
	

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

H2020 FETHPC-1-2014
	

	

Enabling Exascale Fluid Dynamics Simulations
Project Number 671571

	
	
	

D2.5 – Release of ExaFLOW CFD
algorithms.

WP2:	Efficiency	improvements	towards	
exascale.	

	
	
	
	
	
	
	
	
	
	

	
	

Copyright©	2018	The	ExaFLOW	Consortium	
	

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

2	

Document	Information	
	
Deliverable	Number	 D2.5	
Deliverable	Name	 Release	of	the	ExaFLOW	algorithms	
Due	Date	 30/09/2018	(PM36)	
Deliverable	Lead	 UEDIN	

Authors	

N.	Johnson,	UEDIN		
M.	Bareford,	UEDIN		
N.	Offermans,	KTH		
A.	Peplinski,	KTH		
N.	Jansson,	KTH		
J.	Gong,	KTH		
C.	Jacobs,	SOTON		
S.	Jammy,	SOTON		
D.	Moxey,	UNEXE/IMPERIAL		
M.	Vymazal,	IMPERIAL		
C.	Cantwell,	IMPERIAL		
A.	Nielsen,	EPFL		
P.	Vogler,	USTUTT		
J.	Zhang,	USTUTT		

Responsible	Author	 N.	Johnson,	UEDIN,	n.johnson@epcc.ed.ac.uk	
Keywords	 Software	release;	algorithm	implementation;	open	source	
WP	 WP2	
Nature	 R	
Dissemination	Level	 PU	
Final	Version	Date	 26/09/2018	

Reviewed	by	 M.	Bareford,	UEDIN	
N.	Jansson,	KTH	

MGT	Board	Approval	 30/09/2018	
	 	

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

3	

	
Document	History	
	
Partner	 Date	 Comments	 Version	

UEDIN	 12/09/2018	 Pass	1;	basic	listing	 0.1	
UEDIN	 17/09/2018	 Add	small	text;	group	to	apps	 0.2	
UEDIN	 20/09/2018	 Add	remaining	links	to	code	 0.3	
UEDIN	 25/09/2018	 Add	explicit	links	to	AMG	setups	 0.4	
UEDIN	 26/09/2018	 Fix	comments	from	reviewers	 0.5	
KTH	 30/09/2018	 Final	version		 1.0	
	 	

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

4	

Executive	Summary	
	
This	deliverable	reports	that	the	ExaFLOW	algorithms	have	been	developed	and	
released	 by	 including	 them	 in	 either	 the	 co-design	 applications,	 as	 libraries	 or	
modules	that	can	be	used	with	the	co-design	applications,	or	as	separate	codes.	
	
The	 descriptions	 of	 the	 algorithms	 were	 discussed	 in	 D1.2	 and	 D1.3	 and	 the	
implementations	and	performance	are	discussed	in	D2.4.	
	
Contents	
1	 Introduction	..	5	
2	 Implementations	of	Algorithms	..	5	
2.1	 Nektar++	...	5	
2.2	 Nek5000	...	5	
2.3	 OpenSBLI	..	6	
2.4	 Other	libraries	and	applications	...	7	

3	 Conclusion	...	7	
	
	
	
	 	

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

5	

1 Introduction
	
This	 short	deliverable	 serves	 to	provide	a	 set	of	pointers	 to	 the	ExaFLOW	CFD	
algorithms	 as	 implemented	 in	 the	 various	 applications,	 both	 co-design	 and	
stand-alone,	used	in	the	project.	
	
During	 the	ExaFLOW	project,	we	chose	 to	 release	algorithmic	 implementations	
as	improvements	to	applications,	with	the	license	of	the	surrounding	application,	
hence	all	improvements	are	open	source,	with	a	variety	of	licenses.	
	
In	 this	document,	 the	algorithms	are	grouped	by	the	application	 in	which	their	
implementation	appears.	

2 Implementations of Algorithms

2.1 Nektar++
	
Nektar++	is	one	of	our	co-design	applications.	It	is	a	high	order	spectral	element	
code	 written	 primarily	 in	 C++	 for	 work	 on	 CFD	 problems.	 It	 is	 primarily	
maintained	by	the	team	at	IMPERIAL	but	accepts	contributions	from	other	users	
and	developers.	It	uses	the	MIT	license	to	permit	commercial	usage	of	the	code	
and	allows	companies	and	other	research	groups	to	copy,	adapt	and	release	their	
own	versions.	
	
Two	primary	contributions	have	been	made	to	Nektar++	by	ExaFLOW,	the	first	is	
improvement	works	to	the	IO	subsystem,	including	work	to	assist	in	profiling	IO	
performance	 and	 the	 second	 is	 a	 basic	 working	 implementation	 of	 the	 ULFM	
fault	tolerance	mechanism.	They	can	be	found	in	the	two	branches	linked	below:	
	
IO	
https://gitlab.nektar.info/nektar/nektar/commits/feature/ioext	
ULFM	
https://gitlab.nektar.info/nektar/nektar/commits/feature/ulfm	
	
Installation	and	use	of	the	ExaFLOW	contributions	is	by	building	the	code	from	
the	 relevant	 branches.	 The	 ioext	 branch	 is	 simply	 a	 normal	 branch	 of	 the	
Nektar++	application	with	the	improvements	to	IO	rolled-in.	Usage	of	the	fault-
tolerance	 work	 in	 the	 ULFM	 branch	 is	 covered	 in	 detail	 in	 deliverable	 D2.4,	
section	2.6.	
	

2.2 Nek5000
	
Nek5000	is	another	of	two	co-design	applications.	It	is	a	high-order	solver	code	
written	 primarily	 in	 Fortran,	 C	 and	 pure	MPI	 for	work	 on	 CFD	problems.	 It	 is	
primarily	maintained	 by	 Argonne	 National	 Laboratory	 (ANL)	 in	 the	 USA	 with	
many	 contributions	 from	 the	 team	 at	 KTH	 in	 Stockholm.	 ExaFLOW	 has	
contributed	to	the	Adaptive	Mesh	Refinement	(AMR)	code	and	Algebraic	Multi-

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

6	

Grid	 (AMG)	 codes,	 the	 latter	 being	 replaced	 in	 many	 places	 with	 calls	 to	 the	
Hypre	library	for	further	performance	gains.	Their	inclusions	can	be	found	at	the	
links	 below.	 KTH	 maintains	 a	 repository	 of	 pre-release	 code	 under	 active	
development	which	is	ahead	of	the	main	repository.	We	link	to	the	KTH	versions	
as	ExaFLOW	contributions	are	more	common	here.	In	time,	these	will	be	adopted	
into	the	main	repository	hosted	by	ANL.	Explicit	setup	and	usage	instructions	are	
found	in	the	documentation	in	the	repositories	themselves,	this	approach	keeps	
the	documentation	tied	to	the	specific	version	of	the	code	available.	
	
	
AMR	
In	the	nekp4est	branch	awaiting	merging	to	the	main	branch.	
https://github.com/KTH-ExaFlow/Nek5000.git	
	
AMG	
Available	in	the	main	branch	as	of	commit	with	hash	ending:	c6a20a	
https://github.com/KTH-ExaFlow/Nek5000.git	
	
Further,	 the	 standalone	 serial	 setup	 for	 AMG	 is	 now	 found	 in	 the	main	 (ANL)	
repository:	
https://github.com/Nek5000/Nek5000/blob/master/tools/amg_setup/amg_set
up.c	
	
ExaFLOW	has	also	developed	a	parallel	version	of	both	the	AMG	setup	and	the	
AMG	 solver,	 which	 are	 directly	 included	 in	 the	 Nek5000	 code.	 The	 main	 file	
resides	in	the	developers	repository,	awaiting	promotion	to	the	KTH	repository:	
https://github.com/nicooff/nek5000/blob/amg_hypre/core/experimental/crs_
hypre.f	
	
GPU	
GPU	 support	 is	 not	 present	 in	 the	 main	 Nek5000	 code,	 as	 it	 sticks	 to	 a	 CPU	
implementation.	 The	 extension	 to	 GPUs	 is	 performed	 by	 using	 OpenACC	
directives	 allowing	 the	 code	 to	 be	 agnostic	 of	 which	 brand	 of	 GPU,	 or	 other	
accelerator,	is	offered	in	any	given	system.	The	OpenACC	port	of	Nek5000	can	be	
found	at	the	link	below:	
https://github.com/Nek5000/Nek5000/tree/openacc	
	

2.3 OpenSBLI
	
SBLI	was	a	 third	co-design	application	at	 the	outset	of	 the	project	but	has	now	
been	replaced	by	the	open-source	OpenSBLI	code.	Some	early	project	results	and	
use-cases	 used	 SBLI.	 	 OpenSBLI	 uses	 code	 generation	 to	 turn	 a	 system	 of	
equations	 coded	 in	 a	 domain	 specific	 language	 (DSL)	 into	 code	 for	 the	 target	
system.	 The	 code	 generator	 is	 very	 flexible	 and	 allows	 for	 a	 variety	 of	 target	
operating	 environments	 such	 as	 CPU	 or	 GPU	 based	 machines.	 The	 OpenSBLI	
code	can	be	found	at	the	link	below.	
https://github.com/opensbli/opensbli	 	

D2.5	–	Release	of	ExaFLOW	CFD	algorithms	

	

7	

2.4 Other libraries and applications
	
ExaGS	is	a	fork	of	the	GS	library	originally	supplied	with	Nek5000.	Whilst	GS	uses	
pure	 MPI	 for	 communication,	 the	 goal	 of	 ExaGS	 was	 to	 use	 UPC	 to	 test	 the	
performance	 gains	 of	 using	 single	 sided	 communications,	 and	 to	 further	 help	
separate	 the	 communication	 library	 from	 the	main	 code	 and	 improve	 the	 API	
documentation	 to	 make	 porting	 to	 other	 languages	 and	 frameworks	 such	 as	
OpenSHMEM	or	ZeroMQ	simpler.	It	can	be	found	at	the	link	below.	
https://github.com/EPCCed/exaflow-exags-upc	
	
The	 work	 on	 compression	 algorithms	 has	 been	 implemented	 in	 an	 in-house	
variation	 of	 the	NS3D	 code	developed	 by	USTUTT.	 It	 is	 not	 currently	 available	
outside	that	partner	but	there	is	a	plan	to	release	it	as	open-source	software	by	
the	end	of	2018.	
	

3 Conclusion
	
This	 deliverable	 reported	on	 the	 dissemination	 of	 the	 ExaFLOW	algorithms	 by	
their	 inclusion	 into	 open	 source	 (or	 soon	 to	 be	 open	 source)	 applications	 and	
libraries	to	allow	use	beyond	the	ExaFLOW	project.	

