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Executive	Summary	
	
This	deliverable	showcases	the	progress	made	in	the	ExaFLOW	project	regarding	
improving	 the	 scalability,	 performance	 and	 robustness	of	 CFD	 software	with	 a	
view	to	making	it	both	ready	for	future	exascale	systems	and	suitable	for	use	in	
commercial	and	industrial	production	environments.	
	
We	 have	 concentrated	 on	 implementing	 the	 algorithms	 developed	 in	 work-
package	 1,	 such	 as	 compression	 of	 CFD	 data,	 in	 parallel	 with	 robustness	 and	
scaling	improvements	to	areas	such	as	IO	and	energy	efficiency.	For	example:	
	

• With	regards	compression,	we	see	using	an	approach	similar	to	that	used	
for	storing	images	in	JPEG	format,	wavelet-based	compression	can	result	
in	 a	 good	 balance	 between	 the	 time	 taken	 for	 compression	 and	 the	
reduction	 in	 data	 stored.	 Our	 method	 achieves	 similar	 results	 to	 the	
popular	7-zip	algorithm	but	takes	around	1/10th	of	the	time.	

• Our	work	on	fault-tolerance	is	seen	in	the	Llama	library,	which	has	been	
integrated	to	Nektar++	and	ready	for	wider	usage.	We	are	able	to	recover	
from	a	failure	of	28	cores	in	a	7,168	core	simulation	with	no	problems,	and	
achieve	a	recovery	rate	of	~100GB/s	by	using	in-memory	checkpointing.	

• We	 have	 improved	 the	 implementations	 of	 Adaptive	 Mesh	 Refinement	
(AMR)	and	Algebraic	Multi-Grid	(AMG)	methods	in	the	Nek5000	code,	in	
the	latter	case,	we	have	replaced	the	inbuilt	library	with	an	external	library	
which	 has	 higher	 performance	 to	 leverage	 development	 effort	 being	
supplied	there.	

• We	 have	 improved	 the	 IO	 of	 the	 Nektar++	 application	 in	 response	 to	
bottlenecks	 seen	 by	 the	 user	 community	 when	 running	 industrially	
relevant	problems.	By	integrating	a	3rd	party	library,	SIONlib,	from	Julich	
Supercomputing	Centre,	we	can	again	leverage	development	effort	there,	
and	improve	our	performance,	achieving	a	50%	reduction	in	read	times	for	
a	5GB	checkpoint	in	6,144	cores.	

• Also,	we	have	developed	a	new	communications	library	based	on	single-
sided	 communication	methods	which	 is	 compatible	with	 both	Nektar++	
and	Nek5000,	 by	 offering	 the	 same	API	 as	 the	 existing,	MPI-1	 based	GS	
library.	We	can	achieve	an	improvement	of	around	10%	over	the	existing	
library,	plus	separating	the	communication	library	from	the	Nek5000	code	
allows	others	to	write	additional	libraries	targeted	at	new	machines.	

• With	respect	to	energy	efficiency,	we	see	that	we	are	able	to	reduce	energy	
by	around	20%	in	test-cases	with	only	a	10%	increase	in	run-time	and	our	
methodology	for	measurement	allows	tailoring	of	this	trade-off	on	future	
machines	to	achieve	a	good	balance	between	energy	savings	and	runtime	
increase.	

• We	 have	 explored	 alternative	 architectures,	 by	 showing	 that	 porting	
Nek5000	to	use	GPUs	via	OenACC	directives	offers	a	good	solution	to	take	
advantage	 of	 accelerators.	 Also,	 partner	 code	OpenSBLI,	 performs	 code-
generation	 to	 target	each	hardware	platform	again	allowing	performant	
results	on	different	machines.	
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• Finally,	we	have	also	developed	a	method	of	modelling	the	performance	of	
codes	by	using	an	architecture	independent	roofline	toolkit	to	understand	
where	 further	 development	 effort	 might	 be	 focused	 and	 where	
performance	is	limited	by	hardware	performance.	

	
We	believe	these	improvements	to	the	robustness	of	scalability	of	our	co-design	
applications,	and	where	applicable	 to	other	CFD	applications	which	can	benefit	
allow	for	a	more	efficiency	usage	of	future	exascale	systems,	regardless	of	their	
composition.	
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1 Introduction 
	
This	 deliverable	 reports	 on	 the	 progress	 made	 in	 work-package	 2	 since	 the	
previous	 technical	 deliverable,	 D2.2	 at	 project	 month	 18,	 towards	 its	 aim	 of	
increasing	the	performance	and	efficiency	of	the	co-design	applications	through	
improvements	to	algorithm	implementations,	libraries	and	systems	configuration.	
	
Currently,	 computation	 fluid	 dynamics	 applications	 do	 not	 scale	 to	 the	 point	
where	 they	would	make	 efficient	 use	 of	 an	 exascale	machine,	 only	 of	 existing	
machines.	 To	 further	 the	 scaling,	 efficiency	 must	 be	 increased	 in	 many	 areas,	
algorithms	 must	 allow	 for	 greater	 scaling	 and	 decomposition,	 and	
implementations	must	do	 this	 sensibly	 and	maximise	 the	 potential	of	 codes	 at	
each	 phase	 of	 simulation,	 from	hardware	 though	 libraries	 to	 solvers	 and	 post-
processors.	
	
Our	ultimate	aim	to	is	to	run	industrially	relevant,	engineering	quality	CFD	codes	
on	exascale	systems	in	a	sustainable	manner.	For	example,	we	do	not	currently	
take	advantage	of	failure	recovery	and	mitigation	mechanisms,	because	the	rate	
of	node	or	core	failure	is	too	low	to	justify	the	overhead,	however	limited,	of	using	
mitigation	techniques.	
	
The	first	of	two	routes	to	improving	performance	is	the	efficient	implementation	
of	the	algorithms	from	work-package	1.	This	material	is	presented	in	Section	2.	As	
an	 example,	 we	 see	 that	 parallel	 preconditioning	 can	 either	 be	 implemented	
natively	in	the	codes,	or,	by	using	a	more	efficient	implementation	from	the	hypre	
library,	greater,	parallelised,	performance	can	be	achieved.	This	improvement	is	
dependent	 on	 the	 mesh	 used,	 but	 is	 applicable	 to	 many	 codes,	 as	 hypre	 is	
application	agnostic.	
	
The	second	of	the	two	routes	to	improve	performance	is	by	considering	systems	
factors;	this	work	is	detailed	in	Section	3.	As	reported	in	D2.3,	the	exact	shape	and	
configuration	of	any	future	exascale	system	is	unknown,	however	some	educated	
guesswork	can	inform	the	expected	bottlenecks	to	be	overcome	to	make	effective	
use	of	such	a	machine.	In	Section	3.1	we	see	that	changing	the	IO	library	can	have	
either	a	positive	or	detrimental	effect	on	overall	runtime.	This	knowledge	allows	
correct	selection	of	the	IO	method	and	library	to	be	made	prior	to	large	core-count	
runs.	As	with	 implementation	 improvements,	 these	 system-type	 improvements	
are	tied	to	the	application	and	test-case	used,	but	the	knowledge	of	the	limitations	
and	strengths	of	each	method	is	application	agnostic.	
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2 Efficient Implementations of WP1 Algorithms 
In	this	section,	we	show	the	efficient	implementations	of	algorithms	developed	as	
part	of	work-package	1.	

2.1 Compression Algorithms 
One	of	the	hallmarks	of	high	performance	computing	(HPC)	is	its	ability	to	process	
complex	numerical	simulations	by	breaking	down	 the	 intensive,	 computational	
workload	into	small,	manageable	junks	that	can	be	distributed	onto	highly	parallel	
computer-clusters.	This	approach,	combined	with	a	steady	increase	in	single	core	
performance,	has	enabled	the	scientific	community	to	study	increasingly	complex	
physical	problems.	As	we	approach	the	end	of	Moore’s	law,	however,	a	significant	
gain	in	computing	power	may	only	be	achieved	by	an	increase	in	core	counts.	Yet,	
this	path	to	exascale	performance	is	blocked	by	an	IO	bottleneck.	Modern	high-
performance	systems	are	capable	of	producing	and	processing	high	amounts	of	
data	quickly,	while	the	overall	performance	is	oftentimes	hampered	by	how	fast	a	
system	can	transfer	and	store	the	computed	data.	Considering	that	researchers	
invariably	seek	to	study	simulations	with	increasingly	higher	spatial	and	temporal	
resolution,	 the	 increase	 in	 core-count	 will	 consequently	 only	 exacerbate	 this	
problem	[11].	
	
Since	most	fluid	flow	problems	are	subject	to	diffusion,	however,	our	numerical	
datasets	are	typically	smooth	and	continuous,	resulting	in	a	frequency	spectrum	
dominated	 by	 lower	 modes	 [11].	 Thus,	 our	 best	 way	 forward	 is	 to	 use	 the	
otherwise	 wasted	 computing	 cycles	 by	 exploiting	 these	 inherent	 statistical	
redundancies	to	reduce	the	simulation	file	size.	Since	effective	data	storage	is	a	
pervasive	 IT	 problem,	 much	 effort	 has	 already	 been	 expended	 on	 refining	
compression	algorithms.	Prominent	algorithms	that	allow	for	lossy	compression	
can	be	found	in	the	world	of	entertainment	technology.	In	this	context,	Loddoch	
and	Schmalzl	[6][8]	have	extended	the	Joint	Photographic	Experts	Group	(JPEG)	
standard	 for	 volumetric	 floating-point	 arrays	 by	 applying	 the	 one-dimensional	
real-to-real	 discrete	 cosine	 transform	 (DCT)	 along	 the	 axis	 of	 each	 spatial	
dimension.	The	DCT	coefficients	are	then	quantized	and	encoded	using	a	variable-
length	code	similar	to	that	proposed	by	the	JPEG	standard.	Lindstrom	[5],	on	the	
other	hand,	uses	the	fixed-point	number	format	Q,	which	maps	the	floating	point	
values	onto	the	dynamic	range	of	a	specified	integer	type.	A	lifting	based	integer-
to-integer	implementation	of	the	discrete	cosine	transform	is	then	applied	to	the	
resulting	integer	array.	Next,	the	DCT	coefficients	are	encoded	using	an	embedded	
coding	algorithm	to	produce	a	quality-scalable	code-stream.	These	compression	
algorithms	are	simple	and	efficient	in	exploiting	the	low	frequency	nature	of	most	
numerical	datasets.	The	non-locality	of	the	basis	functions	of	the	discrete	cosine	
transform,	 however,	 will	 result	 in	 large	 scale	 blocking	 artifacts	 which	 heavily	
distort	the	dataset	[1].	To	circumvent	this	problem,	we	adapted	the	wavelet-based	
JPEG	2000	algorithm	for	volumetric	floating-point	arrays. 
 

 Taylor Green Vortex 
A	comparison	between	our	wavelet-based	compression	algorithm	(WBC),	and	the	
ZFP	and	7-Zip	encoder	was	carried	out	using	a	numerical	simulation,	with	an	in-
house	code,	of	a	Taylor-Green	vortex	(TGV)	decay	at	Re	=	1600	(see	Figure	1).	The	
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Taylor-Green	 vortex	 represents	 a	 simple	 and	 well-defined	 hydrodynamics	
problem,	characterized	by	its	turbulent	energy	cascade.	The	flow	field	is	initialized	
with	 an	 analytical	 solution	 containing	 a	 single	 length	 scale.	 The	 initial	 vortex	
quickly	transitions	into	fully-turbulent	dynamics,	breaking	down	the	vortices	into	
increasingly	 smaller	 turbulent	 length	 scales	 until	 the	 turbulent	 energy	 is	
dissipated	through	viscous	effects	 [4].	The	vortex	decay’s	broad	turbulent	scale	
spectrum	allowed	us	to	study	the	effects	of	length	scale	on	the	performance	of	the	
individual	compressors.	The	evaluation	was	performed	for	the	non-dimensional	
time-steps	t	=	0,	2.5,	5,	7.5,	10,	12.5,	15,	17.5	and	20.		Each	time-step	contained	the	
conservative	variables	ρ,	ρu,	ρv,	ρw	and	ρE	on	a	nx	×	ny	×	nz	=	260	×	260	×	260	grid.	
The	uncompressed	file	size	of	one	time-step	measured	703	MegaBytes.	
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Table	1	compares	the	compression	ratio,	compression	time	and	peak	signal-to-
noise	ratio	 for	 the	WBC,	ZFP	and	7-Zip	 compressors.	Multiple	non-dimensional	
time-steps	are	listed	to	assess	the	effects	of	fluid	structure	size	on	the	compression	
performance	and	induced	distortion.	
	
	
	
	
	
	

Figure	1:	Visualization	of	the	Taylor-Green	vortex	test	case	on	a	2563	grid.	The	vorticity	magnitude	of	the	
decaying	vortex	is	shown	from	top	left	to	bottom	left	for	the	non-dimensional	times	t	=	0,	7.5,	15.	
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Table	1:	Compression	ratio,	compression	time	and	peak	signal	to	noise	ratio	for	the	BWC,	ZFP	and	7-Zip	
compressor.	The	best	results	appear	in	bold.	

	
We	found	that	all	compressors	offer	good	file	size	reduction	for	large-scale	flow-
field	structures.	However,	the	7-Zip	compressor	is	unable	to	provide	significant	
compression	ratios	for	datasets	that	contain	small	length	scales.	In	contrast,	both	
the	WBC	and	ZFP	algorithm	can	maintain	large	compression	ratios	throughout	the	
time	series.	
	
The	smallest	compression	time	is	achieved	with	the	ZFP	compressor,	followed	by	
our	wavelet-based	compression	algorithm.	This	discrepancy	can	be	attributed	to	
WBC’s	more	complex	entropy	encoding	stage	that	has	been	derived	from	the	JPEG	
2000	algorithm.	The	7-Zip	algorithm,	on	 the	other	hand,	 requires	an	excessive	
amount	of	time	to	reduce	the	file	size	of	any	time-step.	
	
The	 defining	 difference	 between	 the	 WBC	 and	 ZFP	 is	 compression-induced	
distortion.	While	the	WBC	algorithm	offers	good	reconstruction	throughout,	the	
ZFP	codec	suffers	from	large-scale	blocking	artifacts	that	decrease	the	PSNR	of	a	
decompressed	file	significantly.	The	7-Zip	codec	offers	perfect	reconstruction	for	
all	time-steps	due	to	its	lossless	nature.	
	
To	analyze	the	local	distortion	introduced	by	the	lossy	WBC	and	ZFP	compression	
algorithms,	we	evaluated	the	relative	error	for	the	non-dimensional	time-step	t	=	
10	of	the	transient	vortex	decay.	Here,	the	vortex	decay	has	advanced	to	the	point	
where	most	of	 the	 turbulent	energy	 is	 stored	 in	 small-scale	 structures	that	 are	
dissipated	 through	viscous	effects.	The	high-frequency	 information	 these	 small	
length	scales	contain	will	reduce	the	overall	compression	performance.	This,	 in	
turn,	requires	an	efficient	compression	strategy	and	aggressive	truncation	of	the	
bit-stream	 to	 reach	 the	 specified	 compression	 ratio.	 The	 performance	 was	

Time-
step	 Compression	Ratio	 Compression	Time	(s)	 PSNR	

	 WBC	 ZFP	 7-Zip	 WBC	 ZFP	 7-Zip	 WBC	 ZFP	 7-Zipa	

0	 64.7	 65	 41.7	 6.9	 1.7	 114.9	 133.9	 61.2	 ∞	
2.5	 62.2	 62.1	 6.0	 4.4	 2.0	 160.4	 123.6	 60.0	 ∞	
5	 61.6	 61.1	 5.8	 7.2	 2.0	 173.2	 92.0	 48.2	 ∞	
7.5	 61.0	 61.1	 5.6	 8.8	 1.9	 164.0	 73.8	 44.3	 ∞	
10	 60.8	 61.1	 5.1	 11.0	 1.8	 172.9	 62.6	 37.9	 ∞	
12.5	 60.8	 61.1	 4.6	 11.4	 1.8	 172.8	 63.3	 40.6	 ∞	
15	 60.8	 61.1	 4.2	 11.1	 1.8	 186.4	 64.1	 40.5	 ∞	
17.5	 60.8	 61.1	 3.9	 10.7	 1.8	 183.9	 65.7	 43.0	 ∞	
20	 60.9	 61.1	 3.7	 11.1	 1.9	 181.5	 67.6	 45.2	 ∞	

a	The	PSNR	for	the	7-Zip	compressor	is	always	infinity	due	to	its	lossless	nature	
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evaluated	 for	 the	 compression	 ratios	 5:1,	 40:1,	 80:1	 and	 120:1.	 The	 respective	
histograms	for	the	relative	error	are	shown	in	Figure	2.		
	

	
Figure	2:	Histogram	of	relative	error	for	the	Taylor-Green	vortex	compressed	with	the	WBC	(—)	and	ZFP	(--
-)	algorithm.	The	compression	ratios	CR	=	5:1,	40:1,	80:1	and	120:1	are	shown	for	the	non-dimensional	

time-step	10.	

For	the	WBC	encoder,	the	mean	error	for	all	compression	ratios	remains	below	
0.1%.	As	expected,	the	histograms	shift	towards	higher	values	for	an	increase	in	
compression	ratio.	The	smallest	maximum	relative	error	(0.23%)	occurred	for	a	
size	 reduction	 of	 5:1,	 the	 largest	 maximum	 relative	 error	 (1.4%)	 for	 a	 size	
reduction	of	120:1.	The	biggest	jump	in	relative	error	can	be	observed	between	
the	 compression	 ratios	 40:1	 and	 80:1.	 In	 contrast,	 the	 infinite	 support	 of	 the	
discrete	cosine	transform	and	the	minimalist	entropy	encoding	stage	of	the	ZFP	
codec	result	in	heavily	distorted	fluid-flow	structures	for	large	compression	ratios.	
The	maximum	relative	error	amounts	to	27%	for	the	compression	ratio	40:1,	54%	
for	 the	 compression	 ratio	 80:1	 and	 80%	 for	 the	 compression	 ratio	 120:1.	
Furthermore,	the	histograms	exhibit	an	increase	in	the	mean	error,	ranging	from	
0.3%	for	the	compression	ratio	40:1	to	5%	for	the	compression	ratio	120:1.	Merely	
the	compression	ratio	5:1	exhibits	a	smaller	maximum	relative	error	(0.02%)	and	
mean	 error	 (0.0002%)	 for	 the	 ZFP	 algorithm.	 This	 is	 due	 to	 the	 choice	 of	 the	
fractional	bit	parameter	value	Qm	=	28	for	the	WBC	encoder.	
	
The	 evolution	 of	 the	 local	 distortion	 introduced	 by	 our	 lossy	 wavelet-based	
compression	 algorithm	 is	 evaluated	 using	 the	 relative	 error	 for	 the	 transient	
vortex	decay.	The	histograms	shown	in	Figure	3	mirror	the	evolution	of	the	energy	
dissipation	found	in	the	original	dataset.	Both	the	maximum	(5	́ 	10-3	%)	and	mean	
(8	´	10-5	%)	error	remain	negligibly	small	while	the	vortex	decay	is	in	its	initial	
stages.	Most	of	the	turbulent	energy	is	stored	in	longer	length	scales	that	are	easy	
to	 compress.	However,	 the	 error	 histogram	 is	 shifted	 to	 higher	 values	with	 an	
increase	in	the	energy	dissipation	rate.	The	largest	deviation	can	be	observed	at	
the	 non-dimensional	 time-step	10	with	 a	maximum	relative	 error	 of	2%	 and	 a	
mean	 error	 of	 8	 ´	 10-2	 %.	 Towards	 the	 end	 of	 the	 vortex	 decay,	 most	 of	 the	
turbulent	energy	has	already	been	dissipated	from	the	flow-field	domain	and	thus	
an	improvement	in	compression	performance	can	be	observed.	For	all	time	steps,	
the	upper	limit	of	the	maximum	relative	error	remains	at	2%.	
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Figure	3:	Histogram	of	relative	error	for	the	Taylor-Green	vortex	evolution	compressed	with	the	WBC	

algorithm.	The	non-dimensional	times	t	=	2.5,	5,	7.5,	10,	12.5,	15,	17.5	and	20	are	shown	for	a	compression	
ratio	of	120:1.	

	
To	gain	insight	into	where	the	distortion	is	introduced	in	our	numerical	datasets,	
we	compressed,	suing	the	WBC	method,	 the	three	distinct	 time-steps	shown	in	
Figure	1	with	a	compression-ratio	of	120:1.	The	absolute	error	for	the	vorticity	
magnitude	was	evaluated	for	each	data	sample	and	normalized	with	the	dynamic	
range	 of	 the	 vorticity	 magnitude.	 Figure	 4	 shows	 the	 decompressed,	 non-
dimensional	 time-steps	t	=	0,	7.5	and	15.	 Isosurfaces	 for	 the	absolute	error	are	
used	to	indicate	regions	of	large,	compression	induced	distortion.	
	
Both	time-step	0	as	well	as	time-step	7.5	show	a	reasonably	well	reconstructed	
dataset	with	marginal	deviation	from	the	original	file.	This	can	be	attributed	to	the	
large	length-scale	present	in	the	dataset,	which	can	easily	be	decorrelated	by	the	
discrete	wavelet	transform.		
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Figure	4:	Visualization	of	the	compressed	Taylor-Green	vortex	test	case	on	a	2563	grid	for	a	compression	
ratio	of	120:1.	The	vorticity	magnitude	of	the	decaying	vortex	is	shown	from	top	left	to	bottom	left	for	the	
non-dimensional	times	t	=	0,	7.5,	15.	Volume	rendering	of	the	relative	error	is	used	to	indicate	regions																																

of	large,	compression-induced	distortion.	
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For	time-step	15	we	can	clearly	observe	areas	of	large,	absolute	errors	present	in	
regions	 defined	 by	 small	 scale	 vortex	 structures.	 These	 small-scale	 fluid-flow	
structures	 are	 synonymous	 with	 high-frequency	 information,	 which	 will	
accumulate	 in	 the	 high-frequency	 wavelet	 bands.	 This	 leads	 to	 a	 decrease	 in	
compression	performance	that	must	be	compensated	for	by	significant	truncation	
of	the	compressed	bit-stream,	increasing	the	local,	absolute	error.	
	
To	 analyze	 the	 amount	 of	 energy	 lost	 during	 the	 lossy	 compression	 stage,	 we	
compressed	the	time	series	of	the	Taylor-Green	vortex	test	case	with	the	WBC	and	
ZFP	algorithm	at	a	compression	ratio	of	120:1.	The	energy	dissipation	rate	was	
evaluated	for	each	time-step	and	plotted	against	the	energy	dissipation	rate	of	the	
original	 dataset.	 Figure	 5	 shows	 the	 evolution	 of	 the	 normalized	 energy	
dissipation	rate	for	the	original	and	uncompressed	files.	The	figure	shows	that	the	
WBC	algorithm	is	capable	of	retaining	most	of	the	energy	contained	in	the	original	
datasets	for	large	compression	ratios.	The	compression	stage	of	the	ZFP	algorithm,	
on	the	other	hand,	artificially	dissipates	large	portions	of	the	internal	energy	for	
high	compression	ratios.	This	behavior	can	be	attributed	to	the	fact	that	the	ZFP	
compressor	handles	rate	control	without	analyzing	and	selecting	the	bit-stream	
truncation	points	for	the	lowest	possible	field	distortion.	
	
	
	
	
	
	
	
	

Figure	5:	Comparison	of	normalized	energy	dissipation	rate	as	a	function	of	Taylor-Green	vortex	evolution	
at	different	compression	ratios	for	ZFP	and	WBC	compression	algorithms.	
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 Turbulent Flat-Plate Boundary Layer Flow 
In	 contrast	 to	 the	Taylor-Green	vortex	decay,	 boundary	 flows	are	defined	by	 a	
large	spectrum	of	length-scales	that	is	present	at	all	times	throughout	the	entire	
flow	field	domain.	The	effects	of	a	lossy	wavelet-based	compression	stage	on	such	
a	 wall	 bounded	 flow	 were	 evaluated	 using	 a	 direct	 numerical	 simulation	 of	 a	
turbulent	flat-plate	boundary	layer	flow	(TFBF)	at	Ma∞	=	0.3	(see	Figure	6).	The	
spatial	resolution	of	the	numerical	grid	was	set	to	nx	×	ny	×	nz	=	3300	×	240	×	512	
nodes	 in	 streamwise,	 wall-normal	 and	 spanwise	 directions,	 respectively.	 This	
amounts	to	a	file	size	of	16	GigaBytes	for	one	time-step	containing	the	conservative	
variables	ρ,	ρu,	ρv,	ρw	and	ρE.	
	

	

To	understand	the	effects	of	a	lossy	compression	stage	on	the	TFBF	test	case	we	
compressed	the	simulation	file	with	our	WBC	algorithm	at	a	compression	ratio	of	
150:1.	The	PSNR	amounted	to	127.3	db	for	an	average	compression	time	of	161	s.	
The	mean-velocity	profile	and	the	mean-velocity	profile	normalized	by	the	wall	
shear	velocity	uτ	were	evaluated	for	Reθ	=	2517	and	plotted	in	Figure	8	and	Figure	
7	respectively.	While	the	mean-velocity	profile	shows	good	reconstruction	with	
only	a	minor	deviation	from	the	original	simulation	file,	the	mean-velocity	profile	
normalized	by	the	wall	shear	velocity	uτ	exhibits	a	significant	discrepancy	in	the	
wake	region.	This	error	can	attributed	to	a	high	susceptibility	of	the	of	the	wall	
normal	derivative	of	the	velocity	vector	to	loss	of	information	in	wall	adjacent	cells.	
This	susceptibility	can	lead	to	a	noticeable	decrease	in	the	wall	sheer	stress	and,	
consequently,	the	friction	coefficient.		
	
The	 impact	of	high	 compression	ratios	on	vortex	detection	and	visualization	 is	
depicted	in	Figure	9.		The	figure	demonstrates	that	for	visualization	purposes,	the	
WBC	algorithm	is	capable	of	a	significant	reduction	in	the	overall	file	size	without	
introducing	any	noticeable	compression	artifacts.		
	

Figure	6:	Numerical	setup	for	the	simulation	of	a	turbulent	flat-plate	boundary	layer	flow	at	Ma∞	=0.3.	
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Figure	7:	Comparison	of	the	mean-velocity	profile	for	the	original	and	compressed	
DNS	of	a	turbulent	flat-plate	boundary	layer	flow	at	Reθ	=	2517	and	Ma∞	=0.3.	

Figure	8:	Comparison	of	the	mean-velocity	profile	normalized	by	wall	shear	velocity	
for	the	original	and	compressed	DNS	of	a	turbulent	flat-plate	boundary	layer	flow	at	

Reθ	=	2517	and	Ma∞	=0.3.	
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Figure	9:	Original	(a)	and	Compressed	(b)	DNS	of	a	turbulent	flat-plate	boundary	layer	
flow	at	Ma∞	=	0.3.	Flow	structures	identified	by	the	λ2	criterion	for	λ2	=	−0.15.	Coloring	of	

isosurfaces	according	to	wall	normal	distance	y	[15].	
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 Jet in Crossflow 
	
As	 a	 final	 test,	 the	 jet-in-crossflow	 test-case	 was	 used	 to	 evaluate	 how	 our	
compressor	would	fare	on	a	dataset	that	is	subdivided	into	zones	of	differing	fluid	
flow	activity	in	a	well	understood	geometry.	The	numerical	simulation	was	carried	
out	at	Ma∞	=	0.25	 for	a	 jet-to-crossflow	ratio	of	3.	The	 simulation	 file	was	949	
MegaBytes	bytes	in	size,	containing	the	conservative	variables	ρ,	ρu,	ρv,	ρw	and	ρE	
on	a	nx	×	ny	×	nz	=	360	×	800	×	256	numerical	grid	[9].	
	
Figure	10	shows	a	close-up	of	the	original	(top)	and	compressed	(bottom)	DNS	for	
a	jet	in	crossflow	at	Ma	∞	=	0.25	and	a	jet-to-crossflow	ratio	of	3.	The	compression	
ratio	 measured	 302:1	 with	 a	 PSNR	 of	 193.4.	 The	 average	 compression	 time	
amounted	to	20	s.		The	compressed	dataset	exhibits	excellent		reconstruction	with	
maximum	error	of	1%.	

	
	

	

Figure	10:	Original	(a)	and	Compressed	(b)	DNS	of	a	jet	in	crossflow	at	Ma∞	=	0.25	for	jet-to-
crossflow	ratio	of	3.	Flow	structures	identified	by	non-dimensional,	streamwise	impulse	=	

0.92.	Coloring	of	isosurface	according	to	wall	normal	distance	y.	
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2.2 Adaptive Mesh Refinement 

 Pre-conditioners for nonconforming SEM solver 
A	major	source	of	stiffness	for	incompressible	flow	is	a	pressure	operator	making	
the	 pressure	 calculation	 the	most	 expensive	 part	 of	 a	 simulation.	 That	 is	 why	
proper	pre-conditioning	of	this	problem	has	received	much	attention	in	the	last	
decades	and	a	number	of	approaches	were	proposed.	Spectral	Element	Method	
(SEM)	solver	Nek5000	uses	two	possible	pre-conditioners	based	on	an	additive	
overlapping	Schwarz	method	[12][13],	and	a	hybrid	Schwarz-multigrid	method	
[14][15].	In	WP1	deliverables	D1.2	and	WP2	deliverables	D2.2	we	described	the	
additive	overlapping	Schwarz	approach	and	the	modifications	necessary	to	adapt	
this	 method	 for	 h-type	 Adaptive	 Mesh	 Refinement	 (AMR)	 framework.	 In	 this	
section	we	focus	on	the	second	alternative;	the	hybrid	Schwarz-multigrid	method.	
This	method	will	be	described	in	more	detail	in	WP1	deliverables	D1.3.	
	
Both	methods	share	number	of	features,	so	a	big	part	of	the	code	developed	for	
the	additive	overlapping	Schwarz	method	can	be	reused	for	its	hybrid	counterpart.	
The	first	method	could	be	considered	as	a	simplification	of	the	second	one,	as	it	
performs	 separately	 the	 Schwarz	 (local	 Poisson	 problems	 in	 overlapping	 sub-
domains)	and	the	global	coarse	grid	problems	and	finally	sums	both	contributions	
using	 relaxation	 coefficient.	 Alternatively,	 the	 hybrid	 pre-conditioner	 performs	
the	 whole	 multigrid	 V	 cycle	 with	 consecutive	 restriction	 and	 interpolation	
operators,	 and	 a	 coarse	 grid	 solver	 is	 executed	 only	 once	 after	 the	 whole	
coarsening	stage	is	finished.	At	each	multigrid	level	the	restriction	and	Schwarz	
operators	 are	 executed	 performing	 global	 communication	 however	 their	
nonconforming	 communication	 routines	 differ,	 as	 the	 first	 one	 is	 based	 on	
transposed	interpolation	operator	and	the	second	one	on	the	inverse	one.	Besides	
global	 communication	 we	 had	 to	 redefine	 the	 diagonal	 weight	 matrix	 that	
indicates	 the	 number	 of	 sub-domains	 sharing	 a	 given	 node	 and	 is	 used	 to	
accommodate	for	overlapping	regions.	Although	in	conforming	case	its	definition	
is	straightforward,	the	nonconforming	case	is	more	problematic	as	hanging	nodes	
are	not	real	degrees	of	freedom.	In	the	current	implementation	the	information	
about	 node	 multiplicity	 on	 the	 nonconforming	 faces	 is	 hidden	 to	 the	 parent	
element,	so	the	parent	element	sees	only	one	neighbor	instead	of	two	(four	in	3D).	
Although	this	choice	gives	pre-conditioner	that	significantly	reduces	number	of	
pressure	iterations,	its	performance	for	the	studied	cases	is	slightly	worse	than	
performance	of	the	additive	Schwarz	pre-conditioner.	This	can	be	caused	by	not-
optimal	value	of	the	weight	matrix,	or	by	the	fact	that	the	hybrid	pre-conditioner	
is	 superior	 over	 the	 additive	 one	 for	 high-aspect	 ratio	 elements,	 that	 are	 not	
present	in	our	adaptive	simulations.	In	the	future	we	are	going	to	investigate	other	
definitions	of	the	weight	matrix,	and	our	flagship	run	is	performed	with	additive	
overlapping	Schwarz	preconditioner.	
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 Introduction to AMR implementation 
Here,	we	describe	the	progress	made	in	implementing	adaptive	mesh	refinement	
(AMR)	in	the	co-design	application	Nek5000.	This	effort	is	closely	related	to	work-
package	1	task	1.1.	We	have	developed	a	fully	functional	nonconforming	solver	of	
the	incompressible	Navier-Stokes	equations	which	is	capable	of	dynamical	mesh	
modification	 at	 points	 during	 the	 simulation	 according	 to	 the	 estimated	
computational	 error.	 It	 allows	 running	 a	 fully	 adaptive	 3D	 simulation	 of	 the	
turbulent	flow	around	the	NACA	4412	wing	profile	at	Rec	=	200,000,	which	is	one	
of	ExaFLOW	flagship	runs.	Figure	11	presents	vortical	structures	of	the	velocity	
field	around	the	wing	and	Figure	12	presents	the	part	of	the	domain	covered	by	
refinement	 levels	 higher	 than	 3	 at	 simulation	 time	 2.6s.	 This	 simulation	 is	
discussed	in	detail	in	the	work-package	3	deliverables	relating	to	the	flagship	runs.	
	

	
Figure	11:	Vortical	structures	(λ2	criterion)	of	the	velocity	field	around	the	wing	in	the	flagship	simulation	

at	time	2.6s.	
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Figure	12:	The	part	of	the	domain	covered	by	refinement	levels	higher	than	3	at	simulation	time	2.6s.	

Since	project	month	18	many	2D	and	3D	tests	have	been	performed	and	many	
refinements	have	been	made	to	the	code	to	increase	speed	and	robustness.	The	
main	changes	are	detailed	below.	Apart	from	the	adaptation	of	a	hybrid	Schwarz-
multigrid	preconditioner	[14][15]	for	nonconforming	meshes,	which	is	described	
in	Section	2.2.1.	
	

 Residual projection 
The	adaptation	of	residual	projection	[16]	for	both	velocity	and	pressure	fields	for	
nonconforming	 meshes.	 To	 reduce	 the	 computational	 expense,	 Nek5000	 uses	
previous	solutions	as	a	projection	space	that	provides	a	proper	initial	guess	for	
the	iterative	solver	at	the	current	time	step.	It	requires	an	orthogonalization	step	
using	A-conjugate	projection	which	involves	action	of	the	Helmholtz	or	pressure	
operators	 on	 the	 given	 vector.	 This	 code	 has	 been	 upgraded	 to	 deal	 with	 the	
nonconforming	meshes	using	a	proper	version	of	the	operator	and	resetting	the	
projection	space	after	each	refinement	step.	This	technique	has	been	successfully	
applied	 to	 a	 number	 of	 test-cases	 including	 the	 flagship	 runs	 and	 we	 have	
observed	a	similar	reduction	in	the	iteration	count	for	both	the	conforming	and	
nonconforming	runs.	
	

 High-pass-filter based stabilization 
In	implementing	AMR	in	Nek5000	we	followed	the	previous	work	of	Fischer	at	all	
[17]	 concerning	 nonconforming	 SEM	 solvers	 and	 applied	 a	 conforming-
space/nonconforming-mesh	 approach.	 In	 this	 approach	 the	 functional	 space	 is	
continuous	 across	 nonconforming	 faces.	 This	 simplifies	 the	 implementation	 as	
mortar	elements	 can	be	 replaced	by	a	 simple	 interpolation	operator.	However,	
this	 simplification	 led	 to	 instability	 in	 the	 case	 where	 the	 lower-resolution	
element	 (parent)	 is	 located	 downstream	 with	 respect	 to	 the	 high-resolution	
region	(children).	In	this	case	the	advected	field	could	contain	more	information	
(a	greater	number	of	 smaller	 scale	 structures)	 than	can	 be	 represented	by	 the	
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parent	element.	However,	the	filed	values	at	the	interface	are	set	“upwind”	by	the	
low-resolution	parent.	This	makes	the	 interface	partially	reflective	and	 leads	to	
the	oscillations	which	are	visible	in	Figure	13	and	Figure	14.	

	
Figure	13:	Y	velocity	component	at	the	children-parent	interface	with	the	low-resolution	region	located	
downstream	in	2D	simulation	of	flow	around	NACA4412	wing.	This	shows	additional	element	borders.	

Oscillations	at	the	right	interface	of	the	children	element	caused	by	reflective	properties	of	the	interface	are	
visible.	

	
Figure	14:	Y	velocity	component	at	the	children-parent	interface	with	the	low-resolution	region	located	
downstream	in	2D	simulation	of	flow	around	NACA4412	wing.	Oscillations	at	the	right	interface	of	the	

children	element	caused	by	reflective	properties	of	the	interface	are	visible.	

	
In	most	cases	these	oscillations	remain	small	and	are	suppressed	by	AMR	itself,	as	
it	would	 take	 care	of	 the	unresolved	 regions.	However,	 in	 some	situations	 (e.g.	
user	overwriting	error	 indicator	marks	to	additionally	reduce	resolution	 in	not	
interesting	 regions)	 they	 can	 grow	 and	 even	 cause	 the	 simulation	 to	 crash.	 To	
avoid	such	a	situation,	we	add	a	stabilization	mechanism	partially	diffusing	in	the	
interface	vicinity	of	small	scale	 features	that	cannot	be	properly	represented	 in	
the	parent	element.	We	achieve	this	by	adding	a	high-pass	filter	to	the	forcing	term:	

𝑑𝑢
𝑑𝑡 = 𝐿(𝑢) − 𝜒 ∗ 𝑚(𝑟) ∗ 𝐻(𝑢),	

where	χ,	m(r)	and	H(u)	are	relaxation	coefficient,	masking	function	and	transfer	
function	removing	half	of	high	frequency	modes	respectively.	This	method	is	often	
used	 for	 simulation	 stabilization	 [18]	 however	 in	 our	 case	 masking	 function	
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restricts	forcing	to	the	interior	of	the	children	elements	touching	nonconforming	
faces	(Figure	15).	The	efficiency	of	this	method	depends	on	the	value	of	relaxation	
coefficient	and	setting	its	value	is	not	straightforward.	Too	low	a	value	of	χ	would	
make	the	filter	inefficient	and	on	the	other	hand	too	strong	a	forcing	could	remove	
important	flow	features.	Based	on	our	current	experience,	we	set	χ=0.5,	but	more	
investigation	of	this	problem	is	necessary.	Future	work	will	focus	on	removing	the	
assumption	of	a	conforming	functional	space	and	implementing	mortar	elements	
in	the	solver,	which	should	increase	stability.	

	

	
Figure	15:	Linear	masking	function	restricting	action	of	the	high-pass	filter	to	the	nonconforming	interfaces.	
Notice,	the	masking	function	forms	a	set	of	closed	loops	at	every	interface	between	different	refinement	
levels,	as	we	do	not	distinguish	between	local	inflow	and	outflow	conditions.	This	however,	does	not	

influence	significantly	the	solution,	as	the	flow	entering	high	resolution	region	does	not	contain	small	scale	
features	that	would	be	damped.	

 Modification to the Refine, transfer & coarsen strategy 
After	 every	 refinement	 step,	 elements	 are	 constructed/destroyed	 and	
redistributed	between	processors	to	keep	an	optimal	load	balance.	An	important	
limitation	of	Nek5000	is	the	exclusive	use	of	a	static	memory	allocation	that	sets	
maximum	number	of	elements	per	MPI	rank.	Although	in	most	cases	this	number	
is	sufficiently	high,	for	some	specific	mesh	partitioning	it	can	be	exceeded	by	the	
number	of	refined	elements	on	a	single	core.	This	limitation	was	not	significant	for	
initial	tests	(e.g.	2D	flow	around	NACA	4412	wing	profile)	but	it	became	critical	
for	3D	flagship	tests.	To	remove	this	constraint	we	have	refactored	the	algorithm.	
The	required	memory	can	now	be	limited	by	refining,	transferring	and	coarsening	
one	variable	at	a	time	and	by	performing	the	whole	operation	in	a	sufficiently	large	
memory	buffer.	
	

 Modifications to solver restart. 
The	multi-step	time	integration	scheme	applied	by	Nek5000	requires	information	
from	the	last	three	time-steps	to	perform	the	new	one.	To	minimize	computation,	
Nek5000	 utilizes	 additional	 arrays	 storing	 not	 only	 old	 velocity	 and	 pressure	
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fields,	 but	 also	 old	 right-hand	 sides	 of	 all	 linear	 problems.	 To	 retain	 time	
integration	order,	this	information	has	to	be	available	at	every	step	including	the	
beginning	 of	 the	 simulation	 and	 after	 each	 refinement	 step.	 Our	 initial	
implementation	performed	the	refinement/transfer/coarsening	operations	on	all	
right-hand	sides,	 even	 though	 they	 could	be	 recalculated	after	each	 refinement	
step.	This	approach	was	less	computationally	intensive	but	was	not	optimal	with	
respect	to	communication	and	could	not	be	used	during	simulation	restart	due	to	
the	volume	of	data	that	had	to	be	stored	on	the	disc.	Hence,	the	new	solver	restart	
procedure	 was	 developed	 which	 interpolates	 only	 the	 current	 and	 previous	
variable	 fields	and	recalculates	the	right-hand	sides	after	refinement.	The	same	
set	 of	 routines	 is	 used	 in	 the	 new	 simulation	 restart,	 which	 is	 significantly	
improved	with	respect	to	the	original	version.	Unlike	the	original	version	it	makes	
it	feasible	to	save	the	full	set	of	restart	data	in	a	single	time	step	and	to	recreate	
final	simulation	state	in	the	new	run.	
	
The	implementation	of	trip	forcing	for	nonconforming	meshes.	One	of	the	goals	of	
this	project	is	to	improve	efficiency	of	turbulent	flow	simulations.	In	many	such	
simulations	 turbulence	 has	 to	 be	 triggered	 by	 free-stream	 turbulence	 or	 some	
kind	of	forcing.	In	the	conforming	reference	case	of	our	flagship	run	the	tripping	
line	technique	[19]	was	used	to	start	 turbulence	and	we	 implemented	 it	 in	our	
AMR	code.	The	tripping	line	technique	applies	to	the	filed	a	forcing,	which	is	a	sum	
of	number	of	Fourier	mode	with	constant	amplitude	and	random	phases,	and	is	

later	 localized	with	use	of	Gaussian	profile𝑓(𝑟) = 𝑒12
3
45
6

.	Unfortunately,	 infinite	
support	 of	Gaussian	 profile	 and	 its	 relatively	 slow	decay	 led	 to	 discontinuities	
across	 interfaces	 of	 different	 refinement	 level,	 and	 we	 had	 to	 modify	 tripping	
formulation	replacing	Gaussian	profile	with	similar	function	with	limited	support:		

𝒇(𝒓) = 9:𝟏 − 2
𝒓
𝜹5

𝟐
>
𝟐

∗ 𝒆12
𝒓
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It	 allowed	us	 to	 force	 single	 refinement	 level	 across	 tripping	 region	 and	 avoid	
jumps.	Figure	16	shows	comparison	of	Gaussian	profile	and	the	function	used	in	
our	simulations.	
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Figure	16:	Gaussian	profile	(continuous)	and	a	function	used	for	localization	of	forcing	in	AMR	runs	

(dotted).	

 Implementation of additional checks for refined/coarsened regions. 
A	fully	dynamical	mesh	refinement	can	lead	to	very	complex	meshes	that	could	
potentially	 influence	 solver	 efficiency.	 By	 performing	 a	 careful	 investigation	 of	
such	potential	dependencies	of	our	solver	on	certain	meshes	over	a	number	of	
different	test-cases	and	mesh	structures	we	found	no	efficiency	degradation	in	2D	
runs	and	3D	 laminar	simulations.	However,	 in	the	case	of	3D	turbulent	runs,	 in	
which	the	flow	is	very	complex	and	the	code	tends	to	follow	very	small	structures	
constantly	refining	and	coarsening	given	region,	we	found	one	mesh	configuration	
that	 increased	significantly	pressure	 iteration	count.	 In	most	studied	 cases	 this	
configuration	 was	 generated	 at	 the	 coarsening	 stage,	 where	 small	 number	 of	
elements	with	higher	refinement	level	were	replaced	by	the	lower	resolution	ones	
creating	 narrow	 (single	 element	 width)	 gap	 in	 the	 high-resolution	 region	 and	
leaving	 at	 the	 same	 time	 single	 family	 (8	 children	 of	 single	 parent)	 of	 high	
resolution	element	attached	with	the	rest	of	high	resolution	region	by	edges	only.	
This	scenario	is	illustrated	in	Figure	17	and	Figure	18.	
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Figure	17:	Number	of	pressure	iterations	as	a	function	of	time	step	number.	The	plot	covers	two	refinement	

steps	taking	place	at	step	8700	and	9700.	

Figure	17	presents	the	number	of	pressure	iterations	as	a	function	of	time	step	
number	and	covers	two	refinement	steps	taking	place	at	steps	8700	and	9700.	The	
rapid	 increase	 in	 pressure	 iteration	 count	 between	 both	 refinement	 steps	 is	
clearly	visible.	Figure	18	shows	the	boundary	of	the	highest	resolution	region	at	
three	stages:	before	(top)	and	after	(middle)	first	refinement	at	step	8700	and	the	
final	mesh	(bottom)	after	second	refinement	at	step	9700.	Although	the	relation	
between	presence	of	the	single	high-resolution	family	of	elements	sticking	out	of	
the	 high	 resolution	 region	 and	 the	 jump	 in	 pressure	 iteration	 is	 clear,	 the	
mechanism	is	not	 fully	understood	yet.	That	 is	why	we	added	set	of	 additional	
global	refinement	and	coarsening	tests	excluding	this	particular	configuration.	
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Figure	18:	The	boundary	of	the	highest	resolution	region	at	three	stages:	before	(top)	and	after	(middle)	

first	refinement	at	step	8700	and	the	final	mesh	(bottom)	after	second	refinement	at	step	9700.	
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2.3 Impact of Preconditioners on Nektar++ Scaling: PETSc vs. Native Linear 
Solvers 

 Introduction 
The	purpose	of	this	study	is	to	evaluate	how	the	scaling	of	Nektar++	changes	when	
some	components	of	the	parallel	linear	algebra	are	replaced	by	third-party	library.	
Nektar++	discretizes	incompressible	Navier-Stokes	equations		
																																																										DE

DF
+ (𝑢 ∙ ∇)𝑢 = −∇𝑝 + K

LM
∇N𝑢,	

∇ ∙ 𝑢 = 0,	
by	a	velocity-correction	high-order	splitting	scheme	in	which	the	pressure	is	first	
solved	 as	 a	 Poisson	 problem	 and	 the	 velocity	 then	 adjusted	 to	 enforce	 the	
incompressibility	 constraint	 through	 a	 series	 of	 Helmholtz	 problems.	 The	
discretization	 of	 the	 Poisson	 problem	 in	massively	 parallel	 setting	 produces	 a	
linear	system	that	can’t	be	efficiently	solved	without	appropriate	preconditioner.	
We	will	therefore	concentrate	on	evaluating	the	preconditioners	for	the	prototype	
elliptic	problem	

∇N𝑢(𝑥) − 𝜆 ∙ 𝑢(𝑥) = 𝑓(𝑥),	
equipped	with	appropriate	initial	and	boundary	conditions.	

 Preconditioners 
Nektar++	implements	a	range	of	preconditioners	suitable	for	the	above	problem.	
For	large	problems	with	complex	flow	physics,	the	full	linear	space	preconditioner	
with	low	energy	block	is	usually	the	default	choice.	
	
The	preconditioner	exploits	 the	 idea	 that	writing	 the	discrete	 solution	𝑢R(𝑥)	in	
terms	of	a	suitable	polynomial	basis	(which	differs	from	the	original	expansion)	
can	 produce	 a	 discrete	 problem	 for	 which	 it	 is	 easier	 to	 find	 an	 efficient	
preconditioner.	 In	 the	 first	 step,	 static	 condensation	 (sub-structuring)	 is	
performed	 so	 that	 the	 task	 of	 solving	 the	 globally	 coupled	 linear	 system	 now	
requires	a	solution	of	a	Schur	complement	system	and	the	inverse	of	a	number	of	
relatively	small,	element-local	matrices.		
	
The	 Schur	 complement	 is	 moved	 into	 the	 new	 polynomial	 space	 by	 a	 matrix	
transformation	 that	 corresponds	 to	 a	 change	 of	 basis	 such	 that	 the	 coupling	
between	elemental	edge	and	node	modes	(in	3D)	and	face-interior	modes	 is	as	
weak	as	possible.	The	‘optimized’	basis	has	edge	modes	such	that	their	energy	in	
the	face	interiors	is	the	lowest	possible	for	given	polynomial	space.	Another	effect	
of	this	transformation	is	that	the	Schur	complement	matrix	can	now	be	efficiently	
approximated	by	considering	only	 its	block-diagonal	structure	(in	other	words,	
the	diagonal	terms	are	much	more	dominant).	
	
Finally,	 the	 low-energy	 Schur	 complement	 system	 is	 coupled	with	 an	 additive	
Schwarz	preconditioner	that	acts	on	the	‘coarse	space’	comprising	of	vertex	modes	
belonging	to	the	modified	basis.	It	is	the	coarse	system	that	we	attempted	to	solve	
with	algebraic	multigrid	(BoomerAMG)	available	through	the	PETSc	interface	in	
Nektar++	 as	 a	 drop-in	 replacement	 for	 XXT.	 A	 detailed	 description	 of	 the	
preconditioner	can	be	found	in	[188].	
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For	the	purpose	of	the	tests	presented	below,	we	considered	the	following	setup	
in	Nektar++	configuration	files:	
	
<PARAMETERS> 
    <P> TimeStep       = 1e-6    </P> 
    <P> NumSteps       = 520     </P> 
    <P> IO_InfoSteps   = 1       </P> 
    <P> wavefreq       = PI      </P> 
    <P> epsilon        = 1.0     </P> 
</PARAMETERS> 
 
<SOLVERINFO> 
    <I PROPERTY="EQTYPE"                VALUE="UnsteadyDiffusion"   /> 
    <I PROPERTY="Projection"            VALUE="Continuous"          /> 
    <I PROPERTY="AdvectionType"         VALUE="WeakDG"              /> 
    <I PROPERTY="DiffusionAdvancement"  VALUE="Implicit"            /> 
    <I PROPERTY="TimeIntegrationMethod" VALUE="DIRKOrder3"          /> 
    <I PROPERTY="GlobalSysSoln"         VALUE="IterativeStaticCond" /> 
    <I PROPERTY="Preconditioner"        
VALUE="FullLinearSpaceWithLowEnergyBlock"/> 
    <I PROPERTY="LinearPreconSolver"    VALUE="Xxt"                 /> 
</SOLVERINFO> 

	
When	using	algebraic	multigrid,	the	last	line		
<I PROPERTY="LinearPreconSolver"    VALUE="Xxt" /> 

Would	be	replaced	by	
<I PROPERTY="LinearPreconSolver"    VALUE=”PETSc" /> 

And	in	addition	to	that,	the	following	options	were	passed	to	PETSc:	
-ksp_type preonly –pc_type hypre –pc_hypre_type boomeramg –
pc_hypre_boomeramg_relax_type_all Jacobi	
	

 Intercostal pair results 
We	solved	the	unsteady	diffusion	problem	

𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 + 𝜆𝑢(𝑡, 𝑥) + ∇N𝑢(𝑡, 𝑥) = 𝑓(𝑥)	

on	an	unstructured	tessellation	of	an	intercostal	pair	as	shown	in	Figure	19.	The	
initial	condition	was	set	to:		

𝑢(𝑡 = 0, 𝑥) = sin(𝜋𝑥) ∙ sin(𝜋𝑦) ∙ sin(𝜋𝑧),	
and	Dirichlet	boundary	condition	u=0	was	imposed	everywhere	on	the	boundary.	
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Figure	19:	Intercostal	pair	geometry	meshed	with	P5	tetrahedral	elements.	

A	 typical	 governing	 PDE	 for	 this	 kind	 of	 geometry	 would	 be	 incompressible	
Navier-Stokes	equations.	We	intentionally	study	only	the	implicit	component	of	
the	fractional	step	solver	to	eliminate	the	influence	of	explicit	solvers	for	velocity	
components.	The	connectivity	inside	the	grid,	on	the	other	hand,	is	typical	for	large	
unstructured	meshes:	 one	mesh	 node	 can	 be	 shared	 by	 several	 elements	 that	
varies	in	different	parts	of	the	mesh	and	we	can’t	make	a-priori	assumptions	about	
the	communication	patterns.	
	
The	simulation	ran	for	520	time-steps	with	Δ𝑡 = 101\.	We	compared	the	CPU	time	
to	make	one-time	step	when	Nektar++	uses	a	parallel	conjugate	gradient	solver	to	
solve	a	statically	condensed	continuous	Galerkin	system	in	conjunction	with	

• A	low-energy	pre-conditioner	
• An	algebraic	multigrid	pre-conditioner	as	provided	by	the	Hypre	package	

through	PETSc	which	is	interfaced	with	the	MultiRegions	library	of	
Nektar++	

The	solution	was	computed	on	a	mesh	consisting	of	high-order	elements	with	a	
basis	of	polynomial	degrees	5	and	10,	respectively.	The	number	of	elements	 in	
both	cases	was	9,551.	
	
The	first	few	time-steps	in	Nektar++	are	typically	much	more	expensive	than	the	
rest	of	the	computation	due	to	additional	setup	costs.	For	this	reason,	the	resulting	
CPU	time	per	time-step	was	computed	as	an	average	for	iterations	20-520.	
	
Nektar++	with	the	low-energy	pre-conditioner	turned	out	to	be	more	efficient	in	
all	computed	cases.	With	 increasing	polynomial	degree,	 the	difference	between	
Nektar++	and	PETSc	quickly	decreases,	see	Figure	20	and	Figure	21.	Note	that	the	
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right-most	point	in	both	figures	corresponds	to	case	when	the	number	of	elements	
per	 core	 is	 approximately	 9-10	 and	 the	 cores	 are	 likely	 not	 sufficiently	work-
saturated.	

	
Figure	20:	Impact	of	linear	solvers	on	scaling	-	intercostal	geometry	on	tetrahedra	with	deg	=	5	

	
Figure	21:	Impact	of	linear	solvers	on	scaling	-	intercostal	geometry	on	tetrahedra	with	basis	of	polynomial	

degree	=	10.	
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 Aorta geometry results 
This	test-case	is	a	fully	tetrahedral	geometry	with	150,302	elements.	We	solved	
the	same	problem	as	defined	in	the	previous	section	and	again	studied	the	effect	
of	 replacing	 XXT	 in	 the	 coarse-solve	 stage	 in	 the	 preconditioner	 by	 algebraic	
multigrid	solver	available	through	PETSc.	

	
Figure	22:	Aorta	geometry	-	complete	mesh	and	detailed	views.	P1	mesh	is	shown	in	the	figure	but	elements	

with	polynomial	degrees	5	and	10	were	considered	for	scaling	tests.	

	
Figure	23:	Impact	of	linear	solvers	on	scaling	-	aorta	geometry	on	tetrahedra	with	basis	of	polynomial	

degree	=	5.	
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 Conclusion 
It	was	 initially	 expected	 that	 the	AMG	solver	would	have	 a	 positive	 or	 at	 least	
neutral	effect	on	performance,	i.e.	the	timings	should	not	be	significantly	worse,	
especially	for	larger	core	counts.	After	analysing	the	log	files	produced	by	PETSc	
and	discussion	with	developers	from	Argonne	National	Laboratory	[189]	it	was	
deduced	 that	 the	 performance	 of	 PETSc	 solvers	 suffers	 due	 to	 unsuitable	
partitioning	 of	 degrees	 of	 freedom	 among	 processors.	 The	 distributed	 sparse	
matrix	storage	format	of	PETSc	(known	as	‘aij’	in	PETSc	terminology)	expects	the	
solver	 to	 distribute	 complete	 rows	 of	 the	 matrix	 on	 different	 cores.	 This	 is	
unfortunately	not	compatible	with	the	partitioning	strategies	of	Nektar++	which	
are	based	on	weighting	the	boundary	(surface)	degrees	of	freedom	of	each	mesh	
element.	As	a	 result,	 the	number	of	 conjugate	 gradient	 iterations	 in	 the	 coarse	
preconditioner	solve	and	residual	magnitudes	were	consistent	between	Nektar++	
and	PETSc,	with	PETSc	AMG	timing	being	one	order	of	magnitude	worse	than	XXT.	
The	following	is	an	excerpt	from	log	files	generated	when	running	on	the	aorta	
geometry	with	fifth-order	tetrahedral	elements:	
XXT: 
CG iterations made = 9 using tolerance of 1e-09 (error = 7.0867e-10, rhs_mag 
= 291034) 
CG iterations made = 8 using tolerance of 1e-09 (error = 8.56456e-10, 
rhs_mag = 291028) 
CG iterations made = 8 using tolerance of 1e-09 (error = 8.79147e-10, 
rhs_mag = 291022) 
Steps: 520      Time: 0.00052      CPU Time: 0.0432795s 
 
BoomerAMG	+	PETSc:	
CG iterations made = 10 using tolerance of 1e-09 (error = 8.79726e-10, 
rhs_mag = 291034)  
CG iterations made = 10 using tolerance of 1e-09 (error = 5.78063e-10, 
rhs_mag = 291028)  
CG iterations made = 9 using tolerance of 1e-09 (error = 9.80485e-10, 
rhs_mag = 291022)  
Steps: 520      Time: 0.00052      CPU Time: 0.284557s 
 

Note	that	in	the	above	listing,	‘Steps’	refers	to	the	number	of	time	iterations	(we	
used	3-stage	diagonally	implicit	Runge-Kutta	scheme),	‘Time’	is	physical	time	and	
‘CPU	time’	refers	to	the	time	spent	in	all	three	stages	of	the	RK	time	stepper.	
	
The	pursuit	of	AMG	as	alternative	 coarse-level	 solver	 in	 the	 full	block	diagonal	
preconditioner	as	PETSc	is	in	our	opinion	still	worthwhile	but	making	PETSc	more	
competitive	with	 the	 native	 linear	 algebra	 of	 Nektar++	will	 require	 additional	
design	effort.	
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2.4 Algebraic Multi-Grid 
As	mentioned	 in	D2.2,	 the	key	 to	 the	efficient	 resolution	of	 the	 incompressible	
Navier-Stokes	 equations	 is	 the	 pre-conditioning	 of	 the	 pressure	 equation.	 In	
Nek5000,	 the	pre-conditioning	 strategy	 is	 split	 into	 local	 subdomain	 operators	
and	a	global	coarse	grid	solver.	This	coarse	problem	can	currently	be	solved	using	
either	 a	 sparse	 basis	 projection	 method,	 called	 XXT,	 or	 an	 in-house	 algebraic	
multigrid	(AMG)	solver,	which	is	preferred	for	massively	parallel	(more	than	1e4	
processes)	large	simulations	(more	than	1e5	elements).		Given	the	expected	size	
of	 the	 simulations	 at	 exascale,	 the	 AMG	 option	 will	 be	 the	 only	 viable	 choice.	
However,	 the	 current	 in-house	 AMG	 solver,	 while	 highly	 parallel	 and	 efficient,	
requires	a	slow	setup	phase,	done	once	for	each	mesh	and	performed	by	an	off-
line	code.	Two	serial	alternatives	for	the	setup	have	been	presented	in	D2.2.	In	the	
framework	of	AMR	and	mesh	adaption,	such	a	constraint	is	highly	unpractical	and	
only	the	XXT	solver	has	been	used	so	far	as	a	consequence,	despite	lengthy	setup	
times	 and	 lower	 performance	 for	 large	 runs.	 Therefore,	 recent	 developments	
aiming	at	 integrating	both	the	setup	and	the	solver,	 in	parallel,	 inside	Nek5000	
have	been	investigated	and	are	presented.	
	
The	 latest	work	done	on	 the	 coarse	grid	 solver	was	 to	 fully	 include	 the	Hypre	
library	 for	 linear	algebra	[20]	 in	Nek5000.	This	external	 library	 is	now	used	to	
perform	both	the	AMG	setup	and	solver,	on-the-fly	and	in	parallel.	In	practice,	this	
means	that	the	simulation	should	not	be	stopped	and	restarted	after	each	mesh	
adaptation	and	that	the	Hypre	AMG	solver	now	replaces	the	original	in-house	one.		
	
This	 is	 achieved	 with	 little	 modification	 to	 the	 existing	 code.	 First,	 the	 node	
numbering	 of	 the	 coarse	 grid	 problem	needs	 to	 be	modified	 to	match	Hypre’s	
requirement.	This	is	done	by	simply	building	a	mapping	between	both	numbering.	
Second,	the	construction	of	the	global	coarse	grid	operator	requires	the	transfer	
of	some	local	data	between	processes.	This	is	readily	done	using	MPI	commands	
and	the	crystal	router	present	in	Nek5000.	Following	these	two	steps,	the	coarse	
grid	operator	is	built	in	the	form	of	a	parallelly	distributed	Hypre	matrix	and	the	
AMG	setup	is	performed	on	that	matrix.	Several	different	methods	are	available	
within	 Hypre	 for	 the	 three	 parts	 of	 the	 setup:	 coarsening,	 interpolation	 and	
smoothing.	While	many	of	 the	options	give	acceptable	or	good	results,	 the	best	
combination	determined	so	far	is	to	use:	PMIS-coarsening,	an	extended	“classical”	
interpolation	and	a	symmetric	hybrid	Gauss-Seidel	relaxation	scheme	(see	Hypre	
user’s	manual	for	more	details	[20]).	
	
The	resolution	of	the	coarse	grid	problem	using	Hypre	is	straightforward	given	
the	setup	data,	the	mapping	between	the	two	node	numberings	and	a	proper	right-
hand	side	to	the	problem.	
	
The	full	use	of	Hypre	for	the	coarse	grid	solver	is	first	tested	on	a	conforming	mesh.	
The	test	case	is	the	flow	inside	a	turbulent	straight	pipe	at	𝑅𝑒^ = 550.	The	mesh	is	
made	of	about	850,000	spectral	elements	and	the	simulation	is	run	on	2048,	4096	
and	8192	processes	on	Beskow,	the	Cray	XC40	supercomputer	at	KTH.	Results	for	
the	setup	are	presented	in	Table	2.	As	a	comparison,	the	setup	time	for	the	XXT	
solver	is	shown	for	2048	processors.	It	is	observed	that	the	setup,	performed	only	
once	per	mesh,	does	not	scale.	However,	the	AMG	setup	with	Hypre	is	still	faster	
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by	more	than	two	orders	of	magnitude	compared	to	XXT.	As	a	side	note,	the	setup	
time	 for	 the	 original	 in-house	 AMG	 solver,	 done	 by	 a	 serial	 code	 is	 about	 100	
seconds.	
	

Table	2:	Setup	time	in	seconds	for	the	flow	in	a	straight	pipe.	

PROC.	NUMBER	 HYPRE	AMG	 XXT	
2048	 1.7198	 449.97	
4096	 2.1463	 -	
8192	 2.8781	 -	

	
Solver	times	for	the	in-house	AMG,	Hypre	AMG	and	XXT	are	shown	for	the	same	
test	case	in	Table	2.	The	results	are	an	average	over	50	timesteps	and	are	obtained	
for	the	same	node	allocation	for	a	given	number	of	processors.	Both	AMG	solvers	
perform	equally	well,	while	XXT	is	about	one	order	of	magnitude	slower	on	2048	
processors.	 The	 performance	 of	 XXT	 being	 expected	 to	 degrade	 even	more	 for	
larger	 simulations,	 the	 use	 of	 AMG	 is	 very	 much	 preferred	 in	 those	 cases.	
Furthermore,	the	results	show	that	there	is	no	penalty	in	switching	from	the	in-
house	to	the	Hypre	AMG.	
	
	
	

Table	3:	Time	per	timestep	spent	for	the	coarse	grid	solver,	in	seconds,	for	the	flow	in	a	straight	pipe.	

PROC.	NUMBER	 IN-HOUSE	AMG	 HYPRE	AMG	 XXT	
2048	 6.667 × 101N	 6.679 × 101N	 83.30 × 101N	
4096	 4.532 × 101N	 4.010 × 101N	 -	
8192	 8.107 × 101N	 6.393 × 101N	 -	

	
	
Tests	on	2D	nonconforming	meshes	show	a	similar	good	behavior.		Tests	on	large	
3D	nonconforming	simulations	are	being	investigated.	As	soon	as	the	use	of	the	
Hypre	AMG	is	validated	for	these	simulations,	it	will	become	the	default	method	
for	the	coarse	grid	solver.	
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2.5 Performance of minimally intrusive fault tolerance mechanism 
A	prototype	implementation	of	this	algorithm,	as	detailed	in	section	5.1	of	D1.3	
has	been	developed	in	Nektar++.	Nektar++	is	heavily	object-oriented	and	much	of	
the	static	data	is	encapsulated	within	classes	and	other	rich	data	structures.	
	
Code	was	added	to	perform	the	message	logging,	message	replay	and	exchange	of	
static-and	dynamic-data	 remote	 in-memory	checkpoints	 to	affect	 the	 resilience	
capabilities	 described	 in	 D1.3.	 Command-line	 parameters	 enable	 the	 user	 to	
specify	the	number	of	spare	processes,	S	to	be	reserved	dynamically	at	run-time	
from	the	total	of	N	ranks	requested	and	the	rank	offset	k	to	be	used	for	storing	
state	 preservation	data.	 The	 last	 S	 ranks	 are,	 by	 default,	 assigned	 to	 be	 spares	
while	the	first	W	=	N	-	S	ranks	are	allocated	as	workers.	Each	worker	rank	r	sends	
state	preservation	data	to	rank	(r	+	k)	mod	W,	where	0	<	k	<	W	is	the	stride.	The	
value	of	k	can	be	set	to	the	number	of	ranks	on	a	node	or	chassis,	to	improve	the	
resilience	 based	 on	 specific	 cluster	 configuration.	 Rank	 r	 also	 receives	 state	
preservation	data	from	rank	(r	+W	-	k)	mod	W.	
	
Performance	 is	 analysed	using	 the	 solver	 for	 the	 incompressible	Navier-Stokes	
equations.	The	specific	test	problem	we	consider	is	laminar	flow	in	a	rectangular	
duct	of	height	D,	streamwise	length	20D	and	of	width	10D.	This	is	an	intentionally	
trivial	problem	designed	to	demonstrate	the	effectiveness	and	scalability	of	 the	
resilience	algorithm	under	a	relatively	non-intensive	computational	load.	
	
The	test	system	used	is	an	SGI	ICE	XA	system	with	10,080	cores.	Each	of	the	280	
nodes	are	equipped	with	dual	2.1Ghz,	18-core	Intel	Xeon	processors	with	hyper-
threading	 enabled	 and	 256GB	 RAM.	 All	 nodes	 are	 connected	 using	 a	 single	
Infiniband	 fabric	 and	 share	 a	 common	 Lustre	 parallel	 filesystem.	 Tests	 are	
performed	across	a	range	of	working	process	counts,	spanning	two	nodes,	up	to	
sixty-four	 nodes,	 or	 NPmax=2304	 processes.	 One	 process	 was	 assigned	 per	
hardware	core	(up	to	36	per	node)	and	MPI	bind-to-core	was	used	to	reduce	the	
effects	 of	 inter-socket	 memory	 bandwidth	 contention	 and	 lower-level	 cache	
thrashing.	For	all	fault	tolerance	tests,	an	additional	node	was	allocated	to	ensure	
the	number	of	working	processes	remained	the	same	and	the	offset	value	was	set	
at	k	=	36	to	ensure	state	preservation	data	was	stored	on	a	different	node.	
	
Remote	 in-memory	checkpoint	 time	 for	 the	dynamic	data	was	measured	on	all	
processes.	 Figure	 24	 (solid	 line)	 shows	 strong	 scaling	 results	 of	measured	 in-
memory	checkpoint	 time,	as	a	 function	of	 the	number	of	processes.	Checkpoint	
time	monotonically	decreases	with	 increasing	parallelism,	due	 to	 reduced	data	
volume	per	process,	with	little	sign	of	saturation	up	to	the	limit	of	the	available	
cores.	In	contrast,	disk	checkpointing	(dashed	line	in	Figure	24)	saturates	around	
288	cores	and	increases	for	larger	core	counts.	Above	2k	cores,	disk	checkpoint	
time	is	approximately	two	orders	of	magnitude	greater	than	remote	in-memory	
check-pointing.	As	a	point	of	comparison,	we	also	show	the	execution	time	per	
time-step,	 measured	 as	 the	 wall-time	 of	 advancing	 the	 PDE	 by	 one	 time-step	
without	any	form	of	checkpointing.	
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Figure	24:	Remote	in-memory	dynamic	data	checkpointing	time	for	test	problem	(solid	line),	compared	
with	disk	checkpointing	(dashed	line).	For	comparison	the	execution	time	per	time-step,	without	any	form	

of	checkpointing,	is	shown	(dotted	line).	

	
	
Figure	25	shows	the	time	taken	to	recover	following	a	process	failure,	as	a	function	
of	the	number	of	cores.	Reconstruction	(solid	line)	includes	the	communication	of	
the	state	preservation	data,	reinitialisation	of	MPI	communicators	and	execution	
of	 the	 initialisation	phase	of	 the	application	 code	 to	 regenerate	 the	 static	data.	
During	initialisation,	MPI	operations	use	the	result	from	the	message	log	rather	
than	 performing	 actual	 communication	 and	 therefore	 the	 process	 recovers	
completely	 independently.	This	part	of	 the	algorithm	scales	well	and	takes	 less	
than	half	a	second	at	NPmax.	Since	MPI	communication	during	the	initialization	of	
the	gather-scatter	external	library	objects	could	not	be	logged	by	the	prototype	
implementation	in	Nektar++,	these	are	reinitialised	exactly	as	for	the	normal	start-
up	and	shown	separately	(dashed	line)	 in	Figure	25.	Until	such	communication	
can	be	included	in	the	message	log,	this	is	the	dominant	cost	of	recovery	at	larger	
core	counts.	
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Figure	25:	Recovery	time	as	a	function	of	number	of	processes,	broken	down	into	the	time	to	repair	

communication	and	regenerate	static	data	and,	separately,	the	time	taken	to	reinitialize	the	external	gather-
scatter	library.	Time	for	initial	simulation	start-up	is	shown	for	comparison,	both	for	the	original	and	fault-

tolerant	versions	of	the	code.	

	
	



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 41	

	
Figure	26:	(a)	Per-process	memory	usage	as	a	function	of	number	of	processes.	(b)	Percentage	size	of	static	

data	backup	vs	full	backup.	

	
As	 a	 point	 of	 reference,	 we	 also	 show	 in	 Figure	 25	 the	 start-up	 time	 for	 the	
simulation	 using	 both	 the	 fault-tolerant	 implementation	 and	 the	 original	
unmodified	version.	The	overhead	of	message-logging	and	the	exchange	of	state	
preservation	data	can	be	seen	to	have	limited	impact	on	the	start-up	performance.	
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Figure	 26(a)	 shows	 a	 breakdown	 of	 per-process	memory	 usage	 for	 the	major	
components	of	the	fault-tolerant	simulation	code.	Static	data	refers	primarily	to	
the	 matrix	 operators	 and	 element	 mappings	 which	 are	 constructed	 during	
initialisation	of	the	solver	and	remain	unchanged	throughout	the	time-integration	
phase.	 This	 is	 the	 most	 significant	 component	 of	 the	 solver	 memory	 usage,	
particularly	for	lower	core	counts.	At	higher	core	counts,	this	quantity	begins	to	
saturate	 due	 to	 the	 emerging	 dominance	 of	 data	 structures	 whose	 size	 is	
independent	 of	 the	 sub-problem	 size	 being	 tackled	 by	 that	 process.	 The	 static	
backup	component	is	the	memory	occupied	(and	subsequently	transferred	over	
the	 network)	 in	 providing	 resilience	 for	 the	 static	 data	 on	 a	 partner	 process.	
Specifically,	this	comprises	the	message	logs	from	all	MPI	communications	which	
were	undertaken	during	the	initialisation	phase	of	the	originating	process.	This	
decreases	steadily	with	process	count	up	to	the	limit	of	the	number	of	available	
cores.	In	particular,	for	higher	core	counts,	this	quantity	continues	decreasing.	The	
relative	 magnitude	 of	 the	 static	 backup	 size	 to	 the	 original	 static	 data	 size	 is	
presented	in	Figure	26(b)	as	a	percentage.	The	difference	in	storage	requirements	
drops	considerably	at	higher	core-counts	and	is	approximately	6%	at	NPmax.	The	
dynamic	backup	component	represents	the	memory	occupied	by	the	copy	of	the	
solution	vectors	which	are	being	advanced	in	time;	therefore,	this	data	changes	at	
each	timestep.	
	
Since	this	is	only	vector	data,	the	size	is	over	two	orders	of	magnitude	smaller	than	
the	size	of	the	static	backup.	The	cost	of	storing	the	process's	dynamic	data	and	
the	backup	of	 a	partner	process's	dynamic	data	backup	 is	 approximately	equal	
since,	in	the	current	implementation,	no	compression	or	erasure	codes	are	applied	
to	the	checkpointing	process	and	the	work	is	equally	distributed.	
	
Finally,	 the	other	data	component	relates	 to	 the	memory	occupied	by	code	and	
MPI	initialisation.	The	latter	increases	with	increasing	core	counts	and	becomes	
one	of	the	dominant	memory	costs	for	the	largest	core	counts.	
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2.6 Llama: A new library for Multilevel Checkpointing 
Modern	 petascale	 machines	 experience	 node-failures	 on	 a	 regular,	 sometimes	
daily,	basis	[105][134].	Having	to	restart	a	job	from	scratch	is	a	waste	of	energy,	
computational	resources,	and	of	the	time	of	the	domain	scientists	using	numerical	
methods	as	part	of	their	research.	
	
In	order	to	make	numerical	algorithms	scale	to	the	full	size	of	large	machines,	the	
de	facto	standard	for	fault-tolerance	is	to	have	applications	periodically	write	all	
essential	data,	required	for	a	restart,	to	safe	storage	on	a	parallel	file	system	[118].	
In	the	event	of	failure	of	one	or	more	nodes,	the	job	may	simply	be	rescheduled	
and	restarted	from	the	nearest	checkpoint	rather	than	from	the	beginning.	
	
Periodically	creating	checkpoints	on	the	parallel	file	system	serves	to	mitigate	the	
impact	of	failures	on	time	and	resources.	The	approach	has	served	the	community	
well	 for	many	years	but	 is	 emerging	as	a	bottleneck	 for	 the	efficient	 scaling	of	
algorithms	on	new	machines.	For	many	years,	the	speed	of	parallel	file	systems	
has	been	unable	to	keep	up	with	the	increase	in	compute	power	and	memory	of	
new	 generations	 of	 supercomputers.	 Time	 spent	 by	 compute	 nodes	 on	writing	
data	to	safe	storage	is	time	not	spent	computing.	The	impact	on	parallel	efficiency	
is	 application	 dependent,	 but	 as	 much	 as	 10	 to	 20	 percent	 overhead	 due	 to	
checkpointing	 is	 not	 uncommon	 [132].	 In	 recent	 years,	 new	 approaches	
advocating,	local	recovery	for	local	failures,	has	started	to	appear,	challenging	the	
notion	 that	 compute	 jobs,	 spanning	 hundreds	 or	 thousands	 of	 nodes,	 must	
terminate	and	restart	in	the	case	of	failure	of	a	single	node.	The	new	approach	is	
necessary	to	facilitate	scaling	to	big	machines	of	upwards	50.000	nodes	such	as	
the	 planned	 exascale	 machine	 Aurora	 to	 be	 built	 at	 the	 Argonne	 Leadership	
Computing	Facility[80].	Even	if	the	mean	time	between	failures	(MTBF)	of	a	node	
is	 a	decade,	 the	machine	 could	experience	10+	node	 failures	per	day.	 Statistics	
compiled	over	years	of	supercomputing	usage	has	shown	that	the	majority	of	the	
failure	 incidents	 involve	 just	 a	 single	 node,	 or	 some	 small	 subset	 of	 nodes,	
depending	on	a	shared	set	of	resources.	This	knowledge	may	be	used	to	design	
scalable	methods	to	protect	the	data	needed	to	rewind	an	application.	
	
In	 the	 context	 of	 checkpointing,	 there	 are	many	 possible	ways	 to	 protect	 data	
locally,	or	near	 locally.	A	simple	approach	 is	 to	assign	every	rank	with	a	buddy	
rank,	the	two	may	then	be	made	to	exchange	critical	data	and	keep	it	locally	in-
memory.	Upon	a	failure,	so	long	that	no	two	buddies	have	failed	collectively,	data	
at	the	last	point	of	exchange	may	be	recovered	and	used	for	an	application	restart.	
Such	 lightweight	 local	 checkpoints	may	only	 recover	 from	 a	 subset	 of	 possible	
failure	 patterns,	 and	 it	 has	 therefore	 been	 proposed	 to	 use	 lightweight	
checkpoints	 as	 a	 complement	 to	 parallel	 file	 system	 checkpoints	 for	 increased	
efficiency	 and	 scalability.	 Protecting	 data	 locally	 is	 crucial	 for	 scalability	 as	 it	
allows	 to	 circumvent	 the	 bottleneck	 of	 the	 parallel	 file	 system.	When	 compute	
nodes	use	local	storage	or	memory,	the	bandwidth	for	protecting	data	increases	
linearly	 with	 the	 number	 of	 nodes	 which	 serves	 to	 avoid	 limiting	 network	
congestion.	Several	libraries	for	using	lightweight	checkpoints,	both	experimental	
and	 for	 production	 purposes,	 has	 been	 developed	 or	 is	 currently	 under	
development.	 Approaches	 of	 the	 different	 libraries	 under	 development	 is	
discussed	in	Section	2.6.1.	
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In	this	section,	a	new	Library	that	has	been	developed,	called	Llama,	is	presented.	
In	 Switzerland,	 llamas	 are	 used	 as	 guards	 to	 protect	 flocks	 of	 sheep	 against	
predators,	lonely	or	few	in	numbers.	The	Llama	library	uses	layers	of	lightweight	
checkpoints	 to	 guard	 a	 cluster	 of	 nodes	 against	 failures,	 being	 particularly	
effective	against	local	failures	of	limited	scope.	Hence	the	name.	
	
Llama	is	built	on	top	of	ULFM-MPI,	Jerasure	and	GF-Complete	and	allows	for	fast	
and	scalable	fault-tolerance	in	time-stepping	MPI	applications	through	multi-level	
checkpointing.	 A	 range	of	 checkpoint	 types	 are	 supported,	 from	 strong	 to-disk	
checkpoints	 to	 light-weight	 in-memory	checksum-checkpoints	with	group-local	
parallel	encoding	and	decoding	for	maximum	scalability.	Light-weight	checksum-
checkpoints	rely	on	parallel	Reed-Solomon	encoding	and	decoding.	The	 library,	
unlike	 any	 other	 available,	 supports	 the	 usage	 of	 an	 arbitrary	 number	 of	
checkpoint	 types	of	arbitrary	group	and	parity	size	so	that	checkpoints	may	be	
targeted	to	protect	against	single	node	or	multiple	node	failures.	It	may	also	be	
used	to	provide	protection	of	specific	system-resources	shared	by	multiple	units,	
e.g.	power	supplies	and	network	equipment	or	potentially	entire	racks.	
	
The	aim	of	the	library	is	to	provide	a	simple	and	easy-to-use	interface	for	enabling	
applications	to	recover	and	rewind	automatically,	without	restart,	and	continue	in	
the	face	of	single	and	multi-node	failures.	The	library	interface	and	basic	usage,	
along	 with	 numerical	 experiments	 demonstrating	 the	 speed	 of	 the	 library	
components,	is	presented	in	this	section.	The	goal	is	to	eventually	test	the	library	
for	 protecting	 applications	 written	 in	 Nektar++,	 an	 open-source	 software	
framework	 for	 high-performance	 scalable	 solvers	 for	 partial	 differential	
equations	using	the	spectral/hp	element	method	[100].	The	material	presented	in	
this	section	has	yet	to	be	submitted	for	publication.	

 Checkpoint-Restart for HPC Fault-Tolerance 
An	introduction	to	HPC	resilience	using	checkpointing	is	given	in	this	section	along	
with	 a	 review	 of	 libraries	 currently	 used,	 or	 under	 development.	 A	 brief	
introduction	to	User	Level	Failure	Mitigation	(ULFM)	MPI	is	presented	at	the	end.	
ULFM	 is	 a	 proposed	 extension	 to	 MPI,	 developed	 by	 the	 MPI	 Forum’s	 Fault	
Tolerance	Working	Group.	It	is	not	a	fault-tolerance	library,	rather	it	is	an	API	that	
allows	developers	to	implement	fault-tolerant	algorithms	in	MPI.	

2.6.1.1 Checkpointing for Resilience 
In	 current	 large-scale	 distributed	 memory	 applications,	 rudimentary	 fault	
tolerance	 is	 typically	 achieved	 by	 periodically	 synchronizing	 all	 nodes	 before	
writing	a	solution	state	to	a	checkpoint	file	as	first	demonstrated	in	[107].	These	
checkpoints	are	written	to	reliable	storage,	typically	in	the	form	of	a	parallel	file	
system.	Upon	failure,	an	application	may	restart	from	a	recent	state	by	reading	the	
checkpoint.	Synchronization	and	writing	of	large	files	to	the	parallel	file	system	
introduces	 an	 overhead,	 limiting	 parallel	 efficiency	 of	 applications.	 Several	
techniques	has	been	proposed	to	reduce	the	size	of	checkpoints	so	to	minimize	
the	impact.	Data	may	be	compressed	before	being	written	[109],	or	one	may	use	
an	incremental	checkpointing	approach	where	only	the	difference	between	two	
checkpoints	is	stored	[165][155],	or	combination	of	techniques	including	message	
logging[87][102].	 It	 has	 also	 been	 proposed	 to	 mitigate	 the	 impact	 of	 to-disk	
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checkpointing	by	decreasing	the	frequency	of	which	it	is	needed,	through	process	
replication.	By	running	the	same	application	on	2x	nodes,	the	probability	of	both	
failing	at	the	same	time	decreases	substantially,	which	translates	to	a	decrease	in	
the	optimal	checkpointing	frequency	[97][106][90].	
	
Diskless	checkpointing,	obtained	by	keeping	all	checkpoint	data	in-memory,	has	
been	recognized	early	on	as	one	way	of	 accelerating	checkpointing	[173][161].	
Data	may	be	distributed	in	such	a	way	that	if	just	a	small	set	of	nodes	fail,	it	may	
be	 recovered	 from	 the	 nodes	 unaffiliated	 with	 the	 failure	 incident.	 A	 simple	
approach	to	realize	this	is	by	simply	making	many	copies	of	the	data	to	protect	
and	distribute	the	copies.	This	approach,	however	fast,	is	problematic	due	to	the	
large	 memory	 overhead	 it	 incurs.	 One	 approach	 for	 minimizing	 the	 memory	
footprint	 of	 both	 to-disk	 and	 in-memory	 checkpoint	 types,	 is	 to	 use	 RAID	
techniques	or	Reed-Solomon	based	encoding	techniques	[159][133].	Creating	and	
storing	parity	codes	has	the	advantage	of	requiring	less	storage,	but	comes	at	the	
cost	of	needing	to	encode	data	to	protect	it,	and	decode	it	upon	recovery	as	well	
as	added	 implementation	complexity.	Parity	codes	may	be	stored	on	additional	
nodes,	or	may	be	distributed	equally	amongst	the	nodes	that	created	a	particular	
set	of	parity	codes.	
	
In	 [182],	 the	 case	was	made	 for	 using	 two-level	 distributed	 recovery	 schemes,	
combining	to-disk	and	in-memory	type	checkpoints.	Their	analysis	suggested	that	
a	two-level	system	could	be	substantially	more	efficient	as	compared	to	the	use	of	
only	a	single	level.	It	has	been	observed	that	most	hard	errors	only	effect	a	single	
node	 and	 when	 more	 nodes	 fail	 at	 the	 same	 time	 they	 typically	 do	 so	 in	 a	
predictable	manor,	i.e.	a	power	supply	unit,	serving	multiple	nodes,	fail.	Ideally,	a	
local	 failure	 should	permit	 local	 recovery.	Multi-level	 check-pointing	addresses	
this	problem	by	using	different	types	of	checkpoints,	each	of	which	have	their	own	
level	of	resilience	and	associated	cost.	Slower	and	more	resilient	levels,	such	as	
those	made	by	writing	data	to	the	parallel	file-system,	may	allow	for	recovery	from	
many	nodes	failures.	Cheaper	and	less	resilient	checkpoint	levels	may	be	utilizing	
node-local	storage	or	memory[187].	
	
The	multi-level	approach	has	received	increasing	attention	from	the	community	
in	recent	years.	Machines	are	now	becoming	so	big,	and	the	discrepancy	between	
compute	 capacity	 and	 speed	 of	 parallel	 file	 systems	 so	 large,	 that	 the	 use	 of	
multiple	levels	of	protection	is	no	longer	just	a	question	of	parallel	efficiency	and	
waste	of	resources.	It	is	speculated	that	at	exascale,	the	discrepancy	may	become	
so	 large	that	some	applications	will	be	unable	to	make	computational	progress	
when	scaled	to	the	full	size	of	the	machine,	being	trapped	in	a	never-ending	loop	
of	failure-recovery-restart	[175][118].	
	
Recently,	 the	 use	 of	 node	 local	 solid-state	 drives	 and	 emerging	 nonvolatile	
memory	 technologies	 has	 been	 investigated	 for	 possible	 use	 in	
checkpointing[132][117].	 Using	 local	 non-volatile	 storage	 allow	 for	 a	 fast-local	
approach	 to	 protect	 the	 data,	 as	 with	 standard	 random-access	 memory,	 but	
without	 the	 impact	 on	 memory	 consumption.	 In	 [103]	 it	 was	 suggested	 that	
checkpointing	 on	 node-local	 SSD	 drives	 might	 even	 be	 sufficient	 for	 exascale	
computation	on	certain	applications.	
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2.6.1.2 Frequency of Checkpointing 
A	 key	 thing	 to	 consider	 is	 the	 frequency	 with	 which	 to	 create	 checkpoints.	
Choosing	an	optimal	frequency	with	which	to	checkpoint	is	about	balancing	the	
trade-off	between	loosing	as	little	progress	as	possible	in	the	event	of	a	rollback,	
whilst	not	spending	too	much	time	on	checkpointing	too	often.	An	estimate	for	the	
optimal	length	of	the	time-interval	between	checkpoints	can	be	computed	using	
the	 formula	 derived	 by	 Young	 [186],	 which	 assumes	 that	 failures	 occur	 as	 a	
Poisson	process	with	failure	rate	𝜆	

𝜏lmnF = o2𝑇q𝑇r	

where	𝑇r = 1/𝜆	is	the	mean	time	between	failures	and	𝑇q	the	time	to	protect	data.	
A	higher	order	estimate	for	the	optimal	checkpoint	interval	was	derived	later	by	
Daly	[111]	under	the	same	assumptions	
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With	 regards	 to	 multi-level	 checkpointing	 schemes,	 recent	 studies	 has	
investigated	methods	of	optimal	selection	of	 the	number	of	 levels	 [91]	and	 the	
frequency	of	check-pointing	in	the	different	levels[116][115].	In	[176],	a	general	
theory	 for	 optimal	 checkpoint	 placement	 with	 arbitrary	 failure	 probability	
distribution	was	presented	and	[82]	demonstrated	how	a	checkpointing	strategy	
could	be	modified	if	some	form	of	online	fault-prediction	method	is	available.	
	
Different	checkpoint	types	may	have	different	energy	demands	and	the	optimal	
frequency	and	number	of	levels	in	terms	of	runtime	might	therefore	not	be	the	
same	 as	 the	 optimal	 frequency	 and	 the	 number	 of	 levels	 in	 terms	 of	 energy	
consumption,	 as	 has	 been	 demonstrated	 and	 explored	 in	 several	 papers	
[81][84][112].	In	most	clusters,	nodes	tend	to	share	certain	resources,	the	failure	
of	which	will	result	in	the	failure	of	all	nodes.	Different	such	components	are	likely	
to	 have	 different	 failure	 rates.	 Models	 to	 account	 for	 this	 was	 developed	 and	
presented	in	[83].	
	
Extensive	work	has	 been	 done	 to	 develop	 different	models,	 appropriate	 under	
different	 conditions,	 for	 choosing	 checkpoint	 levels	 and	 frequency	 of	 updating	
checkpoints	in	the	context	of	optimizing	both	runtime	and	energy.	One	thing	all	
models	have	in	common	is	that	they	need	estimates	of	mean	time	between	failure	
of	nodes	to	compute	the	optimal	 frequency	of	checkpointing.	The	sensitivity	 to	
poor	estimates	has	not	been	examined	as	extensively.	Studies	presented	in	[144],	
running	simulation	using	real	workload	data,	suggested	that	the	resulting	parallel	
efficiency	 of	 an	 application	 is	 not	 particularly	 sensitive	 to	 the	 accuracy	 of	 the	
estimates	used.	This	is	perhaps	not	surprising.	If	one	overestimates	the	failure	rate,	
this	will	result	in	too	much	time	spent	checkpointing,	but	in	turn	one	may	save	
extra	 time	 upon	 recovery	 and	 restart.	 Conversely,	 if	 the	 failure	 rate	 is	
underestimated,	an	application	will	spend	less	time	checkpointing.	It	appears	that	
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in	 practice,	 the	 parallel	 efficiency	 of	 a	 given	 application	 is	 fairly	 robust	 with	
respect	to	choosing	the	checkpointing	frequency.	

2.6.1.3 Libraries for Automatic Checkpoint-Restart 
Several	 libraries	 for	 fault-tolerance	 in	 HPC	 has	 been	 developed,	 or	 are	 in	 the	
process	of	being	developed,	for	both	experimental	and	production	purposes.	
	
One	of	the	earliest	examples	of	a	library	for	multi-level	checkpointing	is	from	2011,	
the	fault	tolerance	interface	(FTI).	In	FTI,	global	parallel-file-system	checkpoints	
is	 combined	with	 fast	 checkpoints	written	 to	node	 local	 storage	 in	 the	 form	of	
SSDs[89].	Along	with	the	checkpoint	copy	data,	Reed-Solomon	parity	code	blocks	
are	 computed	 and	 written	 so	 that	 an	 application	 may	 be	 restarted	 from	 the	
lightweight	 checkpoint	 even	 if	 some	 failures	 are	 non-transient,	 i.e.,	 if	 a	 node	
experienced	a	hard	failure	and	is	no	longer	available.	The	authors	demonstrated	
an	 eight	 percent	 checkpointing	 overhead	 on	 the	 TSUBAME2.0	 supercomputer	
while	running	at	over	0.1	petaflops	and	checkpointing	every	6	minutes.	FTI	source	
code	is	still	available	in	the	authors	git	repository	[88].	
	
Scalable	Checkpoint/Restart	(SCR)	is	another	library	for	checkpointing.	It	is	well	
tested	and	has	been	used	in	early	versions	in	production	code	at	LLNL	since	2009	
and	 is	 supported	 with	 a	 comprehensive	 manual	 [154].	 SCR	 uses	 a	 two-level	
checkpoint	 scheme.	 The	 more	 resilient	 level	 is	 a	 complete	 check-point	 to	 the	
parallel	 file	 system	 whereas	 the	 cheap,	 less	 resilient,	 checkpoint	 level	 is	
constructed	using	smaller	groups	of	processors	 that	 save	a	 check-point	 locally,	
either	 in-memory	 or	 on	 solid-state	 drives,	 whilst	 applying	 some	 redundancy	
scheme	 across	 the	 processors	 in	 the	 group.	 Two	 redundancy	 schemes	 are	
supported;	 a	partner/buddy	scheme	where	data	 copies	are	distributed,	 and	an	
XOR	model	where	parity	blocks	are	coded	in	groups	of	8	nodes	and	distributed	
evenly	within	 nodes	 in	 a	 group	 as	RAID5.	 The	 authors	of	 SCR	 find	 that	on	 the	
systems	at	LLNL,	roughly	85	percent	of	all	node	failures	may	be	recovered	using	
the	cheaper	 local	checkpoint[153].	SCR	may	be	used	 in	conjunction	with	ULFM	
MPI	trough	the	CRAFT	library	[171].	For	a	code	to	use	the	SCR	Library,	a	list	of	11	
criteria	must	be	satisfied.	Most	criteria	are	trivially	satisfied	by	many	applications,	
except	for	two:	
	

• The	code	must	take	globally-coordinated	checkpoints	written	primarily	as	
a	file	per	process.	

• On	some	systems,	checkpoints	are	cached	in	RAM	disk.	This	restricts	usage	
of	SCR	on	those	machines	to	applications	whose	memory	footprint	leaves	
sufficient	 room	 to	 store	 checkpoint	 file	 data	 in	memory	 simultaneously	
with	the	running	application.	
	

The	first	requirement	that	a	globally-coordinated	checkpoint	must	be	written	as	a	
file	per	MPI	rank,	this	may	be	a	limiting	factor	in	some	codes.	If	a	code	is	MPI	only,	
having	 a	 separate	 file	 for	 each	 process	 per	 checkpoint	will	 create	 a	 very	 large	
number	 of	 files	 which	 may	 conflict	 with	 file	 system	 quotas.	 The	 second	
requirement	 is	 a	 potentially	 limiting	 factor	 for	 applications	 that	 are	 memory	
bound.	Even	if	the	XOR	redundancy	scheme	is	used,	the	total	memory	footprint	of	
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the	application	will	increase	by	more	than	a	factor	of	two	if	solid-state	drives	are	
not	available.	
	
In	 addition	 to	 FTI	 and	 SCR,	 a	 library	 called	 Fenix	 has	 been	 developed	 for	
checkpointing	purposes	by	researchers	at	Rutgers	University	and	Sandia	National	
Laboratory[129][130].	 Fenix	 is	 based	 on	 ULFM	 MPI	 and	 provides	 an	 API	 to	
implement	automatic	rollback	within	the	application	code	to	avoid	restarting	jobs	
that	have	failed.	In	Fenix,	data	is	protected	by	copying	the	checkpoint	in-memory	
to	a	partner	node’s	memory.	The	Fenix	library	was	the	first	to	demonstrate	online	
multi-node	recovery	and	automatic	rollback	at	large	scale	when	injecting	actual	
failures.	 The	 library	 source	 code	 is	 available	 at	 a	 github	 repository	 along	with	
rudimentary	documentation	on	usage	[178].	

2.6.1.4 User Level Failure Mitigation (ULFM) MPI 
The	Fenix	library	achives	online	rollback,	i.e.	no	restart,	by	using	ULFM-MPI.	User	
Level	Failure	Mitigation	(ULFM)	is	a	proposed	extension	to	MPI	developed	by	the	
MPI	Forum’s	Fault	Tolerance	Working	Group[95].	It	is	not	a	fault-tolerance	library,	
but	 rather	 it	 is	 an	 API	 that	 allows	 developers	 to	 implement	 fault-tolerant	
algorithms	 in	 MPI.	 According	 to	 the	 authors,	 ULFM	 was	 designed	 to	 manage	
failures	 following	 three	 fundamental	 concepts:	1)	 simplicity,	 the	API	 should	be	
easy	 to	 understand	 and	 use	 in	most	 common	 scenarios;	 2)	 flexibility,	 the	 API	
should	allow	varied	fault	tolerant	models	to	be	built	as	external	libraries	and;	3)	
absence	 of	 deadlock,	 no	 MPI	 call	 (point-to-point	 or	 collective)	 can	 block	
indefinitely	 after	 a	 failure,	 but	 must	 either	 succeed	 or	 raise	 an	 MPI	 error.	 A	
prototype	of	ULFM	is	available	to	be	used	with	the	OpenMPI	compiler[96].	As	with	
Fenix,	Llama	is	using	ULFM	MPI	to	implement	the	failure	detection,	communicator	
repair,	and	rollback	methods.	

 The Llama Library 
The	Llama	library	is	written	in	C++	and	designed	for	use	with	MPI	applications.	It	
supports	 fault-tolerance	 trough	 checkpointing	with	 automatic	 rollback	without	
application	restart	through	the	use	of	ULFM	MPI.	To	protect	application	data,	the	
user	may	specify	an	arbitrary	number	of	checkpoint	levels.	The	levels	may	consist	
of	both	regular	to-disk	checkpoints	to	the	parallel-file-system,	and	topology	aware	
in-memory	memory-conserving	checksum	checkpoints,	each	of	which	may	be	of	
arbitrary	group	size	with	an	arbitrary	number	of	checksums	parity	code	blocks.	In	
section	2.6.3,	the	design	of	the	library	is	outlined,	and	in	section	2.6.4	the	usage	of	
the	core	functionality	is	described.	

 Design 
Llama	is	designed	to	be	minimally	invasive.	The	target	code	itself	needs	very	little,	
if	any,	modification.	Unlike	other	libraries,	rather	than	modifying	preexistent	lines	
of	code,	code	is	added	to	indicate	what	data	is	essential	to	protect	and	to	express	
how	the	application	should	proceed	in	the	event	of	a	rollback.	The	fundamental	
object	that	any	application,	using	the	library,	must	instantiate	is	the	Llama	Guard.	
The	object	must	be	created	in	the	beginning	of	the	application	and	is	responsible	
for	 keeping	 track	 of	 arrays	 being	 protected,	 and	 checkpoints	 used,	 as	 well	 as	
initiating	recovery	and	repair	of	the	MPI	communicator.	
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The	functionality	provided	by	the	library	is	to	be	used	in	a	loop	within	which	the	
computational	parallel	work	 to	protect	 takes	place.	Within	 the	 loop,	 the	Llama	
Guard	must	perform	a	status	check	at	the	beginning	each	iteration.	If	the	status	
check	detects	one	or	more	failed	ranks,	the	communicator	will	be	repaired	by	the	
guard	by	injecting	spare-ranks	to	take	the	place	of	failed	ranks.	The	status	check	
call	 will	 then	 return	 a	 flag,	 indicating	 that	 the	 application	 should	 perform	 a	
rollback	and	recovery	of	data.	Llama	provides	an	interface	trough	the	Guard	that	
expose	data	protected	at	a	previous	checkpoint	to	enable	a	rollback,	however	it	is	
up	to	the	user	to	write	the	functionality	needed	to	do	use	the	data	to	recover	an	
earlier	 state	 as	 such	 an	 operation	 is	 application	 dependent.	 Instructions	 on	
rollback	and	data	recovery	is	given	in	section	2.6.5.	
	
Following	declaration	of	the	Guard,	before	entering	loop,	the	library	user	may	add	
as	many	levels	of	checkpoints	as	needed.	Two	different	categories	of	checkpoints	
are	 supported.	The	 to-disk	 checkpoint,	which	protects	data	by	writing	 it	 to	 the	
parallel-file-system	 using	 MPI-IO,	 and	 in-memory	 checksum	 checkpoints	 that	
protects	data	by	encoding	parity	blocks	and	distributing	these	in-memory	across	
ranks.	Upon	failure,	the	Guard	will	find	the	most	recently	updated	checkpoint	for	
rollback	to.	If	more	than	one	checkpoint	has	been	updated	at	the	same	index,	the	
Guard	will	 choose	 the	 checkpoint	which	 it	perceived	as	being	 faster	 to	 recover	
from.	
	
The	implementation	of	both	checkpoint	types	is	derived	from	a	pure	virtual	class	
checkpointinterface.	Other	checkpoint	types	may	be	added	to	the	library	if	needed,	
but	 to	 be	 compatible	 with	 the	 Llama	 Guard,	 they	 must	 inherit	 from	
checkpointinterface.	Figure	27	contains	a	dependency	graph	of	the	Llama	header	
that	applications	must	include.	The	interface	header	contains	the	declaration	of	
both	 the	Guard	 class	and	 the	checkpointinterface	 as	well	 as	 the	definition	of	 all	
templated	methods	 of	 the	 two	 classes.	 The	 two	methods	 of	 checkpointing	 are	
explained	in	greater	detail	in	the	two	sections	that	follow.	
	

	
Figure	27:		Dependency	graph	of	the	Llama	header	that	must	be	included	in	applications	using	the	library.	
The	class	declaration	for	the	two	checkpoint	types	supported	are	written	disk.h	and	memory.h.	They	both	
derive	from	a	pure	virtual	class	checkpointinterface	in	the	interface	header.	The	interface	header	also	
includes	the	decleration	of	the	Guard	class.	The	testing	header	includes	functionality	used	in	the	ctest	

package	which	includes	30	tests,	testing	to	verify	correct	execution	of	the	various	components	of	Llama	and	
their	interactions.	
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2.6.3.1 Protecting data using the parallel file system 
MPI-IO	 is	 used	 to	 write	 and	 read	 checkpoint	 data	 to	 the	 parallel	 file	 system.	
Distributed	1D	arrays	are	written	to	a	single	binary	file	with	each	rank	writing	to	
it’s	own	section	of	 the	 file	 for	optimal	performance.	2D	arrays	are	protected	as	
arrays	 of	 1D	 arrays,	 without	 closing	 and	 opening	 file	 objects	 in	 between	 row	
change.	The	bandwidth	of	writing	and	reading	data	may	be	slow	for	2D	arrays	if	
the	number	of	columns	is	very	small	due	to	the	overhead	of	sending	many	small	
messages.	This	 could	be	 improved	by	 implementing	 features	 to	 rearrange	data	
before	sending	if	the	number	of	columns	is	small,	but	as	of	now	this	has	not	been	
implemented.	3D	arrays	are	treated	as	arrays	of	2D	arrays,	thus	they	are	subject	
to	the	same	limitation	that	the	data	transfer	rate	may	decrease	when	the	number	
of	columns	is	small.	

2.6.3.2 Protection data using in-memory checksum codes 
Protecting	data	locally	in-memory	is	fast.	Transferring	data	to	a	nearby	node	over	
the	network	is	in	general	much	faster	than	writing	it	to	a	parallel	file	system.	In	
addition,	when	compute	nodes	keep	checkpoint	data	in	nearby	node-local	storage	
or	memory,	the	bandwidth	for	protecting	data	increases	linearly	with	the	number	
of	nodes.	This	makes	 in-memory	checkpointing	potentially	highly	scalable.	The	
disadvantage	 of	 protecting	 data	 in-memory	 on	 nearby	 ranks	 is	 the	 added	
consumption	 of	memory	which	may	 be	 a	 limiting	 factor	 in	 some	 applications.	
When	protecting	data	by	simply	copying	it	to	nearby	nodes,	the	overhead	in	terms	
of	memory	consumption	is	at	least	200	percent.	
	
One	way	of	decreasing	the	memory	footprint,	required	for	a	checkpoint,	is	to	use	
some	form	of	erasure	code	to	encode	checksum	parity	blocks	rather	than	making	
extra	copies	of	the	data	to	protect.	Generally	speaking,	an	erasure	code	transforms	
a	data	block	of	𝑘	symbols	into	a	larger	data	block	of	𝑛 > 𝑘	symbols	in	such	a	way	
that	the	original	data	block	may	be	recovered	using	any	subset	of	𝑘	symbols	from	
the	𝑛	symbol	data	block.	Erasure	codes	are	widely	used	in	data-centers	to	protect	
data	against	disk	failures.	
	
In	 the	 context	of	HPC,	 several	 studies	have	demonstrated	 the	usage	of	 erasure	
codes	 for	 fault	 tolerance.	 In	 FTI,	 Reed-Solomon	 erasure	 code	 was	 used	 to	
encode/decode	data	saved	locally	on	solid	state	disks[89]	and	in	the	SCR	library	
XOR	parity	bits	are	computed	and	stored	distributed	in-memory	to	protect	against	
single	node	failures	[153].	In	the	Llama	library,	Reed-Solomon	encoding	is	used	to	
create	 in-memory	 memory	 conserving	 checksum	 checkpoints.	 Reed-Solomon	
codes	have	found	use	for	a	wide	range	of	applications	such	as	storage	media,	data	
transmission	 and	 data	 centers[164][184].	 Reed-Solomon	 codes	 can	 be	 used	 to	
encode	an	arbitrary	number	of	parity	 codes	𝑝 = 𝑛 − 𝑘	for	a	data	block	with	an	
arbitrary	number	of	symbols	𝑘	thereby	allowing	for	recovery	of	protected	data	for	
up	to	𝑝	failures.	
	
The	 process	 of	 computing	𝑝 	parity	 code	 blocks	 ~𝑐K,⋯ , 𝑐n� 	from	𝑘 	data	 blocks	
~𝑐K,⋯ , 𝑐n�,	can	be	seen	as	matrix-vector	multiplication	where	all	components	are	
elements	in	a	Galois	field	
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and	 the	 matrix	𝐴 	a	 Vandermonde	matrix.	 In	 the	 event	 that	 one	 or	 more	 data	
and/or	code	blocks	are	lost,	they	may	be	recovered	trough	another	matrix-vector	
multiplication	using	the	inverse	of	𝐴,	or	the	inverse	of	a	subset	of	𝐴	along	with	the	
remaining	code	and	data	blocks.	
	
In	Llama,	 a	 library	 called	 Jerassure	 is	used	 to	create	 the	matrix	of	Gallois	 field	
coefficients,	needed	for	both	the	encoding	and	the	decoding	procedure.	Jerasure	
is	 an	 open	 source	 library	written	 in	 C	 that	 supports	 erasure	 coding	 in	 storage	
applications[162].	Another	library,	GF-Complete,	is	used	for	fast	multiplication	of	
coefficients	with	entire	data	blocks[160].	The	multiplication	of	 each	 coefficient	
can	be	done	in	parallel	as	the	data	blocks	are	stored	on	different	nodes.	
	
MPI	reduce	is	used	to	compute	the	bitwise	XOR	reduction	operation	required,	to	
compute	the	sum	for	each	code-block.	Through	the	parallel	reduction	operation,	
the	sum	is	simultaneously	computed	and	distributed.	The	in-memory	checksum	
checkpoints	are	created	in	independent	groups	of	size	𝑛,	with	the	𝑝	parity	codes	
distributed	 equally	 among	 the	𝑛 	nodes.	 Equal	 distribution	 is	 achieved	 trough	
block	 level	stripping	as	is	done	 in	RAID5	and	RAID6,	but	here	 implemented	 in-
memory	 using	 MPI.	 With	 the	 distribution	 of	 parity	 code-blocks,	 the	 memory	
overhead	associated	with	the	checkpoint	in	addition	to	the	copied	data	is	

∼
𝑝

𝑛 − 𝑝.	

In	the	limit	that	the	communication	in	the	MPI	bitwise	reduction	operation	is	the	
dominant	cost	of	encoding	the	checkpoint,	the	time-to-encode	will	scale	as	

∼ 𝑝⌈logN(𝑛)	

if	all	ranks	in	a	group	are	involved	in	each	reduction.	In	Llama,	however,	an	array	
of	communicators	of	size	𝑛𝑝	is	created	when	the	checkpoint	is	declared.	The	array	
includes	all	possible	patterns	of	reduction	to	avoid	including	group	members	not	
relevant	in	a	reduction.	The	cost	of	updating	the	checkpoint	therefore	scales	as	

∼ 𝑝⌈logN(𝑛 − 𝑝)	

The	improved	scaling	comes	at	the	cost	of	an	added	overhead	when	creating	the	
checkpoint	 object	 as	 well	 as	 when	 repairing	 it	 after	 a	 failure.	 The	 in-memory	
checkpoints	may	be	made	topology	aware	in	the	sense	that	the	user	may	specify	a	
critical	distance	that	ranks	within	a	group	must	be	separated.	If	a	checkpoint	is	to	
protect	entire	nodes,	 the	user	should	provide	the	number	of	ranks	running	per	
node.	 If	 the	 checkpoint	 is	 to	 protect	 some	 other	 entity	 or	multiple	 nodes,	 this	
should	be	specified	in	this	distance.	
	
2D	arrays	are	protected	by	 treating	 columns	as	blocks	and	each	 row	as	a	new	
stripe,	 similar	 to	 RAID6.	 Due	 to	 this	 design,	 as	 with	 the	 to-disk	 checkpoints,	
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performance	may	suffer	if	the	number	of	columns	in	an	array	is	very	small.	This	
may	be	mitigated	by	repacking	data	before	protection.	1D	arrays	are	treated	by	
creating	a	dummy	array	of	pointers	to	transform	it	into	a	2D	array.	3D	arrays	are	
treated	 as	 many	 2D	 arrays.	 As	 with	 the	 to-disk	 checkpoints,	 declaration	 is	
templated	so	that	arrays	of	all	fundamental	types	may	be	protected.	

 Usage 
Llama	 seeks	 to	 provide	 a	 simple	 and	 easy-to-use	 interface	 for	 enabling	
applications	to	recover	automatically	and	continue	in	the	face	of	single	and	multi-
node	 failures,	 or	 the	 failure	 of	 larger	 shared	 system	 resources	 such	 as	 power	
supplies	or	network	equipment.	In	this	section,	library	usage	is	briefly	outline.	The	
library	uses	components	of	ULFM-MPI,	Jerasure	and	GF-Complete.	The	latter	must	
therefore	be	installed	first	to	build	the	library.	After	the	installation	of	dependent	
libraries,	Llama	can	be	built	from	source	by	cloning	the	git	repository	available	at	
[157]	with	a	c4science	account.	As	of	now,	the	build	system	is	rudimentary	and	
the	main	cmake	files	needs	to	be	modified	manually	with	the	local	path	to	headers	
and	library	objects	of	ULFM-MPI,	Jerasure	and	GF-Complete.	Additional	details	for	
building	the	library,	and	associated	examples,	are	available	in	the	readme	file	in	
the	repository.	

2.6.4.1 Llama Guards 
To	make	a	time-stepping	MPI	application	fault	tolerant	using	Llama,	the	first	step	
is	 to	 create	a	 llama::guard	object	 in	 the	beginning	of	 the	application	 right	after	
MPI_Initialize.	The	 constructor	 for	 the	 llama::guard	 takes	 three	arguments.	The	
first	is	the	address	of	the	global	communicator,	the	second	is	the	number	of	ranks	
in	 the	communicator	that	should	be	used	as	spares	rather	than	active	workers,	
and	 the	 third	a	boolean	 that	 indicates	 if	 the	application	should	 throw	an	error	
object	if	recovery	is	not	possible.	
	
llama::guard my_llama( MPI_Comm* my_world_comm, uint32_t my_num_spar
e_ranks, bool return_errors ); 

If	return_errors	is	true,	calls	to	llama::guard	methods	will	throw	an	error	object	if	
recovery	is	not	possible	rather	than	exiting	with	failure	and	error	message	on	the	
std::cerr	stream.	The	situation	of	recovery	not	being	possible	may	happen	in	one	
of	 two	different	 situations:	 A	 failure	 pattern	 for	which	 the	 checkpoints	 do	 not	
protect	has	occurred,	or	if	the	Guard	has	run	out	of	spares	to	replace	failed	ranks.	
The	Guard,	when	created,	removes	my_num_spare_ranks	number	of	ranks	from	the	
my_world_comm	communicator,	and	places	an	error-handler	on	my_world_comm	
so	that	if	a	rank	in	my_world_comm	fails,	MPI	operation	using	my_world_comm	will	
throw	an	error	object	 and	return	rather	than	abort.	 In	addition	to	splitting	the	
main	global	communicator	into	two	pools,	a	worker	and	a	spare	rank	pool,	and	
creating	an	error-handler	 for	my_world_comm,	 the	Guard	 is	responsible	 for	 the	
following	tasks:	
	

• Keeping	track	of	which	arrays	need	protection	
• Keeping	track	of	the	status	of	all	checkpoints.	
• Monitoring	the	status	of	the	application	and	initiating	recovery	if	a	failure	

is	detected.	
• Choosing	which	checkpoint	to	recover	from,	when	a	failure	is	detected.	
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To	 notify	 the	 llama::guard	 as	 to	 what	 data	 needs	 to	 be	 protected,	 a	 member	
function	called	ProtectArray	is	used.	
	
my_llama.ProtectArray<type T>(const std::string &key, T* p_array, ui
nt64_t dim1); 

Each	array	to	be	protected	must	be	supplied	with	a	unique	key	in	the	form	of	an	
std::string.	This	key	is	used	to	identify	which	array	to	recover	if	recovery	is	needed.	
If	one	attempts	to	protect	an	array	with	a	key	that	is	already	in	use,	ProtectArray	
will	compare	the	new	array	and	dim1	input	with	the	already	existent.	If	they	are	
identical,	ProtectArray	will	ignore	the	call	and	if	not,	it	will	throw	an	error.	p_array	
should	be	a	pointer	to	the	array	that	needs	to	be	protected	and	dim1	the	number	
of	elements	in	the	array.	Equivalent	methods	exist	for	2D	and	3D	arrays,	with	the	
interface	for	these	are	as	follows:	
	
my_llama.ProtectArray<type T>(const std::string &key, T** p_array, u
int64_t dim1, uint64_t dim2); 
my_llama.ProtectArray<type T>(const std::string &key, T*** p_array, 
uint64_t dim1, uint64_t dim2, uint64_t dim3); 

Arrays	that	contain	vital	information	to	allow	for	a	quick	restart	of	the	application	
should	all	be	marked	for	protection.	The	arrays	may	be	marked	for	protection	in	
the	beginning	of	an	application	right	after	declaring	the	llama::guard,	but	may	also	
be	 added	 dynamically	 during	 the	 time-stepping	 phase.	 Be	 aware,	 though,	 that	
ProtectArray	is	collective	over	all	workers,	i.e.,	all	ranks	in	my_world_comm	after	
creation	of	my_llama.	Each	rank	must	therefore	specify	an	array	to	be	protected,	
it	 is	 not	 required	 that	 the	 arrays	 are	 of	 the	 same	 size	 for	 all	 ranks.	 Though	
performance	and	memory	efficiency	is	higher	if	all	arrays	belonging	to	the	same	
key	 is	 of	 similar	 size.	 Similarly,	 there	 is	 an	 overhead	 involved	 in	 creating	 and	
updating	arrays.	The	1D	arrays	should	 ideally	exceed	1000kb	for	 the	overhead	
involved	in	the	synchronization	between	ranks	to	be	mostly	negligible.	If	a	given	
array	no	longer	needs	to	be	protected,	the	llama::guard	can	be	notified	through	
the	methods:	
	
my_llama.ForgetArray(const std::string &key); 
my_llama.ForgetAllArray(); 

2.6.4.2 Checkpoint Objects 
Under	the	hood,	arrays	are	protected	by	checkpoints.	The	user	must	specify	which	
kind	 of	 checkpoints	 should	 be	 used.	 Llama	 supports	 two	 overall	 types	 of	
checkpoints;	checkpoints	to	the	parallel-file-system	and	checkpoints	that	are	kept	
in-memory	and	distributed	in	groups	across	ranks.	The	constructor	for	creating	
checkpoints	of	the	first	type	looks	like	this:	
	
llama::checkpoint::disk my_disk_checkpoint(llama::guard* my_llama); 
llama::checkpoint::disk my_disk_checkpoint(llama::guard* my_llama, s
td::string file_name ); 
llama::checkpoint::disk my_disk_checkpoint(llama::guard* my_llama, s
td::string file_name, std::string relative_path ); 
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The	first	argument	 is	a	pointer	 to	 the	 llama::guard	used,	here	simply	my_llama.	
The	second	argument	is	a	string,	specifying	the	file	name	to	use	for	the	file	written	
to	 the	parallel-file-system	 to	protect	 the	data.	 If	no	name	 is	 supplied,	 a	default	
name	convention	is	followed.	The	third	argument	is	a	relative	path	in	case	the	user	
wishes	that	the	checkpoint	files	are	placed	somewhere	else	than	in	the	same	folder	
as	 the	 executable.	 Checkpoints	written	 to	 the	 disk	 has	 the	 advantage	 of	 being	
completely	 resilient,	 i.e.	 all	 arrays	marked	 for	protection	may	 be	 recovered	 no	
matter	how	many	ranks	are	lost.	The	only	limitation	to	recovery	is	the	size	of	the	
pool	of	spare	ranks.	The	disadvantage	of	checkpoints	on	the	parallel-file-system	is	
that	 they	 are	 slow	 to	 create	 for	 large	 jobs	 using	 hundreds	 of	 nodes	 as	 the	
bandwidth	 is	 limited.	 Llama	 supports	 light-weight	 in-memory	 checksum	
checkpoints.	Checkpoints	of	 this	 type	are	 stored	 in-memory	along	with	a	small	
parity	code	that	can	be	used	to	recompute	the	data	lost	if	ranks	have	failed.	Parity	
codes	are	computed	locally	in	groups	in	parallel,	which	allows	for	the	bandwidth	
of	data	encoded	to	scale	linearly	with	the	number	of	ranks	in	a	job.	Reed-Solomon	
codes	are	used	for	a	limited	memory	footprint	with	high	resilience.	An	in-memory	
checkpoint	may	be	created	like	this:	
	
llama::checkpoint::memory my_memory_checkpoint(llama::guard* my_llam
a, uint32_t connected_ranks, uint32_t num_ranks_per_group, uint32_t 
num_parities_per_group); 

As	with	the	to-disk	checkpoint,	the	first	argument	is	a	pointer	to	the	llama::guard	
which	serves	to	notify	the	Guard	of	the	existence	of	the	checkpoint	and	as	to	give	
the	checkpoint	access	to	information	about	which	arrays	must	be	protected.	The	
second	argument	indicates	the	number	of	consecutive	ranks	that	is	deemed	likely	
to	fail	together.	This	would	most	often	be	a	node-entity,	i.e.	the	number	of	ranks	
spawned	on	each	node,	but	could	in	practice	be	anything.	For	instance,	if	multiple	
nodes	 share	 a	 power	 supply,	 then	 a	 checkpoint	 could	 be	 created	 with	
connected_ranks	 being	 the	number	of	ranks	which	depend	on	 the	same	power-
supply.	The	third	argument	num_ranks_per_group	is	the	size	of	the	groups	in	which	
the	parity	data	will	be	computed.	The	parity	data	is	stored	distributed	across	all	
ranks	within	a	group.	The	fourth	and	final	argument	is	the	number	of	parity	data	
blocks	 to	 compute	 within	 a	 group.	 In	 simpler	 terms,	 num_parities_per_group	
indicates	how	many	failures	are	allowed	to	occur	simultaneously	within	a	group.	
	
Say	 for	example	that	num_parities_per_group	=	1	and	num_ranks_per_group	=	8,	
then	 in	 each	 group	 of	 eight	 sets	 of	 connected_ranks,	 all	 protected	 arrays	 are	
recoverable	so	long	as	no	more	than	one	set	of	connected_ranks	have	failed.	The	
group	 size	 num_ranks_per_group	 must	 be	 chosen	 so	 that	 num_worker_ranks	 /	
(	num_ranks_per_group	 *	 connected_ranks	 )	 is	 a	 positive	 integer.	 The	 choice	 of	
num_ranks_per_group	 and	 num_parities_per_group	 will	 not	 only	 affect	 how	
resilient	to	failures	the	checkpoint	is,	but	also	how	fast	the	checkpoint	can	encode	
and	decode	the	parity	data	for	the	protected	arrays	as	well	as	its	memory	footprint.	
In	 general,	 as	num_ranks_per_group	 becomes	 larger,	 the	memory	 footprint	will	
become	 smaller	 but	 the	 encoding	 and	 decoding	 time	 will	 become	 larger.	 As	
num_parities_per_group	 increase,	 the	 checkpoint	 becomes	 more	 resilient	 since	
more	sets	of	connected_ranks	may	fail	without	compromising	the	protected	arrays,	
but	the	memory	footprint	increases	and	so	does	the	encoding	and	decoding	time.	
A	simple	constructor	also	exists	to	create	a	fast	in-memory	checkpoint	layer	
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llama::checkpoint::memory my_memory_checkpoint(llama::guard* my_llam
a, uint32_t connected_ranks); 

Here	we	 only	 notify	 the	 checkpoint	 of	 the	 number	 of	 connected_ranks	 that	 are	
expected	to	be	 likely	 to	 fail	 together.	The	checkpoint	sets	num_ranks_per_group	
will	then	be	set	by	the	llama::guard	to	be	the	integer	nearest	to	eight	that	satisfies	
num_worker_ranks	 /	 (	 num_ranks_per_group	 *	 connected_ranks	 )	 ==	 integer.	
num_parities_per_group	will	be	set	to	one.	We	consider	a	group	size	of	eight	with	
one	parity	block	to	be	a	good	lightweight	checkpoint	for	most	purposes,	thus	it	is	
the	 default	 option.	With	 a	group	size	of	 eight,	 the	 checkpoint	 is	 fairly	memory	
conserving	without	being	slow	to	encode	or	decode	and	one	parity	block	will	allow	
for	recovery	upon	failure	of	up	to	one	set	of	connected_ranks	in	every	eighth	set.	
When	a	checkpoint	has	been	declared,	 it	may	be	updated	by	the	user	using	the	
Update()	method:	
	
my_disk_checkpoint.Update(uint64_t idx); 
my_memory_checkpoint.Update(uint64_t idx); 

The	 update	 method	 will	 loop	 over	 all	 arrays	 that	 has	 been	 marked	 in	 the	
llama::guard	 as	 critical	 and	 protect	 the	 data	 in	 each	 of	 them.	 The	 to-disk	 type	
checkpoints	 simply	write	 the	 array	 to	 the	 parallel-file-system	whereas	 the	 in-
memory	checkpoints	will	create	an	in-memory	copy	as	well	as	encode	parity	data	
to	 be	 able	 to	 decode	 and	 recover	 data	 if	 ranks	 are	 lost.	 The	 provided	 index	 is	
essential.	 Upon	 recovery,	 the	 llama::guard	will	 choose	 the	 checkpoint	with	 the	
highest	index	among	the	checkpoints	that	are	able	to	recover	from	a	given	failure	
pattern.	 Any	 checkpoint	 can	 be	 updated	 at	 anytime	 during	 the	 time-stepping	
procedure	 that	 the	 user	 deems	 necessary.	 If	 several	 different	 recoverable	
checkpoints	with	the	same	idx	exist,	the	llama::guard	will	recover	the	data	content	
using	the	checkpoint	it	deems	to	allow	the	fastest	recovery.	

2.6.4.3 Checking Application Status and Recovering Data 
Here	we	outline	how	to	recover	the	application	in	the	event	that	failure	on	one	or	
multiple	ranks	occur	during	a	time-stepping	procedure.	A	member	method	exists	
my_llama.CheckStatus(uint64_t* idx)  

CheckStatus()	 plays	 an	 important	 role	 in	 the	 fault-tolerent	 time-stepping	
procedure	 and	 in	 the	 recovery.	 All	 spare	 ranks	 that	 were	 split	 from	
my_world_comm	will	proceed	until	they	reach	the	CheckStatus()	call	and	wait	here	
until	needed	to	replace	a	failed	worker	rank.	In	the	beginning	of	each	step	in	the	
time-stepping	 loop,	 the	status	of	 the	application	 should	be	 checked.	The	 call	 to	
CheckStatus()	will	return	one	of	four	different	statuses:	
	

• LLAMA_STATUS_SUCCESS	
• LLAMA_STATUS_REPAIRED	
• LLAMA_STATUS_FAILED	
• LLAMA_STATUS_COMPLETE	

	
The	first	status	flag,	LLAMA_STATUS_SUCCESS	indicates	that	no	failed	ranks	could	
be	 detected	 in	 my_world_comm	 so	 the	 application	 can	 proceed	 safely.	
LLAMA_STATUS_REPAIRED	indicates	that	one	or	more	ranks	were	found	to	have	
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failed	 but	 they	 were	 successfully	 repaired,	 i.e.,	 one	 or	 more	 ranks	 in	
my_world_comm	has	been	replaced	with	one	or	more	ranks	from	the	pool	of	spare	
ranks	and	released	from	CheckStatus()	together	with	all	the	other	worker	ranks.	
This	status	flag	indicates	that	the	user	should	take	action	to	role	back	to	a	previous	
checkpoint	 idx	 at	 which	 a	 sufficiently	 resilient	 checkpoint	 was	 updated.	
LLAMA_STATUS_FAILED	 indicates	 that	 one	 or	more	 ranks	were	 found	 to	 have	
failed,	but	it	wasn’t	possible	to	repair	the	communicator.	This	could	happen	if	the	
llama::guard	has	 run	out	of	 spare	 ranks	or	 if	 the	 llama::guard	detects	a	 failure	
pattern	for	which	none	of	its	associated	checkpoints	may	recover.	This	status	flag	
will	only	be	returned	in	the	event	that	return_errors	was	set	to	true	when	creating	
the	 llama::guard,	 otherwise	 the	 application	will	write	 an	 error	message	 on	 the	
std::cerr	stream	and	exit	with	the	EXIT_FAILED	status.	The	final	possible	status	
flag	LLAMA_STATUS_COMPLETE	is	only	returned	with	a	spare-rank	and	indicates	
that	 the	 application	 has	 completed	 and	 that	 the	 spare	 rank	 should	 proceed	 to	
clean-up.	
	
In	 the	event	 that	 a	LLAMA_STATUS_REPAIRED	status	 flag	 is	 returned,	 the	user	
must	specify	how	the	application	should	be	repaired.	Llama	simply	exposes	access	
to	 the	 content	 of	 all	 arrays	 that	 was	 marked	 as	 protected	 at	 the	 most	 recent	
checkpoint	 idx	 for	which	recovery	 is	possible.	To	access	the	data	content	of	 an	
array	at	the	most	recent	checkpoint	idx,	the	method	RecoverArray()	is	used.	
my_llama.RecoverArray<class T>(const std::string &key, T* p_array, u
int64_t dim1) 

key	is	the	key	that	was	previously	used	to	identify	the	array	and	T	is	the	type	of	
the	 objects	 stored	 in	 the	 array.	 p_array	 indicates	 to	where	 the	 recovered	 data	
should	be	copied.	For	ranks	that	had	not	failed,	this	might	very	well	be	the	same	
pointer,	whereas	 for	a	newly	 introduced	worker,	 rank	 relevant	data	 structures	
must	be	created.	As	before	dim1	 indicates	the	number	of	elements	in	the	array.	
The	same	interface	is	used	for	2D	and	3D	arrays	
my_llama.RecoverArray<class T>(const std::string &key, T** p_array, 
uint64_t dim1, uint64_t dim2)  
my_llama.RecoverArray<class T>(const std::string &key, T*** p_array,
 uint64_t dim1, uint64_t dim2, uint64_t dim3)  

The	 example	 folder	 in	 the	 git	 repository	 contains	 several	 examples	 on	 how	 to	
make	applications	fault-tolerant.	

2.6.4.4 Finalizing the Environment 
Before	finalizing	the	MPI	environment,	the	Llama	environment	must	be	finalized	
using	my_llama.Finalize()	to	clean	up	all	checkpoints	and	to	free	all	spares.	If	the	
environment	 is	not	 finalized,	 unused	 data	 files	may	 remain	 on	 the	 parallel	 file	
system.	

2.6.4.5 Usage examples 
A	code	examples	are	available	in	the	Git	repository.	In	the	example	in	the	appendix,	
a	small	code	for	finding	a	numerical	approximation	to	the	solution	of	the	2D	Euler	
equation	in	parallel	using	MPI	is	made	fault	tolerant	using	the	Llama	library.	Rank	
failures	 are	 forced	 by	 raising	 SIGKILL	 on	 a	 subset	 of	 nodes	 to	 demonstrate	
recovery	in	case	of	two	different	failure	patterns.	A	detailed	outline	of	the	example	
is	given	in	the	code	comments.	
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 Numerical Experiments 
Numerical	experiments	demonstrating	the	overhead	initialization	cost	of	creating	
the	Llama	Guard,	adding	checkpoints	and	marking	arrays	to	protect	are	presented	
in	 sections	 2.6.5.1,	 2.6.5.2,	 and	 2.6.5.3.	 In	 section	 2.6.5.4,	 scaling	 tests	 on	 the	
walltime	 cost	 to	 periodically	 update	 checkpoints	 are	 presented.	 The	 cost	 of	
recovering	 data	 from	 a	 checkpoint	 is	 presented	 in	 section	 2.6.5.5.	 All	
measurements	are	made	for	to-disk	checkpoints,	and	for	four	different	types	of	in-
memory	checksum	checkpoints	as	outlined	below:	
	
To-Disk	
Arrays	to	be	protected	are	written	to	the	GPFS	filesystem	using	MPI-IO.	

In-Memory	G32P4	
Arrays	encoded	in	groups	of	32	ranks.	Four	parity	code	blocks	are	created	per	
code	stripe.	14.3	percent	memory	overhead.	

In-Memory	G16P2	
Arrays	encoded	in	groups	of	16	ranks.	Two	parity	code	blocks	are	created	per	
code	stripe.	14.3	percent	memory	overhead.	

In-Memory	G8P2	
Arrays	encoded	in	groups	of	eight	ranks.	Two	parity	code	blocks	are	created	per	
code	stripe.	33.3	percent	memory	overhead.	

In-Memory	G8P1	
Arrays	encoded	in	groups	of	eight	ranks.	one	parity	code	blocks	are	created	per	
code	stripe.	14.3	percent	memory	overhead.	

The	checkpoint	types	are	listed	in	order	of	increasing	resilience.	The	to-disk	type	
checkpoints	may	recover	lost	data	regardless	of	how	many	ranks	have	failed.	In-
memory	checksum	checkpoints	may	recover	so	long	as	the	number	of	lost	ranks	
within	 a	 group	 is	 smaller	 than	 the	 number	 of	 parity	 code	 blocks	 encoded	 and	
stored	per	stripe.	Smaller	groups	with	few	parity	code	blocks	may	recover	from	
fewer	failure	patterns	and	may	thus	be	considered	less	resilient.	Small	groups	with	
few	code	blocks	are,	however,	expected	to	be	faster	to	update	as	fewer	operations	
and	 less	 communication	 between	 ranks	 in	 a	 group	 is	 needed	 to	 compute	 the	
checksum	code	blocks.	Weak	and	strong	scaling	tests	has	been	made	from	112	to	
7168	cores	for	all	numerical	experiments.	The	EPFL	Fidis	general	purpose	cluster	
was	used	to	run	the	scaling	tests.	Each	node	in	the	cluster	has	two	Intel	Broadwell	
2.6Ghz	processors	with	14	cores	each,	i.e.	28	cores	per	node.	The	cluster	network	
fabric	is	Infiniband	FDR	fully-non-blocking,	with	a	fat-tree	topology.	

2.6.5.1 Creating the Llama Guard 
The	first	step	 in	making	an	application	 fault	 tolerant	by	way	of	periodic	check-
pointing	using	Llama,	is	to	declare	a	Guard	object	following	the	initialization	of	the	
MPI	environment:	
	
llama::guard::guard(MPI_Comm &input_comm, int num_spare_ranks, bool 
return_errors); 
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The	 first	 argument	 is	 a	 pointer	 to	 a	 duplicate	 of	 the	 world	 communicator,	
containing	all	worker	and	spare	ranks.	The	second	argument	tells	the	Guard	how	
many	ranks	to	put	aside	in	a	pool	of	spare	worker	ranks.	The	third	argument,	if	
true,	 tells	 the	Guard	to	throw	error	objects	rather	than	exit	upon	encountering	
failure	patterns	which	are	not	recoverable.	The	constructor	of	the	Guard	initiates	
various	 structures	 needed,	 and	 it	 removes	 num_spare_ranks	 ranks	 from	 the	
input_comm	communicator	and	places	these	ranks	in	a	pool	for	later	use	in	case	of	
failures.	A	scaling	test	is	presented	in	Figure	28.	The	walltime	to	create	the	Guard	
does	not	depend	on	checkpoints	added	later,	and	only	increases	weakly	with	the	
number	of	cores.	The	measured	time	varies	substantially	between	measurements.	

	
Figure	28:	Scaling	test,	time	to	create	Llama	Guard	as	a	function	of	the	number	of	cores	as	tested	on	the	

EPFL	Fidis	cluster.	The	time	to	create	the	checkpoint	increases	slightly	with	an	increasing	number	of	cores,	
but	varies	mostly	due	to	difference	in	network	load	and	job	placement	on	the	shared	general	purpose	

cluster.	

2.6.5.2 Adding a Checkpoint to the Guard 
For	 the	 Guard	 to	 protect	 arrays,	 one	 or	 more	 checkpoint	 objects	 must	 be	
associated	with	the	Guard.	To-disk	and	in-memory	type	checkpoints	may	be	added	
using	their	respective	constructors	and	passing	a	pointer	to	the	Guard.	
	
// Declaration of the constructor for the to-disk type checkpoint 
void llama::checkpoint::disk::disk(llama::guard *MyGuard) 
// Declaration of the constructor for the in-memory type checkpoint 
void llama::checkpoint::memory::memory(llama::guard *MyGuard, bool c
opy_protected_data, int connected_ranks, int local_group_size, int n
um_parities_per_group) 

Within	the	constructor	 for	declaring	a	 to-disk	type	checkpoint,	only	a	 few	local	
initialization	 operations	 are	 needed.	 For	 the	 in-memory	 checksum	 type	
checkpoints,	global	operations	are	needed	to	verify	that	all	workers	are	creating	
in-memory	 type	 checkpoint	of	 the	 same	 group	 size,	using	 the	 same	number	 of	
parity	blocks.	In	addition,	an	array	of	local	communicators	are	created	within	each	
group.	 The	 overhead	 of	 attaching	 an	 in-memory	 checkpoint	 to	 the	 Guard	 is	



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 59	

therefore	higher	than	for	 the	to-disk	type	checkpoint.	As	may	be	seen	from	the	
scaling	 test	 in	 Figure	 29,	 the	 in-memory	 checksum	 checkpoint	 is	 an	 order	 of	
magnitude	more	expensive	to	initialize.	

	
Figure	29:	Scaling	test,	time	to	attach	a	checkpoint-type	to	the	Llama	Guard	as	a	function	of	number	of	cores.	
The	time	increases	slightly	with	an	increasing	number	of	cores,	the	overhead	of	checking	parameters	and	
creating	a	matrix	of	local	communicators	makes	the	in-memory	type	checkpoint	slower	to	initialize.	

2.6.5.3 Adding an Array for the Guard to Protect 
Any	array,	containing	data	needed	upon	recovery,	must	be	protected	by	the	Llama	
Guard	created.	To	notify	the	Guard	of	the	existence	of	the	array,	the	ProtectArray	
method	of	the	Llama	Guard	class	is	used.	The	method	is	a	template	on	the	data	
type	of	the	array	to	be	protected,	and	is	overloaded	by	the	number	of	arguments	
to	distinguish	between	1D,	2D,	and	3D	arrays.	
	
// Method for 1D arrays 
template<class T> void guard::ProtectArray(const std::string &key, T
 *p_array, int dim1) 
// Method for 2D arrays 
template<class T> void guard::ProtectArray(const std::string &key, T
 **p_array, int dim1, int dim2) 
// Method for 3D arrays 
template<class T> void guard::ProtectArray(const std::string &key, T
 ***p_array, int dim1, int dim2, int dim3) 

The	method	checks	if	the	key	supplied	is	unique-	If	it	is	not	the	application	exists	
with	an	error	code,	or	an	error	object	is	thrown,	depending	on	how	the	Guard	was	
initialized.	If	the	key	is	unique,	the	array	pointer	and	array	dimensions	are	added	
together	 to	 a	 map	 connecting	 the	 key	 and	 the	 array	 information.	 Within	 the	
method,	all	checkpoints	associated	with	the	Guard	is	notified	of	the	existence	of	a	
new	 array	 to	 be	 protected.	 Guard	 objects	 are	 friends	 of	 checkpoint	objects,	 so	
checkpoints	 are	 notified	 by	 calling	 a	 protected	method	 that	 initiates	whatever	
structures	 that	 may	 be	 needed	 for	 the	 checkpoint	 type.	 Only	 two	 types	 of	
checkpoints	exists,	the	to-disk	that	uses	MPI-IO	to	protect	an	array	on	the	parallel-
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file-system,	and	the	in-memory	which	encodes	checksum	parity	codes	to	protect	
the	data	and	distribute	these	parity	codes	in	a	local	group.	In	the	case	of	the	to-
disk	checkpoint,	no	action	is	needed.	For	the	in-memory	checkpoint,	memory	is	
allocated	 for	 the	 parity	 code	 blocks	 that	 will	 be	 written.	 If	 other	 types	 of	
checkpoints	 are	 to	 be	 implemented,	 they	 must	 inherit	 from	 the	 pure	 virtual	
checkpointinterface	class	and	implement	all	required	functionality.	
	
In	either	case,	before	notifying	checkpoints	of	the	addition	of	an	array	to	protect,	
a	check	is	performed	across	all	workers,	verifying	that	all	workers	are	adding	an	
array	with	the	same	unique	key.	The	operation	is	thus	global	and	must	be	accessed	
by	all	workers	to	avoid	deadlock.	Figure	30	contains	a	weak	and	a	strong	scaling	
plot	of	the	overhead	walltime	associated	with	adding	an	array	for	the	Llama	Guard	
to	protect.	The	numerical	experiment	indicates	that	there	is	little	or	no	difference	
in	 the	 cost	 of	 adding	 an	 array	 between	 the	 to-disk	 and	 the	 in-memory	 type	
checkpoints.	The	principal	cost	of	the	ProtectArray	method	is	therefore	likely	the	
addition	of	a	new	array	to	the	map,	followed	by	the	global	agreement	operation	in	
the	Guard	that	is	independent	of	the	size	of	the	array.	
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Figure	30:	The	wall-time	cost	of	adding	an	array	to	the	Llama	Guard	as	measured	on	the	EPFL	Fidis	general	
purpose	cluster	for	112	to	7168	cores.	In	the	legend,	G	indicate	group	size	and	P	indicate	number	of	parity	
code	blocks	per	stripe.	Each	measurement	was	made	3	times	to	illustrate	the	variance	in	timings	due	to	job-
placement	and	network	load	when	using	a	shared	cluster.	The	cost	of	adding	an	array	is	observed	to	be	

almost	constant,	only	vaguely	increasing	with	an	increasing	number	of	cores.	

2.6.5.4 Cost of Updating Checkpoints 
In	 the	 fault	 tolerant	 application,	 checkpoints	 protecting	 data	 will	 need	 to	 be	
periodically	updated.	This	is	done	using	the	Update	method.	The	method	is	a	pure	
virtual	function	in	the	checkpointinterface	class	from	which	all	checkpoints	derive.	
	
// Update all data arrays and encode all checksums in checkpoint 
void llama::checkpoint::memory::Update(int new_checkpoint_idx) 
void llama::checkpoint::disk::Update(int new_checkpoint_idx) 
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When	calling	the	function,	the	checkpoint	will	update	the	protection	of	all	arrays	
marked	by	protection.	The	variable	new_checkpoint_idx	indicates	the	index	for	the	
new	checkpoint.	The	index	provided	must	be	greater	than	any	previous	index	used.	
	
The	underlying	action	of	Update	depends	on	the	checkpoint	implementation.	For	
the	to-disk	checkpoint,	MPI-IO	is	used	to	write	a	copy	of	the	array	to	be	protected	
by	the	parallel	file	system.	Once	the	array	has	been	written,	an	agreement	check	is	
performed	between	all	workers	to	verify	that	the	new	checkpoint	is	safe	before	
deleting	 the	 file	 containing	 the	 previous	 checkpoint.	 For	 the	 in-memory	
checkpoint,	all	arrays	are	encoded	using	Reed-Solomon	erasure	code	as	outlined	
in	section	2.6.3.	The	walltime	cost	of	updating	the	checkpoint	may	be	the	most	
critical	part	of	the	Llama	library	as,	unlike	the	creation	of	the	Guard	and	adding	
arrays,	the	update	will	be	performed	periodically	throughout	the	execution	of	the	
code	 to	 protect.	 Steps	 has	 therefore	 been	 taken	 to	make	 the	 update	 as	 fast	 as	
possible.	All	essential	checks	on	 identifier	keys	and	array	dimensions	has	been	
moved	to	the	ProtectArray	method	of	the	Guard	class,	used	to	notify	the	Guard	of	
arrays	to	be	protected.	No	checks	are	performed	inside	Update.	The	operation	is	
global	over	all	workers	so	deadlock	will	ensue	if	any	workers	are	missing	unless	
it	being	due	to	failure	in	which	case	it	returns	throwing	an	error	object.	Figure	31	
contains	weak	scaling	measurements	on	the	EPFL	Fidis	cluster	for	112	to	7168	
cores	for	the	protection	of	a	2D	array.	Measurements	has	been	made	for	the	to-
disk	type	checkpoint	as	well	as	for	four	different	types	of	in-memory	checksum	
checkpoints.	Each	node	on	the	Fidis	cluster	has	28	cores.	In	all	four	in-memory	
cases	the	number	of	adjacent	nodes	assumed	likely	to	fail	together	is	set	to	the	size	
of	a	single	node,	28,	i.e.,	ranks	0,28,56, . ..	will	be	placed	in	the	zero’th	group,	rank	
1,29,57, . .. 	in	 group	 1	 and	 so	 forth.	 At	 12MB	 per	 core	 close	 to	 ideal	 scaling	 is	
observed	when	using	a	group	size	of	eight	with	one	or	two	parity	codes	per	stripe.	
In	the	limit	of	using	7168	cores,	Llama	encodes	data	at	a	rate	of	300GB/s.	Which	
is	 more	 than	 two	 orders	 of	 magnitude	 faster	 than	 what	 may	 be	 achieved	
protecting	the	arrays	using	MPI-IO	in	the	parallel-file-system	checkpoint.	Figure	
32	contains	strong	scaling	tests	for	a	16GB	2D	array	and	a	128GB	2D	array.	In	the	
strong-scaling	test,	the	size	of	the	2D	array	per	core	decreases	as	the	number	of	
cores	increases,	making	it	more	challenging	to	achieve	perfect	scaling.	As	in	the	
weak	scaling	test,	the	in-memory	checksum	checkpoint	is	up	to	200	times	faster	
than	the	to-disk	type	checkpoint	when	using	7168	cores.	
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Figure	31:	Weak	scaling	test	on	the	cost	of	updating	a	checkpoint	as	measured	on	the	EPFL	Fidis	cluster.	In	
the	legend,	G	indicate	group	size	and	P	indicate	number	of	parity	code	blocks	per	stripe.	Each	measurement	
was	made	three	times	to	illustrate	the	variance	in	timings	due	to	job-placement	and	network	load	when	
using	a	shared	cluster.	(a)	1.5MB	per	core.	(b)	12MB	per	core.	With	as	little	as	1.5MB	per	core,	good	scaling	

is	observed	for	the	in-memory	checkpoints.	
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Figure	32:	Strong	scaling	test	on	the	cost	of	updating	a	checkpoint	as	measured	on	the	EPFL	Fidis	cluster.	In	
the	legend,	G	indicate	group	size	and	P	indicate	number	of	parity	code	blocks	per	stripe.	Each	measurement	
was	made	three	times	in	order	to	illustrate	the	variance	in	timings	due	to	job-placement	and	network	load	
when	using	a	shared	cluster.	(a)	12GB	distributed	array.	(b)	128GB	distributed	array.	Encoding	four	parity	
blocks	over	a	large	group	containing	32	nodes	is	up	to	an	order	of	magnitude	faster	than	writing	the	data	to	

protect	to	the	parallel-file-system.	

2.6.5.5 Cost of Data Recovery 
If	a	status-check,	using	CheckStatus	during	the	operation	reveals	that	one	or	more	
ranks	has	been	lost	and	replaced,	the	arrays	at	a	previous	checkpoint_idx	may	be	
recovered	by	the	Llama	Guard	using	the	RecoverArray	method	of	the	Guard	class.	
To	identify	the	array	to	be	recovered,	one	must	use	the	key	associated	with	the	
array,	when	the	array	was	added	to	the	Guard’s	list	of	arrays	to	protect	using	the	
method	ProtectArray	of	the	Guard	class.	The	dimensions	of	the	array,	as	well	as	a	
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pointer	p_array	to	where	the	newly	recovered	data	from	a	previous	checkpoint	idx	
should	be	recovered,	are	part	of	the	input	arguments.	This	pointer	can	be	a	pointer	
to	the	same	location	as	used	when	updating	checkpoints	associated	with	the	Guard.	
The	method	 is	 templated	on	 the	data	 type	of	 the	array	 to	be	 recovered,	 and	 is	
overloaded	by	the	number	of	arguments	to	distinguish	between	1D,	2D,	and	3D	
arrays.	
	
// Initiate recovery of 1D array 
template<class T> void RecoverArray(int checkpoint_idx, const std::s
tring &key, T *p_array, int dim1);  
// Initiate recovery of 2D array 
template<class T> void RecoverArray(int checkpoint_idx, const std::s
tring &key, T **p_array, int dim1, int dim2);  
// Initiate recovery of 3D array 
template<class T> void RecoverArray(int checkpoint_idx, const std::s
tring &key, T ***p_array, int dim1, int dim2, int dim3);  
void llama::checkpoint::disk::Update(int new_checkpoint_idx) 

When	a	Guard	is	asked	to	recover	the	content	of	an	array	at	some	previous	index,	
it	first	performs	an	agreement	function,	ensuring	that	all	workers	have	been	asked	
to	recover	the	same	array.	This	is	followed	by	a	few	basic	checks	that	the	array	
exists	 and	 that	 the	 information	 on	 key,	 array	 data	 type,	 and	 dimensions	 is	
consistent	 with	 an	 array	 being	 protected.	 The	 Guard	 then	 cycles	 over	 all	
checkpoints	type	associated	with	it,	and	queries	the	checkpoint	to	see	if	it	is	able	
to	 recover	 all	 data	 at	 the	 checkpoint	 index	 specified.	 Among	 the	 candidates,	 it	
chooses	the	checkpoint	which	it	reckons	is	the	fastest	to	recover	from.	The	chosen	
checkpoint	is	then	instructed	by	the	Guard	to	recover	the	data	to	the	location	of	
the	pointer	supplied.	How	recovery	is	performed	depends	on	the	checkpoint	type.	
To-disk	checkpoints	will	use	MPI-IO	to	read	from	the	parallel-file-system,	while	
in-memory	checksum	checkpoints	will	perform	a	group-local	decoding	procedure.	
	
Figure	33	contains	weak	scaling	numerical	experiment,	demonstrating	the	rate	at	
which	 a	 2D	 array	 may	 be	 recovered	 using	 the	 different	 types	 of	 checkpoints.	
Tested	for	112	cores	to	7168	cores	on	the	EPFL	Fidis	cluster.	Two	scaling	tests	are	
demonstrated,	one	with	1.5MB	per	core	and	another	with	12MB	per	core.	Each	
data	 point	 constitutes	 a	 job	 on	 the	 shared	 general-purpose	 cluster.	 Each	
experiment	 has	 been	 performed	 three	 times	 since	 job	 placement	 and	 cluster	
network	load	may	substantially	impact	the	speed	of	recovery.	Figure	34	contains	
strong	scaling	measurements	using	a	fixed	global	array	size	of	16GB	in	Figure	34(a)	
and	128GB	in	Figure	34(b).	In	all	tests,	a	single	rank	in	a	single	group	is	terminated	
by	 raising	 a	 SIGKILL	 locally	 on	 the	 rank	 to	 disappear.	 For	 recovery	 from	 in-
memory	checkpoints,	all	groups	containing	a	broken	rank	must	decode	in	parallel	
across	the	group	to	recover	the	lost	data.	All	unbroken	groups	may	simply	copy	
the	unbroken	content	of	the	local	array.	The	time-to-recover	is	therefore	limited	
by	the	time	it	takes	the	broken	groups	to	decode	all	local	data	blocks.	The	location	
of	ranks	within	a	group	on	the	cluster	and	the	network	may	therefore	substantially	
impact	 the	 speed	 of	 recovery.	 For	 to-disk	 checkpoints,	 all	 cores	must	 read	 the	
array	 from	 a	 file	on	 the	 parallel-file-system,	 regardless	of	whether	 or	 not	 they	
were	 involved	 in	 a	 failure	 or	 not.	 This	 makes	 the	 to-disk	 checkpoint	 time-to-
recovery	 less	sensitive	to	how	ranks	are	distributed	on	the	cluster.	 Instead	the	
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speed	of	recovery	is	sensitive	to	the	load	on	the	parallel-file-system	at	the	time	of	
the	job	execution.	

	
Figure	33:	Weak	scaling	test	on	the	cost	of	recovering	data	from	a	checkpoint	as	measured	on	the	EPFL	Fidis	
cluster.	In	the	legend,	G	indicate	group	size	and	P	indicate	number	of	parity	code	blocks	per	stripe.	Each	
measurement	was	made	three	times	in	order	to	illustrate	the	variance	in	timings	due	to	job-placement	and	
network	load	when	using	a	shared	cluster.	(a)	1.5MB	per	core.	(b)	12MB	per	core.	With	as	little	as	1.5MB	

per	core,	good	scaling	is	observed	for	the	in-memory	checkpoints.	
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Figure	34:	Strong	scaling	test	on	the	cost	of	recovering	data	from	a	checkpoint	as	measured	on	the	EPFL	
Fidis	cluster.	In	the	legend,	G	indicate	group	size	and	P	indicate	number	of	parity	code	blocks	per	stripe.	

Each	measurement	was	made	three	times	in	order	to	illustrate	the	variance	in	timings	due	to	job-placement	
and	network	load	when	using	a	shared	cluster.	(a)	12GB	distributed	array.	(b)	128GB	distributed	array.	

Encoding	4	parity	blocks	over	a	large	group	containing	32	nodes	is	up	to	an	order	of	magnitude	faster	than	
writing	the	data	to	protect	to	the	parallel-file-system.	

	
The	recovery	procedure	always	proceeds	after	a	status	check	where	one	or	more	
worker	ranks	are	found	to	have	failed.	The	status	check	is	a	method	of	the	Llama	
Guard	 class.	When	worker	 ranks	 enter	 the	CheckStatus	 method,	 an	 agreement	
operation	is	performed	across	all	workers	to	check	if	any	workers	have	failed.	If	
one	or	more	worker	ranks	are	found	to	have	failed,	spare	ranks	are	released	and	
the	worker	communicator	revoked	and	repaired.	During	the	repair,	spare	ranks	
are	injected	to	take	the	place	of	lost	worker	ranks.	The	process	of	detecting	failures	
and	repairing	the	worker	communicator	is	essential	for	the	automatic	restart	at	
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an	 earlier	 checkpoint	 index.	 The	method	 is	 implemented	 using	 functionality	of	
ULFM-MPI.	Unfortunately	we’ve	found	that	when	testing	the	Llama	library	using	
a	large	number	of	cores	on	the	EPFL	Fidis	cluster,	the	detection	of	failed	ranks	and	
subsequent	communicator	repair	sometimes	experience	either	a	deadlocks	or	fail	
completely.	Following	the	simulation	of	rank	failures	by	raising	SIGKILL	on	a	rank	
to	terminate	it,	deadlock	or	failure	of	otherwise	failure-free	ranks	often	happen	
within	MPIX_Agree	 or	MPIX_Comm_Replace.	 The	 errors	 returned	 vary	 in	 type.	
Sometimes	 failure-unaffiliated	 ranks	 lose	 contact	with	 the	MPI	 helper	 daemon	
orted	 and	 exit,	 other	 times	 errors	 related	 to	 the	 operations	 on	 the	 InfiniBand	
network	are	returned.	As	described	in	section	2.6.1.4,	ULFM-MPI	is	still	at	an	early	
phase	of	development	and	is	not	part	of	the	official	MPI	standard	yet.	According	to	
the	developers	of	ULFM-MPI,	the	possibility	of	buggy	corner	cases	is	high.	
	
In	our	current	implementation	using	ULFM-MPI	2.0,	correct	detection	of	failures	
and	subsequent	repair	of	the	worker	communicator	happen	only	about	half	the	
time	when	running	large	jobs	with	1000+	cores.	When	the	detection	and	repair	
proceeds	correctly,	 the	time	to	repair	ranges	 from	less	 than	one	second	to	80+	
seconds.	Due	 to	 the	 inconsistent	 behavior	of	 the	 detection	 and	 communicator-
repair	operations,	we’re	unable	at	the	moment	to	perform	meaningful	large-scale	
scaling	tests	on	the	cost	of	this	component	of	Llama.	

 Summary 
The	Llama	library	delivers	fault	tolerance	in	HPC	trough	checkpointing.	It	is	the	
first	library	to	support	both	automatic	rollback	without	restart	and	the	use	of	an	
arbitrary	number	of	checkpoint	levels	with	topology	aware	checksum	checkpoints	
of	arbitrary	group	size	and	number	of	parity	code	blocks.	In	section	2.6.5,	it	was	
demonstrated	that	the	library	can	achieve	in	excess	of	300GB/s	encoding	when	
running	 on	 256	 nodes,	 similar	 to	 what	 has	 been	 demonstrated	 using	 the	 SCR	
library	by	LLNL	[153],	with	the	major	distinction	that	there	are	no	limitation	in	
Llama	on	the	group	size	and	the	number	of	parities	to	use	per	group.	
	
One	 issue	not	touched	upon	 in	outlining	the	recovery	procedure	 is	 that	 for	any	
application,	newly	joined	worker	ranks	must	create	all	structures	that	was	created	
by	the	original	worker	ranks	during	initialization.	This	 initialization	phase	may	
involve	 communication	with	other	worker	 ranks	and	could	potentially	be	very	
time	consuming.	A	potential	path	around	this	issue	was	presented	in	[102]	where	
it	was	demonstrated	 that	 this	procedure	need	not	be	 slow	nor	 cumbersome	 to	
implement.	 By	 logging	 all	MPI	 transactions	 during	 the	 initialization	 phase	 and	
protecting	 these,	 new	 workers	 can	 recover	 in	 complete	 isolation	 from	 other	
workers	waiting	to	restart	at	the	previous	checkpoint.	
	
The	library	is	still	under	development	and	there	are	several	points	that	needs	to	
be	addressed	 in	 future	versions.	At	 the	moment,	only	the	use	of	spare	nodes	to	
replace	 failed	 workers	 has	 been	 implemented,	 i.e.,	 there	 is	 no	 support	 for	
spawning	new	ranks	as	needed.	Another	issue	that	remains	is	that	upon	injecting	
a	large	number	of	errors,	the	failure-detection	and	communicator	repair	may	fail.	
Identifying	the	underlying	cause	of	these	issues	is	ongoing	work.	
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Finally,	 the	 implementation	of	 error	handling	within	Llama	 functionality	 is	not	
complete,	 so	at	 the	moment	 if	worker	 ranks	 fail	within	Llama	calls	such	as	 the	
update	or	recovery	methods	of	the	Guard,	this	will	result	in	undefined	behavior.	
To	protect	against	failures	during	the	process	of	updating	in-memory	checkpoints,	
the	approach	presented	in	[177]	is	to	be	used,	maintaining	an	extra	copy	of	the	
parity	code	blocks	during	checkpoint	update.	  
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3 Efficiency Improvements and infrastructure 
This	 section	 shows	 the	 efficiency	 improvements	 made	 to	 the	 co-design	
applications	which	are	not	direct	 implementations	of	algorithms	from	WP1	but	
improvements	to	the	codes	in	terms	of	performance.	

3.1 IO Improvements 
We	measured	 the	 IO	 performance	 achieved	 by	 the	Nektar++	 1	 code	 [22]	 using	
three	separate	IO	methods,	XML,	HDF5	(v1.8.14)	and	SIONlib	(v1.6.2).	HDF5	[24]	
is	a	hierarchical	data	format	that	allows	parallel	file	access.	It	is	necessary	however	
to	record	explicitly	which	parts	of	a	HDF5	dataset	belong	to	which	MPI	process.	
The	SIONlib	library	[25]	on	the	other	hand,	can	record	such	details	automatically,	
removing	 the	 burden	 of	 having	 to	 manage	 file	 decomposition	 within	 the	
application	code.		

Our	 study	 involved	 the	 checkpoint	 files	 produced	 by	 two	 test	 cases.	 One	 we	
describe	 as	 small	 since	 it	 produces	 checkpoint	 files	 that	 contain	 a	 moderate	
amount	of	data,	approximately	2.5	MB,	derived	from	a	mesh	containing	150,302	
elements.	 The	 other	 uses	 a	 much	 more	 detailed	 mesh,	 featuring	 3.5	 million	
elements,	 that	 generates	 a	 dataset	 roughly	 5.5	 GB	 in	 size.	 The	 first	 test	 case	
simulates	 the	 flow	 of	 blood	 through	 an	 aortic	 arch	 [26]	 using	 an	 advection-	
diffusion-reaction	 solver	 to	 simulate	mass	 transport,	 whereas	 the	 second	 case	
employs	an	incompressible	Navier-Stokes	solver	to	model	the	flow	of	air	around	
a	racing	car.	We	first	executed	both	test	cases	for	a	range	of	node	counts,	2n,	where	
n	is	in	the	range	5	−	8,	on	the	ARCHER	platform	[27],	a	Cray	XC-30	machine:	each	
node	has	24	cores.	This	enabled	us	to	generate	the	various	checkpoint	files	that	
could	then	be	used	by	a	specially	written	IO	benchmarker.		

A	performance	measurement	tool	FieldIOBenchmarker	 [23]	was	written	to	
better	 understand	 the	 performance	 costs	 associated	 with	 reading	 and	 writing	
checkpoint	field	files	-	it	uses	the	Nektar++	FieldIO	class,	which	was	subclassed	
for	each	IO	method	discussed	in	this	section.	For	example,	the	FieldIOXml	class	
reads	and	writes	data	through	the	use	of	two	routines	called	Import	and	Write.	
Each	MPI	process	reads	and	writes	to	a	unique	checkpoint	file,	which	stores	the	
field	definitions	and	field	data	that	are	handled	by	that	process.		

The	 FieldIOHdf5	 class	 supports	 the	 reading	 and	 writing	 of	 a	 single	 HDF5	
checkpoint	file	that	is	accessed	by	all	MPI	processes.	This	file	features	a	top-level	
groupcalled	NEKTAR,	which	contains	a	sub-folder	for	every	field	type.	The	values	
of	the	parameters	that	define	a	field	type	are	hashed	so	as	to	generate	a	unique	
sub-folder	name	—	the	parameter	values	are	then	added	as	attributes	of	the	field	
type	sub-folder.	All	other	data	are	stored	within	several	datasets	that	reside	within	
the	top-level	 folder.	For	example,	every	 field	that	an	MPI	process	might	handle	
consists	of	elements,	where	each	element	has	an	ID	and	is	also	associated	with	a	
set	of	values:	hence,	there	are	datasets	for	element	data	and	element	IDs.	The	most	
important	dataset	however	concerns	the	decomposition;	this	dataset	allows	every	
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MPI	process	to	identify	(via	hash	values)	those	field	types	it	should	be	handling	
an1d	secondly,	to	determine	the	correct	offset	for	accessing	the	element	datasets.		

 
Figure	35:	HDF5	checkpoint	file	format	(Aortic	Arch	test	case).	

The	 job	 of	 creating	 the	 structure	 of	 the	HDF5	 file	 is	 delegated	 to	 a	 single	 root	
process	 that	 also	 writes	 the	 decomposition	 dataset	 having	 collected	 all	 the	
necessary	metadata	from	the	other	ranks.	All	MPI	processes	then	write	their	data	
to	the	appropriate	locations	within	the	element	datasets.	During	the	importing	of	
HDF5	data,	 each	MPI	 process	 uses	 the	 decomposition	 dataset	 to	 avoid	 reading	
parts	of	 the	element	datasets	 that	belong	to	other	processes.	The	design	of	 the	
FieldIOHdf5::Import	routine	incorporates	a	degree	of	flexibility	that	allows	
the	user	to	redefine	the	mapping	between	processes	and	elements.	This	flexibility	
incurs	a	cost	in	the	form	of	additional	reads:	specifically,	the	entire	decomposition	
dataset	has	to	be	communicated	to	all	processes.		

Finally,	the	FieldIOSIONlib	class	does	not	require	decompositional	data	to	be	
recorded	explicitly.	The	SIONlib	library	itself	records	which	MPI	processes	have	
written	which	data	to	the	checkpoint	file:	this	permits	each	process	to	simply	loop	
over	the	fields	it	handles,	writing	out	or	reading	in	the	field	definition,	element	IDs	
and	element	data	 in	 turn.	 It	 is	also	possible	 for	an	MPI	process	to	 impersonate	
another	rank	when	opening	a	SIONlib	file,	permitting	element	redistribution.	 

 Results 

Sets	of	scaling	runs	were	performed	for	each	IO	method,	where	each	run	recorded	
the	time	taken	to	read	and	write	the	data.	Both	IO	operations	were	performed	ten	
times	 for	 each	 core	 count,	 allowing	 an	 average	 value	 for	 execution	 time	 to	 be	
plotted.	The	FieldIOBenchmarker	tool	takes	a	parameter	that	specifies	how	
many	tests	are	to	be	performed.	Setting	this	parameter	to	ten	can	lead	to	caching	
effects	that	result	in	fast	file	access	times;	to	counter	this	unrealistic	circumstance,	
the	 count	 parameter	was	 set	 to	 one	 and	FieldIOBenchmarker	was	 instead	
called	ten	times	from	within	the	submission	script.	Further,	the	submission	script	
was	designed	such	that	each	iteration	exercised	all	three	IO	methods.	Having	each	
IO	method	 tested	 from	 separate	 scripts	 running	 at	 different	 times	 could	make	
																																																								
1 The variant of Nektar++ discussed in this report is currently maintained within the ioext branch 
stored within the GitLab Nektar++ repository [30]. The ioext branch was formed from Nektar++ the 
trunk as of 28 May 2018. 
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comparisons	difficult	since	the	overall	file	system	load	is	expected	to	be	varying	
continuously.	All	of	this	performance	data,	containing	240	time	measurements	(4	
core	counts	×	3	IO	methods	×	2	IO	operations	×	10	tests),	was	then	bundled	into	a	
single	dataset.	 Similarly	 formatted	datasets	were	 then	compiled	on	 subsequent	
days	in	order	to	sample	how	Nektar++	IO	performance	could	be	affected	by	the	
different	file	system	loads	routinely	experienced	by	ARCHER.	Please	note,	the	read	
and	write	times	presented	here	are	taken	from	the	perspective	of	Nektar++,	and	
therefore	 do	 not	 just	 cover	 the	 low-level	 IO	 operations,	 but	 also	 the	 necessary	
housekeeping	required	to	initialise	the	data	structures	for	all	MPI	ranks.	 

The	Lustre	 file	system	on	ARCHER	controls	access	 to	a	set	of	48	object	storage	
targets	(OSTs)	and	has	a	theoretical	peak	performance	of	30	GB/s	[28].	By	default,	
each	file	is	split	into	1	MiB	stripes	and	then	stored	on	one	1	OST.	This	is	fine	for	
codes	using	one	file	per	process;	whereas	a	single	shared	checkpoint	file	should	in	
general	have	its	stripe	count	set	to	-1,	allowing	use	of	all	available	OSTs.	However,	
we	 found	 that	when	 file	 sizes	are	 sufficiently	 small	 the	best	 IO	performance	 is	
achieved	with	the	default	Lustre	settings.	 

HDF5	nominates	a	set	of	MPI	ranks	to	act	as	data	aggregators:	 those	processes	
collect	the	data	from	all	the	other	ranks	before	writing	to	file.	The	number	of	HDF5	
file	 writers	 was	 48	 for	 the	 core	 counts	 tested.	 SIONlib	 also	 funnels	 data	 to	
designated	writers	(or	collectors)	assuming	one	has	opened	the	file	in	collective	
mode;	 although,	we	 found	 that	 the	number	of	 SIONlib	writers	was	 fixed	at	 the	
lower	value	of	32.	Furthermore,	using	a	collective	SIONlib	configuration	would	not	
be	sufficient	 to	yield	the	best	performance,	since	each	writer	actually	performs	
many	writes	instead	of	just	one.	As	with	HDF5,	a	SIONlib	writer	gathers	data	from	
other	MPI	ranks,	but	then	it	writes	each	rank’s	data	to	the	part	of	the	checkpoint	
file	 reserved	 for	 that	 rank.	Thus,	 for	high	 core	 counts,	 each	SIONlib	writer	will	
perform	thousands	of	writes	across	different	locations.	The	solution	is	to	add	the	
collectivemerge	 tag	 to	 the	 mode	 string	 that	 is	 used	 to	 open	 the	 SIONlib	
checkpoint	file.	This	forces	each	writer	to	output	the	collected	data	to	one	part	of	
the	file	only;	the	part	reserved	for	that	writer’s	rank.		

 Results of Aortic Arch 

Figures	3.1.2.1-2	present	 the	 results	generated	by	 the	 small	 checkpoint	 files.	 It	
shows	that	SIONlib	achieved	the	fastest	read/write	times	for	all	core	counts,	but,	
although	the	majority	of	the	data	points	are	close	to	the	averages	(enlarged	data	
points)	 there	 are	 many	 outlying	 (i.e.,	 slower)	 readings	 also.	 For	 example,	 the	
SIONlib	results	recorded	for	a	core	count	of	6144	contain	two	extreme	outliers	that	
are	pointed	to	by	the	vertical	chevrons	in	Figure 36.	A	data	point	is	judged	to	be	an	
outlier	 if	 it	 is	beyond	a	certain	distance	 from	the	top	of	 the	third	quartile.	This	
distance	is	defined	as	twenty	times	the	inter-quartile	range	(IQR)	for	the	read	data	
and	12	IQR	for	the	write	data.	The	two	SIONlib	write	outliers	are	so	extreme	that	
the	mean	SIONlib	write	time	for	6144	cores	is	in	fact	greater	than	the	XML	and	
HDF5	averages;	this	is	despite	the	fact	that	the	fastest	writes	were	recorded	by	
SIONlib.	If	we	adjust	the	average	read/write	times	by	discounting	these	extreme	
values,	we	see	that	SIONlib	is	the	best	performing	IO	method,	as	shown	in	the	line	
plots	of	Figure 36	to	Figure 39.		
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Figure	36:	Read	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files,	presented	as	a	scatter	plot.	The	data	
are	drawn	from	three	datasets	(720	timing	measurements	in	total)	compiled	on	separate	days.	Some	of	the	
datasets	contained	extreme	outliers	which	are	indicated	by	vertical	chevron	pairs	with	the	actual	outlier	

values	printed	immediately	above. 

	
Figure	37:	Read	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files.	The	data	are	drawn	from	three	
datasets	(720	timing	measurements	in	total)	compiled	on	separate	days.	Both	the	mean	(solid)	and	
minimum	(dashed)	times	are	shown.	Note,	the	mean	calculations	exclude	any	outliers	shown	above.	
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Figure	38:	Write	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	30.	

	
Figure	39:	Write	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	37. 

 

3.1.3. Results of Racing Car 

We	repeated	the	measurements	discussed	above	but	 this	 time	we	used	a	more	
industrial	 test	 case,	 one	 that	 produces	 checkpoint	 files	 approximately	 two	
thousand	times	larger	than	those	generated	by	the	aorta	mesh.	

We	also	investigated	the	impact	of	changing	the	Lustre	settings	for	the	checkpoint	
files.	Just	to	recap,	the	default	settings	(stripe	count/size	=	1/1MiB)	were	used	for	
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the	small	checkpoint	files	regardless	of	IO	method.	We	then	changed	the	Lustre	
stripe	count	to	-1	for	the	single-shared	file	IO	methods	(HDF5	and	SIONlib)	for	the	
large	test	case,	enabling	a	checkpoint	file	to	be	striped	across	all	available	OSTs.	
As	 noted	 previously,	 the	 actual	 writing	 and	 reading	 of	 data,	 is	 handled	 by	 a	
(relatively)	small	group	of	processes:	48	in	the	case	of	HDF5	and	32	for	SIONlib	—	
all	other	processes	 simply	 send	 their	data	 to	 the	pool	of	designated	writers.	 It	
seemed	sensible	then	to	enlarge	the	Lustre	stripe	size	for	the	large	checkpoint	files	
to	a	value	roughly	equivalent	to	the	amount	of	data	handled	by	each	writer,	which	
turns	 out	 to	 be	 256	 MiB	 for	 SIONlib	 and	 128	 MiB	 for	 HDF5.	 In	 effect,	 each	
HDF5/SIONlib	writer	could	now	write	all	of	their	data	within	one	stripe,	allowing	
each	writer	to	be	assigned	to	one	unique	OST.		

For	 the	 large	 test	 case,	 the	 SIONlib	 library	 continues	 to	 lead	when	 it	 comes	 to	
reading	data,	but	it	is	now	the	second	fastest	of	the	three	IO	methods	for	writing	
data:	although,	SIONlib	manages	to	beat	HDF5	at	6144	cores	it	is	1.5	times	slower	
than	the	XML	average.	In	fact,	XML	is	now	the	fastest	writer	for	all	core	counts,	see	
Figure 43.		
 

	
Figure	40:	Read	times	for	the	small	(5.5	GB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	30. 



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 76	

	
Figure	41:	Read	times	for	the	small	(5.5	GB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	37.	Both	the	mean	(solid)	and	minimum	(dashed)	times	are	shown. 

	
Figure	42:	Write	times	for	the	small	(5.5	GB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	30. 
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Figure	43:	Write	times	for	the	small	(5.5	GB)	Nektar++	checkpoint	files.	The	format	follows	that	used	for	

Figure	37. 

 
 
 
 

3.1.4. Initial Summary 

The	FieldIOBenchmarker	tool	has	provided	sets	of	results	that	show	the	read	
and	write	times	for	Nektar++	checkpoint	files	using	three	IO	methods,	XML,	HDF5	
and	SIONlib.	The	first	of	these	methods	(XML)	maintains	one	checkpoint	file	per	
MPI	process,	whereas	the	other	two	use	a	single	shared	checkpoint	file.		

We	find	that	the	relative	performance	of	the	IO	methods	does	depend	on	the	size	
of	 the	checkpoint	 file.	The	results	 for	the	small	2.5MB	checkpoint	 file	exhibited	
significant	 scatter:	 it	 was	 necessary	 to	 annotate	 the	 corresponding	 plots	 to	
indicate	the	presence	of	extreme	outliers	(Figure 40	to	Figure 43).	These	extreme	
values	(8	out	of	720)	were	recorded	for	all	IO	methods;	hence,	we	felt	justified	in	
recalculating	the	mean	performance	with	the	outliers	removed.	SIONlib	achieved	
the	fastest	IO	times	for	all	core	counts.	XML	was	the	slowest	at	writing	(2.3	times	
the	SIONlib	result),	but	HDF5	showed	the	poorest	read	performance	(1.7	times	
slower	than	SIONlib).		

We	should	also	mention	that	setting	the	stripe	count	to	-1	for	the	single-shared	file	
IO	methods	worsened	the	IO	speeds	 for	HDF5	and	SIONlib,	 indicating,	perhaps,	
that	we	had	reached	the	core	count	 limit	 for	 the	partitioning	of	 the	aortic	arch	
mesh	 [26].	 This	motivated	 further	 IO	 benchmarking	 but	 this	 time	 using	 5.5GB	
checkpoint	files,	which	were	sufficiently	large	to	justify	using	a	stripe	count	of	-1,	
permitting	the	checkpoint	data	to	be	striped	across	all	available	OSTs.	(Another	
benefit	 of	 handling	 greater	 data	 volumes	 was	 the	 disappearance	 of	 extreme	
outliers,	which	had	complicated	the	aorta	results).	We	also	increased	the	stripe	
size	 for	 SIONlib	 and	 HDF5	 to	 256MiB	 and	 128MiB.	 The	 intention	 here	was	 to	
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create	the	possibility	for	each	SIONlib/HDF5	aggregator	to	read/write	their	data	
to	a	dedicated	OST	using	a	single	stripe.	

The	second	set	of	results,	Figure 40	to	Figure 43,	show	that	the	SIONlib	class	is	still	
able	to	read	the	checkpoint	data	in	the	fastest	time.	The	HDF5	read	performance	
is	slower	but	not	as	slow	as	XML,	despite	the	fact	that	there	is	a	noticeable	rise	in	
HDF5	read	 times	with	 core	 count.	The	HDF5	write	performance	has	worsened	
considerably	for	the	large	test	case,	whereas	XML	has	moved	from	third	position	
to	first.			

3.1.5.	Improving	the	HDF5	Checkpoint	File	Format	
The	HDF5	results	shown	above	have	revealed	the	cost	of	having	every	MPI	process	
read	 in	 the	entire	decomposition	dataset.	 It	 should	be	possible	 to	redesign	 the	
format	 of	 the	 checkpoint	 file	 such	 that	 each	 process	 need	 only	 read	 the	 data	
pertinent	to	the	mesh	elements	that	it	has	been	assigned.	

Furthermore,	the	need	to	collate	the	decompositional	data	explicitly	lengthens	the	
execution	time	of	the	FieldIOHdf5::Write	routine.	This	cost	could	easily	be	
avoided	if	the	mesh	partitioning	does	not	change	during	the	simulation.	Instead,	
the	 HDF5	 write	 routine	 would	 simply	 have	 each	 MPI	 process	 determine	 the	
correct	offset	into	the	element	dataset	before	updating	the	data	contained	therein.	

 

	

 
Figure	44:	Revised	HDF5	checkpoint	file	format	(Aortic	Arch	test	case).	

 
The	 revised	 checkpoint	 file	 format	 now	 features	 two	 decomposition	 datasets,	
called	FIELD_DECOMPOSITION	and	DATA_DECOMPOSITION.	The	first	dataset	
allows	each	process	to	discover	how	many	fields	it	is	handling	by	only	reading	the	
part	(just	128	bytes)	of	FIELD_DECOMPOSITION	that	is	relevant	to	the	process.	
The	 data	 obtained	 tells	 the	 process	 which	 offset	 to	 use	 when	 accessing	
the	DATA_DECOMPOSITION	dataset;	the	data	read	from	this	second	dataset	then	
tells	the	process	where	to	access	the	ELEM_IDS	and	ELEM_DATA	datasets.	
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Basically,	 this	 arrangement	 avoids	 having	 to	 have	 each	 process	 read	 in	 entire	
datasets.	 This	 is	 also	 useful	 when	 writing	 a	 checkpoint	 file:	 the	
HDF5	write	method	now	uses	a	flag	called	reformatting	that	if	set	to	false	tells	the	
code	not	to	go	through	the	process	of	collecting	the	decompositional	data:	those	
datasets	should	only	be	updated	if	the	partitioning	has	changed	also.	And	so,	an	
MPI	process	will	only	need	to	update	the	ELEM_DATA	dataset.	
	
Figure	45	 to	Figure	48	presents	 the	 results	 from	 the	 improved	FieldIOHdf5	
class.	Please	note,	the	tests	for	the	other	IO	methods	must	also	be	run	at	the	same	
time	in	order	to	account	for	the	continually	varying	file	system	load.	For	the	small	
test	 case	we	 can	 see	 that	 the	 HDF5	 performance	 for	 both	 read	 and	write	 has	
improved	and	is	now	much	less	than	the	XML	result.	Moving	to	the	large	test	case	
(Figure	3.1.5.3),	we	see	that	again	the	HDF5	read	time	is	lower	than	the	XML	result;	
disappointingly	however,	the	HDF5	write	result	has	barely	improved	even	when	
we	restrict	the	writing	to	ELEM_DATA	dataset	(i.e.,	the	reformatting	flag	is	set	to	
false). 
 
 

	
Figure	45:	Read	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files.	The	data	are	drawn	from	just	one	
dataset	(240	timing	measurements	in	total).	Both	the	mean	(solid)	and	minimum	(dashed)	times	are	shown. 
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Figure	46:	Write	times	for	the	small	(2.5	MB)	Nektar++	checkpoint	files.	The	data	are	drawn	from	just	one	
dataset	(240	timing	measurements	in	total).	Both	the	mean	(solid)	and	minimum	(dashed)	times	are	shown. 

 
 

	
Figure	47:	Read	times	for	the	large	(5.5	GB)	Nektar++	checkpoint	files.	The	data	are	drawn	from	just	one	

dataset	(240	timing	measurements	in	total).	Both	the	mean	(solid)	and	minimum	(dashed)	times	are	shown. 
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Figure	48:	Write	times	for	the	large	(5.5	GB)	Nektar++	checkpoint	files.	The	data	are	drawn	from	just	one	
dataset	(240	timing	measurements	in	total).	Both	the	mean	(solid)	and	minimum	(dashed)	times	are	shown.	

These	 results	motivated	us	 to	profile	 the	FieldIOHdf5::Write	 routine.	We	
subsequently	found	that	80%	of	the	time	is	spent	closing	the	HDF5	file.	Specifically,	
the	 Write	 routine	 calls	 a	 method	 called	 WriteData	 that	 is	 private	 to	 the	
FieldIOHdf5	class;	this	method	uses	a	C++	smart	pointer	to	access	the	HDF5	
checkpoint	file	and	so	when	the	method	exits	the	smart	pointer	goes	out	of	scope	
which	activates	its	destructor	causing	the	connection	to	the	HDF5	file	to	be	closed.	
The	profiling	results	 indicate	 that	 it	 is	 this	HDF5	close	operation	 that	 is	 taking	
most	of	the	time	whenever	a	checkpoint	file	is	written.	

The	issue	of	a	time-consuming	HDF5	close	has	been	noted	in	connection	with	the	
cray-hdf5-parallel/1.8.14	 module	 available	 on	 the	 ARCHER	 system.	
Indeed,	the	Cray	team	based	at	EPCC	produced	a	short	report	[8]	that	documented	
this	problem	together	with	a	workaround	that	involves	performing	a	HDF5	flush	
operation	 immediately	 after	 opening	 the	 HDF5	 file.	 Unfortunately,	 this	
workaround	did	not	work	 for	our	Nektar++	 racing	 car	 test	 case.	We	also	 tried	
using	the	latest	cray-hdf5-parallel	module	available	on	ARCHER,	v1.10.1.1:	
this	also	failed	to	reduce	the	HDF5	write	time.	
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3.2 Communications Libraries 
Gather-scatter	operations	are	one	of	the	most	important	communication	kernels	
used	 in	 the	 spectral	 element	 codes	 Nek5000	 and	 Nektar++	 for	 fetching	 data	
dependencies	 (gather)	 and	 spreading	 back	 results	 (scatter).	 The	 current	
implementation	 in	both	Nektar++	and	Nek5000	 is	based	on	 the	Gather-Scatter	
library,	 GS,	 which	 utilizes	 three	 different	 communication	 strategies:	 	 pairwise	
nearest	neighbour	exchange,	message	aggregation,	and	collectives,	to	efficiently	
perform	 communication	 on	 a	 given	 platform.	 GS	 is	 implemented	 using	 non-
blocking,	two-sided	message	passing	via	MPI	and	the	library	has	proven	to	scale	
well	to	hundreds	of	thousands	of	cores.	
	
However,	the	necessity	to	match	sending	and	receiving	messages	in	the	two-sided	
communication	 abstraction	 can	 quickly	 increase	 latency	 and	 synchronization	
costs	 for	 very	 fine-grained	 parallelism,	 in	 particular	 for	 the	 complex	
communication	patterns	created	by	unstructured	CFD	problems.	To	address	this	
issue	and	prepare	both	spectral	element	codes	for	extreme-scale	computing,	we	
have	developed	ExaGS,	a	reimplementation	of	the	Gather-Scatter	library,	with	the	
intent	 to	 use	 the	 best	 suitable	 programming	 model	 for	 a	 given	 architecture.	
Following	the	promising	results	from	the	EPiGRAM	project[31],	we	have	chosen	
to	 implement	 ExaGS	 using	 the	 one-sided	 programming	model	 provided	 by	 the	
Partitioned	 Global	 Address	 Space	 (PGAS)	 abstraction,	 using	 Unified	 Parallel	 C	
(UPC).	
	
There	are	two	major	issues	for	an	efficient	UPC	implementation.	First	an	efficient	
shared	data	layout	is	needed,	which	allows	for	different	sized	memory	blocks	on	
each	 thread,	 with	 easy	 access	 from	 any	 thread.	 Most	 implementations	 of	
distributed	shared	memory	models,	e.g.	Coarray	Fortran	and	UPC,	allocate	shared	
memory	across	 threads	 in	equal,	 fixed	block	 sizes.	Although	 this	provides	easy	
access	 from	 any	 thread,	 unless	 the	 problem	 size	 is	 divisible	 by	 the	 block	
size/number	 of	 threads	 one	 must	 allow	 for	 padded	 arrays,	 creating	 holes	 of	
unused	memory.	Furthermore,	dynamically	growing	parts	of	the	data	will	require	
a	global	reallocation	of	the	entire	shared	memory	object.	To	solve	this	problem,	
we	have	used	the	directory	of	objects	approach,	where	each	thread	defines	its	own	

shared	memory	region,	which	can	grow	and	shrink	independently	of	each	other.	
Each	region	can	be	accessed	by	going	through	a	directory,	consisting	of	shared	
pointers	to	each	region.		
	

Buffer	on	thread	0 

Buffer	on	thread	1 

Buffer on thread 2 

Buffer on thread 3 

Directory 
Figure	49:	An	illustration	of	the	directory	of	object	data	structure	on	four	threads.	
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The	second	issue	is	to	derive	efficient	point-to-point	synchronization	primitives	
in	 UPC,	 necessary	 for	 protecting	 communication	 buffers	 both	 for	 message	
aggregation	and	nearest-neighbour	communication.	For	this	we	have	investigated	
different	strategies.	First,	by	protecting	each	transfer	with	a	locking	mechanism.	A	
lock	is	standard	and	provided	natively	by	UPC,	but	requires	at	least	two	locks	to	
protect	 both	 send	 and	 receive	 buffers,	 thus	 the	 communication	 becomes	 very	
similar	 to	 the	 two-sided	model,	with	an	explicit	 synchronization	point	 for	both	
send	and	receive	operations,	 thus	minimizing	the	gains	 from	using	a	one-sided	
model.	Our	 second	approach	 is	 to	 synchronise	by	a	 shared	variable	acting	as	a	
semaphore.	With	 either	 a	 strict	 access	 policy	 or	 using	 UPC's	 atomic	 update	 to	
ensure	correctness.	With	a	shared	semaphore,	a	 less	restrictive	communication	
abstraction	 can	 be	 chosen,	 where	 the	 semaphores	 implicitly	 enforce	
synchronization	 by	 protecting	 the	 shared	 memory	 buffers.	 This	 way,	 the	
communication	 pattern	 becomes	 very	 similar	 to	 multithreaded	 programming.	
However,	 care	must	be	 taken	 in	order	 to	avoid	deadlocks,	 race	 conditions	and	
network	 contention	 when	 polling	 or	 updating	 atomically	 the	 remote	 memory	
locations	 of	 the	 semaphores.	 Despite	 the	 slightly	 difficult	 implementation,	 the	
semaphore	approach	was	chosen	for	ExaGS	due	to	its	more	one	sided,	and	lower	
latency	nature.		
	
By	utilizing	both	the	shared	data	structure	and	the	point-to-point	synchronisation	
strategies,	we	have	successfully	rewritten	the	entire	Gather-Scatter	library	in	UPC.		
	

 Crystal-Router and collective communication algorithms 
The	Crystal-Router	and	the	collective	communication	algorithms	in	the	library	are	
all	being	based	on	message	aggregation,	whereas	for	a	fixed	number	of	steps,	data	
is	exchanged	between	a	pair	of	threads	in	each	step,	processed	and	forwarded	to	
another	thread	in	the	next	step.	For	a	hypercube	of	dimension	d,	and	a	buffer	with	
data	 to	 be	 forwarded	 to	 another	 thread,	 the	 Crystal-Router	 kernel	 can	 be	
expressed	as	follows:		

	
For	a	message	passing	based	implementation,	the	exchange	of	buffers	can	simply	
be	implemented	by	a	blocking	send	and	receive	operation.	In	UPC	we	need	to	i)	
signal	the	receiver	that	data	has	arrived	in	his	buffer	and	ii)	make	sure	that	the	
receiver	has	processed	data	in	his	buffer	before	any	thread	tries	to	write	into	it.	
We	 use	 an	 array	 of	 semaphores	 flg	 to	 achieve	 this,	with	 the	 buffers	 accessible	
through	a	directory	dir.	The	semaphores	are	flagged	with	the	previous	hypercube	

for	i	=	0	…	d	–	1	do	
				Exchange	buffer	with	thread:	mythread	⨁	2i			
				for	all	received	message	msg	do	
								if	dest(msg)	==	mythread	then	
												Keep	msg	
								else	
												Add	msg	to	buffer	
								end	if	
				end	for	
end	for	
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dimension	if	the	buffers	are	ready	to	accept	data.	Once	a	thread	has	written	his	
data	into	the	buffer,	it	changes	the	status	of	the	semaphore	to	-2	marking	it	as	busy,	
until	 the	 receiving	 thread	 has	 processed	 everything	 and	 set	 it	 to	 the	 current	
dimension	of	the	cube.			
	

	

 Pairwise nearest neighbour exchange 
The	pairwise	point-to-point	strategy	 is	easier	 to	realize	and	 is	often	the	 fastest	
method	 on	 current	 HPC	 interconnects.	 Since	 the	 algorithm	 doesn’t	 depend	 on	
message	aggregation,	a	straightforward	message	passing	based	implementation	
can	overlap	all	transfers	by	first	posting	a	series	of	non-blocking	receives,	followed	
by	all	the	non-blocking	sends	and	later	synchronise	everything:	
	

	
To	 implement	 a	UPC	 version	 of	 the	 point-to-point	 exchange	we	 used	 a	 similar	
approach	as	for	the	Crystal-Router	with	shared	buffers	for	remote	threads	to	write	
data	into.	Since	the	pairwise	exchange	doesn't	have	a	fixed	number	of	exchange	
steps,	 we	 needed	 to	 extend	 the	 shared	 buffers	 to	 a	 directory	 of	 directories	 of	
objects	 structure,	 such	 that	 each	directory	entry	would	point	 to	a	directory	on	
each	thread	containing	buffer	space	to	receive	data	from	any	of	its	neighbouring	
threads	 in	 parallel.	 A	 similar	 structure	 was	 also	 used	 for	 the	 synchronisation	
primitives,	 whereas	 the	 sender	 signals	 on	 data	 movement	 by	 updating	 the	

flgs[mythread]	←	-	1	
for	i	=	0	…	d	–	1	do	
				dst	←	mythread	⨁	2i			
				Block	while	flgs[dst]	≠	(i	–	1)					
				dir[dst].buf	←	buffer	
				flgs[dst]	←	-2	
				Block	while	flgs[mythread]	≠	-2	
				for	all	data	in	dir[mythread].buf	do	
								if	destination(data)	==	mythread	then	
												Keep	data	
								else	
												Add	data	to	buffer	
								end	if	
				end	for	
				flgs[mythread]	←	i	
end	for	

for	i	=	0	…	nneighbours	do	
				Post	non-blocking	recv(recv_buf[i])	
end	for					
Fill	send	buffer	send_buf	
for	i	=	0	…	nneighbours	do	
				Post	non-blocking	send(send_buf[i])	
end	for	
Sync	all	transfers	



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 85	

semaphores	in	the	receiver's	part	of	the	synchronisation	structure.	Resulting	in	a	
synchronisation	scheme	where	the	receiver	only	needs	to	poll	semaphores	with	
local	affinity	to	the	thread,	thus	reducing	traffic	on	the	network.	Furthermore,	to	
increase	 concurrency	 we	 used	 non-blocking	 remote	 memory	 transfers	 on	 the	
sender	 side,	 injecting	 as	 much	 data	 as	 possible	 into	 the	 network,	 initiating	 a	
transfer	as	soon	as	any	of	the	neighbouring	threads	receive	buffers	is	flagged	as	
ready.	 With	 dir[…][…]	 the	 directory	 of	 directories	 structure,	 dir[…].flg[…]	 our	
synchronisation	 structure	 and	nb_put	denoting	 non-blocking	memory	 transfer,	
the	synchronisation	scheme	for	the	sending	part	(similar	for	the	receiver)	of	the	
kernel	can	be	expressed	as:	

	

 Performance evaluation 
We	have	evaluated	 the	performance	of	ExaGS	on	 two	different	systems.	First	 a	
regular	 InfiniBand	cluster	 called	Tegner	 (KTH),	using	 the	Berkely	UPC	 runtime	
with	the	GNU	UPC	compilers,	secondly	the	Cray	XC40	Beskow	(KTH)	using	Cray’s	
own	 UPC	 compiler.	 As	 a	 benchmark	 problem	 we	 used	 Nek5000’s	 own	 mini-
application	Nekbone,	performing	a	weak	scaling	study	on	solving	a	linear	system	
using	 the	 conjugate	 gradient	method.	We	used	 128	 elements	 per	 core	 and	 ran	
Nekbone	 using	 both	 the	 Crystal-Router	 and	 the	 Pairwise	 communication	
strategies.	For	all	tests	we	compared	against	the	reference	MPI	implementation.	
	
On	Tegner	we	observed	up	to	10%	better	performance	for	our	UPC	version	of	the	
Crystal-Router	algorithm	as	compared	to	the	baseline	MPI	implementation.	While	
the	Pairwise	strategy	turned	out	to	be	slightly	slower.	
	

n	←	nneighbours,	sent	←	0	
while	n	>	0	do	
				for	i	=	0…	nneighbours	do	
								dst	←	receiver(i)	
								if	sent(i)	≠	1	∧	dir[dst].flg[mythread]	≠	1	then	
												nb_put(dir[dst][mythread],	send_buf[i])	
												nb_put(dir[dst].flg[mythread],	1)	
												sent(i)	←1,	n	←	n	-	1	
								end	if	
				end	for	
end	while	
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Figure	50:	Nekbone	performance	on	Tegner	using	the	Crystal-Router	(left)	and	the	Pairwise	(right)	

communication	strategies.	

At	scale	on	Beskow,	the	results	are	different,	and	we	start	to	see	improvements	for	
both	communication	algorithms	when	using	our	new	UPC	 implementation.	The	
Crystal-Router	still	achieves	around	10%	better	performance	for	UPC	compared	
to	MPI,	but	on	Beskow,	the	Pairwise	strategy	is	also	faster	for	UPC	than	MPI	with	
up	to	5%	better	flops	rate	at	scale.	
	

	
Figure	51:	Nekbone	performance	on	Beskow	using	the	Crystal-Router	(left)	and	the	Pairwise	(right)	

communication	strategies.	
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3.3 Energy efficiency 

 Motivation 
Subsequent	to	the	results	presented	in	D2.2,	section	6.2,	the	decision	was	taken	to	
verify	 those	 by	 performing	 additional	 measurements,	 in	 this	 case	 five	 runs	 of	
every	setting.	This	disclosed	a	high	variability	when	running	identical	jobs.	As	this	
variability	is	above	the	order	of	effects	achieved	by	adapting	the	clock	frequency	
(Dynamic	 Voltage	 and	 Frequency	 Scaling,	 DVFS),	 at	 least	 with	 respect	 to	 the	
energy	delay	product	(EDP),	it	renders	our	prior	results	unreliable	(Figure	52).	
	

	
Figure	52:	Variability	of	results	presented	in	D2.2.	Shown	is	EDP	of	actual	computation	on	48	nodes	with	

HDF5	IO.	

	

 Enlarged use case 
To	 achieve	 more	 reliable	 measurements	 by	 way	 of	 increasing	 the	 length	 of	
measured	code	segments,	we	supported	project	partner	ASC(S	 in	setting	up	an	
enlarged	automotive	use	case	-	see	D3.3	for	further	details.	Using	an	enlarged	use	
case	 allows	 for	 a	 higher	 number	 of	 samples	 per	 code	 segment	 when	 using	 a	
production-like	amount	of	parallelism;	this	is	due	to	our	measurement	frequency	
being	fixed.	Furthermore,	it	involves	an	increased	memory	footprint	so	that	DRAM	
bandwidth	might	become	the	bottleneck	and	the	code	might	hence	benefit	from	a	
reduced	 clock	 frequency.	 The	 use-case	 previously	 examined	 allows	 for	
superlinear	scaling,	which	we	surmise	is	due	to	hot	data	fitting	into	caches.	Since	
there	 is	 a	 strong	 correlation	 in	 between	 runtime	 and	 energy	 demand,	 adding	
parallelism	 in	 this	 case	allows	 for	an	 increase	 in	potential	 energy	 saving	while	
heavily	increasing	the	power	demand.	The	latter,	however,	is	very	likely	to	be	a	
problem	at	the	exascale.	Moreover,	superlinear	scaling	is	unrealistic	in	typical	HPC	
environments.	An	enlarged	use	case	may	also	lower	the	ratio	of	communication	to	
computation	when	 deployed	 on	 amounts	 of	 parallelism	 that	 are	 typical	 in	 the	
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automotive	industry.	This	should	reduce	the	impact	of	runtime	variability	due	to	
interconnect	issues.	
	
Supporting	 ASC(S	 in	 setting	 up	 an	 enlarged	 use	 case,	 however,	 required	
substantial	effort	since	co-design	application	Nektar++	turned	out	to	be	not	fully	
compatible	 with	 the	 automotive	 industry	 tool	 chain	 deployed	 by	 ASC(S.	
Furthermore,	 handling	 such	 a	 big	 use	 case	 disclosed	 some	 limitations	 in	
Nektar++’s	own	tool	chain.	
	
Unfortunately	it	was	not	possible	to	finalize	the	enlarged	use	case.	Hence,	it	was	
decided	to	perform	measurements	with	the	previous	use-case,	but	deploy	it	with	
8	nodes	only.	The	aim	is	to	reduce	the	amount	of	communication	and	the	amount	
of	runtime	variance.	Furthermore,	we	measured	the	runtime	of	 the	entire	 time	
stepping	loop	instead	of	further	breaking	it	down	into	computation,	halo	exchange	
and	IO	phases	to	improve	the	number	of	samples	collected.	

 Measurement setup 
The	measurement	setup	hence	was	as	follows:	

• An	industrially	relevant	automotive	use	case	provided	by	ASC(S	(cf.	D3.4)	
• 8	fully	populated	(i.e.	24	active	cores)	of	Hazel	Hen	(CRAY	XC40,	2	x	E5-

2680v3	/	node,	128GB	/	node,	Aries	interconnect)	
• 45GB	of	DRAM	used	per	node	
• HDF5	output	
• Measured	entire	time	stepping	loop	
• Git	commit	7293b55be0ad7c3026bcab8916f3307f3ece1ed3	of	Nektar++	
• Built	with	GCC	5.3.0	
• Energy	 and	 runtime	 demand	 measured	 by	 means	 of	 a	 CrayPAT	 trace	

experiment	with	the	following	parameters:	
o pat_build –w	
o export 

PAT_RT_PERFCTR=PACKAGE_ENERGY,DRAM_ENERGY,PM_POWER:NODE,PM_ENERGY:
NODE	

o export PAT_RT_SUMMARY=1.	
• Two	identical	runs	of	each	setting	

 Results 
The	results	achieved	by	means	of	the	measurement	setup	mentioned	above	are	
depicted	in	Table	4.	The	values	for	CPU	and	DRAM	are	determined	by	means	of	
RAPL	counters,	the	node	values	are	determined	by	measuring	voltage	and	electric	
current	of	the	node’s	power	rail.	For	completeness,	the	results	are	shown	for	the	
entire	 application	 as	 well	 as	 the	 time-stepping	 loop.	 However,	 we	 restrict	
ourselves	to	the	latter,	since	this	is	dominant	in	long	running	production	jobs.	
	
The	variance	appears	low	with	respect	to	most	of	the	settings	which	leads	to	the	
deduction	that	the	reliability	of	the	results	presented	here	is	higher	than	those	of	
the	results	presented	in	D2.2.	With	respect	to	the	runtime,	the	computation	phase	
does	not	benefit	 from	setting	 the	DVFS	governor	 to	performance	 instead	of	on-
demand.	From	this,	it	is	possible	to	deduce	that	either	the	computation	does	not	
benefit	from	high	CPU	clock	frequencies	and	that	latencies	incurred	by	switching	
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to	such	frequencies	on-demand	are	not	significant.	Fixing	the	clock	frequency	to	
the	base	clock	frequency	of	the	CPU	(2.5GHz)	introduces	a	runtime	penalty	of	1.3%.	
Reducing	this	fixed	frequency	to	2GHz	further	increases	the	runtime	by	another	
4%.	With	 the	 respective	 energy	 saving	 potentials	 in	mind	 (cf.	 below),	 such	 an	
increase	might	however	be	acceptable	to	the	user,	dependent	on	the	urgency	of	
their	job.	
	
With	respect	to	energy	consumed,	we	are	able	distinguish	between	the	demands	
of	the	CPU,	the	DRAM	and	the	entire	node.	However,	DRAM	results	do	not	disclose	
a	clear	trend.	This	is	probably	due	to	DRAM	being	driven	by	another	clock	domain	
which	 is	not	 varied	here.	The	below	 focus	 is	 thus	on	 the	CPU	 and	entire	node,	
which	do	disclose	the	same	trends.	As	seen	with	respect	to	runtime,	the	energy	
demand	of	governors	on-demand	and	performance	do	not	differ	that	much.	Fixing	
the	 clock	 frequency	 at	 2.5GHz	 allows	 for	 a	 saving	 of	 about	 11%	 of	 energy	 if	
compared	 to	 governors	 on-demand	 and	 performance.	 This	 may	 be	 due	 to	 the	
kernel	enabling	the	energy	hungry	Turbo	Boost	feature	if	temporary	load	spikes	
occur.	Doing	so	might	not	be	wise	since	the	high	load	may	disappear	quickly	but	
Turbo	Boost	(where	the	clock	frequency	in	pushed	before	the	normal	maximum	
for	a	short	period,	if	the	thermal	limit	is	not	reached)	requires	much	more	power	
and	remains	active	for	a	relatively	long	period.	Reducing	the	fixed	clock	frequency	
to	2GHz	allows	for	around	23%	less	energy	demand	if	compared	to	governors	on-
demand	and	performance.	
	
With	respect	to	power,	there	are	the	same	trends	as	already	seen	with	respect	to	
energy:	 there	 is	 little	 difference	 in	 between	 the	 governors	 on-demand	 and	
performance,	a	fixed	clock	frequency	of	2.5GHz	allows	for	about	12%	less	power	
demand,	and	2GHz	allows	for	about	27%	less	power	demand.	

 Conclusions and Outlook 
According	 to	 the	 runtime	 penalties	 and	 energy	 respectively	 power	 saving	
potentials	 depicted	 in	 section	 3.3.4,	 it	 is	 beneficial	 to	 reduce	 the	 CPU	 clock	
frequency	of	a	Nektar++	job	if	running	on	a	small	number	of	nodes.	This	might	be	
true	in	industrial	settings	with	local	clusters	of	limited	size,	but	also	if	there	is	a	
given	(even	temporary)	power	budget	on	exascale	systems.	
	
Future	work	will	concentrate	on	investigating	whether	the	large	scale	use	case	of	
project	partner	KTH	can	benefit	from	fixed	and	reduced	clock	frequencies.	
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DVFS setting Run max(Runtime) [s] sum(Energy) [J] sum(Power) [W] 

    ent.a. t. intgr. entire app. time integration ent. a. t. intgr. 

          CPU DRAM node     

2 GHz fixed 1 53.499 24.746 90.870.179 32.875.271 22.201.886 54.501.583 1.699 1.907 

  2 53.751 24.733 90.998.070 33.320.188 24.613.757 54.849.598 1.693 1.900 

2.5 GHz fixed 1 48.573 23.785 102.425.389 39.951.592 23.132.977 62.905.075 2.109 2.311 

  2 48.696 23.785 101.036.722 38.188.258 22.912.158 62.149.313 2.075 2.266 

governor ondemand 1 46.854 23.498 117.405.385 45.423.535 22.838.926 70.617.678 2.506 2.628 

  2 48.325 23.473 121.111.984 45.336.026 22.707.272 70.945.107 2.506 2.623 

governor performance 1 47.564 23.411 119.022.698 44.961.944 23.274.614 70.556.363 2.502 2.639 

  2 47.596 23.498 119.411.087 44.962.236 20.824.626 70.864.858 2.509 2.607 
Table	4:	Runtime,	energy	and	power	demand	of	various	DVFS	settings.	Shown	are	values	for	entire	

application	and	actual	time	stepping	loop.	Energy	of	the	latter	is	further	divided	into	CPU,	DRAM	and	entire	
node.	

3.4 Alternative architectures 
Heterogeneous	HPC	architectures	are	 increasingly	prevalent	 in	 the	Top500	 list,	
with	CPU-based	nodes	enhanced	by	accelerators	or	coprocessors	optimized	for	
floating-point	calculations.	This	trend	will	increase	moving	towards	exascale	and	
it	is	vital	that	relevant	HPC	applications	are	able	to	exploit	heterogeneity.	Whilst	
accelerators	offer	a	large	boost	in	peak	system	speed,	it	is	hard	to	translate	into	
sustained	 application	 performance.	 For	 GPU	 accelerators,	 applications	 are	
typically	rewritten	in	a	bespoke,	low-level	language	such	as	CUDA.		
	
OpenACC	[32]	enables	existing	HPC	application	codes	to	run	on	accelerators	with	
minimal	source	code	changes.	This	is	done	using	compiler	directives	and	API	calls,	
the	 compiler	 being	 responsible	 for	 generating	 optimized	 code	 with	 the	 user	
guiding	performance	only	where	necessary.	
	
We	have	previously	presented	a	serial	case	study	of	partially	porting	to	parallel	
GPU-accelerated	 system	 for	Nekbone/Nek5000.	 In	 this	 project,	we	 expand	 our	
previously	developed	work	and	take	advantage	of	the	optimization	results	to	port	
the	 full	 version	 of	 Nek5000	 to	 multi-GPU	 accelerated	 systems,	 especially	
regarding	 the	 Pn-Pn-2	 algorithm	 [34].	 The	 algorithm	 is	 a	 way	 to	 decouple	 the	
momentum	from	the	pressure	equations	that	does	not	lead	to	spurious	pressure	
modes,	 see	 Figure	 53.	 It	 is	 more	 efficient	 than	 other	methods,	 but	 it	 involves	
different	 approximation	 spaces	 for	 velocity	 with	 polynomial	 order	 of	 N	 and	
pressure	with	N-2.	The	OpenACC	version	of	Nek5000	is	available	at	[33].	
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Figure	53:	The	structure	of	Nek5000	code	for	the	incompressible	flow	simulations.	The	Pn-Pn-2	algorithm	is	

implemented	in	the	subroutine	PLAN3.	

	
	
In	 this	 implementation,	 we	 focused	 on	 the	 GMRES	 solver	with	multi-grid	 pre-
conditioner	for	the	pressure.	All	subroutines	within	the	GMRES	solver	have	been	
ported	 to	GPUs	 via	 the	OpenACC	 directives,	 see	 Figure	 54.	 The	 three	 levels	 of	
Multigrid	 solver	 are	 employed	 as	 the	 preconditioner.	 The	 first	 two	 levels	
(LOCAL_SOLVERS_FDM	 and	 HSMG_SCHWARZ)	 of	 the	 multigrid	 preconditioner	
have	been	ported	into	GPU	systems.	However,	the	coarsest	(third)	level	has	to	run	
on	the	CPU;	Figure	55	shows	the	implementation.	As	a	result,	the	multigrid	data	
on	the	coarsest	level	needs	to	transfer	between	GPU	and	CPU,	which	reduces	the	
parallel	efficiency.			
	
Each	core	exchanges	MPI	halos	with	at	least	26	others.	This	is	complicated	by	the	
separate	memory	spaces	of	the	CPU	and	GPU,	 leading	to	higher	communication	
overhead.	With	OpenACC	v2.0,	MPICH2	allows	GPU	memory	buffers	to	be	passed	
directly	to	MPI	function	calls,	eliminating	GPU	data	copy	to	the	host	before	passing	
data	to	MPI.	We	use	the	normal	MPI_Isend/MPI_Irecv	functions	for	internode	data	
transfer	directly	from/to	the	GPU	memory	using	OpenACC	directives	#pragma	acc	
host	data	to	enable	the	GPUDirect	communication.		
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Figure	54:	The	pressure	solver	using	the	GMRES	in	subroutine	ESOLV	

i

do while(iconv.eq.0.and.iter.lt.100)
if(iter.eq.0) then

call col3_acc(r,ml,res,ntot2) ! r = L res
else

!update residual
call copy_acc(r,res,ntot2) ! r = res
call cdabdtp_acc(w,x,h1,h2,h2inv,intype) ! w = A x
call add2s2_acc(r,w,-1.,ntot2) ! r = r - w

! -1
call col2(r,ml,ntot2) ! r = L r

endif
gamma(1) = sqrt(glsc2(r,r,ntot2)) ! gamma = \/ (r,r)

!check for convergence
rnorm = 0.
if(gamma(1) .eq. 0.) break !converged
temp = 1./gamma(1)
call cmult2_acc(v(1,1),r,temp,ntot2) ! v = r / gamma

do j=1,m
iter = iter+1 ! -1
call col3_acc(w,mu,v(1,j),ntot2) ! w = U v

! j
call hsmg_solve_acc(z(1,j),w) ! z = M w
call cdabdtp_acc(w,z(1,j), ! w = A z
$ h1,h2,h2inv,intype) ! j
call col2_acc(w,ml,ntot2) ! w = L w
do i=1,j

h(i,j)=vlsc2_acc(w,v(1,i),ntot2) ! h = (w,v )
enddo ! i,j i
call gop_acc(h(1,j),wk1,’+ ’,j) ! sum over P procs
do i=1,j

call add2s2_acc(w,v(1,i),-h(i,j),ntot2)! w = w - h v
enddo ! i,j i

alpha = sqrt(glsc2_acc(w,w,ntot2)) ! alpha = \/ (w,w)
if(alpha.eq.0.) goto 900 !converged

rnorm = abs(gamma(j+1))*norm_fac
if (rnorm .lt. tolpss) goto 900 !converged
temp = 1./alpha
call cmult2_acc(v(1,j+1),w,temp,ntot2) ! v = w / alpha

! j+1
enddo

900 iconv=1
!sum up Arnoldi vectors
do i=1,j

call add2s2_acc(x,z(1,i),c(i),ntot2) ! x = x + c z
! i i

enddo
enddo
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Figure	55:	The	OpenACC	implementation	for	the	multigrid	preconditioner.	

	
Figure	56	shows	the	results	of	a	3D	eddy	simulation	with	a	Dirichlet	boundary	
condition	 running	 on	 this	 version	 of	 Nek5000,	 ported	 to	 the	 utilize	 GPU.	 The	
spectral	 convergence	 increases	 over	 the	 range	 N=4,	 6,	 8,	 10,	 12,	 14,	 16	 with	
E=4x4x3	at	time	step	50.		In	Figure	57,	a	single-rod	mesh	with	N=8	and	E=2560	
shows	the	pressure	solver	iteration	counts	for	1000	steps	runs.	Validated	results	
agree	up	to	12-14	digits	between	CPU	and	GPU	ports	of	the	code.	
	

i

do l = mg_lmax-1,2,-1
call hsmg_rstr_acc(mg_solve_r(mg_solve_index(l,mg_fld)),mg_work2,l)
! w := r
! l
call copy_acc(mg_work2,mg_solve_r(mg_solve_index(l,mg_fld)),nt)
! e := M w
! l Schwarz
call hsmg_schwarz_acc(mg_solve_e(mg_solve_index(l,mg_fld)),mg_work2,l)
! e := W e
! l l
call hsmg_schwarz_wt_acc(mg_solve_e(mg_solve_index(l,mg_fld)),l)
! w := r - w
! l

!\$acc parallel loop
do i = 0,nt-1

mg_rk2(i+1) = mg_solve_r(mg_solve_index(l,mg_fld)+i)-alpha*mg_work2(i+1)
enddo

enddo

call hsmg_rstr_no_dssum_acc(mg_solve_r(mg_solve_index(1,mg_fld)),mg_work2,1)
call hsmg_do_wt_acc(mg_solve_r(mg_solve_index(1,mg_fld)),

\$ mg_mask(mg_mask_index(1,mg_fld)),2,2,nzw)
! -1
! e := A r
! 1 1
!\$acc update host(mg_solve_e(0:ntco-1),mg_solve_r(0:ntco-1))

call hsmg_coarse_solve(mg_solve_e(mg_solve_index(1,mg_fld)),
\$ mg_solve_r(mg_solve_index(1,mg_fld)))

!\$acc update device(mg_solve_e(0:ntco-1))
call hsmg_do_wt_acc(mg_solve_e(mg_solve_index(1,mg_fld)),

\$ mg_mask(mg_mask_index(1,mg_fld)),2,2,nzw)
do l = 2,mg_lmax-1
! w := J e
! l-1
call hsmg_intp_acc(mg_work2,mg_solve_e(mg_solve_index(l-1,mg_fld)),l-1)
! e := e + w
! l l

!\$ACC PARALLEL LOOP
do i = 0,nt-1

mg_solve_e(mg_solve_index(l,mg_fld)+i) =
\$ + mg_solve_e(mg_solve_index(l,mg_fld)+i) + mg_work2(i+1)

endddo
enddo
! w := J e
! m-1
call hsmg_intp_acc(mg_work2,mg_solve_e(mg_solve_index(l-1,mg_fld)),l-1)
!\$acc parallel loop
do i = 1,nt
e(i) = e(i) + copt2*mg_work2(i)

enddo
call ortho_acc(e)
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Figure	56:		Convergence	study	of	eddy	3D	with	the	Dirichlet	boundary	condition.	Polynomial	degree	is	

shown	on	the	x-axis.	

	
Figure	57:	The	iteration	counts	for	the	pressure	by	compared	GPU	and	CPU.	
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The	work	for	all	operations	in	the	iteration	of	the	GMRES	solver	scale	as	the	total	
number	 of	 grid	 points	 n=EN3;	 the	 operation	 of	 matrix-matrix	 multiplications	
dominates	the	total	execution	times	and	can	be	up	to	60%.		In	the	full	applications,	
the	increased	computational	intensity	leads	to	improved	the	performance	on	the	
GPU	system,	as	can	be	seen	in	Figure	58.	
	

	
Figure	58:	The	performance	of	matrix	matrix	multiplication	on	a	single	NVidia	P100	GPU.	N=EN3	for	varying	

E	and	N.	

	
The	preliminary	performance	results	of	the	OpenACC	version	of	Nek5000	for	the	
3D	eddy	and	stenosis	pipe	benchmarks	are	shown	in	Table	5	and	Table	6.	
	

E=48	 Method	 CPU	
(second/step)	

GPU	
(second/step)	

Speed-up	

N=16	 GMRES+MG	 4.89	 0.98	 5.0	
N=16	 GMRES+Jacobi	 16.93	 2.02	 8.4	

Table	5:	The	performance	of	a	3D	eddy	simulation	with	E=48	elements	on	a	single	NVidia	P100	GPU	vs	a	
fully	populated	CPU.	

E=400	 Method	 4	CPU	nodes	
(second/step)	

4	GPUs	
(second/step)	

N=16	 GMRES+MG	 1.35	 2.42	
Table	6:		The	performance	of	a	Stenosis	simulation	with	E=200	elements	on	4	NVidia	P100	GPUs.	
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3.5 Code generation 
Version	2.0(beta)	of	the	OpenSBLI	code	has	been	released	as	a	branch	on	GitHub	
under	 the	GNU	General	Public	License:	https://github.com/opensbli/opensbli/.	
This	 comprises	 of	 new	 capabilities	 that	 allows	 users	 to	 select	 different	 shock	
capturing	schemes	for	individual	terms	of	the	governing	equations	at	high-level.	
The	 current	 numerical	 methods	 supported	 are	 Weighted	 Essentially	 Non	
Oscillatory	(WENO)	schemes	with	different	smoothness	indicators	(classic	Jiang-
Shu	and	new	 “z”)	 and	varying	orders	 (3,	5	and	7)	 to	detect	 and	 resolve	shock-
waves	 in	 the	 flow	field.	Numerous	choices	 for	the	boundary	conditions	(Inflow,	
Outflow,	 Isothermal	 wall,	 Pressure	 inflow,	 extrapolation)	 are	 implemented	
compared	 to	 version	 1	which	 supported	only	periodic	or	 symmetric	 boundary	
conditions.	Version	2.0	also	supports	higher	order	Carpenter	boundary	closures.	
	
Verification	and	validation	of	OpenSBLI	has	been	accomplished	through	a	suite	of	
test	cases.	The	3D	compressible	Taylor-Green	vortex	presented	in	D2.2	is	run	with	
different	 numerical	 schemes.	 Figure	 59	 shows	 the	 visualisation	 of	 the	 z-
component	of	vorticity	using	4th	order	central	difference	scheme	with	16	Million	
grid	points	at	two	different	times.	

	
Figure	59:	Visualisation	of	the	solution	to	the	Taylor-Green	vortex	problem	in	3D.	

	
The	evolution	of	enstrophy	using	different	schemes	compared	with	the	reference	
DNS	data	is	shown	in	Figure	60.	The	central	scheme	is	the	least	dissipative,	but	is	
not	suitable	for	problems	with	shocks.	
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Figure	60:	Temporal	evolution	of	enstrophy	for	the	3D	Taylor-Green	vortex	problem	on	2563	grids.	The	

reference	solution	is	the	5123	spectral	result	from	[43]	

	
The	shock-wave	boundary	layer	interaction	simulation	is	used	for	validating	the	
implementation	 of	 shock	 capturing	 schemes	 in	 OpenSBLI.	 Figure	 61	 shows	
contours	of	Mach	number	after	convergence,	showing	a	well	resolved	shock-wave	
and	the	formation	of	a	separation	bubble	caused	by	the	thickening	of	the	boundary	
layer	at	the	shock	impingement	location.	
	

	
Figure	61:	Mach	number	contours	for	the	final	flow	field,	a	well	resolved	shock-wave	impinges	on	the	

boundary-layer,	causing	thickening	of	the	profile	and	the	development	of	a	separation	bubble	

	
	
The	 skin-friction	 distribution	 along	 the	 bottom	 wall	 is	 shown	 in	 Figure	 62,		
showing	 good	 agreement	 with	 previously	 published	 results.	 The	 separation	
bubble	is	captured	clearly	by	the	numerical	method.	More	details	can	be	found	in	
[41].	
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Figure	62:	Wall-normal	skin	friction	along	the	bottom	wall	compared	with	the	reference.	

	
	

 Algorithms on Architectures and energy efficiency 
Here	 we	 evalutate	 the	 speedup	 and	 energy	 efficiency	 of	 five	 different	 finite	
difference	 algorithms	 characterized	 by	 varying	 degrees	 of	 computational	 and	
memory	 intensiveness,	 brought	 about	 by	 storing	 derivatives	 in	 memory	 vs.	
recomputing	them	on	the	device.	Their	evaluation	on	multicore	CPUs,	has	been	
reported	in	D2.2	and	it	has	been	shown	that	by	storing	the	first	derivatives	of	the	
velocity	 components	 as	 thread/process-local	 variables	 (rather	 than	 as	 global	
work	 arrays	 over	 the	whole	 grid)	 a	 speed-up	of	~2	 relative	 to	 traditional	 CFD	
implementations	(in	which	all	field	values	are	stored	in	global	work	arrays).		
	
These	algorithms	are	 run	on	GPU’s	and	a	new	 low	storage	algorithm	has	been	
added	which	improves	the	energy-efficiency	on	GPU.	

	
Figure	63:	Energy	per	iteration	(bars)	and	the	power	consumed	per	iteration	(lines)	on	different	

architectures.	



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 99	

The	findings	are	reported	by	Jammy	et	al.	[42].	To	summarise,	Figure	63	shows	
the	 energy	 consumed	 per	 iteration	 and	 the	 average	 power	 consumption	 per	
iteration	for	each	algorithm	on	the	three	architectures	considered	(CPU,	GPU	and	
KNL).	The	CPU	node	use	more	power	per	iteration	than	a	KNL	or	GPU.	GPUs	use	
about	50%	less	power	than	a	CPU	node	and	the	KNL	systems	are	in-between.	The	
trend	is	similar	for	energy	consumption	per	iteration	on	three	architectures.	
	
	

	
Figure	64:	Energy	saved	(bars)	and	the	speed-up	(lines)	of	algorithms	relative	to	the	BL	

Figure	64	shows	a	comparison	of	speed-up	of	the	algorithms	and	the	energy	saved	
by	 the	 algorithms	 on	 different	 architectures.	 The	 energy	 saved	 is	 in	 direct	
proportion	with	speed-up	relative	to	the	baseline	algorithm.	The	conclusions	from	
the	 present	 work	 include:	 (a)	 Across	 all	 architectures,	 the	 low	 storage/	 high	
compute	 intensity	 algorithms	 are	 more	 energy	 efficient	 and	 gives	 the	 best	
performance;	(b)	Runtime	reduction	reduces	the	energy	used	by	the	algorithm;	(c)	
For	all	the	algorithms	considered	CPUs	are	the	least	energy	efficient	and	GPUs	are	
the	most	energy	efficient,	with	the	KNL	architecture	in-between;	(d)	For	the	high	
compute	intensity	algorithms,	the	energy	saving	of	KNL	and	GPU	are	~2	and	~	5	
compared	to	the	CPU	node;	(e)	For	optimizing	the	simulations	on	GPU,	care	should	
be	taken	to	improve	data	locality	
	

 Scaling 
OpenSBLI	and	 its	dependencies	have	been	 successfully	 installed	on	ARCHER	at	
EPCC,	 Titan	 at	 Oakridge	 National	 Laboratories	 (ORNL)	 and	 Wilkes2	 at	 the	
University	of	Cambridge	supercomputing	facilities	for	performance	analysis	and	
scaling.	The	description	of	the	systems	and	the	compilers	used	for	the	analysis	is	
given	in	Table	7.	
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When	a	problem	is	described	at	a	high-level	with	OpenSBLI	and	OPS,	explicitly	
stating	 how	 and	 what	 data	 is	 accessed,	 it	 exposes	 opportunities	 that	 can	 be	
exploited	 to	 increase	 parallelism	 and	 reduce	 data	 movement.	 This	 allows	 the	
generated	code	to	be	tailored	to	different	target	hardware	architectures.		
	
Two	 such	 transformations	 that	 significantly	 alter	 the	 underlying	 parallel	
implementation	 to	achieve	higher	performance	 through	balancing	 computation	
intensity	vs.	data	movement	are	considered.	Of	the	five	algorithms	presented	in	
D2.2,	 two	 algorithms	 are	 considered	 at	 the	 extreme	 end	 of	 computation	 and	
memory.	(a)	baseline	(referred	to	as	BL)	code	and	(2)	a	code	requiring	minimal	
storage	 (store	 none,	 SN).	 The	BL	 algorithm	 follows	 the	 conventional	 approach	
frequently	used	in	large-scale	finite	difference	codes	such	as	the	original	SBLI	code,	
and	 the	 SN	 algorithm	uses	minimum	memory	by	 increasing	 the	 computational	
intensity.		
	
Figure	65	(a)	shows	the	strong	scaling	of	different	backend	implementations	on	
ARCHER;	 the	 MPI,	 MPI+OpenMP,	 MPI+OpenMP	 with	 tiling	 versions	 of	 the	
algorithms	are	used.	Note	that	these	are	the	minimum	run	times	from	5	runs	to	
reduce	impact	of	unusual	runs.	The	strong	scaling	and	runtime	of	the	original	SBLI	
code	is	also	shown	to	compare	the	performance	of	the	code-generation	approach	
to	that	of	a	hand-written	code	(SBLI).	As	seen	from	the	figure,	the	OpenSBLI	code	
performs	similar	or	better	than	a	hand-written	code.	OpenSBLI	shows	very	good	
strong	scaling	upto	4096	nodes	(98304	cores,	i.e	4/5th	of	the	total	machine).	
	

	
Figure	65:	Scaling	on	ARCHER	

Table	7:	Large-scale	systems	specifications	
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The	weak	scaling	upto	4/5th	of	the	machine	size	on	ARCHER	is	shown	in	Figure	65	
(b).	 As	 seen	 from	 the	 figure,	 OpenSBLI	 scales	 well	 for	 all	 the	 algorithms	 and	
backends	considered.		
	

	
Figure	66:	Scaling	on	Titan	and	Wilkes2	vs	ARCHER.	

Next,	Figure	66	compares	the	best	scaling	runtime	on	Archer	with	that	of	the	GPU	
clusters.	The	best	runtime	on	Archer	is	given	by	SN,	MPI+OMP	for	strong	scaling	
and	MPI+OMP	Tiled	for	weak	scaling,	again	these	are	the	minimum	run	times	from	
5	 different	 runs.	 The	 parallel	 version	 on	 the	GPU	 clusters	 use	MPI+CUDA.	 For	
comparison	we	also	 indicate	the	runtime	from	SBLI	on	Archer.	The	code	scales	
well	on	Titan	machine	upto	4096	GPU’s	and	256	GPU’s	(64	nodes)	on	the	Wilkies	
2	machine.	The	NVIDIA	P100	GPU’s	are	~4	times	faster	than	the	K20	series	and	
~8-9	times	faster	than	Archer.	More	details	can	be	found	in	[40].	
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3.6 Roofline analysis 
In	 this	 section,	we	 investigate	 a	method	 for	 conducting	 a	 cache-aware	 roofline	
analysis	for	the	Nek5000	code	(v17.0.0)	using	freely	available	software	tools.	A	
code’s	performance	can	be	plotted	as	arithmetic	intensity	versus	FLOP	rate.	The	
arithmetic	intensity	is	the	number	of	FLOPs	performed	per	byte	of	data	accessed.	
A	high-intensity	code	then	can	perform	many	floating-point	operations	for	little	
data	movement.	Therefore,	a	code	that	exhibits	a	lower	arithmetic	intensity	would	
have	a	longer	runtime	due	to	the	fact	that	that	code	has	to	access	the	cache	and	
main	memory	more	frequently	than	the	high-intensity	code	for	the	same	number	
of	FLOPs.	The	performance	of	a	low-intensity	code	is	likely	to	be	memory	bound,	
whereas	the	performance	of	a	high-intensity	code	is	compute	bound.	The	roofline	
plots	the	theoretical	maximum	performance	for	any	code	running	on	a	particular	
platform.	At	 low	arithmetic	 intensity,	 the	roofline	has	a	positive	slope,	here	the	
performance	 is	 memory	 bound;	 but,	 as	 the	 intensity	 rises	 so	 does	 the	 peak	
performance	level	until	the	limiting	factor	changes	from	memory	capacity	to	CPU	
frequency	 and	 the	 roofline	 becomes	 a	 straight	 horizontal	 line	 (Figure	 67	 and	
Figure	68).	
	
A	 roofline	 analysis	 can	 be	 carried	 out	 quite	 straightforwardly	 using	 the	 Intel	
Advisor	tool	 that	comes	with	Intel	Parallel	Studio	XE	2018	Cluster	Edition.	The	
command	tool,	advixe-cl,	needs	to	be	run	twice	with	the	research	code;	once	
to	perform	a	general	survey	of	the	code	and	again	to	collect	specific	data	such	as	
loop	 iteration	 and	 FLOP	 counts.	 These	 runs	will	 then	 write	 the	 results	 of	 the	
analysis	 to	 specific	 files	 which	 can	 then	 be	 viewed	 via	 the	 Intel	 Advisor	 GUI	
(advixe-gui).	Figure	67	shows	a	roofline	plot	generated	by	an	OpenMP	code	
running	on	ARCHER.	
	

	
Figure	67:	Cache-aware	roofline	plot	generated	by	Intel	Advisor	for	an	OpenMP	code	running	on	one	node	

of	the	ARCHER	system.	

 
 
Intel	Advisor	is	not	free	to	use	however;	indeed,	for	a	system	of	the	size	of	ARCHER,	
the	licensing	fee	is	approximately	$10,000	per	annum.	For	that	reason,	we	decided	
to	use	a	tool	that	has	no	licensing	costs,	namely,	the	Empirical	Roofline	Tool	[35]	
(v1.1.0)	maintained	by	Berkeley	Lab.	
	
The	Empirical	Roofline	Tool	(ERT)	consists	of	three	pieces	of	software,	a	python	
front-end	and	two	pieces	of	C	code,	a	driver	and	a	kernel.	Typically,	the	python	
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front-end,	 called	ert,	 is	 invoked	within	 the	 job	 submission	 script.	 The	 python	
module	then	generates	the	actual	batch	script	(PBS	in	the	case	of	ARCHER)	that	
specifies	the	requirements	for	a	driver-controlled	kernel	to	run	on	the	compute	
nodes.	On	execution,	the	kernel	runs	through	a	set	of	floating	point	operations	for	
a	range	of	data	sizes.	The	completion	time	for	these	operations	is	then	used	to	infer	
the	cache	limits.	The	resulting	roofline	is	then	generated	by	the	gnuplot	program	
during	post-processing,	see	Figure	68.	
	

	
Figure	68:	Cache-aware	roofline	plot	generated	by	the	Empirical	Roofline	Tool	v1.1.0	using	the	inbuilt	

kernel	running	on	one	node	of	the	ARCHER	system.	

 
Another	advantage	of	the	ERT	(compared	to	Intel	Advisor)	is	that	it	can	be	run	on	
any	HPC	system:	the	tool	does	not	rely	on	specific	hardware	counters	since	the	
data	 movement	 and	 FLOP	 counts	 are	 already	 known	 for	 the	 specially	 written	
kernel.	Furthermore,	ERT	is	open-source,	which	means	it	is	possible	for	the	kernel	
to	be	extended	or	replaced	by	one	more	suitable	to	a	given	hardware	platform.	
	

 Hardware Counters 
Calculating	the	arithmetic	intensity	of	a	code	requires	one	to	know	the	number	of	
floating	 point	 operations	 (FLOPs)	 along	 with	 the	 size	 of	 any	 associated	 data	
movement	described	by	the	number	of	data	accesses	involving	the	cache	and/or	
system	memory.	
	
The	are	many	counters	the	could	be	used	to	infer	the	size	of	the	data	movement.	
Below	is	a	list	of	four	such	counters	revealed	by	running	the	papi_avail	and	
papi_native_avail	commands	on	an	ARCHER	compute	node.	
	
PERF_COUNT_HW_CACHE_L1D  L1 data cache (32 kB, per 
core) 
PAPI_L2_DCA    L2 data cache (32 kB, per 
core) 
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PERF_COUNT_HW_CACHE_LL  L3 data cache (30720 kB, per 
node) 
PERF_COUNT_HW_CACHE_NODE  Node memory (64 GB)	
	
However,	 the	 counter	 value	 used	 to	 determine	 the	 data	movement	 should	 not	
itself	be	dependent	on	factors	that	are	extraneous	to	the	algorithms	implemented	
by	 the	 code	 under	 investigation,	 e.g.,	 compiler,	 compiler	 optimisations	 and	
problem	size.	This	was	the	consideration	taken	into	account	by	Kwack	et	al	[36].	
In	 this	 work,	 the	 authors	 implemented	 a	 set	 of	 geometric	 series	 calculations	
performed	 whilst	 traversing	 a	 two-dimensional	 array	 in	 order	 to	 assess	 the	
variability	 of	 counter	 behaviour.	 The	 data	 movement	 associated	 with	 such	 a	
kernel	is	always	two	variables	or	16	bytes	(when	operating	at	double	precision)	
regardless	 of	 the	 number	 of	 terms	 in	 the	 geometric	 series.	 For	 a	 given	
compiler/problem	 setup,	 Kwack	 et	 al,	 ran	 their	 kernel	 over	 a	 range	 of	 series	
orders	(1+M+M2+…+Mn),	1	to	29,	recording	the	output	from	two	counters,	L1_DCA	
and	DCA_GOOD.	
	

	
Figure	69:	The	coefficients	of	variation	for	two	hardware	counters	at	two	levels	of	precision	(single	and	

double).	The	kernel	was	compiled	with	O3	optimisations.	

	
We	reproduce	above	Figure	2	from	Kwack	et	al.	(Figure	69).	Each	point	represents	
a	particular	setup	that	identifies	the	compiler	and	describes	the	type	of	loop	used	
to	iterate	over	the	terms	in	the	series.	The	last	part	of	the	setup	label	(see	the	x-
axis	of	Figure	69	gives	the	size	of	the	enclosing	array,	i.e.,	the	number	of	times	the	
series	calculation	is	done	for	each	value	of	n	(1-29).	Hence,	each	point	corresponds	
to	a	set	of	29	counter	values:	the	standard	deviation	of	these	values	divided	by	the	
mean	gives	the	position	on	the	y-axis	(the	coefficient	of	variation).	
 
This	work,	done	on	the	Blue	Waters	Cray	XE-6	system,	revealed	DCR_GOOD	to	be	
the	most	robust	proxy	 for	data	movement.	The	DCR_GOOD	 counter	records	the	
number	 of	 data	 cache	 refills	 satisfied	 from	 the	 L2	 cache	 and/or	 the	 system	
memory.	Unfortunately,	this	counter	is	specific	to	the	AMD	Interlagos	processor	
and	so	is	not	available	on	the	ARCHER	Intel	Ivybridge	platform.		
 
Nevertheless,	 we	 developed	 a	 simple	 Fortran	 kernel	 to	 calculate	 a	 geometric	
series	 in	 the	manner	described	above.	 In	 addition,	we	 implemented	a	 separate	
library	 as	 a	wrapper	 to	 the	 low-level	 API	 part	 of	 the	 Performance	Application	
Programming	 Interface	 (PAPI)	 v5.5.1.4	 [37].	 We	 designed	 these	 software	
components	such	that	the	hardware	counters	used	to	measure	the	data	movement	
can	be	specified	within	the	job	submission	script.	The	task	of	recording	the	change	
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in	counter	value	due	to	each	set	of	geometric	series	calculations	is	delegated	to	the	
PAPI	wrapper,	papi_mpi_lib [76].	
 

	
Figure	70:	The	coefficients	of	variation	(standard	deviation	over	the	mean)	for	four	hardware	counters	

available	on	ARCHER.	The	labels	indicate	the	environmental	setup	within	which	the	kernel	was	run;	the	first	
part	of	the	label	is	the	precision	(single	or	double),	the	second	is	the	type	of	loop	used	to	iterate	over	the	
series	(flat,	inline	or	recursive),	and	the	third	part	is	the	size	of	the	enclosing	2D	array	(64,	256,	1024	or	

4096).	The	kernel	was	compiled	with	the	Intel	compiler	v17.0.0.098	using	O3	optimisations.	
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Figure	71:	Repeat	of	Figure	70	but	with	the	most	variable	counter,	PERF_CACHE_NODE:ACCESS,	removed.	

	
Figure	 70	 and	 Figure	 71	 indicates	 that	 the	 PERF_COUNT_HW_CACHE_L1D	
counter	 is	 the	 most	 stable	 proxy	 for	 determining	 the	 data	 movement	 size,	
especially	for	double	precision.	We	show	results	for	the	Intel-compiled	geometric	
series	kernel	since	that	is	the	complier	used	for	the	Nek5000	code.	
	
Now	 that	 we	 have	 chosen	 our	 counter,	 we	 can	 proceed	 with	 measuring	 the	
arithmetic	intensity	of	Nek5000	and	see	where	this	result	falls	in	relation	to	the	
ARCHER	roofline	(Figure	67).	
	

 Measuring the Arithmetic Intensity of Nek5000 
 
We	first	obtain	an	average	measure	for	the	Nek5000	arithmetic	intensity;	this	is	
done	by	 inserting	 the	hooks	 to	 the	PAPI	wrapper	 into	 the	main	 time	step	 loop	
implemented	by	the	“drive1.f”	source	code	file.	
 
subroutine nek_solve 
… 
call papi_mpi_initialise(papi_out_fn) 
do kstep=1,nsteps,msteps 
    call papi_mpi_reset(1) 
    call nek__multi_advance(kstep,msteps) 
    call papi_mpi_record(kstep,1,1,0) 
          
    call papi_mpi_reset(1) 
    call check_ioinfo 
    call papi_mpi_record(kstep,2,1,0) 
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    … 
enddo 
call papi_mpi_finalise() 
 
Basically,	each	subroutine	call	within	the	loop	is	bookended	by	two	PAPI	wrapper	
calls,	 papi_mpi_reset	 and	 papi_mpi_record.	 The	 first	 call	 resets	 the	
counter	to	zero	and	the	second	reads	the	new	counter	value	and	writes	it	to	the	
PAPI	log	file.	
 
We	then	ran	the	Nek5000	code	over	four	ARCHER	nodes	(96	MPI	processes)	using	
the	 jet-in-crossflow	 test	 case.	 This	 initial	 analysis	 showed	 that	 the	
nek__multi_advance	subroutine	accounts	for	over	97%	of	the	runtime.	The	
arithmetic	 intensity	 for	 that	 routine	 is	 approximately	 0.02	 FLOPs/byte	 with	 a	
FLOPs	rate	of	14	GFLOPs/second.	
 
Figure	72	shows	the	levels	of	data	movement	according	to	the	changing	value	of	
the	 PERF_COUNT_HW_CACHE_L1D	 counter	 ---	 the	 amount	 of	 data	 moved	 is	
plotted	for	each	time	step.	
 

	
Figure	72:	The	change	in	the	value	of	the	PERF_COUNT_HW_CACHE_L1D	counter	for	each	timestep	in	the	
range	11	to	1493,	i.e.,	the	first	ten	and	last	ten	steps	have	been	excluded.	The	ARCHER	L1	cache	has	a	line	

size	of	64	bytes,	hence,	each	counter	value	is	multiplied	by	64	to	get	the	number	of	bytes	accessed.	
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On average 94 GB is accessed from the L1 cache every time step, Figure	73 plots the 
arithmetic intensity. 
 

	
Figure	73:	The	arithmetic	intensity	for	each	timestep	in	the	range	11	to	1493,	i.e.,	the	first	ten	and	last	ten	

steps	have	been	excluded.	

	

As	mentioned	previously,	the	average	intensity	is	0.02	FLOPs	per	byte.	Notice	the	
two	spikes	at	steps	500	and	1000,	those	are	the	points	in	the	simulation	where	a	
checkpoint	file	is	written	to	disk:	the	dramatic	rise	in	arithmetic	intensity	is	due	
to	an	increased	number	of	FLOPs	being	issued	by	the	Nek5000	code	responsible	
for	checkpointing.	
 
Further	profiling	inside	the	nek__multi_advance	subroutine	reveals	that	the	
majority	 of	 the	 runtime	 is	 spent	 within	 the	 fluid	 subroutine	 defined	 in	
“drive2.f”,	we	therefore	move	our	PAPI	hooks	to	this	part	of	the	code.	Within	
fluid	the	runtime	is	dominated	by	a	subroutine	called	plan3	(“planx.f”).	The	
average	 intensity	measured	 for	plan3	 over	 the	 course	 of	 the	 jet-in-crossflow	
simulation	is	plotted	as	a	black	filled	circle	in	Figure	74.	This	figure	also	shows	the	
intensities	 for	 four	 subroutines	 called	 from	within	plan3.	The	names	of	 these	
subroutines	are	given	in	the	legend	together	with	a	runtime	peer	percentage.	
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Figure	74:	The	ARCHER	cache	rooflines	(red)	from	Figure	3.8.2,	decorated	with	average	arithmetic	intensity	

points	for	the	plan3	subroutine	(black	filled	circle)	and	for	four	subroutines	called	by	plan3. 

 
Figure	74	suggests	that	the	plan3	subroutine	is	memory	bound	with	respect	to	
the	L3	cache.	The	subroutines	within	plan3	that	account	for	the	majority	of	the	
runtime	are	also	close	to	the	L3	cache	line.	One	of	these	routines	however,	ophinv,	
is	above	L3,	implying	that	the	performance	of	that	part	of	the	code	is	likely	to	be	
limited	by	 the	 size	of	L2	 cache	 instead.	The	 code	within	plan3	would	need	 to	
achieve	an	 arithmetic	 intensity	of	0.58	 (L3)	or	0.36	 (L2)	before	 the	CPU	speed	
becomes	the	limiting	factor.	
 

 Summary 
We	have	established	a	suite	of	software	tools	that	allow	us	to	plot	the	performance	
of	any	code	against	a	roofline	that	indicates	maximum	theoretical	performance	for	
a	specified	hardware	platform.	The	use	of	this	software	is	not	limited	by	licensing	
costs	or	by	the	HPC	system.	
	
The	Empirical	Roofline	Tool	(v1.1.0)	is	used	to	generate	the	roofline	plots	for	the	
HPC	target.	We	then	employ	our	geometric	series	kernel	(following	the	work	of	
Kwack	et	 al.	 [36])	 to	 find	 the	hardware	 counter	 that	 is	 the	best	proxy	 for	data	
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movement.	 Having	 identified	 a	 suitable	 counter,	 we	 then	 link	 the	 code	 under	
investigation	to	the	PAPI	wrapper	(mpi_papi_lib[76]).	This	wrapper	will	then	
report	 the	 change	 in	 counter	value	 for	specific	parts	of	 the	 code.	The	FLOPS	 is	
recorded	at	the	same	time	allowing	the	code	performance	to	be	plotted	under	the	
roofline.	
	
One	aspect	of	this	work	that	should	be	investigated	however	is	the	degree	to	which	
the	recorded	counter	values	agree	with	the	expected	number	of	FLOPs	and	bytes	
moved.	If	for	example	the	number	of	bytes	moved	inferred	from	the	counter	data	
were	overestimated	more	than	the	inferred	FLOPs	then	the	points	plotted	under	
the	roofline	would	need	be	shifted	in	a	south-east	direction,	i.e.,	in	the	direction	of	
increasing	intensity	but	decreasing	FLOP	rate.	
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3.7 A performance model of CG/HDG methods 

 Motivation for combining CG and HDG 
High-order	methods	 on	 unstructured	grids	 are	 now	 increasingly	 being	 used	 to	
improve	 the	 accuracy	 of	 flow	 simulations	 since	 they	 simultaneously	 provide	
geometric	flexibility	and	high	fidelity.	We	are	particularly	interested	in	efficient	
algorithms	 for	 incompressible	Navier-Stokes	 equations	 that	 employ	high-order	
space	discretization	and	a	time	splitting	scheme.	The	cost	of	one	step	in	time	is	
largely	determined	by	the	amount	of	work	needed	to	obtain	the	pressure	 field,	
which	is	defined	as	a	solution	to	a	scalar	elliptic	problem.	Several	Galerkin-type	
methods	are	available	for	this	task	and	each	has	advantages	and	drawbacks.	
	
The	high-order	continuous	Galerkin	(CG)	method	 is	 the	oldest.	Compared	to	 its	
discontinuous	 counterparts,	 it	 involves	a	 smaller	number	of	unknowns	 (Figure	
75),	especially	in	a	low-order	setting.	The	CG solution	can	be	accelerated	by	means	
of	static	condensation,	which	produces	a	globally	coupled	system	involving	only	
those	degrees	of	freedom	on	the	mesh	skeleton.	The	element	interior	unknowns	
are	subsequently	obtained	from	the	mesh	skeleton	data	by	solving	independent	
local	problems	that	do	not	require	any	parallel	communication.	
	

	

Figure	75:	Distribution	of	unknowns	for	continuous	and	discontinuous	Galerkin	methods.	

The	 amount	 of	 information	 interchanged	 while	 constructing	 and	 solving	 the	
statically	 condensed	 system,	 however,	 is	 determined	 by	 the	 topology	 of	 the	
underlying	grid.	Unstructured	mesh	generators	often	produce	meshes	with	high	
vertex	valency	(number	of	elements	incident	to	given	vertex)	and	CG	therefore	has	
rather	 complex	 communication	 patterns	 in	 parallel	 runs,	which	has	 a	 negative	
impact	on	scaling	[193].	
	
Discontinuous	 Galerkin	 (DG)	 methods	 [191]	 duplicate	 discrete	 variables	 on	
element	 boundaries,	 thus	 decoupling	 mesh	 elements	 and	 requiring	 at	 most	
pairwise	 communication	 between	 them.	 This	 is	 at	 the	 expense	 of	 larger	 linear	
system	and	greater	time	spent	in	the	linear	solver.	Discontinuous	discretization	is	
therefore	expected	to	scale	better	on	parallel	computers,	but	the	improved	scaling	
is	not	necessarily	reflected	in	significantly	smaller	runtimes	when	compared	to	a	
CG solver.	
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The	hybrid	discontinuous	Galerkin	(HDG)	methods	[191]	address	this	problem	by	
introducing	 an	 additional	 (hybrid)	 variable	 on	 the	 mesh	 skeleton.	 The	 hybrid	
degrees	 of	 freedom	 determine	 the	 rank	 of	 the	 global	 system	matrix	 and	HDG 
therefore	produces	a	statically	condensed	system	that	is	similar	in	size	to	the	CG 
case.	 In	 contrast	 with	 CG,	 the	 static	 condensation	 in	 HDG takes	 place	 by	
construction	 rather	 than	 being	 an	 optional	 iterative	 technique.	 Similar	 to	 the	
classical	DG method,	HDG scales	favorably	in	comparison	with	CG,	but	the	work-
to-communication	ratio	is	once	again	improved	due	to	increased	amount	of	intra-
node	work	rather	than	due	to	better	overall	efficiency.	
	
To	maximize	the	potential	of	each	Galerkin	variant	in	a	unified	setting,	we	study	a	
finite	 element	 discretization	 that	 combines	 the	 continuous	 and	 discontinuous	
approach	 by	 considering	 a	 hybrid	 discontinuous	 Galerkin	 method	 applied	 to	
connected	groups	of	elements	supporting	a	globally	continuous	polynomial	basis.	
This	 setting	 also	 naturally	 leads	 to	 a	 formulation	 of	 weak	 Dirichlet	 boundary	
conditions	for	the	CG method.	
	
The	next	section	reviews	the	Hybridizable	Discontinuous	Galerkin	Method	which	
is	then	modified	to	obtain	the	mixed	CG-HDG solver.	The	second	part	of	this	report	
addresses	the	expected	efficiency	of	a	CG-HDG method	for	elliptic	PDEs.	

 Overview of the formulation of HDG method 
We	begin	with	a	brief	recap	of	the	standard	HDG	formulation	for	a	finite	element	
mesh,	following	a	similar	approach	to	that	taken	in	[192]	and	[193].	

3.7.2.1 Continuous problem 
We	seek	the	solution	of	a	Poisson	equation	as	a	representative	elliptic	problem	

−∇N u(x)  =  f(x)	 	 x ∈ Ω	
		 	 	 	 														𝑢(𝑥) = 𝑔�(𝑥)	 			𝑥 ∈ ∂Ω�																					(1)	
																																																																	𝑛 ⋅ ∇𝑢(𝑥) = 𝑔�(𝑥)	 			𝑥 ∈ 𝜕Ω�,	
on	 a	 domain	Ω	with	Dirichlet	 (∂ΩD)	 and	Neumann	 (∂ΩN)	 boundary	 conditions,	
where	∂Ω� ∩ ∂Ω� = ∂Ω	and	∂Ω� ∩ ∂Ω� = ∅.	To	 formulate	 the	HDG	method,	we	
consider	a	mixed	form	of	(1)	by	introducing	an	auxiliary	variable	q =	∇u:	
	

−∇ ⋅ 𝑞 = f(𝑥)			 					𝑥 ∈ Ω,																(2)	
𝑞 = ∇𝑢(𝑥)	 	 𝑥 ∈ Ω,	 							(3)	
𝑢(𝑥) = 𝑔�(𝑥)	 	 𝑥 ∈ Ω�														(4)	
𝑞 ⋅ 𝑛 = 𝑔�(𝑥)	 	 𝑥 ∈ ∂Ω�												(5)	
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Figure	76:	Computational	domain	and	its	tesselation	demonstrating	notation	used	in	the	text.	

The	gradient	variable	q is	approximated	together	with	the	primal	variable	u,	which	
contrasts	with	the	CG method	and	other	discontinuous	methods	for	(1).	
	

3.7.2.2 HDG discretization 
We	 limit	ourselves	 to	 two-dimensional	problems	 for	sake	of	simplicity,	but	 the	
formal	description	remains	unchanged	in	three	dimensions.	We	assume	that	in	the	
discrete	setting,	the	computational	domain	Ω	is	approximated	by	its	tesselation	𝒯𝒽 	
consisting	of	non-overlappingi	j	and	conformal	elements	Ke	such	that	for	each	pair	
of	distinct	indices	𝑒¢ ≠ 𝑒¤, 𝐾M¦ ∩ 𝐾M§ = ∅.	The	symbol	Γl	denotes	an	interior	edge	of	
the	 tessellation	𝒯𝒽 ,	 i.e.	 an	 edge	Γ© = 𝐾ª««« ∩ 𝐾¬««« 		where	𝐾¢ 	and	𝐾¤ 	are	 two	 distinct	
elements	of	the	tesselation.	We	say	that	Γl	is	a	boundary	edge	of	the	tesselation	𝒯𝒽 	
if	there	exists	an	element	Ke		such	that	Γl	=	Ke	∩	∂Ω	and	the	length	of	Γl	is	not	zero,	
as	shown	in	figure	2.		
	

3.7.2.3 Global formulation for HDG problem 
Given	an	element	𝐾 ∈ 𝒯𝒽	and	two	functions	𝑢, 𝑣 ∈ 𝐿N(𝒯𝒽),	we	define	their	L2	scalar	
product	by	

(𝑢, 𝑣)𝒯𝒽 = ∑ (𝑢, 𝑣)¯¯∈𝒯𝒽 ,							where							(𝑢, 𝑣)¯ = ∫ 𝑢𝑣¯  d𝑥.	
Similarly,	the	L2	product	of	functions	u	and	v	that	are	square-integrable	on	element	
traces	are	defined	by:	

⟨𝑢, 𝑣⟩³𝒯𝒽 = ∑ ⟨𝑢, 𝑣⟩³¯¯∈𝒯𝒽 ,						where						⟨𝑢, 𝑣⟩³¯ = ∫ 𝑢𝑣³¯  d𝑠	

The	HDG	method	seeks	an	approximation	pair	(uDG,qDG)	to	u	and	q,	respectively,	in	
the	space	Vh	×	Σh.	The	solution	is	required	to	satisfy	the	weak	form	of	(2)	and	(3)	

(q¶·, ∇𝑣)𝒯𝒽 = (𝑓, 𝑣)𝒯𝒽 +			⟨𝑛
M ⋅ 𝑞l�¸, 𝑣⟩³𝒯𝒽 																(6)	

(𝑞�¸,𝑤)𝒯𝒽 = −(𝑢�¸, ∇ ⋅ 𝑤)𝒯𝒽 + º𝑢�»̧ ,𝑤 ⋅ 𝑛M¼D𝒯𝒽 			(7)	

for	 all	 (v,w)	 ∈	 Vh(Ω)×Σh(Ω)	 where	 Vh(Ω)	 and	 Σh(Ω)	 are	 suitable	 polynomial	
spaces	and	the	numerical	traces	˜uDG	and	q˜DG	have	to	be	appropriately	defined	
in	terms	of	the	approximate	solution	(uDG,qDG).	For	details,	we	refer	the	reader	
to	[2].	The	choice	of	trace	variables	allows	us	to	construct	the	discrete	HDG	system	
involving	 only	 trace	 degrees	 of	 freedom	𝑢l�¸ .	 Once	𝑢l 	is	 known,	 the	 element-
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interior	 degrees	 of	 freedom	 represented	 by	 both	 the	 primal	 variable	 u	 and	
gradient	q	can	be	reconstructed	from	element	boundary	values.	
	

3.7.2.4 Local solvers in the HDG method 
Assume	that	the	function	

																																																λ ≔ 𝑢l�¸ ∈ ℳ𝒽 ,	(8)	
is	given	with	ℳ𝒽 	being	a	finite	element	space	defined	on	element	traces.	Then	the	
solution	restricted	to	element	Ke	is	a	function	 	that	satisfies	
the	following	equations:	

																													(𝑞M, ∇𝑣)¯À = (𝑓, 𝑣)¯À + ⟨𝑛M ⋅ 𝑞lM, 𝑣⟩³¯À 																																																																			
(9)	

																																		(𝑞M,𝑤)¯À = −(𝑢M, ∇ ⋅ 𝑤)¯À + ⟨𝜆, 𝑤 ⋅ 𝑛M⟩D¯À ,																																																			
(10)	

for	all	(v,w)	∈	P(Ke)	×	Σ(Ke).	For	a	unique	solution	of	the	above	equations	to	exist,	
the	numerical	trace	of	the	flux	must	depend	only	on	λ	and	on	( 	

																														𝑞lM(𝑥) = 𝑞M(𝑥) − 𝜏Á𝑢M(𝑥) − 𝜆(𝑥)Â𝑛M								on							𝜕𝐾M																																													

(11)	

for	some	positive	function	τ.	The	analysis	presented	in	[2]	reveals	that	as	long	as	
τ	>	0,	its	value	can	be	arbitrary	without	degrading	the	robustness	of	the	solver.	For	
the	limiting	value	of	τ	→	∞,	one	obtains	a	statically	condensed	continuous	Galerkin	
formulation.	 In	 this	 sense,	τ	plays	 the	 role	of	 a	method	 selector	 as	opposed	 to	
traditional	penalty	parameter	used	in	Nitsche’s	method,	for	example.	

3.7.2.5 Global problem for trace variable 
We	denote	by	(Uλ,Qλ)	and	by	(Uf,Qf)	the	solution	to	the	local	problem	(9),	(10)	when	
λ	=	0	and	f	=	0,	respectively.	Due	to	the	linearity	of	the	original	problem	(1)	and	its	
mixed	form,	the	solution	satisfies	
	 .	 (12)	

In	 order	 to	 uniquely	 determine	λ,	we	 require	 that	 the	 boundary	 conditions	 be	
weakly	satisfied	and	the	normal	component	of	the	numerical	trace	of	the	flux	q˜	
given	by	(11)	is	single	valued,	rendering	the	numerical	trace	conservative.	
We	say	that	λ	is	the	element	of	trace	space	ℳ𝒽 	such	that	

																																																		λ = PÄ(𝑔�)				on			∂Ω�	(13)	

																															⟨µ, 𝑞l ⋅ 𝑛⟩³𝒯 = ⟨µ, 𝑔�⟩³ÆÇ ,		(14)	

for	all	µ ∈ ℳ𝒽
È
	such	that	µ	=	0	on	∂ΩD.	Here	𝑃Ê	denotes	the	L2-projection	into	the	

space	of	restrictions	to	∂ΩD	of	functions	of	ℳ𝒽 .	

 Combined Continuous-Discontinuous Formulation 
To	take	advantage	of	the	efficiency	and	lower	memory	requirements	of	continuous	
Galerkin	method	together	with	the	flexibility	and	more	favorable	communication	
patterns	of	discontinuous	Galerkin	methods	in	domain-decomposition	setting,	we	
combine	both	as	follows.	Each	mesh	partition	is	seen	as	a	’macro-element’,	where	
the	 governing	 equation	 is	 discretized	 by	 continuous	Galerkin	 solver,	while	 the	
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patches	are	coupled	together	weakly	as	in	HDG.	This	means	that	the	scalar	flux	
(hybrid	variable)	λ	is	only	defined	on	inter-partition	boundaries.	

	

Given	the	hybrid	CG-HDG setup,	the	HDG local	solver	defined	previously	for	one	
element	would	now	be	applied	 to	a	group	of	 elements	supporting	a	piecewise-
continuous	basis.	The	motivation	of	this	section	is	to	take	the	matrix	form	of	the	
HDG	solver	and	apply	it	in	such	piecewise-continuous	setting.	We	will	show	that	
the	discrete	weak	form	reduces	to	the	’standard’	Laplace	operator	plus	extra	terms,	
which	will	be	only	applied	on	elements	adjacent	to	partition	boundaries,	providing	
weak	coupling	between	each	partition	and	the	global	trace	variable.	
	
We	start	again	from	the	weak	mixed	problem	(9),	(10),	but	integrate	the	second	
term	in	the	flux	equation	(10)	by	parts	once	again.	This	modified	flux	form	allows	
for	a	symmetric	boundary	contribution	to	the	linear	system	as	will	be	explained	
shortly.	 In	order	to	distinguish	between	the	standard	HDG local	solver	within	a	
single	 element	 and	 HDG applied	 to	 the	 whole	 domain	 tesselation	 Th,	 the	
superscript	 ‘e’	has	been	replaced	by	Th	where	appropriate.	The	’macro	element’	
form	yields	a	system	
	

																																																																												(15)	
																										(16)	

The	 numerical	 approximation	𝑢𝒯𝒽 		belongs	 to	 the	 space 	and	𝑞𝒯𝒽 	lies	 in	 ,	
which	are	defined	as	

	 		

	 		

The	trace	flux	is	now	only	defined	on	partition	boundary	as	

. 

A	continuous	Galerkin	solver	with	Dirichlet	data	prescribed	by	the	variable	λ	can	
be	obtained	by	eliminating	the	flux	variable	from	the	system	and	reverting	back	
to	primal	 form	for	 the	unknown	u.	 	The	matrix	 formulation	written	 for	a	single	
element	Ke	∈	Th	adjacent	to	Dirichlet	boundary	reads	
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(17)	

		
																																																																								

(18)	
	
For	 definitions	 of	 matrices	 in	 the	 above	 formulation	 and	 detailed	 derivation,	
please	 see	 deliverable	 D1.3.	 The	 discrete	 flux	 𝑞Ë�M 	expressed	 from	 (18)	 and	
substituted	 in	 equation	 (17)	 yields	 element-wise	 contribution	 to	 the	 left-	 and	
right-hand	side	of	the	linear	system	which	can	be	expressed	as	

	

	

	
 	
Term	1	on	the	left-hand	side	is	a	discrete	Laplacian	that	arises	from	the	standard	
continuous	Galerkin	discretization,	which	would	typically	be	accompanied	by	the	
forcing	term	 fe	on	the	right	hand	side.	This	new	expression	therefore	denotes	a	
modification	 of	 the	 existing	 matrix	 system	 and	 right-hand	 side,	 which	 makes	
implementation	relatively	straightforward.	The	matrix	expressions	2a	,	2b	,	3	and	
4		appear	in	the	formulation	only	for	elements	Ke	containing	at	least	one	edge	on	
Dirichlet	 boundary	 of	 Ω.	 In	 addition,	 expressions	 3	 and	 4	 are	 symmetric	 as	 a	
consequence	 of	 symmetry	 of	𝐸Í�©M ,	𝐸©M 	and	(𝑀M)1K .	 The	 products	 2a	 and	 2b	 are	
transposes	of	each	other,	hence	their	sum	is	again	symmetric.	The	modifications	
to	the	symmetric	discrete	Laplacian	therefore	preserve	symmetry	of	the	discrete	
weak	form,	meaning	that	efficient	iterative	solvers	such	as	the	conjugate	gradient	
method	can	be	used	to	obtain	solutions.	

 Expected Performance 

3.7.4.1 Cost in terms of FLOPs 
We	 assume	 that	 the	 discrete	 Poisson	 problem	 is	 solved	 in	 two	 stages,	 both	 of	
which	will	significantly	contribute	to	the	overall	CPU	time	spent	in	the	solver.	The	
stages	are:	
1. Assembly	 and	 solution	 of	 statically	 condensed	 system.	 This	 step	

involves	processing	unknowns	on	entity	boundaries,	where	’entity’	would	
be	 each	 single	 element	 in	 the	 context	 of	 continuous	 and	 hybrid	
discontinuous	Galerkin	methods	and	one	mesh	patch	(a	group	of	elements	
spanned	by	a	 continuous	polynomial	basis)	 in	 the	 combined	continuous-
discontinuous	Galerkin	method.	



D2.4	–	Final	report	on	the	ExaFLOW	algorithms,	energy	efficiency	and	IO	strategies.	 117	

The	main	 difference	 between	CG	 and	HDG	 is	 that	 in	 the	 continuous	 case,	
trace	variables	are	identical	to	variables	located	on	element	boundaries	and	
are	shared	by	neighboring	elements.	The	HDG	method,	on	the	other	hand,	
introduces	 an	 additional	 hybrid	 variable,	 thus	 requiring	 more	 memory	
storage.	This	variable	is	not	globally	continuous,	hence	degrees	of	freedom	
on	face	boundaries	are	duplicated.	Therefore,	the	HDG	interior	solve	on	each	
element	has	to	process	a	slightly	larger	local	system.	

2. Interior	 solve.	Given	 solution	on	 entity	 boundary,	 the	 solution	 in	 entity	
interior	 is	 reconstructed	 during	 this	 stage.	 Interior	 solve	 involves	 the	
inverse	of	a	potentially	large	matrix.	

Setup	costs	(for	example	precomputing	and	storing	the	matrix	inverses	needed	in	
interior	solve	above)	are	not	considered.	

Domain	Description	
We	assume	a	structured	grid	divided	into	P	×P	patches,	each	patch	consisting	of	
Ne1D×Ne1D	elements	(Figure	77).	Each	element	has	a	polynomial	basis	of	degree	p,	
i.e.	(p	+	1)	×	(p	+	1)	degrees	of	freedom.	These	may	or	may	not	be	shared	with	
neighboring	 elements,	 depending	 on	 the	 setup	 (CG vs.	DG vs.	HDG)	 and	 global	
continuity	of	the	polynomial	bases.	The	number	of	inter-patch	edges	(red	edges	in	
Figure	77)	is	

,	

and	each	patch	contains	𝑁nÐFÑÊ
M�ÒMq 	interior	edges,	with	

,	
see	figure	6.	

	

Figure	77:		Idealized	mesh	divided	into	P	×	P	patches,	each	patch	containing	Ne1D	×	Ne1D	elements	of	order	p.	
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Figure	78:	Interior	edges	(blue)	within	a	patch.	

3.7.4.2 Continuous Galerkin method 
Since	the	total	number	of	elements	along	each	side	of	the	mesh	is	𝑃 ⋅ 𝑁MK� 	in	2D,	
the	 total	 number	 of	 unknowns	 before	 static	 condensation	 (assuming	 Dirichlet	
boundary	condition	everywhere)	is	

.	
This	 is	 also	 the	 rank	 of	 global	 system	 matrix.	 In	 case	 of	 one-level	 static	
condensation,	the	global	system	has	the	form	

	

and	the	rank	of	Mb	is	approximately	(counting	the	boundary	modes	on	the	skeleton	
of	the	mesh)	equal	to	

	

𝑁Ó¸Ô = Á𝑁¢ÕFMÖnÐFÑÊ
M�ÒMq + 𝑃 ⋅ 𝑁nÐFÑÊ

M�ÒMqÂ ⋅ 𝑝
= Á2𝑃 ⋅ (𝑃 − 1) ⋅ 𝑁MK� + 𝑃 ⋅ 2𝑁MK� ⋅ (𝑁MK� − 1)Â ⋅ 𝑝
= 2P𝑁MK�(𝑃 + 𝑁MK� − 2)p	

	
The	remaining	values	of	u	in	element-interior	degrees	of	freedom	can	be	obtained	
by	inverting	(P	·	Ne1D)2	local	matrices	of	rank	p	−	1.	This	means	that	the	total	cost	
of	solving	the	CG problem	is	

,	

where	cgsolve(n)	 is	 the	 cost	 function	of	 solving	a	 sparse	system	of	 rank	n	with	
conjugate	gradients.	The	cost	of	the	second	term	is	small	if	the	blocks	of	Mi	 	are	
inverted	and	stored	during	setup	phase.	The	second	term	in	the	estimate	assumes	
that	 the	 inverse	 of	 each	 diagonal	 block	 of	 Mi	 costs	 as	 much	 as	 Gauss	
elimination/LU	 decomposition	 of	 a	 matrix	 of	 rank	 p−1,	 which	 has	 cubic	 time	
complexity.	

3.7.4.3 HDG 
The	discrete	transmission	condition	(14)	generates	a	sparse	system	of	rank	
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𝑁Ø�¸Ô = Á𝑁¢ÕFMÖnÐFÑÊ
M�ÒMq + 𝑃 ⋅ 𝑁nÐFÑÊ

M�ÒMqÂ ⋅ (𝑝 + 1)

= Á2𝑃(𝑃 − 1)𝑁MK� + 𝑃 ⋅ 2𝑁MK�(𝑁MK� − 1)Â ⋅ (𝑝 + 1)

= 2P𝑁MK�(𝑃 + 𝑁MK� − 2)(𝑝 + 1).	

In	addition,	we	need	to	invert	(PNe1D)2	local	systems	∈	R(p+1)×(p+1)	as	in	the	CG	case.	
The	backsolve	is	more	expensive	however,	because	we	have	d	additional	mixed	
variables	 q1	 …,	 qd	 in	 d	 dimensions.	 The	 element-local	 inversion	 can	 be	 again	
precomputed	and	stored	during	setup.	
The	overall	cost	of	solving	for	all	unknowns	scales	as	

.	

3.7.4.4 Combined CG-HDG Solver 
The	number	of	hybrid	degrees	of	freedom	on	interfaces	between	patches	is	

.	
Each	patch	contains	approximately	(Ne1Dp)2	interior	degrees	of	freedom,	hence	the	
total	cost	is	

.	

In	the	limiting	case	where	each	patch	coincides	with	one	single	element	(i.e.	P	:=	
Ne1D	 and	 Ne1D	 =	 1),	 the	 three	 estimates	 CCG,	 CHDG	 and	 CCG−DG	 predict	 the	 same	
asymptotic	cost.	

3.7.4.5 Standard HDG Algorithm 
The	cost	of	linear	solve	in	the	PCG (preconditioned	conjugate	gradient)	solver	will	
mainly	 depend	 on	 the	 cost	 of	 evaluating	 matrix-vector	 multiplications.	 For	 a	
matrix	 of	 rank	 n,	 this	 cost	 is	 O(n2).	 Nektar++	 solves	 the	 statically	 condensed	
system	 in	 matrix-free	 manner	 by	 performing	 the	 above	 matrix-vector	
multiplications	 element-wise	 and	 then	 summing	 them	 together.	 Suppose	 the	
(structured)	 mesh	 consists	 of	 quadrilaterals	 in	 2D	 and	 hexahedra	 in	 3D.	
Furthermore,	we	will	assume	that	the	triangular	mesh	is	obtained	by	splitting	each	
quadrilateral	 into	2	 triangles	and	 tetrahedral	mesh	 is	 created	by	dividing	each	
hexahedron	into	6	tetrahedra.	
The	number	of	trace	degrees	of	freedom	of	one	element	is	

• 3	·	(p	+	1)								for	triangles	

• 4	·	(p	+	1)								for	quadrilaterals	

			for	tetrahedra	

• 6	·	(p	+	1)2									for	hexahedra	

Under	this	assumption,	one	matrix-vector	multiplication	for	the	whole	system	(but	
performed	on	element-wise	basis)	will	take	
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																																		operations	on	
triangles		

																	 				operations	 on	
quadrilaterals	

		 	 	 	 	 	 	 operations	 on	
tetrahedra	

																														operations	on	
hexahedra	

	

3.7.4.6 HDG Algorithm Applied to Groups of Continuously Connected Elements (CG-
HDG) 

Now	suppose	that	the	trace	system	is	built	between	patches	and	each	patch	has	
Ne1D	×	Ne1D	quadrilaterals	in	2D	and	Ne1D	×	Ne1D	×	Ne1D	hexahedra	in	3D.	The	number	
of	unknowns	on	the	trace	of	one	patch	now	becomes	
• 4 ⋅ 𝑁MK� ⋅ 𝑝	(triangles	and	quadrilaterals)	and	
• 6 ⋅ (𝑁MK�)N ⋅ 𝑝N	in	3D	(tetrahedra	and	hexahedra),		

which	will	require	

	operations	 per	 matrix-vector	 multiplication	 in	 2D	 and	
					operations	in	3D	

This	means	that	the	PCG algorithm	in	CG-HDG case	scales	one	order	worse	
when	measured	in	terms	of	number	of	elements	along	patch	face	 	
than	the	standard	HDG algorithm	 .	

Remark	1.	Note	that	the	number	on	the	surface	of	the	patch	is	the	same	for	triangles	
and	quadrilaterals	and	for	tetrahedra	and	hexahedra,	respectively.	For	a	continuous	
expansion,	the	number	of	DOFs	on	one	quadrilateral	face	of	a	hexahedron	is	(p	+	1)2,	
and	 (p	 +	 1)	 =	 (p	 +	 1)2	 for	 two	 triangles	 covering	 the	 same	
quadrilateral	face.	
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Figure	79:	Asymptotic	of	matrix-vector	multiplication	measured	by	operation	counts	for	HDG	and	combined	
CG-HDG	methods.	

The	reconstruction	of	interior	degrees	of	freedom	involves	the	solution	of	a	linear	
system	with	the	matrix	

AM =

⎝

⎜⎜
⎛Ý𝜏(M,©)𝐸©M

�Þ
À

©ßK

−𝐷KM −𝐷NM

(𝐷KM)á 𝑀M 0
(𝐷NM)á 0 𝑀M ⎠

⎟⎟
⎞
	

	

The	superscript	e	no	longer	refers	to	a	single	element	as	was	the	case	of	HDG.	For	
CG-HDG method,	 all	 the	 blocks	 in	𝐴M 	are	 a	 result	 of	 a	 continuous	 Galerkin	
discretization	 in	 the	 whole	 partition/patch.	 Note	 that	 the	 matrix	𝐸©M 	involves	
interaction	of	boundary	and	interior	modes	and	for	CG-HDG,	it	can	be	assembled	
by	 looping	 over	 all	 elements	 adjacent	 to	 partition	 boundary	 and	 adding	
corresponding	 elemental	 blocks	 to	 the	 matrix	 𝐴M .	 The	 sparse	 matrix	 𝐴M 	is	
potentially	 large	 and	 its	 explicit	 inverse	 will	 be	 dense,	 i.e.	 require	 significant	
storage.	
	
The	expensive	interior	solve	together	with	increased	operation	count	when	
inverting	the	statically	condensed	system	in	3D	indicates	that	the	benefit	of	
reduced	 communication	 pattern	 in	 continuous-discontinuous	
discretization	might	be	outweighed	by	extra	CPU	cost	and	there	is	relatively	
little	performance	 (if	any)	 to	be	gained	by	combining	 the	continuous	and	
discontinuous	Galerkin	discretization	into	one	hybrid	solver.	

We	were	of	the	partially	block-diagonal	structure	of	𝑨𝒆	and	hoped	that	an	efficient	
local	solver	 for	each	mesh	partition	could	be	designed.	The	asymptotic	costs	of	
solving	the	globally	coupled	system	as	discussed	in	this	section	are	too	prohibitive,	
however.		

3.7.4.7 Cost in terms of memory requirements  
We	again	 assume	 that	 the	 global	 system	 is	 solved	 by	 performing	multiple	PCG 
iterations,	where	global	matrix-vector	multiply	is	executed	in	matrix-free	fashion.	
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For	each	elemental	multiplication,	the	data	containing	the	input	matrix,	the	vector	
it	operates	on	and	a	 resulting	vector	must	be	 loaded	 into	processor	 cache.	We	
discuss	amount	of	data	transferred	for	each	method	during	one	PCG iteration	here.	

3.7.4.8 Continuous Galerkin 
On	 triangles,	 one	 element	 contains	 3·p	 trace	 degrees	 of	 freedom	 (this	 is	
irrespective	 of	 global	 continuity	 of	 the	 solution,	 because	 we	 perform	 the	
multiplication	element-by	element	and	hence	whether	the	DOFs	are	shared	with	
neighbouring	elements	or	not	is	irrelevant).	The	elemental	statically	condensed	
matrix	has	rank	(3	 ·	p)2	and	the	amount	of	data	to	move	 in	and	out	of	cache	 is	
therefore	

(3	·	p)2	+	2	·	(3	·	p)	=	9p2	+	6p	

The	term	2 ⋅ (3 ⋅ 𝑝)	takes	into	account	two	vectors	needed	for	elemental	matrix-
vector	multiplication.	This	 is	repeated	 for	each	element,	and	therefore	the	total	
number	of	floating-point	values	transferred	is	

2 ⋅ (𝑁MK�)N(9𝑝N + 6𝑝)	
Repeating	similar	calculation	for	other	element	types,	we	arrive	to	the	following	
estimates	for	continuous	Galerkin	method	and	different	element	types:	

• Triangles:	𝑁Ó¸,FÖ¢ = 2 ⋅ (𝑁MK�)N(9𝑝N + 6𝑝)																																												floating	point	
values	

• Quadrilaterals:	𝑁Ó¸,æEÐ� = (𝑁MK�)N(16𝑝N + 8𝑝)																																	floating	point	
values	

• Tetrahedra:	𝑵𝑪𝑮,𝒕𝒆𝒕 = 𝟔 ⋅ (𝑵𝒆
𝟏𝑫)𝟑 îÁ𝟐𝒑(𝒑 + 𝟏)Â

𝟐
+ 𝟒𝒑(𝒑 + 𝟏)ñ 		 	 	 	 floating	 point	

values	
• Quadrilaterals:	𝑵𝑪𝑮,𝒉𝒆𝒙 = (𝑵𝒆

𝟏𝑫)𝟑((𝟔𝒑𝟐)𝟐 + 𝟏𝟐𝒑𝟐)																											floating	point	
values	

3.7.4.9 Discontinuous Galerkin 
Data	 for	 HDG are	 very	 similar	 with	 the	 exception	 that	 the	 trace	 values	 are	
discontinuous,	which	means	that	the	elemental	matrices	are	slightly	bigger:	

• Triangles:	𝑵𝑯𝑫𝑮,𝒕𝒓𝒊 = 𝟐(𝑵𝒆
𝟏𝑫)𝟐 2𝟗(𝒑 + 𝟏)𝟐 + 𝟔(𝒑 + 𝟏)5	floating	point	values	

• Quadrilaterals	 𝑵𝑯𝑫𝑮,𝒒𝒖𝒂𝒅 = (𝑵𝒆
𝟏𝑫)𝟐 2𝟏𝟔(𝒑 + 𝟏)𝟐 + 𝟖(𝒑 + 𝟏)5 	floating	 point	

values	

• Tetrahedra:	 𝑵𝑯𝑫𝑮,𝒕𝒆𝒕 = 𝟔 ⋅ (𝑵𝒆
𝟏𝑫)𝟑 îÁ𝟐(𝒑 + 𝟏)(𝒑 + 𝟐)Â

𝟐
+ 𝟒(𝒑 + 𝟏)(𝒑 + 𝟐)ñ	

floating	point	values	

• Quadrilaterals:	𝑵𝑯𝑫𝑮,𝒉𝒆𝒙 = (𝑵𝒆
𝟏𝑫)𝟑((𝟔(𝒑 + 𝟏)𝟐)𝟐 + 𝟏𝟐(𝒑 + 𝟏)𝟐) 		 floating	 point	

values	
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3.7.4.10 CG-HDG 
The	 hybrid	 CG-HDG method	 has	 a	 system	 matrix	 of	 rank	 (4 ⋅ 𝑁MK� ⋅ 𝑝) 	in	 two	
dimensions,	which	means	that	the	number	of	floating-point	values	involved	in	one	
matrix-vector	multiply	will	be		

𝑁Ó¸1Ø�¸,N� = (4 ⋅ 𝑁MK� ⋅ 𝑝)N + (8 ⋅ 𝑁MK� ⋅ 𝑝) = 16(𝑁MK�)N𝑝N + 8𝑁MK�𝑝	in	2D	

and	similarly	in	3D,	where	the	number	of	DOFs	on	patch	surface	is	6	·	(Ne1D)2	·	p2	:	

)	.	

3.7.4.11 Continuous Galerkin 
The	 number	 of	 interior	 degrees	 of	 freedom	 in	 one	 high-order	 triangle	 is	

(p+1)(p+2)/2−3p	 =	 (p	 −	 2)(p	 −	 1)/2	 and	 we	 suppose	 that	 this	 is	 the	 rank	 of	

elemental	Schur	complement	which	has	to	be	inverted	and	stored.	In	the	case	of	

continuous	Galerkin	system,	the	element-interior	matrix,	left-	and	right-	hand	side	

vectors	hold	

	

This	cost	has	to	be	multiplied	by	number	of	elements	present	in	the	mesh.	Cost	for	
different	element	shapes	is	summarized	below	

• Triangles:	 𝑁Ó¸,FÖ¢ = 2(𝑁MK�)N üÁ(𝑝 − 2)(𝑝 − 1)/2Â
N
+ (𝑝 − 2)(𝑝 − 1)ý 		 floating	

point	values	

• Quadrilaterals:	𝑁Ó¸,æEÐ� = (𝑁MK�)N[(𝑝 − 1)N + 2(𝑝 − 1)]																									floating	
point	values	

3.7.4.12 Discontinuous Galerkin 
In	HDG,	each	element	has	its	’own’	DOFs	not	shared	with	the	hybrid	variable,	hence	
elemental	matrices	are	again	slightly	bigger:	

• Triangles:	 𝑁Ø�¸,FÖ¢ = 2(𝑁MK�)N üÁ(𝑝 + 1)(𝑝 + 2)/2Â
N
+ (𝑝 + 1)(𝑝 + 2)ý				

floating	point	values	
• Quadrilaterals	𝑁Ø�¸,æEÐ� = (𝑁MK�)N[(𝑝 + 1)N + 2(𝑝 + 1)]																										floating	

point	values	

3.7.4.13 CG-HDG 
The	’interior	matrix’	is	sparse,	but	involves	all	DOFs	of	the	patch,	whose	count	is	
approximately	( .	The	matrix	and	corresponding	storage	would	then	be	

,	
Which	is	again	orders	of	magnitude	worse	estimate	than	for	CG	and	HDG.	
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4 Conclusion and Future Work 
	
In	this	deliverable	we	have	reported	on	the	efficiency	improvements	to	co-design	
applications	that	stem	from	both	efficient	algorithm	implementations	and	system-
specific	 tweaks.	 There	 is	 no	 silver	 bullet	 in	 making	 the	 most	 efficient	 use	 of	
hardware	resources	and	this	will	continue	to	be	the	case	at	exascale.	What	can	be	
done	is	to	build	an	arsenal	of	methods	for	dealing	with	specific	bottlenecks	and	
limitations,	and,	understand	the	operating	regimes	in	which	to	use	them	to	best	
effect.	
	
For	example,	we	have	 seen	 that	using	the	XML	 library	method	 for	Nektar++	 to	
write	the	results	from	simulations	or	checkpoints	is	very	efficient	when	the	file-
size	 is	 large,	on	the	order	of	gigabytes,	but	performs	poorly	when	dealing	with	
small	files,	on	the	order	of	tens	of	megabytes.	
	
	
Future	work	will	continue	the	 investigation	of	 the	performance	of	 the	methods	
and	 techniques	 detailed	 in	 this	 deliverable	 on	 emerging	 hardware,	 performing	
design	space	exploration	to	ascertain	the	best	parameters	settings.	Further:	
	

• Application	 using	 code	 generation,	 such	 as	 OpenSBLI,	 will	 require	 new	
back-ends	written,	or	linking	to	updated	libraries	which	are	aware	of	new	
hardware.	However,	 this	work	will	benefit	a	community	larger	than	that	
using	a	single	application.	

	
• IO	 will	 most	 likely	 change,	 particularly	 the	 ratio	 of	 IO	 bandwidth	 to	

compute	 cores	 will	 decrease	 as	 exascale	 systems	 increase	 core	 count	
beyond	 that	 seen	 today.	Thus,	 further	work	will	 focus	on	 improving	 the	
compression	of	data	on	the	fly	before	writing,	and	on	improving	the	choice	
of	 schema	 used	 for	 reading	 and	 writing	 in	 order	 operate	 in	 the	 most	
efficient	regime	for	the	given	task.	

	
• Energy	 efficiency	 will	 continue	 to	 be	 dominated	 by	 changes	 in	 system	

hardware	and	topology.	However,	there	is	a	continued	requirement	to	map	
the	operating	mode,	clock	freqneucy	and	other	parameters	to	understand	
the	 best	 configuration	 for	 a	 particular	 code-phase,	 recognizing	 that	 the	
profile	for	IO	differs	from	that	of	compute	and	post-process.	
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