imperial/McLaren are considering incompressible flow
in an infinite pipe using a mixed spectral/hp element and Fourier discretization available
in Nektar++. This aligns with part of the jet in crossflow simulations, where a pipe flow
is used to generate the jet. The Fourier expansion is used in the streamwise direction and
the spectral/hp elements are used to capture the circular cross-section, so that the weak
boundary conditions are imposed in circular cross-sections at the wall for the velocity field.
An example solution of laminar flow with Re = 250 obtained on P7 elements with 8 Fourier
modes in streamwise direction is presented below. Note that in Figure 24 depicting the
strongly imposed boundary conditions, the velocity field has a minimum of precisely zero,
whereas for the weakly imposed conditions this is a small value above zero as expected.
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Figure 24: Laminar solution with strong (top) and weak (bottom) boundary conditions for
velocity.

5.5 Feedback provided to WP1/WP2

Imperial is looking to apply the HDG weak boundary conditions to one of the industrial test
cases which will most likely be the Imperial Front Wing geometry from McLaren. In order
to alleviate some of the demands for resolution in these large flagship WP3 simulations, the
aim will be to evaluate how well these BCs can be used in the context of regions of low
interest such as the contact patch area first.

5.6 Outlook and future work

As far as the next steps are concerned, McLaren are going to speed up now to try to prepare
the demonstration case:

• Jean Eloi Lombard, Imperial/McLaren’s PhD candidate with Spencer Sherwin, is going
to come to work for McLaren for six months from May onwards to prepare the large-
scale simulation.

• Mike Turner will join McLaren from April onwards to look specifically at high order
meshing on our geometry using his mesher NekMesh.
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Imperial’s future work (in the coming weeks) will include an update of the test case
to turbulent flow and an assessment of the implementation for various polynomial orders
of spatial discretization and different flow conditions. In particular Imperial/McLaren will
examine the effects of under-resolution in the presence of the weakly imposed boundary
conditions, in order to quantify their effect in the industrial flow regimes of interest to
WP3.

6 Conclusions and Future Work

This deliverable has presented the initial assessment of the new algorithms and code de-
veloped as part of the ExaFLOW work packages 1 and 2. Many results show significant
improvements in terms of run-time, and potential for running large-scale simulations in
preparation for exascale computing. It is clear that there is scope for further benefits as the
algorithms are improved via the feedback cycle. After an iteration with WP1 and WP2, to
hone the new developments, the use cases will be run in their final large-scale configurations,
for more challenging conditions (typically higher Reynolds number) at higher resolution than
those simulations presented here, pushing the limits of the available hardware and confirm-
ing, or otherwise, the success of the utility of the algorithmic developments. These large-scale
flagship calculations will be presented as part of Deliverable 3.3 at PM 36, along with De-
liverable 3.4 which comprises a critical evaluation of the ExaFLOW developments from the
perspective of the industrial partners.
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