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Executive	Summary	
This	deliverable	considers	the	performance	which	we	might	see	from	an	exascale	
HPC	system	running	our	co-design	applications.	We	first	recap	the	current	state	
of	 the	 art	 with	 respect	 to	 our	 available	 HPC	 systems	 and	 find	 that	 since	 the	
beginning	 of	 ExaFLOW,	 there	 has	 been	 only	 a	 small	 change	 in	 performance	 of	
hardware.	Further,	we	find	that	our	co-design	applications	are	limited	not	by	the	
absolute	 performance	 of	 the	 CPUs	 or	 memory	 but	 by	 the	 efficiency	 of	 the	
algorithms	used	with	respect	to	the	hardware.	

We	 also	 discuss	 improvements	 being	 made	 to	 make	 more	 efficient	 usage	 of	
existing	hardware.		

In	particular:	

• We	 examine	 the	 communications	 library,	 GS,	 used	 by	 both	 co-design	
applications	and	find	that	in	cases	of	high	complexity	meshes,	an	approach	
based	 on	 PGAS	methods	 can	 reduce	 communication	 latency.	We	 expect	
CFD	problems	 to	use	more	 complex	meshes	as	we	advance	 towards	 the	
exascale,	and	more	efficient	communications	between	computing	elements	
(whatever	the	format	of	those	elements),	to	be	to	our	advantage.	

• We	examine	the	I/O	performance	of	Nektar++	with	respect	the	library	used	
to	perform	the	reading	and	writing	of	data.	We	find	that	for	large	(multi-
gigabyte)	reads	the	SIONlib	library	gives	good	performance	and	is	constant	
across	 core-count.	 For	 large	writes,	 file-per-process	 XML	 gives	 the	 best	
performance	and	is	second	best	for	reads,	so	is	the	best	aggregate	choice.	

• We	also	see	how	offline	compression	methods	can	reduce	the	volume	of	
data	generated	by	a	CFD	simulation	output,	to	enable	efficient	disk	usage	
and	reduce	the	time	taken	for	check	points	and	restarts.	

• We	 comment	 on	 improvements	 to	 algorithms	 and	 other	 technologies	
which	will	be	required	to	achieve	good	performance.	For	example,	we	are	
exploring	GPUs	via	porting	Nek5000	to	OpenACC	to	explore	performance	
on	accelerators.	

• We	briefly	comment	on	weak	boundary	conditions.	Using	weak	boundary	
conditions	 allows	 us	 to	 begin	 iterations	 of	 a	 solver	 routine	 with	 loose	
boundary	conditions	and	thus	control	the	build-up	of	errors	which	could	
lead	to	solver	instability.	

• We	also	comment	on	work	done	to	improve	the	resilience	of	algorithms	to	
machine	 failure.	 By	 considering	 solver	 iterations	 as	 tasks	 within	 the	
simulation,	when	a	node	fails,	the	task	can	be	migrated	to	another	node	to	
complete	so	that	the	complete	simulation	need	not	be	started	again.	

Finally,	we	make	some	comments	on	how	close	current	codes	are	to	being	able	to	
achieve	good	performance	should	an	exascale	system	become	available.	

	

	



D2.3	–	Final	report	on	exascale	technology	state-of-the-art	

	

5	

	 	



D2.3	–	Final	report	on	exascale	technology	state-of-the-art	

	

6	

Contents	
1	 Introduction	....................................................................................................................................	7	

2	 Current	state-of-the-art	hardware	.......................................................................................	7	

3	 Software	advances	to	co-design	applications.	.............................................................	10	

3.1	 Improvements	in	communication	libraries	........................................................	10	

3.2	 Exploration	of	GPU	architecture	..............................................................................	11	

3.3	 Fault	Tolerance	.................................................................................................................	12	

3.4	 I/O	...........................................................................................................................................	13	

3.5	 Weak	boundary	conditions.........................................................................................	16	

3.6	 Power	efficiency	...............................................................................................................	17	

4	 Future	predictions	....................................................................................................................	18	

5	 Conclusion:	Performance	at	exascale	..............................................................................	21	

6	 References	....................................................................................................................................	22	

	

	

	
	

	

	 	



D2.3	–	Final	report	on	exascale	technology	state-of-the-art	

	

7	

1 Introduction 

This	 deliverable	 reports	 on	 the	 current	 state	 of	 the	 art	 with	 respect	 to	
Computational	 Fluid	Dynamics	 (CFD)	 and	 considers	 how	our	 current	 software	
would	perform	on	a	future	exascale	system,	what	that	system	may	look	like	and	
what	 obstacles	 we	 need	 to	 overcome	 to	 reach	 efficient	 performance	 on	 said	
system.	

	

2 Current state-of-the-art hardware 

The	current	state-of-the-art	with	 respect	 to	hardware	 that	 is	used	 to	 run	 large	
scale	CFD	applications	 can	be	 seen	 through	 the	 three	HPC	machines	used	with	
ExaFLOW	-	ARCHER[1]	at	UEDIN,	Hazel	Hen[3]	at	USTUTT	and	Beskow[2]	at	KTH,	
and	with	three	leading	machines	-	Piz	Daint[8]	at	CSCS,	TaihuLight	at	the	National	
Supercomputing	 Centre	 at	 Wuxi[6]	 and	 Summit[7]	 at	 OLCF.	 Whilst	 all	 three	
ExaFLOW	machines	are	supplied	by	a	single	vendor,	Cray	Inc,	they	have	different	
specifications	 and	 represent	 the	 differences	 between	 current	 machines	 that	
current	CFD	users	will	see	in	production.	

	

ARCHER	 is	 a	 Cray	 XC30	 system	with	 a	 total	 of	 4920	 compute	 nodes	 (118,080	
cores).	Each	node	contains	two	2.7	GHz,	12-core	E5-2697	v2	(Ivy	Bridge)	series	
processors.	Each	of	the	cores	in	these	processors	can	support	2	hardware	threads	
(hyperthreads).	 Within	 the	 node,	 the	 two	 processors	 are	 connected	 by	 two	
QuickPath	 Interconnect	 (QPI)	 links.	 Each	 node	 has	 at	 least	 64	 GB	 of	 memory	
shared	between	the	two	processors,	a	small	number	have	128GB.	The	memory	is	
arranged	in	a	non-uniform	access	(NUMA)	form:	each	12-core	processor	is	a	single	
NUMA	region	with	 local	memory	of	32	GB	 (or	64	GB	 for	high-memory	nodes).	
Access	to	the	local	memory	by	cores	within	a	NUMA	region	has	a	lower	latency	
than	 accessing	memory	 on	 the	 other	 NUMA	 region.	 At	 zero	 load,	 the	 compute	
nodes	on	ARCHER	draw	approximately	400	kW	of	power	and	at	 full	 load	 they	
draw	approximately	1.2	MW	of	power.	

Hazel	Hen	is	a	Cray	XC40	system	with	a	total	of	7712	nodes	(185,088	cores)	with	
2x	 Each	 node	 contains	 two	 2.5	 GHz	 12	 core	 E5-2680	 v3	 (Haswell)	 series	
processors.	Each	of	the	cores	in	these	processors	can	support	2	hardware	threads	
(hyperthreads).	 Within	 the	 node,	 the	 two	 processors	 are	 connected	 by	 two	
QuickPath	 Interconnect	 (QPI)	 links.	 Each	 node	 has	 at	 least	 128	GB	of	memory	
shared	between	the	two	processors.	As	with	ARCHER,	each	processor	is	a	single	
NUMA	region.	The	complete	system,	including	disk,	draws	approximately	2.8	MW	
of	power	in	production	mode.	

Beskow	is	a	Cray	XC40	system	with	a	total	of	2060	compute	nodes,	split	across	11	
cabinets.	Nine	of	the	cabinets	have	nodes	comprising	two	2.3	GHz	16	core	E5-2698	
v3	(Haswell)	processors	and	64GB	of	memory	(per	node),	and	the	remaining	two	
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cabinets	have	nodes	consisting	of	two	2.1	GHz	18	core	E5-2695	v4	Broadwell	CPUs	
and	 128GB	 of	 memory	 (per	 node).	 Each	 of	 the	 cores	 in	 these	 processors	 can	
support	2	hardware	threads	(Hyperthreads).	Within	the	node,	the	two	processors	
are	connected	by	two	QuickPath	Interconnect	(QPI)	links.	As	with	ARCHER,	each	
processor	 is	 a	 single	 NUMA	 region.	 The	 compute	 part	 of	 the	 system	 draws	
approximately	842	kW	of	power	in	production	mode.	

Whilst	these	machines	differ	in	age	and	size,	they	are	similar	in	offering	multi-core	
CPUs	with	hyper-threading	and	between	2	and	5	GB	of	RAM	per	physical	core.	
Processor	 speeds	 vary	 slightly,	 but	 are	 generally	 between	 2	 and	 2.5	 GHz	 base	
frequency.	Current	CPUs	from	the	same	vendor	(Intel)	are	the	same,	so	there	is	
little	expectation	that	this	will	change	in	the	next	iteration.	The	number	of	cores	
per	CPU	varies	between	iterations	of	the	technology	(and	choice	of	processor)	but	
the	RAM	per	CPU	thread	stays	roughly	similar.	

Not	used	in	ExaFLOW,	but	similar	in	that	it	is	a	hybrid	Cray	XC40/XC50	is	Piz	Daint	
at	 CSCS	 in	 Lugano.	 Piz	 Daint	 has	 an	 XC40	 partition	 comprising	 1813	 nodes	
comprising	two	Xeon	2.10GHz	18	core	E5-2695	v4	(Broadwell)	processors	with	
64	or	128	GB	RAM	of	RAM	per	node.	 It	has	an	XC50	partition	comprising	5320	
nodes	which	each	have	a	single	2.60GHz	12	core	E5-2690	v3	(Haswell)	processor	
with	64GB	RAM	coupled	 to	a	NVIDIA	Tesla	P100	HPU	with	16GB	of	RAM.	The	
inclusion	of	GPUs	 in	 the	XC50	partition	allows	 the	 running	of	 codes	which	 can	
make	efficient	use	of	heterogenous	hardware,	such	as	OpenSBLI.	

Again,	using	a	GPU	plus	CPU	model	is	Summit,	at	Oak	Ridge	Leadership	Computing	
Facility.	Summit	is	the	replacement	to	the	Titan	supercomputer	and	is	currently	
being	installed.	Summit	will	be	comprised	of	approximately	4,600	nodes	and	will	
have	a	hybrid	architecture,	with	each	node	will	containing	multiple	IBM	POWER9	
CPUs	and	NVIDIA	Volta	GPUs	connected	with	NVIDIA’s	high-speed	NVLink.	Each	
node	will	have	over	half	a	terabyte	of	coherent	memory	(high	bandwidth	memory	
+	DDR4)	addressable	by	all	CPUs	and	GPUs	plus	800GB	of	non-volatile	RAM	that	
can	be	used	as	a	burst	buffer	or	as	extended	memory.	To	provide	a	high	rate	of	I/O	
throughput,	the	nodes	will	be	connected	in	a	non-blocking	fat-tree	using	a	dual-
rail	Mellanox	EDR	InfiniBand	interconnect.	This	further	pushes	the	idea	of	using	
GPUs	plus	CPUs	in	a	single	node,	like	the	XC50	but	with	more	attention	paid	to	fast	
interconnect	on-node	to	move	data	between	the	CPU	and	GPU	devices.	Also,	this	
machine	 contains	node-local	storage	designed	specifically	 to	act	 a	burst	buffer,	
amenable	 to	 offline	 compression	 methods	 such	 as	 those	 using	 wavelet	
compression.	

Finally,	there	is	the	current	number	one	system	from	the	top	500	list	of	powerful	
supercomputers,	TaihuLight.	This	machine	comprises	a	total	of	40,960	Chinese-
designed	 SW26010	 manycore	 64-bit	 RISC	 processors	 based	 on	 the	 Sunway	
architecture.	Each	processor	contains	256	processing	cores	(much	more	than	the	
12	or	18	seen	with	the	other	systems),	and	an	additional	four	auxiliary	cores	for	
system	 management	 (also	 RISC	 cores,	 just	 more	 fully	 featured)	 for	 a	 total	 of	
10,649,600	CPU	cores	across	the	entire	system.	Interestingly,	this	system	does	not	
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have	a	traditional	cache	hierarchy	seen	in	the	x86	Xeon	chips,	but	uses	a	network	
on	chip	to	connect	 the	processing	cores	 for	communication	rather	than	via	 the	
cache.	This	machine	supports	the	use	of	a	custom	version	of	OpenACC	v2.0	to	take	
advantage	 of	 the	 processing	 power	 available	 and	 aid	 in	 the	 parallelization	 of	
codes.	This	validates	the	use	of	our	experiments	with	OpenACC	to	parallelize	key	
kernels.	

There	are	also	some	systems	based	on	the	now	discontinued	XeonPhi	architecture	
such	 as	 Tianhe-2	 based	 at	 NUDT	 in	 China	 which	 operated	 a	 similar	 model	 to	
Summit,	 combining	 Xeon	 processors	 and	 XeonPhi	 accelerators	 in	 nodes.	 This	
technology	 will	 not	 see	 any	 updates	 or	 upgrades	 and	 indeed,	 Tianhe-2	 is	
deprecated	in	favour	of	TiahuLight.	The	Sunway	processor,	which	is	based	on	a	
multi-core	architecture	much	like	XeonPhi,	but	with	a	greater	number	of	cores/die	
may	be	a	good	replacement	 for	those	codes	or	kernels	previously	targeted	to	a	
XeonPhi	multicore	architecture	
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3 Software advances to co-design applications. 

Since	the	beginning	of	the	ExaFLOW	project	in	October	2015,	we	have	worked	to	
close	the	performance	gap	of	our	co-design	applications	to	make	more	efficient	
usage	of	available	hardware.	As	hardware	advances,	further	work	will	be	required	
to	 tailor	 the	 applications	 (and	 algorithms)	 to	 make	 the	 most	 efficient	 use	 of	
resources.	

	

3.1 Improvements in communication libraries 

We	have	developed	new	communication	kernels	for	Nek5000	based	on	the	one-
sided	 communication	model,	 provided	 by	 the	 partitioned	 global	 address	 space	
(PGAS)	abstraction.	

Communication	in	both	Nektar++	and	Nek500	is	provided	by	the	GS	library.	This	
offers	 both	 pairwise	 communications	 between	 processing	 elements	 and	 the	
crystal	router,	a	hypercube	exchange	method	well	suited	to	swapping	data	for	CFD	
meshes.	 GS	 lib	 is	 currently	 written	 in	 single	 sided,	 basic	 MPI	 which	 requires	
message	matching.	

Using	 the	 one-sided	 model,	 we	 reduce	 latency	 and	 synchronization	 costs	 by	
avoiding	 costly	 message	 matching,	 thus	 allowing	 for	 more	 fine-grained	
parallelism,	 with	 less	 necessary	 local	 data	 per	 processing	 element	 to	 balance	
communication	 costs,	 resulting	 in	 an	 improved	 strong	 scalability	 of	 Nek5000.	
Furthermore,	 with	 more	 fine-grained	 parallelism	 we	 also	 anticipated	 that	
Nek5000	will	be	able	to	efficiently	utilize	the	extreme	parallelism	offered	by	new	
and	anticipated	exascale	hardware.	

Figure	1	shows	the	performance	of	a	simple	test	case	(a	round	trip	latency,	or	ping-
pong	test)	 for	both	the	existing	MPI	 implementation	and	ExaGS,	our	UPC	PGAS	
implementation.	We	see	an	improvement	as	core	count	increases	and	therefore	a	
reduced	 latency	 in	 communications	 at	 scale.	 Given	 that	 Nek5000,	 Nekbone	 &	
Nektar++	 can	 use	 the	 same	 communications	 routines,	 we	 expect	 this	 to	 be	
reflected	in	the	co-design	applications,	where	we	expect	to	see	a	reduction	in	wait	
times	 on	 data	 exchange	 between	 nodes	 or	 when	 performing	 synchronisation	
steps.	

However,	 the	 underlying	 structure	 of	 the	 crystal	 router	 is	 non-optimal	 for	 the	
programming	model	requiring	some	inelegant	designs	to	maintain	functionality	
and	interoperability	with	both	application	codes.	

One	of	the	limitations	in	ExaGS	is	the	crystal	router	data	exchange	method.	It	is	
suited	to	the	MPI	programming	model	(and	implementations	thereof)	but	not	best	
suited	to	UPC	implementations	as	the	algorithm	assumes	the	programming	model.	
To	 become	 efficient	 at	 exascale	 node	 counts,	 it	 will	 require	 rework	 at	 the	
algorithmic	level	to	decouple	from	message	passing	type	of	programming	model.	
This	is	likely	to	be	true	for	most	communication	libraries,	especially	where	there	
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is	 reliance	on	communication	having	 completed	before	 an	 iteration	of	 a	 solver	
begins.	 Reliance	 on	 barriers	 and	 reliable	 global	 functions	 (such	 as	 all-reduce	
operations)	will	have	to	be	lessened	within	application	codes.	

	

	
Figure	1:	Comparison	of	round-trip	latencies	for	MPI-based	and	PGAS-based	GS	library.	

	

3.2 Exploration of GPU architecture 

Within	 the	 project,	 we	 expanded	 on	 our	 previously	 developed	work	 and	 take	
advantage	of	 the	optimized	results	 to	port	 the	 full	version	of	Nek5000	to	GPU-
accelerated	 systems,	 especially	 regarding	 the	 PN–PN-2	 algorithm.	 This	 latter	
algorithm	is	a	way	to	decouple	the	momentum	from	the	pressure	equations	that	
does	not	lead	to	spurious	pressure	modes.	It	is	more	efficient	than	other	methods,	
and	it	involves	different	approximation	spaces	for	velocity	(order	N)	and	pressure	
(order	 N-2).	 The	 project	 focuses	 on	 the	 technology	 watch	 of	 heterogeneous	
modelling	 and	 its	 impact	 on	 the	 exascale	 architectures	 (e.g.	 GPU	 accelerators	
system).	GPU	accelerators	can	strongly	speed	up	the	most	consuming	parts	of	the	
code,	running	efficiently	 in	parallel	on	thousands	of	cores.	The	goal	of	 this	sub-
project	 is	 to	 implement	 a	 full	 version	 of	 the	 PN–PN-2	 algorithm	which	 can	 take	
advantage	 of	 hybrid	 architectures	 and	 be	 used	 in	 Nek5000	 to	 improve	 its	
scalability	 to	 exascale.	 The	 current	 performance	 of	 the	matrix-free	 fast	 tensor	
product	kernel	is	shown	in	Figure	2.	However,	this	is	a	single	kernel	running	on	a	
single	GPU;	to	increase	the	usage	of	GPUs,	memory	swapping	(for	halo	exchange)	
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must	be	implemented	via	MPI	with	GPUdirect	to	avoid	the	overhead	of	copying	
complete	memory	buffers	between	GPU	and	CPU	host.	

	

	

3.3 Fault Tolerance 

The	reliability	of	running	CFD	simulations	poses	one	of	the	major	challenges	when	
one	 considers	 using	 exascale	 machines,	 i.e.	 achieving	 1018	 floating-point	
operations	 per	 second.	 Given	 the	 necessary	 number	 of	 components	 that	 an	
exascale	system	consists	of,	based	on	the	failure	rates	of	current	hardware	we	can	
extrapolate	 that	 the	 mean	 time	 to	 interrupt	 (MTTI,	 the	 time	 before	 a	 failure	
occurs)	 is	 of	 the	 order	 of	 only	 a	 few	minutes.	 This	 makes	 exascale	 resources	
unusable	 for	 the	 context	 of	 extremely	 large-scale	 simulations,	 requiring	 novel	
strategies	to	deal	with	in-situ	hardware	failures.	

Our	work	in	Nektar++	as	part	of	ExaFLOW	has	been	to	design	algorithms	tolerant	
of	failures,	without	adversely	affecting	the	performance	and	scalability	of	the	code.	
Most	 importantly,	 we	 have	 been	 seeking	 solutions	which	 provide	 resilience	 in	
memory-conservative	manner.	The	prototype	approach,	which	is	now	available	in	
Nektar++,	uses	a	proposed	fault-tolerance	extension	to	the	MPI	standard	called	
User-Level	 Failure	 Mitigation	 (ULFM),	 combined	 with	 a	 memory-efficient	
approach	 to	 represent	and	duplicate	 static	data	 (i.e.	data	 that	does	not	 change	
during	 simulation).	 ULFM	 provides	 functionality	 to	 detect	 failures	 among	 the	
processes	participating	in	simulation	and	to	recover	from	them	through	moving	
the	 task	 associated	with	 the	 failed	 node	 onto	a	 spare	 node	 in	 the	 system.	 The	
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Figure	2:	Performance	of	tensor	product	kernel	running	a	single	P100	GPU	with	OpenACC.	
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greater	the	number	of	spare	nodes,	the	greater	the	resilience	to	additional	failures.	
Memory	efficiency	and	performant	 recovery	 is	 achieved	 through	 recording	 the	
result	 of	 each	 MPI	 communication	 during	 simulation	 initialization;	 this	
information	 can	 be	 used	 to	 reconstruct	 the	 failed	 process	 on	 the	 spare	 node	
independently	 of	 other	 processes,	 thus	 avoiding	 collective	 communication.	
Currently	we	can	 run	 flow	simulations	which	recover	 from	as	many	sequential	
failures	as	 there	are	 spare	nodes,	with	a	memory	overhead	of	 less	 than	5%	on	
large-scale	runs.	

	

3.4 I/O 

To	reduce	performance	costs	associated	with	file	I/O,	the	capability	to	write	HDF5	
files	was	added	to	Nektar++.	The	original	approach	of	writing	checkpoint	field	files	
by	Nektar++	 in	an	XML	format	generated	 individual	 files	 for	each	process,	 thus	
increasing	 disk	 contention	 with	 growing	 number	 of	 cores,	 and	 presented	 a	
significant	barrier	to	the	use	of	the	code	at	extremely	high	core	counts	anticipated	
at	exascale.	

The	HDF5	library	uses	a	file	format	that	allows	for	a	parallel	file	access	that	allows	
for	concurrent	writing	by	all	MPI	processes	at	the	same	time.	To	complement	this,	
we	have	explored	the	use	of	the	SIONlib	library	to	attempt	to	further	reduce	IO	
times	at	scale.	Figure	3	&	Figure	4	show	the	results	of	a	large	read	and	write	done	
as	part	of	an	industrial	test	case,	using	XML,	HDF5	and	SIONlib	routines	as	the	core	
count	is	scaled.		

Of	note	for	the	read	is	that	for	XML	and	SIONlib,	the	runtime	is	constant	across	
core	counts,	implying	that	this	is	a	limit	of	the	combination	of	system	and	library.	
For	 the	 HDF5	 case,	 the	 runtime	 increases	 with	 high	 core	 count	 as	 there	 is	
contention	when	each	core	must	read	some	common	parts	of	the	file.	For	write,	
the	situation	is	different.	Both	HDF5	and	XML	are	consistent	across	core	counts,	
but	the	SIONlib	runtime	improves	(decreases)	as	the	core	count	increases.	

Coupled	with	increased	efficiency	in	data	I/O	methods,	compression	can	be	used	
to	 reduce	 the	 volume	 of	 the	 data	 that	 is	 stored,	 allowing	 sufficient	 recovery.	
Current	work	has	shown	that	using	wavelet	based	compression	algorithms	can	
result	in	efficient	lossless	and	lossy	compression	of	CFD.	This	is	currently	run	as	a	
a	post-processing	method	due	 to	 speed,	but	 further	performance	 improvement	
coupled	with	emerging	technology,	such	as	burst-buffers	could	enable	use	as	an	
online	method	in	feasible	time.		It	could	also	result	in	a	decrease	in	the	volume	of	
data	 moved	 across	 the	 network	 to	 disk	 storage,	 which	 would	 decrease	 both	
checkpoint	 and	 restart	 times	 for	 simulations,	 and	 the	 time	 taken	 to	 store	
snapshots	for	post-processing.	
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Table	1	below	shows	the	compression	ratio,	compression	time	(in	seconds)	and	
Peak	Signal	to	Noise	Ratio	(PSNR)	for	the	compression	algorithms	JP3D,	ZFP	and	
7-zip.	As	7-zip	is	a	lossless	method,	the	PSNR	is	infinite.	

	

	

	

Timestep	 Compression	Ratio	 Compression	Time	 PSNR	

	 JP3D	 ZFP	 7-Zip	 JP3D	 ZFP	 7-Zip	 JP3D	 ZFP	 7-Zip	

0	 64.66	 65	 41.72	 6.86	 1.66	 114.91	 181.90	 61.21	 ∞	

2.5	 62.18	 62.1	 6.03	 4.40	 1.98	 160.37	 181.80	 60.02	 ∞	

5	 61.55	 61.1	 5.84	 7.15	 1.92	 173.20	 153.20	 48.16	 ∞	

7.5	 61.02	 61.1	 5.57	 8.81	 1.86	 164.00	 112.40	 44.26	 ∞	

10	 60.77	 61.1	 5.07	 10.95	 1.83	 172.91	 88.0	 37.83	 ∞	

12.5	 60.78	 61.1	 4.63	 11.35	 1.81	 172.80	 90.7	 40.64	 ∞	

15	 60.84	 61.1	 4.21	 11.07	 1.82	 186.38	 90.4	 40.48	 ∞	

17.5	 60.80	 61.1	 3.92	 10.70	 1.84	 183.88	 95.2	 43.0	 ∞	

20	 60.87	 61.1	 3.72	 11.07	 1.87	 181.45	 99.6	 45.2	 ∞	

Table	1:		Compression	ratio,	time	and	Peak	Signal	to	Noise	Ratio	for	JP3D,	ZPF	&	7-Zip	compression	
algorithms.	
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Figure	3:	Nektar++	import	times	using	XML,	HDF5	and	SIONlib	read	routines.	

	

	
Figure	4:	Nektar++	export	times	using	XML,	HDF5	and	SIONlib	write	routines.	
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These	results	are	echoed	from	an	industrial	automotive	use	case	(Opel	car)	run	on	
Hazel	Hen	between	96	and	786	cores.	The	XML-I/O-implementation	produces	a	
very	high	load	on	the	meta-data	server	of	the	file	system	because	of	writing	a	single	
file	 per	 MPI-process.	 Unfortunately,	 the	 HDF5-I/O-implementation	 performed	
worse	when	compared	to	XML.	One	possible	reason	for	the	unexpected	low	I/O-
performance	 is	 the	 overhead	 of	 the	 data	 management	 caused	 by	 the	 rather	
complex	 usage	 of	 HDF5	 in	 Nektar++.	 Further	 investigations	 are	 necessary	 to	
identify	the	best	strategy	to	optimize	the	HDF5-I/O.	Maybe	some	adjustments	in	
the	 domain-decomposition	 are	 necessary	 since	 efficiently	 writing	 HDF5	 data	
requires	large	contiguous	chunks	of	data	to	be	written	which	in	turn	requires	data	
to	be	hold	as	large	contiguous	chunks	in	memory.	

	

3.5 Weak boundary conditions 

At	 the	 core	 of	 the	 test	 cases	 considered	 in	 ExaFLOW	 are	 the	 incompressible	
Navier-Stokes	 equations,	 which	 are	 efficiently	 solved	 numerically	 both	 in	
Nektar++	and	Nek5000	using	the	spectral/hp	element	method	and	a	time-splitting	
scheme.	Although	the	splitting	of	the	equations	involves	the	solution	of	four	scalar	
elliptic	 equations	 for	 pressure	 and	 velocity	 components,	 the	 cost	 of	 one	 step	
largely	depends	on	the	amount	of	work	need	to	obtain	the	pressure	field,	which	is	
defined	as	a	solution	to	a	(frequently	ill-conditioned)	Poisson	equation.	

The	difficulty	in	solving	the	governing	equation	for	pressure	is	further	increased	
when	one	considers	complex	 flow	features,	particularly	 for	 the	extremely	 large	
simulations	expected	at	 exascale,	 for	example	the	 formation	and	evolution	of	 a	
wingtip	vortex	simulated	by	a	high-order	method.	Under-integration	of	nonlinear	
terms	 in	 Navier-Stokes	 equations	 introduces	 an	 aliasing	 error	 which	 may	
compromise	the	stability	of	the	simulation.		This	is	usually	not	problematic	when	
the	 flow	features	are	adequately	resolved.	 	Once	the	build-up	of	aliasing	errors	
becomes	an	 issue,	however,	 the	 stability	of	 the	 solver	 is	often	 compromised	 in	
vicinity	of	solid	wall	boundaries,	where	the	introduction	of	boundary	constraints	
into	the	discrete	problem	further	degrades	the	conditioning	of	the	stiffness	matrix.	

To	mitigate	these	issues,	we	formulated	and	implemented	an	algorithm	for	weak	
imposition	of	boundary	conditions,	which	modifies	the	underlying	weak	form	by	
adding	 penalty	 terms.	 The	 advantage	 is	 that	 the	 boundary	 condition	 is	 not	
imposed	exactly	(within	machine	accuracy)	from	the	very	first	iteration,	but	only	
at	converged	state	and	the	rate	of	resolving	 flow	features	 in	 the	 interior	of	 the	
domain	 and	 on	 the	 boundary,	 is	 thus	 consistent.	 In	 addition,	 numerical	
experiments	 show	 that	 the	 method	 is	 more	 robust	 than	 the	 state-of	 the-art	
technique	for	imposing	boundary	conditions	weakly	-	Nitsche's	method.	This	will	
allow	simulations	to	scale	 to	larger	core	counts,	on	the	path	to	exascale,	whilst	
retaining	numerical	stability.	
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3.6 Power efficiency 

To	gauge	the	effective	efficiency	achievable	with	current	state	of	the	art	systems,	
we	investigated	the	energy	consumption	of	Nektar++	running	an	automotive	use	
case	 (Opel	 car)	 at	 all	 the	 available	 CPU	 clock	 frequencies.	With	 respect	 to	 the	
computation	phase,	a	sweet	spot	of	runtime	and	energy	consumption	has	been	
detected	at	1.7	GHz,	 allowing	 for	19.2%	reduction	of	 the	energy	demand	while	
increasing	runtime	by	only	12.6%	(see	Figure	5).	However,	a	subsequent	analysis	
of	identical	runs	revealed	a	variance	of	the	used	energy-delay-product	in	the	size	
of	 the	 effect	 achievable	 by	 reducing	 the	 clock	 frequency.	 This	 may	 be	 due	 to	
(known)	node	interconnect	issues.	The	exascale	system	target	is	to	use	less	than	
20MW	to	produce	1	exaflop.	By	optimizing	the	processor	usage	in	this	manner,	
independent	 of	 the	 processor	 hardware,	we	 can	 reduce	 the	 power	 required	 to	
generate	1	exaflop.	

	

	
Figure	5:	Energy	consumed	versus	processor	frequency	for	Opel	test	case	-	computation	phase.	
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4 Future predictions 

In	this	section,	we	consider	the	effects	of	our	work	to	improve	on	the	state	of	art	
and	the	progress	to	readiness	for	exascale	simulations.	

	

Since	 the	 beginning	 of	 the	 project	 in	 2015,	 HPC	 hardware	 has	 seen	 relatively	
modest	advancement	and	has	mostly	been	centred	around	Intel	processors.	Clock	
speeds	remain	roughly	constant	as	can	be	seen	by	comparing	the	base	frequency	
of	Beskow	(the	newest	of	our	 three	HPC	machines)	with	ARCHER	 (the	oldest).	
However,	during	the	period,	the	processors	have	undergone	a	process	geometry	
shrink	 (between	 the	 22nm	 of	 Ivy	 Bridge	 and	 14nm	 of	 Broadwell	 micro-
architectures)	and	with	consequent	reduction	in	operating	power.	This	translates	
as	an	increase	in	useful	work	(iterations	of	a	CFD	code)	per	kWh.	There	has	also	
been	a	gentle	increase	in	memory	bandwidth,	as	the	upper	limit	on	memory	speed	
increases	from	1.8	GHz	to	2.4	GHz.	The	increase	in	memory	bandwidth	benefits	
kernels	 that	routinely	stall	waiting	 for	data	to	be	brought	 into	the	CPU	and	for	
which	the	hardware	pre-fetcher	has	been	unable	to	optimally	hide	this	 latency.	
Perhaps	 the	most	 interesting	 advance,	 not	 echoed	 in	ExaFLOWs	machines,	 has	
been	the	introduction	of	ARM-based	systems	to	the	HPC	landscape.	Unfortunately,	
these	machines	are	not	yet	production	ready	and	will	not	be	installed	and	made	
available,	for	any	serious	testing,	during	the	lifetime	of	the	ExaFLOW	project.	

Future	advances	in	hardware	seem	unlikely	to	result	in	a	dramatic	increase	in	
the	base	clock	speed	of	the	CPU.	CPUs	will	likely	increase	in	core-count	following	
a	multi-core	route	to	scaling	with	fatter	chips,	and	some	of	these	cores	may	be	
heterogeneous.	For	example,	different	core	types	on-die	would	allow	
computational	kernels	to	be	handled	by	cores	(or	collections	of	cores)	which	are	
well	matched	to	the	type	of	computation;	the	core	types	may	be	GPU,	FPGA	or	
some	other	type	of	offload	device.	As	seen	with	our	work	to	offload	kernels	via	
OpenACC,	this	may	require	some	re-architecting	of	the	application	to	achieve	a	
more	complete	port	of	the	code	to	accelerator,	however	it	is	dependent	on	the	
hardware	available.	Using	the	code	generation	features	in	OpenSBLI,	the	third	of	
our	project	application	codes,	should	go	some	way	to	helping	with	this	point.	The	
ability	to	generate	code	which	is	then	compiled	for	the	target	hardware	gives	
good	flexibility	across	targets	and	may	help	to	make	quick	use	of	a	system	such	
as	TaihuLight	if	access	were	available.	The	separation	of	concerns	between	
algorithm	development,	code	generation	and	efficient	compilation	on	a	target	
platform	is	likely	to	be	seen	with	more	the	complex	heterogenous	systems	which	
may	emerge.	

	

Memory	 speed	 is	 unlikely	 to	 dramatically	 increase	 for	 external	 (to	 the	 CPU)	
memory.	It	is	highly	likely	is	for	high-bandwidth	memory	to	appear	on-die	with	
the	 CPU	 as	 part	 of	 the	 same	 package,	 if	 not	 sharing	 silicon.	 Further,	 memory	
hierarchies	are	likely	to	deepen	and	increase	in	size,	with	fast	per-node	storage	
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which	could	be	 implemented	using	NVRAM.	NVRAM	 is	non-volatile	 and	allows	
data	to	persist	between	node	reboots	and	 is	 flexible	 in	 its	usage,	being	either	a	
level	4	cache,	or	as	a	 fast	node-local	disk.	This	may	reduce	some	of	 the	disk	 IO	
requirements	 and	 allow	 data	 to	 be	 stored	 node-local	 between	 jobs,	 reducing	
restart	 time.	 It	 may	 also	 allow	 on-node	 compression	 to	 run	 using	 node-local	
storage	reducing	the	requirement	for	it	to	be	on-line	and	act	as	a	buffer	for	write	
phases.	This	technology,	in	the	form	of	burst-buffers	is	available	in	a	system	such	
as	in	the	upcoming	Summit	machine	at	OLCF.	

Aside	from	architecture	considerations,	exploiting	such	systems	with	reasonable	
efficiently	will	require	algorithmic	approaches	that	make	better	use	of	available	
parallelism.	 This	 implies	 using	 exascale-capable	 programming	 models	 and	
techniques,	 including	 flexible	 use	 of	 heterogeneous	 hardware	where	 available,	
such	as	in	the	JUWELS	modular	supercomputer[4]	or	hardware	being	considered	
for	the	Post-K	project[5].	Considering	that	the	current	codes	are	unable	to	achieve	
a	 performance	 where	 they	 are	 constrained	 by	 the	 arithmetic	 and	 memory	
bandwidth	bounds	of	the	current	machines,	further	work	is	required	to	make	use	
of	an	exaflop	capable	machine.	

To	illustrate	low	arithmetic	intensity,	we	use	the	roofline	models	as	generated	by	
the	Intel	Advisor	toolset	running	on	Cirrus,	a	cluster	at	UEDIN	which	has	the	same	
hyperthread	capable	processors	as	the	smaller	part	of	Beskow	(2.1	GHz	18	core	
E5-2695	Broadwell)	arranged	similarly	into	dual	CPU	nodes.	It	has	280	nodes	in	
total,	giving	10,080	cores.	Cirrus	has	256	GB	of	RAM	per	node	(~7	GB	per	core)	
giving	it	the	highest	RAM	to	thread-count	of	the	machines	used.	

	

	
Figure	 6:	 Roofline	 model	 of	 the	 Nekbone	 application	 showing	 performance	 limits	 for	 memory	
bandwidth	and	computation	intensity.	

	

Figure	 6	 shows	 an	 example	 of	 a	 roofline	 model	 for	 the	 Nekbone	 application.	
Nekbone	is	a	small	test/benchmark	application	used	with	Nek5000	to	judge	the	
performance	of	matrix	multiplication	operations	for	different	sizes	and	shapes	of	
matrix.	 It	 is	 used	 here	 to	 judge	 the	 performance	 of	 Nekbone,	 which,	
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unencumbered	by	complex	processing	used	 in	the	Nek5000	application,	should	
achieve	excellent	results.	

Of	primary	interest	is	the	large	red	circle	in	the	centre	of	the	graph.	It	shows	the	
performance	 of	 the	 core	 matrix	 multiplication	 kernel.	 The	 y-axis	 shows	
performance	 in	 flop/s	 and	 the	 x-axis	 the	 arithmetic	 intensity,	 the	 number	 of	
operations	 carried	 out	 per	 byte	 of	 data.	 The	 dashed	 lines	 indicate	 the	 limiting	
factors:	the	bandwidth	of	the	various	memory	types	(on-die	caches	and	DRAM)	
and	the	peak	arithmetic	performance	of	CPU	units.	From	the	example,	the	kernel	
is	neither	limited	by	memory	bandwidth	(if	it	was,	it	would	appear	closer	to	the	
L3	bandwidth	line)	nor	arithmetic	limit	(it	doesn’t	approach	even	the	scalar	add	
limit).	

Thus,	if	memory	bandwidth	or	available	operations	per	second	were	to	increase,	
this	code	would	not	be	able	to	take	advantage	of	it,	without	further	optimization.	

To	gain	exascale	capable	performance,	our	codes	need	to	continue	to	develop:	

• Better	 support	 for	 accelerators.	 Currently	 accelerators	 can	 achieve	 high	
arithmetic	intensity	and	GPUs	tend	to	have	high	memory	bandwidth	per	
processing	 unit.	 Whilst	 OpenSBLI	 can	 currently	 target	 a	 variety	 of	
hardware,	only	some	kernels	from	Nek500	and	Nektar++	can	make	use	of	
this	type	of	hardware.	Efficient	performance	is	required	from	all	kernels	
and	 modules,	 and	 taking	 advantage	 of	 multiple	 accelerators	 will	 be	
required	to	make	use	of	a	machine	of	and	architecture	like	Summit.	

• Good	scaling	of	 all	 components.	 Currently	 there	 is	 a	 range	 of	 scalability	
across	 the	 components	 of	 our	 codes.	 For	 example,	 the	 Adaptive	 Mesh	
Refinement	 (AMR)	 in	 Nek5000	 does	 not	 scale	 as	 well	 as	 the	 solver	
components.	However,	this	is	balanced	by	the	usefulness	of	the	method	in	
increasing	 the	 resolution	 of	 the	 grid	 where	 it	 is	 needed	 as	 opposed	 to	
having	 a	 high-resolution	 grid	 at	 all	 points	 and	 doing	 expensive	work	 in	
regions	 with	 no	 interesting	 characteristics.	 Efficient	 use	 of	 an	 exascale	
capable	system	will	require	all	components	to	have	good	scaling	behavior	
so	efficiency	is	not	lost	by	a	weak	part	of	the	workflow.	

• Further	I/O	improvements.	We	have	seen	that	both	compression	and	new	
I/O	libraries	can	reduce	the	data	volume	and	make	transfer	more	
efficient.	However,	more	work	is	required	to	minimize	the	data	generated,	
stored	and,	most	importantly,	transferred.	Exascale	capable	machines	will	
have	likely	have	millions	of	cores	(based	on	the	scaling	of	TaihuLight)	
which	implies	low	per-core	disk	bandwidth.	Even	with	burst	buffers	and	
node-local	storage,	the	primary	bottleneck	for	CFD	applications	will	be	
checkpoint	data	used	to	both	restart	simulations	and	generate	flow	over	
time	movies	for	visualization.	This	work	will	require	co-operation	and	co-
design	of	the	I/O	and	compression	methods	to	balance	the	I/O	regimes	
for	best	performance	on	each	system.	 	
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5 Conclusion: Performance at exascale 

Based	on	a	move	towards	multi-core	systems,	and	on	our	observations	that	CPU	
cores	have	not	increased	dramatically	in	clock	speed	or	memory	bandwidth,	we	
can	begin	to	consider	performance	on	a	future	exascale	machine.	

Our	most	basic	example	of	a	CFD	code,	Nekbone,	is	not	currently	able	to	achieve	a	
performance	 which	 is	 limited	 by	 the	 arithmetic	 performance	 or	 memory	
bandwidth	 available	 on	 any	 of	 ExaFLOWs	 current	 systems.	 Therefore,	 we	 can	
surmise	that	future	performance,	using	current	codes,	is	unlikely	to	be	limited	by	
processor	 or	memory	 performance.	 However,	 it	 will	 be	 affected	 by	 limited	 IO	
performance,	 as	 the	 number	 of	 cores	 available	 increases	 faster	 than	 the	 IO	
bandwidth	per	core.	

Investigations	into	different	IO	libraries	have	shown	that	there	is	no	single	best	
solution	for	both	reading	and	writing	of	large	data	files.	The	most	hopeful	outcome	
here	is	node-local	storage	(NVRAM,	burst-buffer	or	some	other	method)	to	reduce	
the	IO	wait	time,	assuming	a	checkpoint	+	restart	scenario,	combined	with	on-line	
data	compression.	

With	respect	to	software	limitations,	investigation	has	shown	that	offloading	key	
kernels	by	recoding	with	OpenACC	can	achieve	a	higher	arithmetic	intensity	on	
GPU	hardware	than	possible	on	a	traditional,	x86	CPU.	Whilst	this	is	a	change	of	
hardware	target,	it	is	the	move	from	MPI-based	code	to	OpenACC	which	enables	
the	offload.	 It	 is	noted	that	 this	 is	 the	programming	model	used	 for	TaihuLight	
which	 utilises	 highly	 multi-core	 CPUs	 which	 appear	 more	 like	 GPU	 streaming	
multiprocessors	than	traditional	cores	in	this	regard.	

Finally,	 algorithmic,	 rather	 than	 implementation	 changes	 are	 required	 such	 as:	
weak	boundary	conditions	for	solver	improvements,	AMR	for	reduction	in	work	
done	 in	 regions	of	 little	 interest	 and	 fault	 tolerance	 to	 recover	 from	hardware	
errors.	

All	the	above	point	towards	current	codes	exhibiting	similar	scaling	limitations	as	
seen	 on	 current	 machines	 unless	 they	 take	 an	 approach	 to	 engineering	
applications	 at	 all	 levels,	 from	 efficient	 use	 of	 hardware	 through	 compilers,	
programming	 models	 and	 communications	 libraries,	 to	 algorithms	 through	
methods	such	as	AMR	to	reduce	computational	load.	
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