
The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

H2020	FETHPC-1-2014	
	

	

Enabling	Exascale	Fluid	Dynamics	Simulations	
Project	Number	671571	

	
	
	

D2.1	–	Initial	Report	on	Exascale	
Technology	State-of-the-Art	

WP2:	Efficiency	Improvements	Towards	
Exascale	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 2	

	
Copyright©	2016	The	ExaFLOW	Consortium	

	
Document	Information	
	
Deliverable	Number	 D2.1	
Deliverable	Name	 Initial	Report	on	Exascale	Technology	State-of-the-Art	
Due	Date	 31/05/2016	(PM8)	
Deliverable	Lead	 UEDIN	
Authors	 N.	Johnson,	UEDIN	
Responsible	Author	 N.	Johnson,	UEDIN	
Keywords	 Exascale,	Technologies,	Programming	
WP	 WP2	
Nature	 R	
Dissemination	Level	 PU	
Final	Version	Date	 31/05/2016	

Reviewed	by	 Philipp	Schlatter,	KTH	
Ulrich	Rist,	Univ.	Stuttgart	

MGT	Board	Approval	 31/05/2016	
	
	
	 	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 3	

	
Document	History	
	
Partner	 Date	 Comments	 Version	

UEDIN	 29/04/2016	 First	draft	 0.1	
UEDIN	 02/05/2016	 Second	draft	 0.2	
UEDIN	 18/05/2016	 Integrate	comments	from	USTUTT	 0.5	
UEDIN	 26/05/2016	 Final	edits	 0.6	
KTH	 31/05/2016	 Finalization	after	PMB	review	 1.0	
	
	 	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 4	

Executive	Summary	
	
Current	 HPC	 technology	 is	 unable	 to	 scale	 to	 a	 sufficient	 degree	 to	 allow	
construction	 of	 a	 feasible	 exascale	 machine.	 Using	 current	 technology,	 such	 a	
machine	would	consume	at	least	7	times	the	20	MW	target	power	limit.	If	this	is	
ignored,	then	it	would	be	possible	to	construct	such	a	machine.	However	no	job	
is	likely	able	to	make	efficient	use	of	a	whole	machine	for	two	reasons:	faults,	and	
software	scaling.	With	respect	to	this,	scaling	current	technology	would	lead	to	a	
high	 number	 of	 faults,	 i.e.,	 where	 a	 processor	 fails	 in	 some	 manner	 that	 is	
unrecoverable	by	the	hardware	alone.	The	application	would	have	to	be	robust	
to	 this,	 most	 likely	 by	 using	 fault	 tolerant	 methods,	 as	 check	 pointing	 a	
computation	on	such	a	machine	may	prove	prohibitively	expensive.	
	
Looking	 forward,	 emerging	 technology	 will	 develop	 to	 help	 reduce	 current	
bottlenecks:	 latencies	 will	 fall,	 both	 between	 memory	 and	 processor	 and	
between	nodes;	energy	efficiency	will	increase,	bringing	the	power	target	within	
reach,	 and	programming	models	will	 evolve	 to	either	provide	or	allow	simpler	
construction	of	scalable	fault	tolerant	methods.	
	
This	 deliverable	 examines	 some	 current	 technologies	 and	 projects	 working	
towards	 the	 Exascale	 to	 see	 how	 a	 machine	 implementing	 them	 or	 their	
successors	might	 look,	 and	where	 the	bottlenecks	might	 lie	 in	 such	a	machine.	
For	 example,	 using	 die-stacked	 memory	 (where	 the	 memory	 and	 processor	
inhabit	 the	 same	 physical	 package,	 if	 not	 the	 same	 die)	 reduces	 the	 energy	
required	 to	move	data,	 along	with	 the	 latency	 incurred.	This,	however,	 implies	
that	 off-package	 communication	 is	 relatively	 more	 expensive	 than	 at	 present,	
unless	 interconnect	 technology	 can	 keep	 pace.	 Consequently,	 algorithm	 design	
may	have	to	 focus	more	on	communications	avoidance	to	reduce	the	 impact	of	
these	penalties.	
	
	
	 	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 5	

Contents	
1	 Acronym	&	Abbreviations	...	5	
2	 Introduction	...	6	
3	 Building	an	exascale	system	with	current	technology	..	6	
4	 Emergent	technologies	...	7	
4.1	 Die	Stacked	Memory	..	7	
4.2	 High	Bandwidth	Memory	...	7	
4.3	 Hybrid	Memory	Cube	...	8	
4.4	 System	on	Chip	processors	...	8	
4.5	 Fault	tolerant	algorithms	...	8	
4.6	 Scalable	programming	models	..	9	

5	 What	would	a	system	look	like	if	it	used	all	such	technologies?	9	
6	 Conclusion	and	Future	Work	..	10	
	
	
	
	

1 Acronyms	&	Abbreviations	
	
Acronym	 Meaning	
CAF	 Co-array	Fortran	
COTS	 Commercial	Off	The	Shelf	
CPU	 Central	Processing	Unit	
DDR4	 Double	Data	Rate	4th	Generation	
DRAM	 Dynamic	Random	Access	Memory	
DSM	 Die	Stacked	Memory	
ECC	 Error	Correcting	Code	
Flop	 Floating	Point	Operation	
FPGA	 Field	Programmable	Gate	Array	
FT	 Fault	tolerant	/	fault	tolerance	
GPGPU	 General	Purpose	Graphics	Processing	Unit	
HBM	 High	Bandwidth	Memory	
HMC	 Hybrid	Memory	Cube	
HPC	 High	Performance	Computing	
L1/L2	 Level	1	/	Level	2	Cache	
LLC	 Last	Level	Cache	
MPI	 Message	Passing	Interface	
OpenMP	 Open	Multi-Processing	
PCIe	 Peripheral	Component	Interconnect	Express	
PE	 Processing	Element	
PGAS	 Partitioned	Global	Address	Space	
SoC	 System	on	Chip	
TSV	 Through	Silicon	Via	
UPC	 Unified	Parallel	C	
	 	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 6	

2 Introduction	
	
The	 purpose	 of	 this	 deliverable	 is	 to	 describe	 some	 of	 the	 current	 technology	
trends	 in	 HPC	 and	 project	 these	 trends	 forward	 to	 imagine	 what	 an	 exascale	
system	 based	 on	 these	 technologies	 would	 look	 like,	 what	 performance	
characteristics	it	might	have,	and	what	bottlenecks	it	may	display.	

3 Building	an	exascale	system	with	current	technology	
	
In	order	to	provide	a	meaningful	comparison,	a	fictitious	exascale	system	named	
Fictision,	 which	 is	 based	 upon	 current	 COTS	 technologies,	 is	 described.	 This	
allows	us	to	consider	how	far	current	technology	needs	to	advance	to	reach	the	
exascale.	
	
Fictision	 is	based	on	 the	same	technology	as	ARCHER	(ARCHER,	2016),	 the	UK	
National	 Facility	 operated	by	EPCC.	ARCHER	has	4920	nodes,	 each	 comprising	
two	Intel	Xeon	CPUs.	It	has	a	theoretical	maximum	performance	of	2.55	PFlop/s	
and	a	measured	maximum	of	1.64	PFlop/s	-	thus,	it	has	a	ratio	of	theoretical	to	
measured	 performance	 of	 1.55.	 It	 consumes	 1,200	 kW	 of	 power	 at	 full	 load,	
giving	a	delivered	energy	efficiency	of	1.368	GFlop/W.	
	
Based	on	these	characteristics,	if	Fictision	were	to	be	built	using	this	technology,	
in	 order	 to	 achieve	 a	 measured	 performance	 of	 1	 EFlop/s,	 it	 would	 require	
hardware	capable	of	1.55	EFlop/s.	A	single	node	has	a	theoretical	performance	
of	 518.4	 GFlop/s1	and,	 therefore,	 Fictision	 requires	 2,989,970	 nodes.	 Using	
ARCHER’s	power	figures,	Fictision	requires	729	MW	of	power	at	full	load.	
	
As	 a	 comparison,	 Shoubu,	 the	 leader	 of	 the	 Green	 500	 list	 (a	 list	 of	 the	 most	
efficient	supercomputers),	has	a	power	efficiency	of	7.031	GFlops/W.	Using	this	
efficiency,	 an	 exascale	 machine	 would	 draw	 142	 MW.	Whilst	 this	 is	 less	 than	
Fictision,	 it	 is	 still	 greater	 than	 the	 20	 MW	 target	 with	 a	 per	 flop	 energy-
efficiency	deficit	of	7x.	
	
Given	 sufficient	 financial	 resources,	 it	 would	 be	 feasible	 to	 manufacture	 the	
hardware	required	to	build	an	exascale	machine.	The	same	would	be	true	for	the	
cooling	 and	 space	 required	 to	 host	 such	 a	 machine,	 and	 for	 the	 electricity	
required	to	power	it.	What	is	less	clear	is	if	it	would	be	of	practical	use.	Current	
codes	 are	 unlikely	 to	 be	 able	 to	 exploit	 the	 full	width	 of	 the	machine,	 i.e.	 they	
would	not	be	able	to	scale	sufficiently	well	to	make	efficient	use	of	the	available	
compute	power.	 If	a	code	could	scale	 to	 the	whole	machine,	 it	would	 likely	see	
hardware	 and	 software	 faults	 during	 each	 run.	 Unless	 fault	 tolerance	 was	
implemented,	 either	 by	 the	 programming	 model,	 program	 or	 algorithm,	 this	
would	likely	result	in	a	very	low	rate	of	successful	job	completion.	More	likely	is	
that	 such	 a	 machine	 would	 be	 a	 capacity	 machine	 rather	 than	 a	 capability	

																																																								
1	We	assume	the	CPU	runs	fixed	at	its	maximum	speed	of	2.7	GHz	and	executes	8	instructions	per	
cycle.	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 7	

machine,	 running	 a	 selection	 of	 jobs	 of	 different	 sizes,	 much	 like	 current	
machines	-	except	that	no	job	would	be	run	using	all	available	resources.	
	

4 Emergent	technologies	
	
In	this	section,	we	consider	some	emerging	technologies	and	consider	how	they	
will	help	to	overcome	some	of	the	 limitations	of	current	technology,	which	will	
be	required	to	reach	a	practical	and	useable	exascale	system.	
	

4.1 Die	Stacked	Memory	
Die	 Stacked	 Memory	 (DSM)	 is	 the	 process	 whereby	 Dynamic	 Random	 Access	
Memory	(DRAM)	is	placed	as	close	as	possible	to	the	processing	elements	(PE)	in	
a	chip.	There	are	some	variations	in	technology:	one	where	the	DRAM	is	on	the	
same	die	as	the	PE	with	the	inter-connect	via	the	substrate;	and	another	where	
they	are	separate	wafers	packaged	together,	with	a	through-silicon	via	(TSV)	as	
the	 interconnect.	 The	 former	 gives	 a	 higher	 bandwidth	 and	 lower	 latency	 but	
requires	a	design	freeze	earlier	in	the	process,	as	the	whole	chip	must	be	laid	out	
as	a	single	part.	The	latter	allows	for	design	changes	to	a	single	 layer	but	has	a	
(comparatively)	 lower	 bandwidth	 and	 higher	 latency,	 as	 communication	 still	
occurs	as	if	between	chips	(as	it	technically	is),	although	with	an	improved	speed	
compared	to	that	of	current	PE	to	DRAM.	
	
The	 implication	 is	 that	 the	 latency	 seen	between	PE	 and	DRAM	decreases	 and	
moves	much	closer	to	that	of	PE	and	last-level	cache	(LLC).	The	latency	penalty	
for	a	data	or	instruction	miss	to	DRAM	on	either	a	read	or	write	is	much	lower,	
which	 implies	 PEs	 should	 have	 a	 lower	 stall	 time.	With	 a	 subsequently	 higher	
memory	 bandwidth,	 memory	 bound	 codes	 should	 perform	 better	 where	 the	
memory	restriction	is	to	 local	memory.	Any	off-chip	communication,	 i.e.	via	the	
PE	 interconnect,	 will	 be	 comparatively	 more	 costly.	 Should	 the	 ratio	 of	
computation	 to	 data	movement	 (with	 respect	 to	DRAM)	be	 suitable,	 it	may	be	
possible	to	avoid	the	on-die	cache	hierarchy	entirely	and	use	the	DRAM	as	a	flat	
memory	hierarchy.	This	may	offer	an	advantage	where	the	dataset	is	too	large	to	
hold	 in	 cache	 and	 the	 hardware	 pre-fetcher	 is	 ineffective	 with	 respect	 to	
cachelines.	
	

4.2 High	Bandwidth	Memory	
High	 bandwidth	 memory	 (JEDEC,	 2015)	 (HBM),	 is	 a	 memory	 interface	
specification	and	natural	consequence	of	DSM.	When	4th	generation	double	data	
rate	 memory	 (DDR4)	 is	 integrated	 into	 the	 package	 or	 die	 (via	 DSM)	 the	
additional	memory	bandwidth	can	be	exploited	to	reduce	the	 limitations	of	 the	
DRAM	bus.	
	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 8	

4.3 Hybrid	Memory	Cube	
Hybrid	 memory	 cube	 (Hybrid	 Memory	 Cube	 Consortium,	 2012)	 (HMC)	 is	 the	
competing	 interface	 to	 HBM	 from	 Intel	 which	 follows	 the	 same	 principles	 of	
using	fast	modern	DDR4	coupled	to	the	CPU	via	TSVs.	
	

4.4 System	on	Chip	processors	
In-package	heterogeneity	gives	rise	to	heterogeneous	architectures,	i.e.	different	
types	of	processing	element	such	as	GPU	cores,	CPU	cores	and	FPGA	fabric	being	
integrated	 into	 the	 same	 package,	 if	 not	 the	 same	 die.	 Current	 models	 for	
compute	 offload,	where	 certain	 computational	 kernels	 are	 passed	 to	 a	 PE	 that	
has	better	performance	for	the	kernel	than	the	CPU	core,	must	be	wary	about	the	
time	taken	to	transfer	data,	and	the	kernel,	to	and	from	the	PE.	Even	at	the	full	
speed	 of	 a	 3rd	 generation	 Peripheral	 Component	 Interconnect	 Express	 (PCIe)	
bus,	the	effect	is	non-negligible.	Bringing	these	elements	closer	to	the	CPU	cores	
allows	more	efficient	offload,	as	transfer	time	to	and	from	the	PE	is	reduced.	The	
disadvantage	 is	 that	 the	 package	must	 be	 larger	 in	 order	 to	 accommodate	 the	
extra	elements.	This	 leads	 to	either	a	smaller	area	available	 for	CPU	cores	or	a	
higher	 density,	 which	 may	 increase	 power	 consumption	 and	 heat	 generation.	
Furthermore,	 as	 the	 manufacturing	 process	 may	 be	 more	 complex	 to	
accommodate	 the	 increased	 chip	 complexity,	 the	 likely	 yield	 from	 production	
will	drop.	This	 could	 increase	costs	or	 result	 in	variability	between	chips,	with	
some	having	different	 performance	 than	others.	 The	 gamble	played	 is	 that	 the	
efficiency	 gained	 by	 using	 a	 PE	 better	 matched	 to	 the	 computational	 kernel	
negates	 the	 loss	 of	 the	 generalist	 CPU	 cores,	 and	 consequently	 the	 overall	
electrical	efficiency	is	better	than	a	chip	of	pure	CPU	cores.	
	
An	 exascale	 machine	 built	 using	 this	 technology	 would	 have	 a	 high	 potential	
computational	density	(flops/mm2),	but	would	be	able	to	realise	this	only	where	
both	the	algorithm	and	programming	model	were	able	make	efficient	use	of	the	
non-CPU	cores.	
	

4.5 Fault	tolerant	algorithms	
As	 the	 number	 of	 PEs	 increases	 -	 regardless	 of	 their	 type	 -	 the	 likelihood	 of	 a	
physical,	hardware	fault	occurring	in	a	machine	increases.	An	exascale	machine	
will	 see	 regular	 hardware	 faults,	 some	 of	 which	 can	 be	 corrected	 by	 the	
hardware	 itself	 (e.g.	 error	 correcting	 code	 (ECC)	 DRAM),	 and	 the	 rest,	 which	
cannot	 be	 corrected,	 will	 percolate	 up	 through	 the	 software	 stack	 and	 may	
become	 evident	 at	 the	 application	 layer.	 A	 small-scale	 fault,	 such	 as	 a	 non-
correctable	bit-flip	in	memory,	may	lead	to	a	bad	value	being	fed	to	a	PE	on	load.	
A	large	fault	may	be	one	in	which	a	PE	or	node	fails	and	powers	down.	The	part	
of	the	calculation	being	run	on	this	element	is	lost	and	the	work	must	be	re-done.		
	
Some	algorithms	may	 require	 restarting	 from	 the	most	 recent	 checkpoint;	 this	
may	 incur	 a	 significant	 time	 penalty	 if	 checkpoints	 are	widely	 spaced	 in	 time,	
which	 is	 not	 unreasonable	 if	 the	 checkpoint	 itself	 incurs	 a	 penalty	 to	 create.	
However,	 it	 is	possible	 for	some	algorithms	to	continue	and	gracefully	recover,	
perhaps	taking	longer	to	complete;	these	algorithms	are	collectively	called	fault	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 9	

tolerant	 (FT)	algorithms.	Any	machine	built	 at	 the	exascale	 level	will	 require	a	
degree	of	FT	in	the	programming	model,	runtime	or	algorithm	to	cope	with	the	
unavoidable	faults	which	will	occur	due	to	the	scale	of	the	hardware.	
	

4.6 Scalable	programming	models	
It	 is	 highly	 unlikely	 that	 any	 of	 the	 programming	 models	 used	 on	 current	
petascale	machines	will	not	 run	on	exascale	machines.	The	difficulty	will	 come	
from	ensuring	they	make	efficient	use	of	the	available	hardware.	Shared	memory	
models	 such	 as	 OpenMP	 and	 Pthreads	 will	 have	 to	 be	 able	 to	 handle	 on-die	
heterogeneity.	 OpenMP	 and	 OpenACC	 currently	 have	 a	 model	 for	 this	 type	 of	
working	 which	 may	 extend	 to	 meet	 the	 hardware.	 There	 is	 some	 element	 of	
chicken-and-egg	 here,	 where	 the	 model’s	 extension	 will	 adapt	 to	 meet	 the	
hardware	as	it	becomes	available.	Distributed	memory	approaches,	most	notably	
the	 message	 passing	 interface	 (MPI),	 will	 have	 to	 be	 able	 to	 scale	 to	 O(106)	
nodes,	assuming	that	any	intra-node	threading	is	handled	by	another	model,	or	
possibly	 O(107)	 processes	 if	 a	 code	 is	 written	 using	 purely	 MPI.	 Partitioned	
Global	Address	Space	(PGAS)	implementations	such	as	Chapel,	Unified	Parallel	C	
(UPC),	 GASPI	 and	 Co-array	 Fortran	 (CAF)	 will	 face	 the	 same	 limitations.	 The	
advantage	 they	 may	 have	 over	 the	 purely	 distributed	 memory	 models	 is	 that	
they	 already	 include	 a	 notion	 of	 memory	 affinity,	 which	 may	 be	 adapted	 or	
extended	 to	 be	 aware	 of	 the	 difference	 between	 on-die	 and	 off-die/off-node	
memory.	
	

5 What	 would	 a	 system	 look	 like	 if	 it	 used	 all	 such	
technologies?	

	
Based	on	the	technologies	above,	an	exascale	machine	could	look	quite	different	
to	current	architectures.	The	bottlenecks	which	dominate	the	system	will	be	the	
energy	required	and	latency	incurred	in	moving	data	between	nodes.	Nodes	will	
be	a	collection	of	heterogeneous	processors:	some	general	purpose,	like	today’s	
CPUs,	perhaps	of	varying	sizes;	some	more	specialised	(such	as	SIMD	units)	like	
todays	 GPGPUs;	 and	 some	 configurable	 cores	 akin	 to	 FPGA	 fabrics.	 Closely	
coupled	to	this	will	be	very	high	bandwidth,	 low	latency	DRAM	which	acts	as	a	
memory	for	data	storage	via	the	normal	cache	mechanism	and	a	buffer	for	I/O.	
Configuration	 of	 this	may	 be	 dynamic	 and	 flexible,	 allowing	 a	 runtime	 to	 best	
manage	the	resource.	
	
The	 programming	 models	 will	 be	 more	 complex.	 In	 order	 to	 manage	 such	 a	
diverse	 set	 of	 processors	 available	 on	 each	 node,	 smart	 runtime	 systems	 will	
offload	the	computational	kernels	to	the	most	suitable	available	processor.	They	
may	manage	scheduling	of	such	kernels	either	automatically,	or	with	some	level	
of	direction	from	the	user.	The	choice	will	 largely	depend	on	which	metrics	the	
user	ranks	most	highly:	energy	efficiency,	time	to	solution,	peak	power,	or	best	
utilisation	of	nodes.	
	

D2.1	–	Initial	Report	on	Exascale	Technology	State-of-the-Art	 10	

6 Conclusion	and	Future	Work	
This	 deliverable	 has	 highlighted	 some	 of	 the	 currently	 emerging	 technologies	
which	 will	 go	 some	way	 to	 delivering	 a	 feasible,	 usable	 and	 efficient	 exascale	
machine	 in	 the	 next	 10	 to	 15	 year	 timescale.	 	 The	 exact	 construction,	 with	
respect	to	hardware,	software,	programming	model	and	algorithms	is	likely	to	be	
an	evolution	of	that	used	in	current	systems	with	different	bottlenecks,	and	thus	
different	targets	for	optimisation	at	each	level.		
	
	
	

7 Bibliography	
ARCHER.	 (2016,	 May	 2).	 ARCHER	 hardware	 guide.	 Retrieved	 from	 ARCHER	

website:	http://www.archer.ac.uk/about-archer/hardware/	
Hybrid	 Memory	 Cube	 Consortium.	 (2012).	 Hybrid	 Memory	 Cube	 Specification	

1.0.	
JEDEC.	(2015,	Novermber	1).	HIGH	BANDWIDTH	MEMORY	(HBM)	DRAM.	
	
	
	
	
	

