Projectsite: www.mobilegrids.org

D4.4.3

Report on the d Dgrimﬂ

Implementation of the
Application Support
Services Layer

Version 1.0

WP WP4.4 Grid Application
Services Layer

Dissemination Level: Public
Lead Editor: Giuseppe Laria, CRMPA
15/02/07

Status: Approved by QM

SIXTH FRAMEWORK PROGRAMME
PRIORITY IST-2002-2.3.1.18

BUE

Information Society

Grid for complex problem solving
Proposal/Contract no.: 004293

Support

D4.43,1.0

This is a public deliverable that is provided to the community under the license Attribution-NoDerivs 2.5
defined by creative commons http://www.creativecommons.org

This license allows you to
® to copy, distribute, display, and perform the work
¢ to make commercial use of the work

Under the following conditions:

the IST-Akogrimo project and has been partially funded by the European Commission

@ Attribution. You must attribute the work by indicating that this work originated from
under contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build upon this work without
explicit permission of the consortium

e For any reuse or distribution, you must make clear to others the license terms of this work.
* Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions
a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined
below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,
musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a
Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image
("synching") will be considered a Derivative Work for the purpose of this License.

"Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

"Original Author' means the individual or entity who created the Work.

"Work" means the copyrightable work of authorship offered under the terms of this License.

"You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a
previous violation.

mo Ao

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the

Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio
transmission the Work including as incorporated in Collective Works.
c. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a
performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g.
webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music
rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover
version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the
equivalent in other jurisdictions).

© Akogrimo consortium members page 2 of 100

D4.43,1.0

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives the
exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public
digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright
Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to
make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to
make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License,
and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work
You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work
that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the
Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly
display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the
Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this
License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the
Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep intact
all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties
(e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the
Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the
copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided,
however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit
appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer. UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES
OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE
LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive
any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions
that may appear in any communication from You. This License may not be modified without the mutual written agreement of the
Licensor and You.

© Akogrimo consortium members page 3 of 100

D4.43,1.0

Context

Activity 4 Detailed Architecture, Design & Implementation

WP4.4 Grid Application Support Services Layer

Dependencies | This deliverable uses specifically the input of the deliverables D4.4.2,
D4.4.1.

Contributors:

Contributors (in alghabetical Order): Reviewers:

ATOS: Section 3.2 Fredrik Solsvick
CCLRC: section 3.1, 3.3, 3.5 Nuno Inacio
CRMPA: section 1, section 2, 3.1, 3.2,3.5, Executive | Antonis Litke
Summary

DATAMAT: section 3.3
TID: section 3.2, 3.3
USTUTT: section 3.4

Version Date Authors Sections Affected

0.1 11/12/06 CRMPA Template

0.2 22/12/06 All Section 3

0.3 12/01/07 CRMPA Introduction, Section 2

0.4 19/01/07 Al Section 3 update

0.5 26/01/07 CRMPA, CCLRC Section 3.5 and Executive
Summary

0.9 31/01/07 CRMPA Editing of final version for internal
review

1.0 14/02/07 Al Revision applied

© Akogrimo consortium members

page 4 of 100

D4.43,1.0

Table of Contents

TADLE Of CONLENLS.vuiiiiiiiiiiiiiii bbb bns 5
LSt Of FIGULES oottt 7
LSt Of TADLES .ot s 9
ADDICVIATIONS ...ttt bbb 10
EXECULIVE SUMIMALY ...ttt sttt 12
1o INEOAUCHON coueiiiciit bbbt 13
1.1, Implementation SCOPE ...ccviiimiiiiiiiiiiiciirie s 13
1.2. DOCUMENT SEIUCLULE ..ottt 14

2. PrototyPe OVEIVIEW ...cviuiuiuieiiitititcicieietets s b e b asaeas 15
2.1. Prototype Software COMPONENLSc.cvvuiuiuirriieiiiiiiieiiiiiieiessieeseisissese s sesssssenens 15
2.2, Overview of available featuresccccvviiiiiiiiiiiic s 17
2.2.1. BVO AdMINISTIAION c.uveieieieieiiicicicicieicieieieetet s 18
2.2.2. OPVO CLEatION....cuiiiiiiciiiii s 21
2.2.3. OPVO USECiiiiiiiitiiit s 24

3. Final prototype GASS SEIVICESccviiiiiiiiiiiiiiiiieiiie et snans 27
3.1, VO management SUDSYSTEMccccciuiiiiiiiiiiiiiiniiininiiiiicccccieeeeiesee e 28
3.1.1. BV O MaNager......ocuiiiiiiiiiiiiiicii st 28
3.1.2. OPVO MANAGET ..ot 29
3.1.3. USEE AENL ottt 31
3.1.4. Service AZent FaCtOry. ..o 36
3.1.5. Participant Re@IStIYcoviviiiiiiiiiiicii e 39
3.1.6. OPVO BIOKET ..ottt 48

320 SLA High Level ... 51
3.2.1. SLLACACCESS e 51
3.2.2. SLA-TTANSIATOL ..ttt 53
3.2.3. Contract/ Template-REPOSITOLY c...ucuuiuivreereiniiiirieeieieiiieieseiseiseie e essessesees 55
3.2.4. SLA NEZOTALOL ..ottt 60

3.3, BP @NaCMENtu i 63
3.3.1. WOILKFIOW REGISTIY ..t 63
3.3.2. Enactment ENGINEccciiiiiiiiiiiiiii e 67
3.3.3. WOLKFIOW Managerccciiueiriiiiiiiiiiieiiieeiiceiessiciesesisesessssssse s ssssssssesessans 71
3.3.4. Monitoring DaemMOn......c.cciiiiiiicii e 72
3.3.5. Sip Broker WS-INterfaceccvvviiiiiiiiiiiiiiiccccc e 74

34, Grid Service DISCOVELY SEIVICE. ..c.ciuiiuiuiiiiiririririrrir et 79

© Akogrimo consortium members page 5 of 100

D4.43,1.0

3.4.2. FUNCHONALLY .. 79

3.5, Secufity INFIASTIUCTULC. ..c.ciuiuieieiiieciciciciiettetet st 85
3.5.1. Multi dOmMAIN ANd SECULILY ..uvueieieieieieiieiiieieiereteteteteei ettt sese s es 85
3.5.2. Security INfrastructure DASICS ...c.euiurieiriririiiccciciciceieieieetetetetetet et eecaeienenes 88
3.5.3. FUNCHONAITIES. ..ot 89
3.5.4. Interactions between the COMPONENLS......cvviuiviiiiiiiiiiiiieic e 93
3.5.5. Involved techNOlOGIEScccvuiuiiiiiiiiiici e 96

4. CONCIUSIONS ..ot 97
RELEIEIICES oottt ettt 98
AL Participant Profile ... 99
A2 VO OKEN it 99

© Akogrimo consortium members page 6 of 100

D4.43,1.0

List of Figures

Figure 1 —Interactions between the software COMPONENTS......cvviviririiriiiiiiiiiii s 17
Figure 2 — Subscription to the BVO ... 19
Figure 3 —SP publiShes @ SEIVICEcciuiiiiiiiiiiiiiciiccic s 20
Figure 4 - OpVO INIHAL SELUP...c.ciiiiimiiiiiiiiiiiiie ettt 21
Figure 5 - Search and NEZOtAtION STEP ...cuiuiiiiriiiiiiiiiiiicc e 22
Figure 6 - WE Deployment.......ccciiiiiiiiiiiiiiissssssssssssssssssssssssssenes 23
Figure 7 - FINal SELUP....ccoviiiiiiiiiiiiiciiiccc s 24
Figure 8 — A mobile user uses the OPVO ... 25
Figure 9 - BVO Manager Interaction SEQUENCEc.ciiiiiiiiciiininiiiciciisiisiescssssssse s sessssssnas 29
Figure 10 - OpVO Manager INteraction SEQUEIICEciuiuimiuimimimimirimirisiritisessssisisssssssssssssssssssssssenes 31
Figure 11 - UA INtEractions SEQUEIICEc.cuvuiemiiiiieietiiiieictsisisesesssisssesessssssse s sessssssssessssssssesessssssns 33
Figure 12 - FactorySA INteraCtions SEQUENCEc.ouviiiiuieisiiiiiiiieieieieieieteresetesesese et sssssssssssesenes 39
Figure 13 - Data structures related to Participant RegIStryccocecieiiiiiiiiiniiiniiisiriccccecennes 47
Figure 14 - OpVOBroker floWChart........cccviviiiiiiiiiiiiiiiiiiccc s 48
Figure 15 - OpVOBroker interactions SEQUENCE......c.cuvuiuivivririiiieriiiiiereisieietessiscee e esssssssesesssssnns 50
Figure 16 — SLLA Access INteractions SEQUEIICE.viiiuiuiuiriiiiiieieiereierereieteiesesesene e sessessssssssssssssesesenes 52
Figure 17 — SLA Translator INteractions SEQUENCE.cuiuiuiuiuiuiuimerereiereieieieieteteieiesesesstsssssssssesssesenes 55
Figure 18 - SLA Contract and Template REPOSItOLYccviviiiuiiiiiiniiiiiiiiicicisiceesceenecenes 56
Figure 19 - SLA Document Read Control FIOW ... 58
Figure 20 - SLA Document Write Control FIOW ..o 59
Figure 21 —SLA Negotiator INTEIACTIONS ...viviriuiriircriisiicscietsiscsesssssess s ssse s ssssssns 62
Figure 22 - SLA-Negotiator sequence diagram representing the handling errors case.................... 03
Figure 23: Workflow Registry INtErfacescoouvviiiiiiiiiiniiiiiiiiiiiiccicisicce s 066
Figure 24 — Enactment Engine interactions SEQUENCE.......cucuiiriiiuiiiiiiniiiercsiiie e 70
Figure 25 — Enactment Engine interactions SEQUENCE.......cucuiiririiiiiiiiiniiiieciiie e 70
Figure 26 — MD INteractions SEQUENCEceuiuriiiiiiiiininiiiiiiscisscsescsssesesesesesssss s sssssssssenes 73
Figure 27 - Enactment Engine — Sip Broker WS-Interface sequence diagram.........cccccevvvecuevvinee 77
Figure 28 - EMS Sip Broker WS-Interface Sequence Diagram........cccccovvvviiivininvicnnicncnen, 78
Figure 29 - GrSDS Design OVEIVIEW......cvviiiiiiiiiiiciiiiciiicsis s ssssssns 79
Figure 30 - GrSDS Proxy Error Handlingccccceeiviiiiiiiniiiiiiiiicescnccensccenescenens 83
Figure 31 - ADONIS Business Management TOOIKItcoviiueiriniiiiiiniiciiiicicncecceecens 34
Figure 32 BVO defINItioN ...cciiiiiiiiiiiciiiiien sttt 86
Figure 33 BVO described as an Administrative Domain.........ccccceeeeiiiiiiinninnccccceenes 86
Figure 34 OpVO domain CLEAtION. c....viuiuiiiiiiciicteiccitei e sans 87
Figure 35 The end user accesses the OpVO ... 88

© Akogrimo consortium members page 7 of 100

D4.43,1.0

Figure 306 - ENd USEr AA ..ottt 94
Figure 37 — AA between services inside the VO ... 95
Figure 38 - BVO participant profile eXample ... 99
Figure 39 = VO TOKENS ...uviiiiiiiiiiciiic s 100

© Akogrimo consortium members page 8 of 100

D4.43,1.0

List of Tables

Table 1 — Prototype Software COMPONENLS. ...t 15
Table 2 - Roles and associated authofization rules..........cccviiiiviniiiiniiiniccecenee 18
Table 3 — Akogtrimo Unix SOftWare StaCKcccviiiiiriiciiiniiiiiniiccniicecceeee e 27
Table 4 - Akogrimo Windows Software Stack..........ccccciviiiiiiiiiicc, 27
Table 5 - BVO manager service Methods.......ccciiiiiiiiiciiiiiiiiiiiiiieeeee e 28
Table 6 — OpVO manager service MEthods ..o 30
Table 7 — User AGent MEthodsccuviiiiiiiiiiiiiiiiciiciccee e 32
Table 8 - Service Agent MEthOdSccciiiiiiiiiiiiii e 37
Table 9 - Application methods exposed by the SA of the ECG_DGccccccceuvivivninnnininininiine. 38
Table 10 - Participant Info service methodscccccvviiiiiniiiininiiiee 40
Table 11 — VOInfo service Methods.......ccviiiiiiiiiiiiiiiciicc e 43
Table 12 — Participant Name Service methods........ccviiiiiiiiniiiiiiccc, 45
Table 13 — OpVOBroker Methods.......ccccuiiiiiiiniiiiiiiic e 49
Table 14 — SLA-Access service Methods ..o 51
Table 15 — SLA Translator service Methods ..o 53
Table 16 - SLA repository service Methods ..o 56
Table 17 — SLA-Negotiator Methodscciiiiiiiiiiiiiic s 60
Table 18: Workflow Registry Data StIUCTULE........cciuiviiviiiiiiiiiiciiriccicece e 64
Table 19 - WF Registry service Methodscccuiiiiiiiiiiiiiiiiiiccnicceceeeceesenssssennes 64
Table 20 — Enactment engine Methodscccceuviivirininininiiiiiiiccccccecee e 67
Table 21 - WF manager service Methods ..o 71
Table 22 - Monitoring Daemon service Methods.........cccviviiiiiniiiiiiciiicccenne 72
Table 23 - Sip Broketr WSRE SEIVICE ..c.ccuiiiiiiiiiiiiiciiicieiiiceiie s 74
Table 24 — Sip Broker Producer SErviCe.......ocooviiiiininiiniiiiiiiccccccccccee e 75
Table 25 — GSDS service MEthOdscccciiiiiiiiiiiiiiic s 79
Table 26 - GrSDS Search REqQUEST......ccoviuiiiiiiiiiiciciicccs e 81
Table 27 - GrSDS Search ReSPONSE....c.ccuiiiiiiiiiiiciiiiiiiiis s 81
Table 28 - IIS Web.config File ... 81
Table 29 - Involved Technologies of the GISDS Proxy ... 33
Table 30 - Involved Technologies of the Service RePOSItOLy......cccucviiviiiciiiviiciiiriiciiceeiccnne 34
Table 31 - VO authentiCation USE CASC......c.cuviiriiuimeriiiiieiiaisiicieisisiesessissesesesse s sessssssesenas 89
Table 32 - Intra VO Authentication USE CASC.......cviviiiiiiiiiiiiiicieiicci e 90
Table 33 - VO authofization USE CASEc.cvvviuiviiiiiieciiiiiiiiicici s 91
Table 34 - Intra VO AUthOfiZation USE CASEc.ceuviiieiiciiiiiiciiiriieieisiciesessisicsesse s ssssesenas 92

© Akogrimo consortium members page 9 of 100

D4.43,1.0

Abbreviations

Akogrimo Access To Knowledge through the Grid in a Mobile World
ASS Application Specific Services

BVO Base Virtual Organization

BVOm BVO Manager

CM Context Manager

ECG Electrocardiogram

ECG_DA Electrocardiogram Data Analyzer
ECG_DV Electrocardiogram Data Visualizer
ECG_DG Electrocardiogram Data Generator
EMS Execution Management Service
EEngine Enactment Engine (also known as WorkFlow Engine)
EPR End Point Reference

GASS Grid Application Support Services
GrSDS Grid Service Discovery Service
GT4 Globus Toolkit 4

GW Gateway

HE Hosting Environment

MD Monitoring Daemon

MDL Medical Data Logger

OpVvVO Operative Virtual Organization
OpVOBr OpVO Broker

OpVOm OpVO Manager

PR Participant Registry

SA Service Agent

SA_ECG_DA Service Agent ECG data analyzer
SA_ECG_DG Service Agent ECG data generator

© Akogrimo consortium members

page 10 of 100

D4.43,1.0

SA_ECG_DV Service Agent ECG data visualizer
SA_MDL Medical data logger

SDFS Service Description Fact Sheet
SIP Session Initiation Protocol

SIP_Br WS-Int

SIP Broker WS-Interface

SLA Service Level Agreement
SLA A SLLA Access

SLA_N SLA Negotiator

SLA N F SLA Negotiator Factory
SLA_R SLA Repository

SIA' T SLA Translator

UA User Agent

UAF User Agent Factory

WF Workflow

WF_R Workflow Registry

WM Workflow Manager

WM_F Workflow Manager Factory
WS Web Service

WSDL Web Service Description Language

© Akogrimo consortium members

page 11 of 100

D4.43,1.0

Executive Summary

This document assumes a general understanding of Akogrimo concepts and a high level
knowledge of Grid Application Support Service layer architecture (see deliverables [1] “The
Mobile Grid Reference Architecture” and for more details [2] “Architecture of Application
Support Service Layer”).

It describes the final release of the Akogrimo Grid Application Support Service (GASS)
prototype. All the implemented components are described including interfaces and involved
technologies.

Starting from the results carried out by the first prototype implementation, the WP4.4
participants have updated the existing implementation in order to provide the functionalities that
were not implemented during the first project cycle, although included in the GASS architecture.

In particular, the final implementation mainly covers the OpVO creation process that in the first
prototype has been performed through an offline setup that required manual pre-configuration
of the execution environment.

In order to achieve a dynamic creation process the following additional components have been
implemented:

OpVO Broker
SLA Negotiator
* SA Factory

Furthermore the existing implementations have been updated in order to support the complete
process and interactions undetlying the OpVO creation. Finally the security infrastructure
allowing service calls authentication and authorization has been implemented as well.

The deliverable is organized as follows:

* Section 1: provides an overall introduction to the document describing its scope and goal, as
well as a description of the prototype goal.

Section 2: provides an overview of the prototype, listing the implemented components.
Moreover the main high level features of this prototype are described explaining how the
listed components interact to provide those features.

Section 3: provides a detailed description of each implemented component, including
interface definition and interactions with other modules. Details about involved technologies
are provided as well.

* Section 4: provides final conclusions and future plans about the use of the prototype in order
to run the test beds

© Akogrimo consortium members page 12 of 100

D4.43,1.0

1. Introduction

This document is the updated version of the first implementation report related to the Grid
Application Support Service (GASS) layer of Akogrimo project.

It is assumed that the reader is already familiar with the Akogrimo concepts and has a high level.
knowledge of GASS layer architecture (see [1] and for more details [2]).

The GASS layer represents the “front-end” of the Akogrimo platform. In fact, it provides high
level services that allow the application to have an entry point to leverage on the Akogrimo
platform capabilities. In particular, this layer provides two main features:

* Management of the Base VO.

* Creation and management of the Operative VO.

The design has split the architecture in four main subsystems:

* VO management: includes services to manage Base VO and Operative VO.

+ SLA High Level": it provides services to manage negotiation and contract definition during
the OpVO creation phase

* BP enactment: it provides services to manage the instantiation, execution and monitoring of a
workflow template.

* Grid Service Discovery Service (GrSDS): it is the “yellow pages” of the BVO and it can be
searched for services published by a Service Provider participating in the BVO

A security infrastructure across the different subsystems has been designed and the
implementation is going to be finalized according with the features described in section 3.5.

The details about the available components and related functionalities are provided in section 3.

1.1. Implementation Scope

The final prototype of the GASS layer (hereafter “Prototype”) implements the architecture
designed in [2] and, integrated with the prototypes implemented in the other Work Packages, will
be the basic infrastructure running the test beds. Thus the goal of this prototype is to support
propetly the execution of the test bed scenario, during the validation phase of Akogrimo project,
in particular, providing the following capabilities:

* Populating and administrating the Base VO
* Searching and negotiating services to be invoked during the execution of a workflow
* Creating and populating an OpVO. It includes:

* Creating instances of OpVO management and monitoring services

* Creating and running dedicated work flow instances

* Assuring invocations from the work flow towards the services negotiated with the
Service Providers

" The SLA management is split in two different parts: the SLA High Level (part of GASS layer) and SLA
Enforcement (part of Grid Infrastructure Service Layer). The SLA High Level, mainly addresses the negotiation
phase and the management of SLA templates and contracts. Once a service is being used, parts of the SLA

Management have to supervise the execution phase, to ensure that the service is running as agreed (This is the role of
SLA Enforcement).

© Akogrimo consortium members page 13 of 100

D4.43,1.0

Use of the OpVO that includes:
* Running and monitoring the work flow instance execution
* Adapting the work flow execution in accordance with the context changes

* Managing interactions between the user invoking the OpVO (i.e. work flow) and
the OpVO (ie. work flow) invoking services in the Service Provider
administrative domain

Preventing unauthorized access to BVO and OpVO environment

1.2. Document structure

After this introductive section explaining the scope and the goal of the Prototype, this report is
organized as follows:

Section 2 (overview): it provides an overall overview of the behaviour of the Prototype
describing how each capability listed in section 1.1 is made available through the interaction
between the components of Akogrimo infrastructure.

© Section 3 (GASS components details). reports technical details about the implementation of each
component developed within the frame of GASS layer.

Section 4 (conclusions): summarizes the implementation results and provides suggestions for
future implementations tasks to be performed beyond the Akogrimo project lifecycle.

© Akogrimo consortium members page 14 of 100

2.
2.1.

D4.43,1.0

Prototype Overview

Prototype Software Components

Table 1 summarizes all the software components implemented in the final prototype and for each
component a brief description about the provided functionalities has been included. In order to
have a comprehensive understanding refer to section 3 that provides a detailed description of
components functionalities, technical choices and components interactions.

Table 1 - Prototype Software Components

Subsystem

VO

Management

Software component

User Agent Factory — UAF

Description

1t allows to create dynamically UA for each
new participant of the B17O

Service Agent Factory - SAF

It allows to create dynamically the SA that
will act on bebalf of external services inside

the Op17O

Operative VO Broker Factory —
OpVOBs_F

It is in charge of managing the process to
search and negotiate for services to be
invoked by the Opl”O

Base VO Manager — BVOm

The Base V'O Manager is the key part of
the policy and authorization enforcement at
the top level of the Base 170

Operative VO Manager Factory —
OpVOm_F

The Operative 17O Manager takes the role
of the VO manager in terms of
anthentication and authorisation of service
calls to the V'O during the execution of
application specific services

Participant Registry — PR

The Participant Registry service is actnally
constituted by three services that provide
different kind of information on the
BL'O/OpV'O and their participants

SLA
Negotiation

SLA Negotiator Factory — SLA_N_F

ST.A-Negotiator ~ Service represents the
service that has to be contacted in order to
lead the service negotiation process in the SP
domain.

SLLA Access — SLA_A

This service provides — all necessary
Sfunctionalities that other components conld
require from the SLA document template
and contract.

© Akogrimo consortium members

page 15 of 100

D4.43,1.0

Subsystem Software component Description
|

SLA Translator Factory— SLA_T_F This service is the only responsible for
providing access to SLA documents (SL.A-
Template and S1.A-Contract) and get (or
set) information of them

SLA Repository — SLA_R The SL.A Template Repository allows
storing and retrieving of SL.A documents

Monitoring Daemon — MD The purpose of this service is to provide a
web service interface that the Context
Manager and SL.A Enforcement can use to
notify BP Enactment about context changes
or SLA violations

WTF Manager Factory — WM_F Its purpose is to transform workflow
templates into workflows that can be carried
out by the Enactment Engine; part of this
transformation includes service instantiation
and registration for context changes (with the
Context Manager) and S1.A violations

(with SL.A Enforcement).
BP Enactment

Enactment Engine — E_E’ The Enactment Engine is the component of
the Business Process Enactor in charge of
enacting specific BPEL processes submitted
by the Workflow Manager component.

SIP Broker WS-Interface This service does not represent a component
uself, but it aims to provide a WSRE service
interface to the Sip Broker component
available in the platform.

WF Registry - WR The Workflow Registry is the component in
charge of storing implementation files of
published workflows

The service discovery server is divided into
G1SDS proxy — GSDS_P o parts — the service réyjo;z’z‘.o(y ﬂl’ld. the
service discovery proxy. The service repository
GrSDS zs principally replaceable, whereas the proxy
stays the same. This way the proxy hides the
actual service registry implementation from
the search clients

Service Registry — S_R

2 Also known as Workflow Engine

© Akogrimo consortium members page 16 of 100

D4.4.3,1.0

Figure 1 shows the static® relations between the internal components of WP4.4. It includes
interactions with components external to the WP as well. More in detail:

* The dotted lines in the figure show an interaction with a component developed in another
Work Package (the belonging WP is indicated below the service icon)

* The continuous lines show an interaction with a component inside the same Work Package
* The external box groups all subsystem belonging to the WP4.4

* The internal boxes group components belonging to the same subsystem (e.g. VO
management)

* The label associated to a line explains which communication protocol is used in that
interaction.

WP4.4

A4C Server ¢----71
WP4.2

EMS F==

5
BVO sohp m WP4.3
Manager
5
’ v‘ U m
OpVvO
Manage OAF

=== U
External |
user :
]
]

External

Services
OpVO
Broker
R — I
' -» GrSDS
1 C
1 SLA —
_ SLA N WP4.2
: s wn] e
v
SOAP | SLA
EMS p---=--- Translator SOAP » M
— >
WP4.3 SOAP WF WP4.2
LA/Contrad Repository
Repository

Figure 1 —Interactions between the software components

The above table and figure have the goal of providing the basic background in order to
understand the description of the Prototype behaviour provided in the next subsections. The SIP
Broker WS-Interface is not included in the above figure because it does not represents a
component itself (see section 3.3.5 for details).

2.2, Overview of available features

Section 1.1 introduced the main features provided and they can be grouped in three main
scenarios covered by the Prototype:

* BVO administration;

* OpVO creation;

3 Static because they do not show any kind of sequence but just that a interaction can occur between two
components. For details about those relations refer to section 2.2 and to the description of each component (section

3).

© Akogrimo consortium members page 17 of 100

D4.43,1.0

OpVO use

This section describes how the Prototype works (as a whole) in order to provide the features
necessary to address the above scenarios and which components are involved to carry out each
specific feature.

2.2.1. BVO Administration

The precondition to address any scenario is to set up a Base VO and configure it. In order to set
up a BVO it is necessary to install all the services listed in Table 1 according with the hosting
environment requirements described in section 3. All the hosting machines are assumed to be
part of the same administrative domain®

In order to populate the BVO (including new members and services) some configuration actions
have to be taken up and they are necessary to operate the following scenarios.

The functionalities associated to the configuration are executed by the administrator and they are:
* Definition of roles and rules valid inside the BVO

Subscription to BVO

Publishing services in the BVO
+ Storing WF templates inside the BVO

2.2.1.1. Definition of roles and rules

Table 2 summarizes the general authorization rules associated with the main role that a
participant can play within a BVO

Table 2 - Roles and associated authorization rules

Role Rule

Customer They are allowed to:

* Search for application

® Create OpVO that supports the selected application
* Use the created OpVO

Service Provider They are allowed to publish a service in the GrSDS providing the required
information
Administrator He/she is allowed to configure the BVO setvices

The component involved to provide this functionality is the Policy Manager. This is a service
developed in WP4.3. The Administrator will use the PM administrative interface to add new
policies that will describe the rules above. (see [5] for details about the Policy Manager).

In this particular case, the rules are related to the authorization process and the associated
authorization policies.

4 Apart from the negotiator hosting machine. Each SP will have a SLA Negotiator Factory installed in the private
administrative domain.

© Akogrimo consortium members page 18 of 100

D4.43,1.0

2.2.1.2. Subscription to the BVO

The following steps are necessary to subscribe a new BVO participant:
The subscriber is member of a trusted NP domain
Associating a role to the new subscriber
* Creating a UA instance associated to the new member
* Defining the profile of the new member
Updating the BVO Participant Registry with the new member and the associated profile
Updated the member profile in the home domain A4C

All the above operations are performed by the Administrator using the Participant Registry
administrative GUIL That means to create a new member in the PR and to store the associated
profile (see Annex A.1 for details about the content of the member profile).

If the subscription is successful the administrator of the home domain will be asked for updating
the member profile in his home domain (see deliverable D4.2.3 for details [3])

Figure 2 describes the subscription process and a possible deployment of the involved services:

The Administrator uses the Administrative GUI to add BVO participants and to associate
them User Agent and profile

* The Administrative GUI updates the PR on the basis of the actions required by the
administrator

Both Administrative machine and PR Hosting machine are hosted in the same administrative
domain (hereafter BVO domain).

1 occt'ﬂ'll_:":'_ne"'h_ 2 wineb senricen
O Adrministrative — | PR @
G SOAP

Administrator

Administrator maching PR Hosting machine

Figure 2 — Subscription to the BVO

2.2.1.3. Publishing services in the BVO

A member subscribed as Service Provider (SP) can publish the services he is able to provide. In
order to do that the SP has to invoke the GrSDS providing all the required information in the
publication process.

It is possible to do that in two different ways:
1. By communicating offline to the BVO domain Administrator the services to be published

2. By using a software client running in the SP domain to publish directly the information in
the GrSDS

The first case is performed by the BVO domain administrator using an administrative GUIL.

© Akogrimo consortium members page 19 of 100

D4.43,1.0

- -
/ - Node3 \

———» SOAP 2.2
D SP_ \ / Node4 PR \
. A/ e =" ‘
o oWl
2 2.3 PM

-—

/
/ SOAP

~

b Jp—
~N

|
|
s I BVO A — |
Y Nodet | Domain Node?
Service Provider P / ! /
A
UA SP ' o
21 |
— — Diamieri
—
~ INN
7 Home \
Domain Mc \
WP4.2 '

Figure 3 —SP publishes a service

The most interesting case is the second one that implies interactions between different domains
and the above Figure 3 sketches the behaviour of the system:

1. A member subscribed as Service Provider invokes his UA to publish a service

2. Before performing the operation the UA asks the BVO Manager (BVOm) for
authenticating and authorizing the request. The BVOm:

2.1. Checks the identity’ with the A4C of the SP home domain®

2.2. Retrieves the role associated to the identity from the PR
2.3. Retrieves the policy associated to the role and takes a decision
3. If the authentication and authorization are successful, the UA invokes the publication on

the GtSDS on behalf of the Service Providetr.

2.2.1.4. Storing WF templates

The WF Repository of the Base VO has to be populated with the WF templates associated to the
available applications (e.g. eHealth, eLearning, DHCM...).

The BVO Administrator does that using a dedicated client that allows storing the template and
the associated description files that allow searching for services to be orchestrated in the specific
template and to deploy the WF described by the template.

5 See deliverable [1] for details about Akogtimo identity model and management
¢ The SP home domain is the domain of the Network Provider where the SP is registered (see section 3.5.1 for
description of Akogrimo multidomain model)

© Akogrimo consortium members page 20 of 100

D4.43,1.0

2.2.2. OpVO creation

If a BVO is established, the members can start using it. In particular, the authorized members
(customers) can ask for creating an OpVO. The OpVO is the environment that will allow
executing and invoking the application. The creation of an OpVO implies the creation of a
dedicated domain (inside the BVO domain) that will be owned by the customer that has asked
for its creation, hereafter the OpVO domain.

The OpVO creation can be logically split in four phases that in any case are executed in sequence
and are part of a single process:

* Initial OpVO domain setup
Search and negotiation for services to be orchestrated
WF deployment

* Final setup

2.2.2.1. Initial OpVO domain setup

A BVO member registered as a customer can start the process that ends with the creation of an
OpVO. Figure 4 describes the first phase of this process:

-~ Node3

Diameter 21/ 3.4 SOAP o g
\ PR
5 SP. \ / Node5 2.9 SOAP T
omain
*/—G BVO * sggp | @

A

No

OpVOBr_F

S%gp OpVOBr ¢

T
4

N
o

o C0 e - BVO
* : Domain '
|
= /
-
asc, \ T~ =
Home '
Domain

/

Figure 4 - OpVO initial setup
Figure 4 depicts the following behaviour:
1. A customer of the BVO invokes his UA to ask the creation of an OpVO

2. Before processing the request the UA asks the BVOm for authentication and authorization
of the requestor. The following steps 3.x are similar to the ones described in section 2.2.1.3
Figure 3

© Akogrimo consortium members page 21 of 100

D4.43,1.0

The UA processes the request invoking the BVOm that actually starts the initial setup
creating an instance of:

3.1. OpVOm invoking the OpVOm_F
3.2. OpVOBr invoking the OpVOB:r_F
3.3. WM invoking the WM_F

3.4. Each new instance is 2 new member of the BVO then the BVOm invokes the PR
to update the list of participants

2.2.2.2. Search and negotiation

All services necessary to manage the OpVO have been created in the initial setup. The following
phase actually starts the interactions among the different services. In particular this phase focuses

on retrieving the WF template and searching the services to be negotiated in order to execute the
WE.

BVO __\ /

Domain Node2 \ SP Domain
WM /
Node5] 2.1: SOAP I ,
5 wvom /
BVOm = , Node A 3.3.2
3 WR [az2sosp SLA A
% Neg -
— OpVvOm ' 2.
2.2: SOAP
2: SOAP \
Node4 \

3: SOAP o
OpVOBr \
O
GrSDS 3.1t SOAP ’

N 7
S - d

— e

Figure 5 - Search and negotiation step

Figure 5 shows how the prototype components interact to find out the services to be
orchestrated by the workflow:

1.

This step follows step 3 of the initial OpVO setup phase: the BVOm invokes the new
OpVOm instance to create the OpVO passing references to all created instances

The core of the OpVO is the execution of a workflow, then the OpVOm invokes the WM
to instantiate the required application.

2.1. WM retrieve the associated WF definition (it includes description of services to be
invoked by the WF)

2.2. WE asks the OpVOm for providing the single services to be orchestrated

OpVOm forwards the service description to the OpVOBr asking for providing references
to available services of the specified type

© Akogrimo consortium members page 22 of 100

D4.43,1.0

3.1. OpVOBr searches the GrSDS’ to find out service provider potentially able to
provide the services

3.2. For each service the OpVOBr gets a list of potential SP and then invokes the
related SLA Negotiator service to establish a contract. In step 3.2.2 the negotiator
checks with the EMS the availability of resource to provide the services with the
required quality of service and returns a counter offer

3.3. OpVOBr checks the offer and invokes negotiator to accept or refuse it. In step
3.3.1, if the negotiation is successful, the negotiator reserves resources with the

EMS to make the service available at the required time and a final contract is
established.

At the end of step 3 a set of parameters to invoke the negotiated services are forwarded
back to the OpVOm

2.2.2.3. WF Deployment

After the second phase, all the information are available to pass from a template to a concrete
WF, then the third phase can be started that brings to the deployment of the WF.

BVO
Domain

3: SOAP Node2 Node6

WM 3.2: SOAP ol
E_E

3.11SOAP

WR

Node5

/ Node4
OpVOm]
1: SOAP]

SA_1

€

Node3

E=S e

dvOSs:¢

A n

<«

Figure 6 - WF Deployment

The OpVOm receives references to the negotiated services and additional information to invoke
them, then it invokes:

1. The SA Factory for instantiating a SA for each service to be orchestrated. Each SA instance
is configured on creation with the information to invoke the associated service

7 For details about how to perform this query refer to section 3.4

© Akogrimo consortium members page 23 of 100

D4.43,1.0

The PR to include the new SA instances that are now members of the BVO

The WM providing the references to the SA instances (they acts on behalf of the external
services inside the OpVO and they are invoked by the WF during the execution

3.1. The WM gets the WF description

3.2. The WM includes in this description the SA to be invoked during the execution
and deploy this WF in the E_E.

At the end of this phase, a WF can be invoked on the E_E.

2.2.2.4. Final Setup

After the WF deployment phase the environment is ready to execute the WF, some final setup
actions have to be performed in order to allow each service to interact propetly.

BVO
Domain Node2
Node7 Node C
Node5 WM 2 so"&g 21:SOAP
N MD
4 3 1: SQAP
N WR
OpVOm

Node1

L UA Cust

Figure 7 - Final Setup

The final setup consists in configuring the MD and the UA to allow, respectively, monitoring of
WF execution and following invocations to the WF from the customer:

1.

The WF Manager (WM) retrieves from the template the events (e.g. context changes,
faults,...) on which the work flow engine has to be notified

The WM configures the MD with this information

2.1. The MD subscribes to the CM to be notified about the specific context changes
information

Step from 3 to 5 are the final ones: the process is successful and all the information are
passed back until the component that has started the creation. The UA Cust configures
itself to invoke the new workflow deployed in the E_E.

2.2.3. OpVO Use

© Akogrimo consortium members page 24 of 100

D4.43,1.0

A4C

Figure 8 — A mobile user uses the OpVO

Diameter 21 S:AP Nodes
=
-
— c— -~ \ |
7 - - T e -~ ‘ —
/ 50AP
T / —23 - ' N
mobile User | SOAP
3 / ; S | —
2 -] ' DGt = ——
LT , — 3.x l SOAP
Nodel I ! SOAP I _
T I I B
1 SOAP | I l soap |
3y.zt=-=-=1 —_
e —— l !
! v =l |
— === |
\ : | I —1] 1 3xy
~ — s o e e ! — |
- \ — — ~L - |_ —— _lf -
Op\O G - SOAP |
= som T i
3y : SOAP SQQP_____! |
1 1 |
| | |
WP4.2 : i o
: i WP4.1 WP4.3

The meaning of each interaction® labelled with a sequence number is the following:

1. The mobile user (MU) has logged on the network and he/she has a reference to a list of UA.
The MU chooses an application User Agent (UA) from the set of agents available for
him/her. He/she will invoke the UA using the associate token and specifying the method and
parameters to be invoked.

2. The UA invokes the OPVOm to validate the token received by the MU as part of the SOAP
message headers

OpVOm asks the A4C server for authenticating the incoming request

If the authentication is successful, then the OpVOm calls the PR to retrieve the
role associated to the identity of the requestor

The OpVOm retrieves from the PM the authorization rights associated to the
role and takes an authorization decision.

3. If the validation is successful the UA will invoke the method on a specific service inside the
OpVO. The UA will have a list of possible services to be invoked and it will select the right
one on the basis of the request coming from the MU. In the specific case, it will invoke the
service exposed by the Enactment engine to start the workflow execution.

3x

9During the workflow execution the engine will invoke the SAs that will act

inside the OpVO on behalf of the external services involved in the workflow.

8 On each connection between two components the protocol used for communication is specified. Most of
interactions are established using SOAP over HTTP.

© Akogrimo consortium members

page 25 of 100

D4.43,1.0

Furthermore, it will invoke the SIP Broker WS-Interface, as well if a SIP call is
required.

1. The Service Agents (SAs) will forward the request to the EMS running in
different administrative environment (the one of the Service Provider
hosting the business service). In Figure 8, just one EMS is shown but
several EMS can be involved depending on the result of negotiation phase
(see section 2.2.2.2).

3.y. '"During the workflow execution the Monitoring Daemon (MD) will receive
notification from the Context Manager (CM) about a context change (or also
other kind of events). The Enactment Engine will be informed about these
changes through the WM and the workflow execution will be adapted
depending on the event.

This is the operational behaviour of the GASS layer prototype and it is similar to the behaviour
shown by the first prototype. As already explained for the first prototype, depending on the
workflow script deployed in the Enactment Engine the steps 3.x and 3.y will be different.

With respect to the first prototype, the main new available feature is the dynamic OpVO creation
phase. In fact, running an OpVO does not require for performing an offline setup as in the first
prototype. In this release, the OpVO creation has been automated in order to support an
execution close to a real test bed environment.

9 This specific numbering (3.x and after 3.x.y) has been used to remark that the sequence of invocations is not
known a priori but depend on the workflow design (they are linked to the Figure 8). Then several invocations can be
associated to 3.x and for each of them a related invocation 3.x.y will be sent to the EMS

10 Similar considerations can be done for 3.y numbering. Actually it is not known a priori how many and when
context changes will happen.

© Akogrimo consortium members page 26 of 100

D4.43,1.0

3.

This section outlines in detail the implemented components for the final prototype. The
components have been implemented using two major software stacks as agreed within Activity 4

Final prototype GASS services

and WP5.1. Table 3 and Table 4 list the components involved in each stack.

Table 3 — Akogrimo Unix software stack

‘ Unix/Java/WSRF Software Stack

Operating System

Linux Ubuntu

Programming language

Java running in runtime environment for Linux

Web Server Apache Tomcat 5
SOAP engine Axis
WS-Resource framework GT4 core

Table 4 - Akogrimo Windows Software Stack

Operating System

Windows/.NET/WSRF
Software Stack

MS Windows 2003 Server

Windows/ .NET/WSRF/
Enterprise stack

MS Windows 2003 Enterprise
Edition

Programming language

C# running on .NET Framework
1.1

C# running on .NET
Framework 1.1

Web Setver

I1S 6.0

1IS 6.0
Tomcat 5.0.28

SOAP engine Microsoft WSE 2.0 SP3 Microsoft WSE 2.0 SP3
WS-Resource framework WSRE.NET v2.1 WSRFE.NET v2.1

XML Database

Xindice 1.1b4

Finally in the following subsections for each software module will be described the interface.
Each method will be identified with the notation “E-X-Y-Z"":

E = External interface

X = Service/group name

Y = Subservice of X

© Akogrimo consortium members

page 27 of 100

D4.43,1.0

7. = Method name

For example the external method GetApplicationList belonging to BVO manager service that is
part of the VO management service group will be identified with: E-BVO-VO-
GetApplicationList.

3.1. VO management subsystem
3.1.1. BVO Manager

3.1.1.1. Brief Overview

The Base VO Manager is the key part of the policy and authorization enforcement at the top
level of the Base VO. The Manager interacts as a “mediator” between the participant’s registry,
A4C server and external requestors. All service requests to the VO pass through the manager and
are validated against the A4C server and participant’s registry. Depending on the reply from the
A4C server the Base VO manager either refuse or allow the request entering the Base VO. If
access is granted the Base VO Manager creates an OpVO Manager and starts the process to
create a new OpVO. Finally, the Participants registry is updated with the new participant’s
credentials. To aid this authorization in the BaseVO the service will incorporate the authorization
mechanism PERMIS [6].

3.1.1.2. Functionality

Table 5 provides a list of the available methods on each service. The methods have been grouped
in categories.

Table 5 - BVO manager service methods

BVO manager

Incoming request management

Description | This group includes methods to manage the incoming requests for joining to the
BVO.

E-BVO-VO-GetApplicationList

TokenAgentType|[] getApplicationList(String token, String participantld)

Description The BVO Manager receives a request for the list of applications that this
participant (identified by the participantID) is allowed to execute. The ‘token’
parameter is ignored for the time being. The return value is an array of pairs,
consisting of the End Point Reference (EPR) of a UA and the associated OpVO
token to invoke this UserAgent.

3.1.1.3. Interactions with other components

3.1.1.3.1. Main behaviour

The BVO manager interacts with (see also Figure 8):
* The User Agent

© Akogrimo consortium members page 28 of 100

D4.43,1.0

The A4C (component outside the WP4.4)
The PR

In the following Figure 9 the sequence diagram of these interactions is shown.

Participant Registry |

MT EYCManager i ParticipantMarmeService ParticipantInfo

'L 1 getApplicationList() :
[geLApplcatont 5 ,Q-.. 4 2 ; authentication¥erificationRequest(y |
! Ll

P i
30K

4 RetrieveParticipant:Epr()

- |
PR A [

5 : EndpointReferencelype
& ! RetrieyeTokenAgentList()

| IS SN SO
R R L L 7+ TokenagentType[] i H

Figure 9 - BVO Manager interaction sequence

The above sequence provides details about the interaction related to step 1 in Figure 8 (in
particular, steps 1, 1.1, 1.2)

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (e.g. for BVO Manager see section 3.1.1.2).

For information about A4C see [3].

3.1.1.3.2. Alternative behaviour

Unexpected and exception related behaviours of the BVO Manager can be caused by
Calls to a method using wrong data types.
Failure to provide correct authentication credentials when communicating with an interface.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. All errors are logged.

3.1.1.4. Involved technologies

The implementation of this component comprises of the logic necessary to interact with the A4C
server and participant registry (see Figure 9), using the return value in order to provide the
requestor with specific token allowing him to invoke the application. This component has been
implemented using the Akogtimo Unix/Java Softwatre Stack and PERMIS (see the official web
site for details [0]).

3.1.2. OpVO Manager

3.1.2.1. Brief Overview

The Operative VO Manager (OpVO Manager) takes the role of the VO manager in terms of
authentication and authorisation of service calls to the VO during the execution of application
specific services from the service provider domain within an Akogrimo application. Service

© Akogrimo consortium members page 29 of 100

D4.43,1.0

providers once they have been authenticated by the Base VO, receive a token that can be
validated by the OpVO manager during the lifetime of the Akogrimo application it is valid for.
At this stage the token is essentially a set of textual assertions.

At the moment the tokens are simple strings and the tokens are passed every time as a part of the
SOAP message headers. The User Agent is also authenticated using this process when calling the
OpVO to invoke an application execution process, and to check the credentials of users who are
part of the OpVO.

3.1.2.2. Functionality

Table 6 provides a list of the available methods on each service. The methods have been grouped
in categories.

Table 6 — OpVO manager service methods

OpVO manager

Validation of Invocation to the OpVO

Description | This group includes methods to manage the incoming requests that ask for a
service inside the OpVO.

E-OpVO-checkToken

Boolean [| checkToken (String token, String participantld)

Description The OpVO manager will receive a request from a User Agent to check if an
external user is authenticated and authorized to perform the required action in
the OpVO, this request is accompanied by the token of the UA that will certifies
if the UA is allowed to invoke the checkToken method on the OpVO Manager.
The message will be encoded using pre-shared keys, to avoid man in the middle
interception.

3.1.2.3. Interaction with other components

3.1.2.3.1. Main behaviour

The OpVO manager interacts with the UA. In Figure 10 the sequence diagram of this interaction
is shown.

© Akogrimo consortium members page 30 of 100

D4.43,1.0

MT (Y OpYO Manager

E 1 : method() . .
21 checkTokent

31 boolean

4 ; method return

Figure 10 - OpVO Manager interaction sequence
The above sequence provides details about the interaction related to step 3 in Figure 8

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (e.g. for OpVO Manager see section 3.1.2.2). In step 1,
method() is each method exposed by the UA.

After the step 3 in Figure 10 the UA will continue to execute the method (interacting with other
components not shown here, because out of the scope of this sequence) and at the end (step 4)
the result of method elaboration will be returned to the MT.

3.1.2.3.2. Alternative Behaviour

Unexpected and exception related behaviours of the OpVO Manager can be caused by
Calls to a method using wrong data types.

* Failure to call the correct OpVO instance.

* Authentication errors.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. The OpVO instance error sometimes is caused a failure to
destroy existing instances of OpVO’s that have been used. All errors are logged.

3.1.2.4. Involved technologies

The implementation of this component has dealt with logic to validate the token passed by the
UA (see Figure 10). This component has been implemented using the Akogrimo Unix/Java
stack.

3.1.3. User Agent

3.1.3.1. Brief Overview

This service belongs to VO Management topic and represents a user inside the OpVO. Moreover
it is in charge to manage secure accesses to the application. The User Agent provides a standard
front-end to be invoked from the outside. The OpVO user always will invoke the methods on
the UA that will generate, in an automate way, the invocation of the right service inside the

© Akogrimo consortium members page 31 of 100

D4.43,1.0

OpVO. The UA exposes a fixed interface but depending on the input parameters passed to the
invokeApplication method (see section 3.1.1.2), it is able to invoke a Web Service without
knowing it in advance. This capability introduces a relevant automation in the frame of
Akogrimo, because the platform provides a single generic service that allows invoking all the
services available inside the BVO and OpVO. This is particularly important in the OpVO
because it is not possible to know in advance the interfaces to invoke the workflow, and the UA
provides the features to avoid to implement ad hoc client for each different workflow, because it
exposes a fixed interface and create dynamically (at run time) the client to invoke the web service
exposed by the workflow.

The service is implemented as a WSRF service, in this way, it will possible to have a dedicate UA
instance for each different external user.

3.1.3.2. Functionality

3.1.3.2.1. Interfaces

Table 7 provides a list of the available methods on the UA. The methods have been grouped in
categories.

Table 7 — User Agent methods

UserAgent

Application methods

Description | This group includes methods called from outside the BVO/OpVO to ask for a
setvice inside the BVO/OpVO

E-UA-InvokeApplication

public arrayOfXmlElement InvokeApplication(string methodName, arrayOfXmlElement
inputMethodParameters)

Description This method allows starting the execution of a specific method on a service
inside the OpVO. The OpVOToken is passed in the SOAP message. This token
is extracted and elaborated by the SOAP message filter configured to guarantee
the access to the User Agent instance only by authenticated and authorized
requestors.

It returns the object with invocation results or null.

E-UA-GetMethodList

public string| | GetMethodList ()

Description This method allows to an external invoker to retrieve the list of services available
for the invocation inside the OpVO. For each service the returned list contains
the name of the public methods available to OpVO members.

Configuration methods

© Akogrimo consortium members page 32 of 100

D4.43,1.0

UserAgent

This group includes methods to be invoked in order to configure the User
Agent. For example it is necessary to provide the services available in the
OpVO, to set security policies...

Description

E-UA-Configuration

Public void Configuration(string serviceURL, string methodName, string]]
xmlInputParametersFormat)

Description This method allows configuring the UA with the information about the services
(endpoint and methods name) it can invoke in the OpVO.

3.1.3.3. Interaction with other components

3.1.3.3.1. Main behaviour

The UA interacts with (see also Figure 8):
The MT
The OpVO Manager

* The EEngine

Figure 11 shows the sequence diagram of these interactions:

MT (0f:Y opYo Manager EEngine

, 1 : GetMethodList) ._: 2+ checkToken() : :

,;:: ___________________ 3 : boolean X .

. 4 1 skring — . .
E 5 Invukﬂ.ﬁ.pplicatiun(L

— 6 checkToken() I

—]]
' ' '

' 7 boolean : '

: g : methad() :

i ' elaboration()
i S 0§ rasdl T

i 11 ; result ; ;

Figure 11 - UA interactions sequence

The above sequence provides details about the interaction related to step 4 in Figure 8

© Akogrimo consortium members page 33 of 100

D4.43,1.0

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service (In general, it is the section 3.x.y.2). In step 8, method() is a
method exposed by the workflow instance in the specific demonstration scenatio.

3.1.3.3.2. Alternative behaviour

The source of exceptional behaviour can be:

Invocation timeout
Authentication/Authorization failed
Undefined method

Dynamic proxy generation error

Incompatible type/number of parameters

Invocation timeout exception is generated when the UA invokes the destination service but it
doesn’t receive a response in a defined time interval. The connection with the destination service
is closed and an exception is forward to the requestor.

The other exceptions can be generated during the elaboration of the incoming request by the UA
as shown in the following flow chart.

© Akogrimo consortium members page 34 of 100

D4.43,1.0

SOAP Message Filter

v

Extract SAML
ID Token

v

Invoke
BVOManager

is a wvalid

method?

No

“Undefined method”’
exception

End

v

)) “Authentication/Autho
Forward request to UA is a Vaahd e failed” i
token: exception
A 4
Get invoked method User Agent

Retrieve service endpoint

v

Download WSDL

download ok?

Generate dynamic proxy

“Proxy Generation”

Request elaboration

exception
Compile proxy End
Yes
Yes
Proxy Generation End
exception
No
v

Check type and number off
parameters

Parameters
errors?

“Incompatible type/number
of parameters” exception

End

© Akogrimo consortium members

page 35 of 100

D4.43,1.0

3.1.3.4. Involved technologies

The implementation of this component has dealt with the logic to generate, at run time, starting
from 2 WSDL document, the proxy'' code that will allow invoking the Web Service associated to
the WSDL document (the WSDL document is retrieved at run time depending on the input
parameters). This component has been implemented using the Windows/.NET/WSRF software
stack.

The service is implemented using Web Service technology and in particular it will work with
SOAP over HTTP. Furthermore it is able to elaborate the SOAP messages interacting with the
SOAP pipeline in order to extract the VOToken from the related SOAP headers.

3.1.4. Service Agent Factory

3.1.4.1. Brief Overview

This service belongs to VO Management topic and represents a service inside the OpVO.
Moreover, it is in charge of creating at runtime a Service Agent service (creation and deploy of a
simple web service) used as gateway between OpVO domain and SP domain. Furthermore it
creates service agent EPR and set information on created service agents.

At this stage the service is implemented as a simple WS.

3.1.4.2. Functionality

The Service Agent Factory is a component used to create in a dynamic way service agent service
inside the OpVO domain. This component is invoked (Createlnstance method) by
OpVOManager and performs the following actions:

1. create any service someone ask it
a. create virtual directory on IIS to deploy created WS
b. create physical directory on the file system (actually only the same where is
deployed FactorySAService service), if not exists
c. create all needed code files describing WS to deploy. To create the main WS file
(nameservice.asmx.cs) is used information contained in a config file (ServiceConfig)
passed by who ask the service creation.
d. compile created code
e. Runtime service aggregating (specific WSRF.NET task)
2. create resource to associate to the service
a. uses information (EMS url and Reservation EPR, that is the unique identifier of
the service instance produced by EMS at reservation time, which service agent
will be associated) passed by who ask the service creation.

So it is needed to pass to Createlnstance method of FactorySA service two input parameters:

1. ServiceConfig that is a string containing an xml document where we have some
information needed to create a specific service agent. This information is:

» Name service contains the name of the service agent

11 Proxy is synonymous of stub

© Akogrimo consortium members page 36 of 100

D4.43,1.0

" Methods contains one or more method that will be exposed by service agent. For
each method is mandatory to specify the method name and input and output
parameter tvpe

<?xml version="1.0"7?>

<description xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name = "Generator"/>
<methods>
<method name="generateData">
<param_input type="string"/>
<param_output type="string"/>
</method>

<method name="HelloWorld">

2. Resourcelnfo is a structure that contains the information that will be maintained in the
SA resource. This information is composed by:

= The EPR to the AdvanceReservation resource that was created at the end of the
reservation phase. This EPR has been serialized into a string and is used as
parameter when invoking the EMS service;

* slalD string used as parameter when invoke EMS service;
= EMS URI to use to set up EMS proxy

As return value of Createlnstance method has an EndpointReferenceType describing Service
Agent service of which is asked creation. The following figure show actions made by FactorySA
service when Createlnstance method is invoked.

3.1.4.2.1. Data structure

No data structure is available for this setrvice.

3.1.4.2.2. Interfaces

Table 8 provides the list of the available methods on the Service Agent. The methods have been
grouped in categories.

Table 8 - Service Agent methods

ServiceAgentFactory
P —

Instance Creation

Description This group includes one method to create the service inside the OpVO

E-FactorySA-Createlnstance

EndpointReference Type Createlnstance(string ServiceConfig, Information Resonrcelnfo)

© Akogrimo consortium members page 37 of 100

D4.43,1.0

Description Allows to create the SA service by using serviceConfig param and its EPR by
using Resourcelnfo param

In Table 8, the method belonging to “Instance Creation” allows creating a Service Agent, but the
methods belonging to “Application” category will be specific to each Service Agent.

For example, the SA associated to the ECG_DG external service will expose the following
application methods:

Table 9 - Application methods exposed by the SA of the ECG_DG

ECG DG ServiceAgent

Application methods

Description | This group includes all the methods that are a replication of the methods
exposed by the external ECG Data Generator service represented by this SA
inside the OpVO.

E-SA-ECG_DG-GenerateData

public data generateData (string patientName)

Description This method has the same external behaviour as the one described in the
Application Specific Service section (see section 3.4.2)

3.1.4.3. Interaction with other components

3.1.4.3.1. Main behaviour

For this testbed, the FactorySA interacts with:
OpVOManager

Figure 12 shows the sequence diagram of these interactions.

© Akogrimo consortium members page 38 of 100

D4.43,1.0

OpVOMng FactorySA

(reatelnstance(string serviceConfig, Information Resourcelnfo)

SA Creation and deploy

————————r——

-

Figure 12 - FactorySA interactions sequence

3.1.4.3.2. Alternative behaviour

No recovery actions are foreseen for this component

3.1.4.4. Involved technologies

The FactorySA has been implemented using Windows/ . NET/WSRF softwate stack.
3.1.5. Participant Registry

3.1.5.1. Brief Overview

The Participant Registry service is actually constituted by three services that provide different
kinds of information on the BVO/OpVO and their participants. These services are:

Participant Info: this service will contain and manage all information related to participant
features in the context of BVO/OpVO. This service will allow creating a WS-Resource
associated to each participant and storing information related to the specific participant. In
fact, it is able to manage information related to each different participant about:

Tokens
Roles
* User Agent EPRs
* Application and BVO/OpVO Manager identifier

VO info: This service will manage information related to VO (BVO or OpVO) about its
participants and its manager identifiers (name identity and endpoint reference). There will be
a WS-Resource for each BVO/OpVO storing the mentioned information

* ParticipantNameService: This service will manage the mapping table in order to maintain
an association between participant identifier and the endpoint reference of the resource
created for him/her into the ParticipantInfo. By retrieving the endpoint reference it is
possible to access to the participant related information. This service is a simple Web Service.

© Akogrimo consortium members page 39 of 100

D4.43,1.0

3.1.5.2. Functionality

Table 10 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 10 - Participant Info service methods

Participant Info

Tokens and agent management

Description | The methods in this group manage the list of pairs, OpVOtoken and related
User Agent EPR, associated to each participant and stored in the WS-resource
that represents that represents them.

E-PR-ParticipantInfo-InsertToken Agent

public string InsertTokenAgent(string agentEpr, TokenType token)

Description Insert a token and an UA EPR to access a service in an existing participant WS-
Resource.

The result is the token identifier if operation is successful, otherwise "failure"

E-PR-ParticipantInfo-UpdateTokenAgent

public bool UpdateTokenAgent(TokenAgentType oldEntry, TokenAgentType newEntry)

Description Updates a pair token and UA EPR of a participant with a new one.

E-PR-ParticipantInfo-UpdateToken

public bool UpdateToken(TokenAgentType oldEntry, TokenType newToken)

Description Updates data in a token.

Return true or false.

E-PR-ParticipantInfo-Update Agent

public bool UpdateAgent(TokenAgentType oldEntry, string newAgent)

Description Updates UA data, in particular, the EPR of the UA.

Return true if the update is successful, false otherwise

E-PR-ParticipantInfo-RemoveTokenAgent

public bool RemoveTokenAgent(TokenAgentType entry)

Description Removes a token and its UA EPR associated to a participant

Returns true if operation is successful, false otherwise

© Akogrimo consortium members page 40 of 100

D4.43,1.0

Participant Info

E-PR-ParticipantInfo-RetrieveTokenList

public TokenType[] RetrieveTokenList()

Description Retrieves the tokens’ list of the participant

Returns token type list if has success, null object otherwise

E-PR-ParticipantInfo-Retrieve AgentList

public EndpointReferenceType[] Retrieve AgentList()

Description Retrieve the UA EPRs’ list of the participant

Returns endpoint reference type list if has success, null object otherwise

E-PR-ParticipantInfo-RetrieveTokenAgentList

public TokenAgentType[] RetrieveTokenAgentList()

Description Retrieves the list of tokens and UA EPRs associated to the participant

It returns the full list if successful, null object otherwise

Profile Management

Description The methods in this group manage the profiles'” associated to
each participant and stored in the WS-resource that represents it
(so each method invocation doesn’t need to specify the
participant identifier: each WS-Resource on which the method is
invoked is associated to a specific participant). Each participant
can have different profiles each of one related to an OpVO
where he/she has involved in.

E-PR-ParticipantInfo-AddProfile

public string AddProfile(ParticipantProfileType participantProfile)

Description Adds a profile for the participant

Returns the profile identifier if operation is successful, "failure"
otherwise

E-PR-ParticipantInfo-UpdateProfile

public bool UpdateProfile(ParticipantProfileType oldProfile, ParticipantProfileType newProfile)

12 'The participant profile has not been used in the first prototype. The Participant Registry has been designed and
implemented in order to manage it. In A.1, some notions are provided about what a profile is.

© Akogrimo consortium members page 41 of 100

D4.43,1.0

Participant Info

Description Updates an existing profile of the participant

It returns true if the operation is successful, false otherwise

E-PR-ParticipantInfo-RemoveProfile

public bool RemoveProfile(ParticipantProfileType profile)

Description Removes a participant profile

It returns True if the operation is successful, false otherwise

E-PR-Participantlnfo-RetrieveProfile

public ParticipantProfileType RetrieveProfile(string profileld)

Description Retrieves a profile of the participant

It returns the profile associated to the identifier if operation is
successful, null object otherwise

E-PR-ParticipantInfo-RetrieveProfileListld

public string]] RetrieveProfileListId()

Description Retrieves the list of profile identifiers associated to the
participant

Returns one or more profiles associated to the participant

Property management

Description This group of methods allows to manage the properties
associated to each participant. Participant properties include:
identifier of BVO Manager where the participants is registered,
identifier of OpVOs where participant is involved, identifiers of
application owned by the participant, ...

E-PR-ParticipantInfo-ConfigureParticipantProperty

public bool ConfigureParticipantProperty(ParticipantProperty prop)

Description Configures property of the participant.

It returns true if the configuration is successful, false otherwise.

E-PR-ParticipantInfo-UpdateParticipantProperty

public bool UpdateParticipantProperty(ParticipantProperty oldProp, ParticipantProperty
newProp)

© Akogrimo consortium members page 42 of 100

D4.43,1.0

Participant Info

Description Updates properties of a participant

It returns true if the update is successful, false otherwise.

E-PR-ParticipantInfo-RetrieveParticipantProperty

public ParticipantProperty[] RetrieveParticipantProperty()

Description Retrieves participant properties

Returns participant properties array if operation is successful, null
otherwise

E-PR-ParticipantInfo-RemoveParticipantProperty

public bool RemoveParticipantProperty(ParticipantProperty prop)

Description Removes property of participant

Returns True if deletion is successful, false otherwise

E-PR-ParticipantInfo-SetParticipantldentifier

public bool SetParticipantldentifier(string id)

Description Set identifier of participant

Returns True if setting is successful, false otherwise

E-PR-Participantlnfo-GetParticipantldentifier

string GetParticipantldentifier()

Description Returns the participant identifier

Table 11 — VOInfo service methods

VOlInfo

Participant reference management

Description This group of methods manage the reference of participant inside a VO.
For each VO we will have a dedicated WS-Resource and it will store
information about the participants. (so each method invocation doesn’t
need to specify the VO identifier: each WS-Resource on which the
method is invoked is associated to a specific VO).

E-PR-VOInfo- AddParticipantReference

© Akogrimo consortium members page 43 of 100

D4.43,1.0

VOlInfo

public bool AddParticipantReference(ParticipantMapping partRef)

Description Allows to add participant reference information in particular the
participant id and the EPR of the related resource of the participant info
service

It returns true if the operation is successful, false otherwise

E-PR-VOInfo-UpdateParticipantReference

public bool UpdateParticipantReference(ParticipantMapping oldPartRef, ParticipantMapping
newPartRef)

Description It updates participant reference information

It returns true if the operation is successful, false otherwise

E-PR-VOlnfo- RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string partld)

Description It allows to retrieve the participant endpoint reference

Returns the participant endpoint reference if successful, null otherwise

E-PR-VOInfo- RemoveParticipantReference

public bool RemoveParticipantReference(ParticipantMapping partRef)

Description Remove participant reference information

Returns true if the operation successful, false otherwise

BVO/OpVO Manager setting

Description This groups includes methods that allow to set OpVO/BVO related
information on the WS-Resource that represents the OpVO/BVO itself

E-PR-VOInfo-SetVOIdentifier

public bool SetVOldentifier(string id)

Description Set the VO (BVO or OpVO) identifier

returns true if the operation is successful, false otherwise

E-PR-VOInfo-GetVOldentifier

public string GetVOIdentifier()

© Akogrimo consortium members page 44 of 100

D4.43,1.0

VOlInfo

Description Get the OpVO/BVO identifier

Returns the identifier if the operation is successful, "failure" otherwise

E-PR-VOInfo-SetManagerldentifier

public bool SetManagerldentifier(string id)

Description Set the (BVO or OpVO) Manager identifier

Returns True if the operation is successful, false otherwise

E-PR-VOInfo-GetManagerldentifier

public string GetManagerldentifier()

Description Get the (BVO or OpVO) Manager identifier

Returns the identifier if the operation is successful, "failure" otherwise

E-PR-VOInfo-SetManagerEpr

public bool SetManagerEpr(string manEpr)

Description Set the (BVO or OpVO) Manager EndpointReferenceType

Returns true if the operation is successful, false otherwise

E-PR-VOlInfo-GetManagerEpr

public string GetManagerEpr()

Description Get the (BVO or OpVO) Manager EndpointReferenceType

Returns the EPR (serviceUrl#resourcelD) if the operation is successful,
"failure" otherwise

Table 12 — Participant Name Service methods

ParticipantNameService

Mapping table management

Description This group of methods manage a table that stores the mapping between
unique identifier of the participant and the EPR of the associated
participant resource in the Participant info service

E-PR-ParticipantNameService-CreateParticipantMappingCollection

public bool CreateParticipantMappingCollection()

© Akogrimo consortium members page 45 of 100

D4.43,1.0

ParticipantNameService

Description Create the collection to map participant identifiers (or unique user name)
and related endpoint reference

It returns true if the collection is created right, false otherwise

E-PR-ParticipantNameService-CheckCollectionExistence

public bool CheckCollectionExistence()

Description Check if the collection '/db/Akogtimo/ParticipantMapping' is already
created in Xindice

Returns true if the collection exists, false otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingCollection

public bool RemoveParticipantMappingCollection()

Description Removes the collection used to maintain mapping between participant
identifier and their endpoint reference

Returns true if the operation is successful, false otherwise

E-PR-ParticipantNameService-AddParticipantMappingEntry

public string AddParticipantMappingEntry(string participantld, EndpointReferenceType epr)

Description Adds an entry inside the mapping table

Returns Participant identifier if the operation is successful, false
otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingEntry

public bool RemoveParticipantMappingEntry(string participantld)

Description Removes a participant from the collection

It returns true if the action is successful, false otherwise

E-PR-ParticipantNameService-RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string participantld)

Description Retrieves a document from a collection

Returns the document if the operation is successful, null otherwise

For each component explained in this section we show the data structure they use to manage the
set of data required to manage BaseVO participants.

© Akogrimo consortium members page 46 of 100

D4.4.3,1.0

Cr ParticipantMapping | ParticipantProperty |
E ParticipantId skring E ApplicationId skring
E ParticipantEpr EndpointReferenceTyvpe E OpWioldentifier skring
E vOManagerIdentifier skring
E wOManagerEPR EndpointReferencaType
I C:
E TzﬁTgenthe |Tokel'lT':"DE articipantPerilﬂ'y‘DE |
. » E Participantid skring
E Agent EndpointReferenceTyvpe E Profilsd string
E applicationId string
E Role string
E PDA boal
E MobilePhone biool
E Motebook boal
E Any wmlElement;
*
]

Figure 13 - Data structures related to Participant Registry

The VOInfo component uses an array of ParticipantMapping; for each BaseVO participant it
contains a participant identifier and the EPR of the WSRF resource that represents this user in
the BaseVO.

The ParticipantInfo component uses an array of the following structures:
* PartipantProfileType contains the profile of the participant to BaseVO
* TokenAgentType contains the token to be used when invoking an User Agent instance

* ParticipantProperty contains information about the VO the participant is involved in

3.1.5.3. Interactions with the other components

The PR interacts with (see also Figure 8):

* The BVO Manager

* An administrative client

The interaction with the BVO Manager has been described in 3.1.1.3.

The invocations related to the management methods (e.g. update, add and remove) come from
the administrative client and they are not reported here

3.1.5.4. Involved technologies

The implementation of this component has dealt with logic underpinning the management of
BaseVO members. It provides a registry which exposes functionalities to collect personal
information about each member, (the username valid in the context of the BaseVO, his profile
listing his role in the BaseVO) to store information (username, profile) about all members of the
BaseVO. This component has been implemented using the Windows/ NET/WSRF/Enterprise
stack.

© Akogrimo consortium members page 47 of 100

D4.43,1.0

3.1.6. OpVO Broker

3.1.6.1. Brief Overview

The OpVOBroker service is a component of VO Management block and it is important for
enacting of OpVO activities.

It interacts with GtSDS component to look for available services and then selects the services
which are able to satisfy the uset’s needs according to his/her profile.

On the base of this service list the OpVOBrokerlnstance starts the negotiation phase with a
specific service provider. In each service provider domain is a Negotiator service instance that is
in charge to negotiate contract with OpVOBroker and returns it a list of information needed to
use a purchased service.

3.1.6.2. Functionality

getService Invocation

Gontac’[GrSDS servi@

Foreach SP contacts
Local Negotiator service
To start negotiation

proposedContrac
is ok?

SP is not discarded

Yes

|

Gstablish contract with SD

Figure 14 - OpVOBroker flowchart

The above flowchart describes what happens to OpVOBroker service when getService method is
invoked. OpVOBroker is in charge of invoking GrSDS service to retrieve a list of Service
Provider satisfying requirement used to make the search. In each SP domain there is a Negotiator
service that is in charge of starting the negotiation process between the SP and the requestor.
When Negotiator service is invoked, it returns to OpVOBroker a pre-Contract which has to be
evaluated. If pre-Contract satisfies some constraints, OpVOBroker asks the Negotiator service to
establish contract that will be returned to the requestor.

© Akogrimo consortium members page 48 of 100

D4.43,1.0

3.1.6.2.1. Data structure

No data structure is available for this setrvice.

3.1.6.2.2. Interfaces

Table 11 provides a list of the available methods on the OpVOBroker. The methods have been
grouped in categories.

Table 13 — OpVOBroker methods

OpVOBroker

Discovery methods

Description | This group includes methods called from outside to ask for a list of services
satisfying requirements

E-OpVOBroker-getService

public arrayOfXmlElement getService(XmlElement serviceRequirements)

Description This method allows starting a discovery of a services satisfying specific service
requirements

Configuration methods

Description This group includes methods to be invoked in order to configure the
OpVOBroker instance.

E-OpVOBroker-setEPR

public void setEPR(EndpointReferenceType participantRegistryEPR, EndpointReferenceType
policyManagerEPR)

Description This method allows configuring the OpVOBroker with the know EPR of the
PolicyManager service and ParticipantRegistry service.

3.1.6.3. Interaction with other components

3.1.6.3.1. Main behaviour

The OpVOBroker interacts with (see also Figure 8):
The GSDS service

* The Negotiator service

In Figure 14 the sequence diagram of these interactions is shown.

© Akogrimo consortium members page 49 of 100

D4.43,1.0

OpVOManager OpVOBroker GRSDS Negotiator
etService()		
9		
: searchForServices() : :		
Service provider list		
Palseththniie		
]		
1	e	
: startNegotiation()

1
| |
| |
: proposedContract
_______ P .
| < |
| |
: evaluateClontract()
| establishContract()
: resuit
_______ e o
| List of result < :
=< """" L] I T
|

Figure 15 - OpVOBroker interactions sequence

3.1.6.3.2. Alternative behaviour

The OpVOBroker could find errors during the invocations of the external services, GtSDS
service and Negotiator service. The source of exceptional behaviour can be the network
connection between OpVOBroker and GrSDS or Negotiator. Network connection problems
usually result in a time-out on the client side and could be handled by a second attempt or an
increased time-out value. Increasing the time-out value for requests from the OpVOBroker to
the GrSDS or Negotiator can be done by setting in the implementation code the timeout value of
the proxy service (GrSDS or Negotiator) to infinite. No other recovery actions are foreseen for
GrSDS service, instead for Negotiator service the error handling depends on the kind of error
returned.

3.1.6.4. Involved technologies

This OpVOBroker component has been implemented using the Windows/ NET/WSRF
software stack.

© Akogrimo consortium members page 50 of 100

D4.43,1.0

3.2. SLA High Level
3.2.1. SLA-Access

3.2.1.1. Brief Overview

This service provides all necessary functionalities that other components could require from the
SLA document template and contract. Unlike SLLA-Translator, SLLA-Access does not access
directly the documents stored in the repositories (SLA-Templates and SLA-Contracts), but it uses
the SLA-Translator by passing the document Id and the specific tag it is looking for. So the SLA-
Access contains the logic to retrieve and manipulate data from/to SLA template and contracts.

The SLA-Access has been implemented as a WS-Resource developed in C# (NET) which
exposes, at this moment, three methods (setParamToPreSLLAContract, CreateL.L.Contract and
getQoSParameters). These methods offer to the consumer a way for accessing to concrete data
of a specific document.

All these methods define what to do with concrete parts of the document, that is, to retrieve the
service information, the description of the service, get some parameters, or for example to update
the content of some tags, all of them carried out with a support service as the SLA-Translator.

3.2.1.2. Functionality

Table 14 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 14 — SLLA-Access service methods

SLLA-Access

SLA contracts and templates management

Description This group of methods allows to access the SLA templates/contracts
and to modify them in a transparent with respect to the XML details.

E-SLLA-Access-CreateLLL.Contract

public string CreatelLLContract (string userSPTemplatelD,
Low_level_parameter[] LLParameters,string expiration_time, string AREPR)

Description It allows filling specific sections of SLA template, identified by
userSPTemplatelD, with the value of low level parameters that are
specified in the LLParameters object.

It returns a string if the operation has success, null object otherwise

E-SLA-Access-setParamToPreSLLAContract

public string setParamToPreSLAContract (string UserSpTemplateID, int
HLParams, string expirationTime)

© Akogrimo consortium members page 51 of 100

D4.43,1.0

SILA-Access

Description It allows filling specific sections of Pre SLA contract, identified by
userSPTemplatelD, with the value of high level parameters that are
specified by HLParams object.

It returns a string if the operation has success, null object otherwise

E-SLA-Access-getQoSParameters

public 0bjQoS getQoSParameters(string SLADocld)

Description This method is used to retrieve QoS parameters and thresholds to be
monitored

It returns an object with QoS parameters if the action has success,
null object otherwise

3.2.1.3. Interactions with the other components

The SLLA Access interacts with:

The EMS that invokes it from the Grid Infrastructure Services Layer (actually any
component interested in retrieving information on the SLA contract has to invoke the SLA
Access). In the first prototype, the EMS is the only component that invokes the SLA Access.

The SLA Translator

In the following Figure 16 the sequence diagram of these interactions is shown.

EMS SLA Arccess SLA Translakor

:'1 ' getQosParameter) '

2 1 getDatal

31 skring

Figure 16 — SLA Access interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (In general, it is the section 3.x.y.2).

The interactions shown in Figure 16 take place during the Hosting Environment (HE) setup (see
section 5.3.2 in [4]).

3.2.1.3.1. Alternative behaviour

The source of exceptional behaviour can be:

* Invocation timeout

© Akogrimo consortium members page 52 of 100

D4.43,1.0

External Exception

Invocation timeout exception is generated when the SLA-Access invokes the SLLA-Translator
service but it doesn’t receive a response in a defined time interval. The connection with the
destination service is closed and an exception is forward to the requestor.

The external exceptions are generated by the SLLA-Translator and then forward to the requestor
without any manipulation.

3.2.2. SLA-Translator

3.2.2.1. Brief Overview

This service is the responsible for providing access to SLA documents (SLA-Template and SLA-
Contract) and get (or set) information of them. For each document the associated ID is managed
and SLA-Translator interacts with the repositories in order to retrieve the appropriate document.

The SLA-Translator has been implemented as a WSRF compliant service developed in C#
(NET) which exposes two methods (getData and setData) for getting/setting information from
a document. There are only two methods offered to stress on the main use of this service, but
each one has a set of input parameters which value have an influence on its results, so they can
be seen as a generalization of many more methods.

This type of implementation allows choosing among different types of results just by changing
the input parameters of both operations.

3.2.2.2. Functionality

Table 15 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 15 — SLA Translator service methods

SLLA- Translator

SLA Contracts and Templates management

Description This group of methods allows processing the XML document that
represents the SLA contract/template

E-SLATranslator- getData

public string getData (string docType, string SLADocld, string rootTag, int occurrence)

© Akogrimo consortium members page 53 of 100

D4.43,1.0

SLLA- Translator

Description

This method will be used for retrieving specific sections from a
template or contract.

In getData method, the consumer has to specify the type of
document being requested (“Template” or “Contract”) and the
document ID, as well as the tag name involved in the operation by
setting the simple tag name or a concrete root tag.

Furthermore, it also has to specify how many occurrences it expects
from the results that is choosing between the first occurrence found
(1) / the first one and its siblings (2)./ all the occurrences (3).

It will return a string that will represent the XML document
containing all the information that matches the requirements in
input.

E-SLATranslator- setData

public string setData (string docType, string SLADocld, objUpdateTag objUpdate)

Description

This method will be used for setting a specific tag in a template or
contract.

In setData method, the consumer has also to specify the type of
document being requested (“Template” or “Contract”) and the
document ID. Furthermore, it also has to fill a specific object type
with the data it wants to update.

It returns a string containing the new ID of the updated document if
the operation is successful, null otherwise

3.2.2.3. Interactions with the other components

The SLA interacts interacts with:

The SLLA Access
The SLA Repository

Figure 17 shows the sequence diagram of these interactions.

© Akogrimo consortium members page 54 of 100

D4.43,1.0

SLA Access SLA Translakor SLA Repositary

1 getDatar)

2 1 getConkrack)

3 1 ¥miDacument

Figure 17 — SLA Translator interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service.

The interactions shown in Figure 17 take place during the HE setup (see section 5.3.2 in [4]).

3.2.2.4. Involved technologies

The SLA Translator implements the logic to retrieve a specific field required by the SLLA-Access
from the SLA document. Actually this logic is implemented through the couple: SLA-Access and
SLA Translator.

It is implemented as a WS-Resource. There will be an SLLA-Access instance associated to a
specific SLA-Translator

Implementation has been done using the Windows/ NET/WSRF/Enterprise Software Stack.
3.2.3. Contract/Template-Repository

3.2.3.1. Brief Overview

The SLA Template Repository allows storing and retrieving of SLLA documents. This service is
used as a storage facility by the SLA-Translator.

© Akogrimo consortium members page 55 of 100

D4.43,1.0

4 1S Web-Server)

-——Store/Retrieve Contract- SLA-Repository

Store/Retrieve

Xindice Database

- /

Figure 18 - SLA Contract and Template Repository

The SLA Template/Contract Repositories are currently implemented as two regular Web
Services deployed in C# virtualizing a file system or storing documents in a XML database.

3.2.3.2. Functionality

Table 15 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 16 - SLA repository service methods

SLA- Repository

Storing SLLA contracts and templates

Description This group of methods allows to store and retrieve templates and
contracts from the repository

E-SLARepository- storeTemplate

public string StoreTemplate(string templatePath, bool overwrite)

Description The StoreTemplate() method accepts a path to a local file
(templatePath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA templates with the same
name. Currently the name is used to identify the SLA template
document.

E-SLARepository- GetTemplate

public XmlDocument GetTemplate(string templateld)

© Akogrimo consortium members page 56 of 100

D4.43,1.0

SLA- Repository

Description Given the name of an SLA Template as templatelD, the method
GetTemplate() retrieves the document and returns it as an
XmlDocument

E-SLARepository- storeContract

public string StoreContract (string contractPath, bool overwrite)

Description The StoreContract() method accepts a path to a local file
(contractPath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA Contract with the same
name. Currently the name is used to identify the SLA Contract
document.

E-SLARepository- GetContract

public XmIDocument GetContract (string contractld)

Description Given the name of an SLA Contract as ContractlD, the method
GetContract () retrieves the document and returns it as an
XmlDocument

3.2.3.3. Interaction with the other components

The SLLA Repository interacts with the SLLA Translator. In general, any component interested in
retrieving a contract and/or a SLA template has to invoke it.

The interaction has been already described in section 3.2.2.3

The methods related to storage functionalities have been used using dedicated client in order to
store the XML document to be retrieved during the HE setup (see section 5.3.2 in [4]).

3.2.3.3.1. Main Behaviour

The regular behaviour consists of store, update and retrieve operations of SLA documents. No
computational or otherwise complex internal operations are involved.

3.2.3.3.2. Alternative Behaviour

The source of exceptional behaviour can be one or more of the following:
* The network connection
The IIS Web-server
The NET runtime environment
* The Xindice database (if SLA contracts are stored in the database)
* The file system (if SLA contracts are stored on disk)

The implemented functionality

© Akogrimo consortium members page 57 of 100

D4.43,1.0

Network connection problems usually result in a time-out on the client side and could be handled
by a second attempt or an increased time-out value. Problems of the Web-server or the NET
runtime environment are considered out of the scope of this document. So the main sources of
exceptional behaviour are the database or hard disk and the implementation itself. All of these
errors are reported to the client by mean of exceptions. Following diagram gives an overview of
the exception handling control flow when SLLA documents are retrieved from the repository.

No Yes

Use Database

Retrieve the name

Retrieve the

storage path from oD I
o (e collection from the
the config file A
config file

Read XML file Read XML node
from disk from DB

Yes
File I/O Error Throw Exception DB Error
No
Extract XML root Extract XML root
node node

— End

Figure 19 - SLA Document Read Control Flow

When documents are stored in the repository the control flow is slightly more complex as can be
seen in the following diagram:

© Akogrimo consortium members page 58 of 100

D4.43,1.0

Create SLA
Contract Node

No Yes

Use Database

. Retrieve the name
Retrieve the
of the DB
storage path from .
e collection from the
the config file L
config file

No > No

Create directory Directory exists 2z co_IIectlon Create_DB
exists collection
No Store XML file on Store XML node in No DB Error

disk DB

Yes Yes
Yes
Throw Exception File I/O Error Throw Exception DB Error Throw Exception
No
Extract XML root Extract XML root
node node
End -

Figure 20 - SLA Document Write Control Flow

3.2.3.4. Involved technologies

The implementation of this component has dealt with the management of SLA documents. It
provides a repository to archive these documents and exposes functionality to parse the content
of the document and to retrieve specific information.

SLA Repository has been developed using regular Windows ASP.net Web service using C# as
implementation language and it will represent a simple interface to a file system.

It is implemented using the Windows/ . NET/WSRF software stack and the Xindice 1.1b4: native
XML database.

© Akogrimo consortium members page 59 of 100

D4.43,1.0

3.2.4. SLA Negotiator

3.2.4.1. Brief Overview

SLA-Negotiator Service represents the service that is contacted by the Operative VO Broker
component (OpVoBr) in order to lead the service negotiation process in the SP domain. The
OpVoBr has previously requested to the Grid Service Discovery component the list of service
providers that offer a particular service. Then the OpVoBr contacts the SLA-Negotiator service
of the given service provider to initiate and lead the negotiation process. From an
implementation point of view, SLA-Negotiator is a MultiResource Factory Service prepared for
the co-existence of several Virtual Organisation working in parallel. That means that there is a
service that exposes an operation to generate SLLA-Negotiator service instances.

3.2.4.2. Functionality

Next, we include some tables in order to detail the functionality and implementation of the two
operations exposed by SLA-Negotiator:

Table 17 — SLA-Negotiator methods

SLA-Negotiator

Operations

Description | This group includes methods called from OpVOBroker in order to perform
service negotiation.

E-SLANG-StartNegotiation

public String do_startNegotiation(String servicelD, String userID, int hlparam, String
expirationTime, String UserSPTemplateld)

Description This method allows starting the negotiation of a given service for a given user
with certain high level parameters. The aim of this operation is to establish a
contract between the user and the Service Provider where the terms are
expressed as high level functionalities. It is important to note that the
information enclosed in this contract refers to high level requirements (i.e.
refresh time less than X seconds) and not to low level parameters like cpuUtil
and diskUtil. Negotiator will look up the resource availability and invoke the
SLA-Access to store the Contract into the Repository with the high information
parameter information.

E-SLLANG-EstablishContract

public String do_establishContract(String UserSPTemplatelD, LLParams [IParams, String
expirationTime, EndpointTypeReference AREPR)

© Akogrimo consortium members page 60 of 100

D4.43,1.0

SLA-Negotiator

Description Once agreed with the Contract including the high level requirements, SLA-
Negotiator tells EMS to carry out the advanced reservation of resources to
provide the agreed Contract. Finally, SLA-Negotiator stores the SLAContract,
including the low level parameters, into the repository via SLA-Access to be
available for the SLA-enforcement process once execution starts. It is important
to remark that this contract includes the low level parameters that are going to
be monitored by the SLA enforcement mechanism.

3.2.4.3. Interaction with other components

First, we include a table summarizing the components which SLA-Negotiator interact with as
well as the protocol used:

Interaction with other components Protocol
Policy Manager SOAP/HTTP
EMS SOAP/HTTP
SLLA-Access SOAP/HTTP

More detailed information is shown in the sequence diagrams including the interactions taking
placed in both operations:

© Akogrimo consortium members page 61 of 100

D4.43,1.0

I I

OpVoBroker SLA-Megotiator Policytanaaer EMS SLAMAccEsS
T T T T T
	I		
	1		

stariNegotiation(starnNegotiationRequest) : : J :

» g g | checkAwvailabilityResource: | |

| RequirePolicy{ PolicyContext) | . senvicelD I |

stariMegotiationReguest: I T » = userlD | |

- servicelD | Mapping Pollcy I |-LLParams i i

- usedD e e ke e A - explrationTime | |

= HLpargm | I] |
1

- UsersPTamplatalD : chackResourceAvallability(checkResourcasAvallability} : :

- expirationTime H 2 |

: Negotiation Resource EPR ': |

R e e D e T T T e 1 |

|

|

|

»

- servicelD

astablishContractRequest: Ij

startMegotiationResponse: 2 t
- HLParam negotiated | UserSPCaontractiD | |
e e R R S e e e e e) e b S S I
| | | |
x | 1 | |
slariNegotiationResponse | | I |
e o e T e e | 1 | |
| I | |
T | 1 | |
| | | | |
| | 1 | |
| | I | |
establishContractiestablishContractRequest) : : J :

¥ 1

'1| perrm'nAdvaun:n?Resewaﬁan[NREPR] : :
; AREFR (Advance Reservation EPR) i :
o i e e e e e e e e i e 1 I
| |
|
|
»

| WOSPContractlD

establishContractResponse

|
|
establishContractResponse includes |
- VOSPContractiD !
-EMS EFR |
T | - sarvice Info :

Figure 21 —=SLA Negotiator interactions

As it can be seen in the sequence diagram, SLA-Negotiator interacts with Policy Manager in
order to retrieve the low level parameters that corresponds to the high level parameters chosen
by user. The mapping between the high and low level parameter is stored following a policy
format. The object retrieved from Policy Manager is an XML document where this info is stored.
Next, SLA-Negotiator checks with EMS the availability of resources with the obtained low level
parameters from the Policy Manager. In the case that there are resources available, the EMS
returns back the EPR of the Negotiation Resource. Finally in this first phase, SLLA-Negotiator
pushed SLA-Access to create the User-Service Provider contract where the high level parameters
have to be included. The Low level information has been decided to be stored in a different
contract since this information should be absolutely transparent to the user. For example, a
general user only understands if its screen refresh time is less or greater than a given number of
seconds, but he does not care about the resources values required to obtain such performance
(cpuload, memoryUsage....).

The second operation exposed by SLLA-Negotiator has the aim to generate and store a different
contract that includes the low level parameter information. This contract is basic for the SLA
enforcement process. Once the service starts running the EMS initiates the SLA enforcement
mechanism to be sure that the user enjoys the service in the terms established in the contract (i.e.
refresh time less than X seconds). The sequence diagram establishes that in the phase apart from
creating/storing the new contract, SLA-Negotiator indicates EMS to perform advance
reservation of resources.

© Akogrimo consortium members page 62 of 100

3.2.4.3.1. Error handlings

D4.43,1.0

So far, SLA-Negotiator interacts with different components (Policy Manager, EMS and SLA-
Access) when OpVoBr invokes one of the two operations exposed by the Service
(startNegotiation and establishContract). The sequence diagrams defined so far do not include
the case where the EMS does not find any resource available with the current low level
parameters. For this particular case, no recover mechanism has been defined so far.

Now, once EMS can not find resources available for the current HLParam, SLLA-Negotiator will
try with a high level parameter less restrictive. SLLA-Negotiator will ask again EMS to search
resources with less restrictive conditions. This process repeats until either EMS finds a resource
available or there are no more high level parameters. In the latter case, SLA-Negotiator will
inform OpVoBr to try to negotiate the service with another Service Provider or launch another

mechanism.

Next we include the sequence diagram where the NULL management is depicted:

OphOBroker SLA-Megotiator

pli=

startMegatiation|)

4
!

!
/

-
I
I

B
I

7
/ E
I

RequirePolicy{PolicyContext)

s

Mapping Policy 1
_l

1

Policy Manager E

Lo

I
1
I
i
I
|
I
|
I

Figure 22 - SLLA-Negotiator sequence diagram representing the handling errors case

3.2.4.4. Involved technologies

The development of this component involved the WSRF implementation provided by java WS-
Core Container included in GT4.0.1.

3.3. BP enactment

3.3.1. WorkFlow Registry

3.3.1.1. Brief Overview

The Workflow Registry is the component in charge of storing implementation files of published
workflows. Such files will be stored in relational databases, along with annotations necessary for

© Akogrimo consortium members

page 63 of 100

D4.43,1.0

semantically identifying workflows. A unique key identifies each workflow and its semantic
annotations. Semantic annotations are stored as simple keywords.

The Workflow Registry contains Business Process Execution Language (BPEL) templates that
correspond to the Business Processes. In addition the Workflow Registry contains what is called
“Process Deployment Descriptor”. This additional file is related to the workflow template(s) and
it contains the name of the abstract services. The abstract services will be substituted with
concrete services by the Workflow Manager. In this way the Workflow Manager component
should not parse the entire BPEL script.

The Workflow Registry makes use of the MySQL relational database. It is exposed as a web
service that offers methods to upload/retrieve templates. The web service is implemented in
Java.

The template search could be done based on the unique workflow identifier or based on simple
keywords.

3.3.1.2. Functionality

3.3.1.2.1. Data Structure

The Workflow Registry makes use of a MySQL database where information about workflow
templates is stored.

The database has the structure reported in Table 18.

Table 18: Workflow Registry Data structure

Field Type Brief Explanation
Filename String File name of the workflow template.
TemplatelD String Template identifier. This identifier coincides

with the ones reported in the GtSDS.

SPDomain String Domain application of the Service Provider.

FileID String File identifier. This field differs from the
template identifier. It is an internal ID used

to physically retrieve the workflow template
file.

3.3.1.2.2. Interfaces

Table 19 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 19 - WF Registry service methods

WE- Registry

Storing WF templates

Description This group of methods allows to store and retrieve WEF templates
to/from the repositoty.

© Akogrimo consortium members page 64 of 100

D4.43,1.0

WE- Registry

E-BPE-WTFRegistry- Store

workflowlD store(WEFTempl], filename, tempID, SPdomain)

Description It returns a workflow identifier assigned by database upon success.
The parameters are: the workflow template files (BPEL and PDD),
the filename to be associated to the wf template, the template
identifier, the Service Provider domain.

E-BPE-WFRegistry- Get

WEFTemp|] get(workflowID)

Description It returns the workflow template (BPEL and PDD) files upon
success. The input parameter is the workflow identifier.

E-BPE-WFRegistry-Update

result update(workflowID, keywords[], values|])

Description It returns success or failure. The parameters are the workflow
identifier, the keywords to be updated and their new values. The
admitted keywords are: “temeplate]lD”,”Filename”,”SPDomain”.

E-BPE-WFRegistry-Remove

Result Remove(workflowID)

Description It returns success or failure. This function removes the specified
workflow from the database. The parameter is the workflow
identifier.

3.3.1.3. Interactions with other components

3.3.1.3.1. Main Behaviour

The Workflow Registry interacts with:
The Service Provider
The Workflow Manager

The Service Provider is in charge of storing the workflow template files to the Workflow
Registry.

The Workflow Manager is in charge of retrieving the workflow template files from the Workflow
Registry.

Wortkflow template files can updated/removed by the Service Provider.

© Akogrimo consortium members page 65 of 100

D4.43,1.0

SB Workflow Manager Workflow Reqistry

1: storeWFTemp(), filerme, templD, SPdomain)

2: workflowlD

Figure 23: Workflow Registry Interfaces
In Figure 23 the sequence numbers outline that a workflow template could be retrieved after it

has been uploaded. In any case the two actions do not need to be one just after the other.

3.3.1.3.2. Alternative behaviour

The possible causes of failures are:

The filename is already present in the Workflow Registry
* The template identifier (templatelD) does not exist
* The Workflow template file is corrupted

In the first two cases the request should be submitted again with the correct parameters. If the
Workflow Template file is corrupted, the Workflow Registry returns an error that is reported to
the upper layer, that is to the Workflow administration level. No automatic recovery is foreseen
and the error should be communicated to the Service Provider.

3.3.1.4. Involved technologies

The implementation of this component has dealt with the management of WF related files stored
in the associated relational database. This service implements the logic to associate the different
files between them and it virtualizes the access to the database through a Web service interface.

Involved technologies:

MySQL: Relational Database

Basilar Web Service specifications (SOAP, WSDL)
* Java programming language
* Linux Ubuntu Operating system

Tomcat: Web Service

Axis: SOAP engine

© Akogrimo consortium members page 66 of 100

D4.43,1.0

3.3.2. Enactment Engine

3.3.2.1. Brief Overview

The Enactment Engine (also called Workflow Engine) is the component of the Business Process
Enactor in charge of enacting specific BPEL processes submitted by the Workflow Manager
component. The Enactment Engine will support execution of BPEL processes by calling services
with a WSDL description.

The Enactment Engine will be exposed to external entities as a normal web-service to which
invocation of methods will be possible. Methods will include those for starting and cancelling a
business process, those for inspecting and retrieving inputs and outputs to/from the workflow
and status information of a workflow.

3.3.2.2. Functionality
3.3.2.2.1. Data Structure
No data structure is available for this service.

3.3.2.2.2. Interfaces

Table 20 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 20 — Enactment engine methods

Enactment- engine

Workflow instances management

Description This group of methods allows to manage the workflow instances
living inside the Enactment Engine

E-BPE-EEngine-deployBpr

processID deployBpr(bpelFile)

Description This method is used for submitting a workflow to the engine for
enactment. It is semantically equivalent to the method
“workflowRef Submit(wfTemplateFile)* described in section
3.2.2.4.3 of deliverable [2]

It returns an identifier of the deployed workflow.

E-BPE- EEngine-resumeProcess

bool resumeProcess (processID)

© Akogrimo consortium members page 67 of 100

D4.43,1.0

Enactment- engine

Description This method is used for asking the engine to start the enactment of
a submitted workflow. It is semantically equivalent to the method
“Start(workflowRef)“ described in section 3.2.2.4.3 of deliverable

2]

It returns success or failure

E-BPE-EEngine-terminateProcess

bool terminateProcess (processID)

Description This method is used for asking the engine to totally cancel the
enactment of a submitted workflow. It is semantically equivalent to
the method “Cancel(workflowRef)* described in section 3.2.2.4.3
of deliverable [2]

It returns success or failure

E-BPE-EEngine-getprocesslList

process_list getProcessList()

Description This method is used for asking the engine the list of processes
already submitted. Note that the resulting list includes all deployed
processes, not only those actually executing.

E-BPE-EEngine-getProcessState

process_state getProcessState(processID)

Description This method is used for asking state information about a
workflow. It is semantically equivalent to the method “wf_state
GetWFState(workflowRef)“ described in section 3.2.2.4.3 of
deliverable [2]

E-BPE-EEngine-setVariable

process_variable setVariable(processID, name)

Description This method is used for setting value and state of a specific
variable of a specific workflow. This method is very important
because it used to set any context change happening during the
workflow execution.

E-BPE-EEngine-getVariable

process_variable getVariable(processID, name)

© Akogrimo consortium members page 68 of 100

D4.43,1.0

Enactment- engine

Description

This method is used for asking value and state of a specific variable
of a specific workflow. It is semantically equivalent to the method
“wf_variable InspectVar(worfklowRef)*“ desctibed in section
3.2.2.4.3 of deliverable [2]

Business process logic related methods

Description

This group will include all the methods that are strictly related to
the business process logic. Of course, they will be different
depending on the business process design itself, so they are not
listed here, because they are application specific..

3.3.2.3. Interaction with other components

Main behaviour

The Enactment Engine interacts with:

3.3.2.3.1.
- UA
SA

Monitoring Daemon

* WF Manager

In Figure 24 the sequence diagram of the above interactions is shown, in particular, it refers to
the interactions with the business logic related methods.

1 skart()

EEngine sS4 Shx

LA
i
£
=
=

11 : Results

2 method_AD

T 23 method_v()

© Akogrimo consortium members page 69 of 100

D4.43,1.0

Figure 24 — Enactment Engine interactions sequence
The above sequence provides details about the interaction related to step 3 in Figure 8

In order to understand the meaning of each invocation, please refer to the table of functionalities
in the section related to the specific service (sections 3.x.y.2). Actually, apart from the method
invoked by the Workflow Manager, the other ones are generic names because they are related to
the application logic, and during the workflow instance execution several methods on the
application services are invoked. The sequence of interactions doesn't reflect a real temporal
sequence because the invocation of SA depends on the business logic of the workflow.

The object that in Figure 25 is labelled with “EEngine” actually is the running instance of the
application workflow (it is run by the EEngine).

The interaction with the Workflow Manager is performed during the OpVO creation to
configure the Enactment Engine and it involves the management methods. The following
sequence describes this interaction that involves an invocation from a generic client that actually
during the OpVO creation is the OpVO Manager.

Clienk WE Manager EEngine

1: createWFManagera

21 deployBpr()

.g_:: ________________
31 processID T

.
1
1
94 resumeF‘rucessf:.l '

.:-_: ________________
e 5 L
6 1 boolean e

Figure 25 — Enactment Engine interactions sequence

3.3.2.3.2. Alternative behaviour
The Workflow Engine could encounter internal errors or can receive an error during the
execution of the services it invokes.

In case of internal errors no recovery actions are foreseen unless the Business Process Designer
has modelled the workflow to take care of them. No automatic recovery actions are foreseen.

In case of errors during the invocation of external services, the error handling depends on the
modelling of the specific workflow. The Workflow Engine is able to catch errors thrown by the
services and it is able to takes recovery actions like: new invocation, alternative branch execution.

3.3.2.4. Involved technologies

The implementation of this component has dealt with the logic to administer the ActiveBPEL
Engine. Some API provided by the ActiveBPEL Engine has been used in the implementation
and it has been implemented as a Web Service to simplify interactions with other components
using Java as programming language.

Involved technologies:

* ActiveBPEL engine: BPEL script execution engine.

© Akogrimo consortium members page 70 of 100

D4.43,1.0

JDK: 1.4.2_09-b05 (mandatory).
Ant: 1.6.5 (mandatory).

3.3.3. WorkFlow Manager

3.3.3.1. Brief Overview

This is a component of the Business Process Enactment service (the other components being the
Enactment Engine (EE), the Monitoring Daemon (MD) and the Workflow Registry (WR)). Its
purpose is to transform workflow templates into workflows that can be carried out by the
Enactment Engine; part of this transformation includes service instantiation and registration for
context changes (with the Context Manager) and SLA violations (with SLA Enforcement). It also
receives context/SLA notifications from the MD and (possibly) interrupts or redirects the
current workflow. A Workflow Manager (WM) is created (by an OpVO Manager, or by another
Workflow Manager); thus each instance of the WM manages a single workflow. (More strictly, it
manages a single instance of a workflow template; this may generate multiple workflows.)

At this stage, the WF manager will implement just a limited set of functionalities, in particular
related to the management of context change and the business process deployment.

3.3.3.2. Functionality

Table 21 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 21 - WF manager service methods

WE- Manager

Workflow instantiation

Description It includes a group of methods that allows to set up the
environment to manage the workflow during its execution.

E-BPE-WM-CreateWF_Manager

EndPointReferenceType CreateWEF_Manager(WEFTemplate)

Description Create a new Workflow Manager to handle a workflow template
(supplied as parameter).

It returns a reference to the new WF Manager instance.

E- BPE-WM-StartWorkFlow

Boolean StartWorkFlow (WEFTemplate, EPR)

Description Instruction to an Enactment engine to deploy and instantiate a
workflow to start processing its template. In this phase all the
setup actions will be performed (e.g. subscription of monitoring
daemon to context changes).

It returns a Boolean true or false statement.

© Akogrimo consortium members page 71 of 100

D4.43,1.0

3.3.3.3. Interactions with the other components

The WF Manager interacts with the Workflow Repository to extract the workflow template, and
is calls the Enactment Engine to update context and deploy workflows.

3.3.3.3.1. Alternative Behaviours

Unexpected and exception related behaviours of the Workflow Manager can be caused by
+ Calls to a method using wrong data types.
* Failure to call the correct Workflow Manager instance.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. The Workflow Manager instance error sometimes causes a
failure to destroy existing instances of Workflow Manager that have been used. All errors are
logged.

3.3.3.4. Involved technologies

The component has been realised using the UNIX/Java/WSRF software stack and was patticular
using the WS-Notification implementation of GT4 Core.

3.3.4. Monitoring Daemon

3.3.4.1. Brief Overview

This is a component of the Business Process Enactment service (the other components being the
Workflow Manager (WM), the Enactment Engine (EE) and the Workflow Registry (WR)). Its
purpose is to provide a web service interface that the Context Manager and SLA Enforcement
can use to notify BP Enactment about context changes or SLA violations. It may perform some
processing on the received notifications (such as further filtering and (in the longer term) concept
mapping), before passing them to the WM for decisions/ action.

3.3.4.2. Functionality

Table 21 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 22 - Monitoring Daemon service methods

Monitoring Daemon

MD Administration

Description It includes a group of methods that allows to administrate the MD

E-BPE-MD-Create

EndpointReferenceType Create()

© Akogrimo consortium members page 72 of 100

D4.43,1.0

Monitoring Daemon

Description Create a new Monitoring Daemon. It is expected to be invoked by
a WM, so that each WM has (to all intents and purposes) a
dedicated MD

E- BPE-MD-GetContext

Public GetContext(userID)

Description To be used by a client to query the last known context for a user
ID.

3.3.4.3. Interactions with the other components

The MD interacts with:
* The Context Manager
The Workflow Manager

In Figure 26, the sequence diagram of these interactions is shown. The Workflow Maanger is not
included in this sequence because it interacts with the MD in a different phase to instruct (see
below). Furthermore the Workflow manager is invoked by the MD to be informed about context
changes.

M M

' 1 subscribe()

| 31 nokify() :

Figure 26 — MD interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (In general, it is the section 3.x.y.2).

It is worth mentioning that in order to subscribe to the CM the MD has to be instructed to do
that. In the complete Akogrimo picture, the WF Manager will instruct the MD, during the OpVO
creation, passing it the information about the context which it has to subscribe on. The MD calls
the WEF Manager to update context in workflows upon any significant context updates it receives
from the workflow manager.

Details about the interactions between MD and CM can be found in [3] section 5.2.2.

3.3.4.4. Alternative behaviour

Unexpected and exception related behaviours of the Monitoring Daemon can be caused by

© Akogrimo consortium members page 73 of 100

D4.43,1.0

Calls to a method using wrong data types.
Registration of wrong context variable to user
* Error in update sensitivity

Passing wrong data types to the MD has been encountered through both human and machine
error, and purposeful use of incorrect data. The registration of a user to the MD and subsequent
registration with the context manager is a process that relies on good network connectivity.
Failure at this stage causes the workflow manager to stall. Sensitivity of the RFID tag on the
sensor has caused multiple context alerts being sent to the Monitoring Daemon in a short space
of time. This has the effect of the MD overwriting previous updates and triggering multiple calls
to the workflow engine in short spaces of time. This has the potential to negatively affect the
behaviour of the workflow engine. All events and errors are logged in the service.

3.3.4.5. Involved technologies

Implemented using the UNIX/Java/WSRF softwate stack. Furthermore it uses the WS-
Notification implementation available in GT4 core.

3.3.5. Sip Broker WS-Interface

3.3.5.1. Brief overview

This service does not represent a component itself, it is included in the Sip Broker component.
A tull description of the Sip Broker component more related to the SIP protocol can be found in
official Akogrimo deliverable D4.1.3 (see [7]). Keeping this in mind, from now on we will refer to
the WS-Interface as a component even when it is only a part of it.

This component aims to provide a WSRF service interface to the Sip Broker component
available in the platform and explained in detailed in deliverables of WP4.1 and WP4.2. Among
the functionalities offered by this service can be found

* Establish a sip call between two users

+ Allow the transfer of an audio/video session from one device to other
Obtain connection details of the mobile services running in different terminals
Notify the change of the features of mobile services

This functionality is offered by means of two services: SipBroker WSRF service and the Sip
Broker Notification Producer service.

3.3.5.2. Functionality

Table 23 details the signature of the operations exposed by Sip Broker WSRF service:
Table 23 - Sip Broker WSRF service

Sip Broker WSREF service

Sip Broker WSRF Service

Description This group of methods allows communication with the Sip Broker
component.

© Akogrimo consortium members page 74 of 100

D4.4.3,1.0

Sip Broker WSREF service

E-BPE-SBI-startSession

int startSession(userl,user2,sessionType,OpVOToken)

Description This method is used when a SIP Call between two akogrimo users
is required. The variables userl and user2 represent the identifiers
of the Akogrimo users, sessionType represents the type of session
(application/ sdp) and the OpVOToken is a token to ensute that the
request comes from the right Operative VO.

It returns an int telling success (0) or failure and in case of failure,
the type of failure.

E-BPE- SBI-transferSession

int transferSession (userl,user2,device,sessionType,OpVPToken)

Description This method is used when a transfer of a session (between two
users) has to be carried out from the current terminal to a new
device. Userl and user2 are the Akogrimo users that are having an
audio/video session, device tepresent the identifier of the new
device where the session is going to be transferred, sessionType
indicates the type of the session (in this case application/sdp) and
OpVOToken is a token to ensure that the request comes from the
right Operative VO

It returns an int telling success (0) or failure and in case of failure,
the type of failure.

E-BPE-SBI-getConnectionDetails

Connection details getConnectionDetails (userlD,servicelD)

Description This method is used for asking the connection details of a service
(or all services) of a certain user. It returns a string which includes
the URL at which the service can be found and the availability.

Table 24 provides the description of the operations provided by Sip Broker Producer Service
Table 24 — Sip Broker Producer Service

Sip Broker Notification Producer setvice

Sip Broker Notification Producer Service

Description This service notifies the change on the connection details of
mobile services to which EMS have been subscribed.

© Akogrimo consortium members page 75 of 100

D4.43,1.0

Sip Broker Notification Producer service

E-BPE-SBI-subscribe

void subscribe(topic)

Description This method is exposed in order to let other service to subscribe to
some of its topics. This service only exposes a topic which informs
the consumer service of the availability of mobile services. So far,
EMS has to subscribe to this service to know online where the
mobile services are located and their availability.

E-BPE- SBI-setState(state)

void setState (state)

Description This method is used to update the topic and to provoke a
notification to all consumers being subscribed to this topic. These
topics include information of the availability and location of a
mobile service associated to a certain Akogrimo user.

3.3.5.3. Interactions with other components

3.3.5.3.1. Main behaviour

The Sip Broker Interface service interacts with the following components:
Enactment Engine
- EMS

The Enactment Engine interacts with the Sip Broker when it is required either to establish a SIP
Call between two Akogrimo users or when a session transfer has to be carried out.

© Akogrimo consortium members page 76 of 100

D4.4.3,1.0

Grid Call

Grid Transfer

]]
Figure 27 - Enactment Engine — Sip Broker WS-Interface sequence diagram

EMS needs information about mobile services. In this sense, Sip Broker is the service that is able
to provide mobile services online. The information can be provided in two different ways:

* By invoking an operation directly (getConnectionDetails from Sip Broker WSRF)

* By subscription/notification mechanism (Subscribe from Sip Broker Notification
Producer)

© Akogrimo consortium members page 77 of 100

D4.4.3,1.0

SIP Broker
companants

Sip Broker Sip Broker ; |
EMS Iatif. Producer WSRF St

B. Runtime

1. Mohile
USET 5
connecion
racovared

C. Runtime

2, Maobile user avallable

P oo
o -, 3. Trigger
4. Motification message e
e

44— notification

5. Connection details of mobile user REQUEST =) :
SIP session for mobile

; QUEST S

session astablished

T % Update

-« ~ mobile reglistry

I | | |
| I I I

Figure 28 - EMS Sip Broker WS-Interface Sequence Diagram

3.3.5.3.2. Alternative behaviour

The Sip Broker WS-Interface is prepared to handle certain errors coming from the SIP
infrastructure modules. The return value in the operations invoked by the Enactment Engine
accounts for this type of errors. As it can be seen in the functionality section, the return value of
these two operations (startSession and transferSession) is an int whose value indicates if the process
has been catried out with success/failures. The meaning of the specific values are the same for
both methods (0 SUCCESS, 1 DECLINED, 2 FAILED, 3 TIMEOUT, 4UAERROR and 5
NOTFOND). For instance, DECLINED means that then doctor does not want to make the

© Akogrimo consortium members page 78 of 100

D4.43,1.0

call, FAILED one of the callers is not registered, TIMEOUT occurs when some of the callers is
waiting too much to accept the call and NOTFOUND occurs when a grid transfer is being
requested but no grid call is in progress).

The component will be updated during the maintenance phase in order to handle unexpected or
erratic behaviours.

3.3.5.4. Involved technologies

Both services have been developed using the WSRF and WS-Notification implementation issued
by Globus Toolkit 4.0. The services are deployed in the Kava WS-Core container also included in
the Globus Toolkit 4.0.1 version.

3.4. Grid Service Discovery Service

3.4.1.1. Brief Overview

The service discovery server is divided into two parts — the service repository and the service
discovery proxy. The service repository is principally replaceable, whereas the proxy stays the
same. This way the proxy hides the actual service registry implementation from the search clients.
In the testbed following configuration is used:

* Service Repository: ADONIS Business Process Management Toolkit with Akogrimo specific
extensions running on a Windows machine

GrSDS Proxy: C# Web-service running on a Windows machine

Figure 29 gives an overview.

4 I1S Web-Server) Tomcat Web-Server)

Service Description
QoS Description

-} Search/Publis h=——— Gr3Ds —Search/Publish:
Proxy

- J _

Figure 29 - GrSDS Design Overview

Service Registry

3.4.2. Functionality
The functionality of the GrSDS is logically divided into publishing of service descriptions and

searching for services. Publishing involves publish, update and delete operations. The search
functionality is accessed via the method SearchForServices().

Table 25 — GtSDS service methods

GrSDS

Service Search

Description The OpVOBroker or a GUI client may use the GrSDS to find the
desired services.

© Akogrimo consortium members page 79 of 100

D4.43,1.0

GrSDS

E-GRSDS-SearchForServices

public XmlElement SearchForServices(XmlElement serviceRequirements)

This method is used to provide a list of services that matches the

Description
service requirements passed as input

Service Publishing

Service providers can publish descriptions of the services they
offer. The service publishing functionality of the GtSDS allows to
store, update and delete service descriptions in the service registry.

Description

E-GRSDS-PublishService

public string PublishService(XmlElement serviceDescription)

PublishService() stores the service description in the service

Description
registry and creates a new unique id for that service description.

The newly created service id is returned as a string value.

E-GRSDS-UpdateService

public void UpdateService(string serviceld, XmlElement serviceDescription)

This method allows to update the service description of an existing

Description
service. The service id is the unique id that was returned from the
PublishService() call.
E-GRSDS-DeleteService
public void DeleteService(string serviceld)
Description Given the unique service id, this method deletes the service

description from the service registry.

3.4.2.1. Interactions with the other components

3.4.2.1.1. Main Behaviour

The main functionality of the GtSDS is to allow publishing of and searching for services. The
message elements of a search request and a response are show in the following two tables.

page 80 of 100

© Akogrimo consortium members

D4.43,1.0

Table 26 - GrSDS Search Request

Descriptive Name Search Request Message Element
Service Category category
Service Type serviceType
Geographical Location location
Table 27 - GrSDS Search Response
Descriptive Name Search Response Message Element
Service Name serviceName
Service Description serviceDescription
Service 1d serviceld
Service Provider Name serviceProviderName
Service Provider Id serviceProviderld
SP Internal Service 1d serviceProviderServiceld
Workflow Id workflowld
SLA Template 1d slaTemplateld
Context Id contextld
Negotiator URL negotiatorURL
Negotiator Resource 1d negotiatorResourceld
BaseVO baseVO

Searches are performed by the OpVO Broker in the OpVO creation phase or a customer.

The information that is provided by the Service Provider when a service is published consists of
the content of both tables.

3.4.2.1.2. Alternative Behaviour

The source of exceptional behaviour can be one or more of the following:

The network connection between the client and the GrSDS proxy, or the network
connection between the GrSDS proxy and the Service Registry

* The IIS Web-server or the Tomcat Web-server
* The .NET or Java runtime environment
The implemented functionality of either the GtSDS proxy or the Service Registry

Network connection problems usually result in a time-out on the client side and could be handled
by a second attempt or an increased time-out value. Increasing the time-out value for requests
from the GtSDS proxy to the Service Registry can be done by editing the Web.config file of the
GrSDS proxy Web-service.

Table 28 - IIS Web.config File

© Akogrimo consortium members page 81 of 100

D4.43,1.0

<configuration>

<system.web>

<httpRuntime executionTimeout="123" ... />

</system.web>

</configuration>

The httpRuntime executionTimeout is the maximum duration in seconds that a request to
the Service Registry is allowed to take before it is considered timed-out.

Problems of the Web-server or the NET or Java runtime environment are considered out of the
scope of this document. So the main sources of exceptional behaviour are the implementation of
the Service Registry and the GrSDS proxy.

The GrSDS design uses the adapter design pattern to abstract from the concrete implementation
technology that is used for the Service Registry component. In the Akogrimo demonstration
scenarios the ADONIS Business Management Toolkit is used as Service Registry. Because
ADONIS is commercial software, the detailed internal error handling is out of the scope of this
document. In principle any database with adequate search capabilities could be used as service
registry. The purpose of the GrSDS proxy is to internally interface with the given implementation
technology. So the following error handling flow chart deals only with the GtSDS proxy.

© Akogrimo consortium members page 82 of 100

Yes

Foreward error to
client

D4.4.3,1.0

Convert the '
search parameters

No

!

Call Service
Registry

Error in
service call

Convert return
values

End -

Error in
conversion

Error in
conversion

Yes

'

Throw Exception

Yes

Throw Exception

Figure 30 - GrSDS Proxy Error Handling

The error handling flow chart of the service publishing functionality is identical in that the
parameters are converted into the required format and passed on to the Service Registry.

3.4.2.2. Involved technologies

The following two tables show the technologies used for the GrSDS Proxy service and the

Service Repository.

Table 29 - Involved Technologies of the GrSDS Proxy

GrSDS Proxy

Operating System

Windows 2003 Setrver

Web-Setver

11S 6.0

© Akogrimo consortium members

page 83 of 100

D4.43,1.0

GrSDS Proxy

Other Components | NET Runtime v1.1

The GrSDS Proxy that interfaces with the actual Service Registry was designed to be a rather
light weighted standard Web-service making it possible to use different underlying search
engines.

Table 30 - Involved Technologies of the Service Repository

Service Repository (ADONIS Business Process Management Toolkit)

Operating System Windows 2003 Server

Web-Server Apache Tomcat 5.5

Other Components | Java 1.5.0_08

The ADONIS Business Process Management Toolkit is a commercial software package
developed by BOC Asset Management.

* ADONIS: Business Process Management Toolkit (service1) - [eHealth Services (Service model)]
[&) Model Edt Wiew Assessment Extras Window Help =13 x|

SRS OAE ey | DSRE [2FEs 0 LLE HE QED [#HE acES &

Explorer - Models in the database x Mod.. x
=N R AR
=) Models
3 1_ProcessCollection
= £ 2 ServioewFDescription

[&) High Level Parameter Search
{1 HighPerfSLA
[&) Location
{0 LowPeiSLA
[&) Simple Service Search
= 3 3_ServiceColection
28 DataTypes
[El eHealth Services
[E Gereral Purpose Services

| «mo0 sl

B3
QEHEI’ZIEDBTB
— B

EcgDataGenerator stopDataGeneration
Service Sources
= 3 3 WorkfowCollection
[@) e-heathFinal
[@) WF_ECG &nalysation 1.0
[€) WF_ECG FurtherDiagnosis 1.0
[€) WF_ECG Recoiding 1.0
[€) WF_ECG Transmission 1.0

[) WF_Orig Translation 1.0 isualize SimpleData %

[€) WF_PatLoc Firstaid and Disgnosis 1.0 E analyzeData
[) WF_PaiLOC Initiate Emergency Call 1.0

[€) WF_PatReiDat Go To Hospital 1.0 [—]

[#) WF_PayOrd Papment 1.0 EcgDatavisualizer %g [—]

[8) whieN10145 visualizeDetailData EcgDatasnalyzer

[4 Endpaints

registerForwardData
wrapData
MedicalDatalogger
10
start J @ e B J =] | i serververwaltung | gl ADONIS: Business Proce. . | 54 ADONIS: Business Pro... | &] ADOweb Service D\smve”.l |57 Ciiprogrammeapache 5. | J cHEPE RO

Figure 31 - ADONIS Business Management Toolkit

Service modelling is only a small part of the functionality of ADONIS. The richness of the
modelling capabilities ranges from simple WSDL descriptions to semantic technologies like topic
maps, which are used to model specific geographic locations like the hospital of the eHealth
scenario with its different floors and rooms.

© Akogrimo consortium members page 84 of 100

D4.43,1.0

3.5. Security infrastructure

This section gives an overview of the overall security infrastructure developed in the frame of the
Grid Application Support Service work package and the most of the available information have
been extracted from the internal deliverable [§].

It is worth mentioning that, due to their relevance, in Akogrimo the multi domain aspects had a
huge impact on the security infrastructure design choices, so before describing the developed
security infrastructure the Akogrimo multi domain model is introduced again here.

Furthermore in order to put the reader into the picture, a complete overview of the GASS
security infrastructure is provided but it will also explained any change introduced with respect
the overall design in order to simplify the implementation.

3.5.1. Multi domain and security

A Virtual Organization is a dynamic collection of heterogeneous and distributed resources, which
cooperate to satisfy common goals. Usually, the VO resources (users, services and physical
resources) are owned and controlled by various organizations, these can often be viewed as
separated by physical computing domains. In this model the Home Domain is responsible for the
local administration of these resources and controls access to them according to their internal
policies management mechanisms. In Akogrimo, we have identified five types of Home Domain:

* Customer domain; is an organization that buys services available in the Grid environment
and makes these services available to its end users

* Network domain; is the domain of an organization providing network capabilities to access
VO resources

* Service Provider domain; is the owner organization of resources involved in the VO, on the
service level access to the VO’s is managed by this domain.

* BVO domain; is the Akogrimo management services hosting domain and maintains the list of
resources and members participating to VO activities; resources belong to Service Provider
domain and members belong to the Customer domain

* OpVO domain; it is a logical domain created at run time in order to group all resources
which are need to collaborate and to deliver a service to Customer domain. This domain lives
in the BVO domain and includes resources from BVO and Service Provider domains.

The Figure 32 shows the relations between the BVO and the other domains, in particular it
points out the presence of management services in the BVO domain which support this domain
activities.

© Akogrimo consortium members page 85 of 100

D4.43,1.0

Service Provider
domain

Network

Provider domain

Q.

Management Service Members

Customer

domain

Figure 32 BVO definition

In [1] a domain is defined as “administrative aspect of an organization (e.g. an Enterprise or a Company, a
Unaversity Department or a Hospital) that comprises a set of individuals and resources. In a domain, the resources
(hardware and software) are owned and managed by a common administrative authority’. We further detail
this definition introducing the concept of Administrative Domain, which is a domain that includes
at least an authentication and authorization authority and a list of members (see Figure 33).

Base VO
- - Memmb _L. - ;/‘
ember List ~ ..
- nannn Repository _ BVO administrator
-

S o) _-

~ -

A~ - Other Mng setvices -
authority | ~ =< _Bv6 TOGIC DOMAIN
—

-~
-
—
N _——_———

Figure 33 BVO described as an Administrative Domain.

The authentication and authorization service is a local authority that has to supervise the
member’s activity inside the domain; a repository exposed as service is used to manage domain
list of members.

These components have an important role in a typical Akogrimo scenario, because it is based on
the collaboration and cooperation between members of these domains. The main issue is
allowing safe resources sharing and utilization, which requires:

* verify the identity of a requestor,
* check if the requestor is a member of the domain
* verify policies in order to authorize the request

To describe how interactions span the identified domains, we describe a generic service
provisioning scenario. We suppose that a BVO is created and all Akogrimo management services

© Akogrimo consortium members page 86 of 100

D4.43,1.0

have been configured and initialized. We assume an agreement has been established between a
Service Provider and the BVO Manager for the sharing of some resources/services which are
hosted in the domain of the Service Provider. Furthermore, we assume a Customer organization
is a member of the BVO and it wishes to make available a service, provided by the BVO, to its

end usets.

As a member of the BVO, the Customer asks for the execution of an Akogrimo application
which in turn leads to the creation of an OpVO which provides the requested services to fulfil
the Akogrimo application requirements. The creation of the OpVO is authorized by BVO
management services and requires collaboration between services in the BVO and in the Service
Provider domains to negotiate the service instance that can fulfil Customer requirements. In
particular, User and Service Agent instances are created; they assume an important role from the
security view point because they are the component that should allow the cross and multi domain
communication, in fact, they guarantee the secure communication from the external domain to
the OpVO (external user of the OpVO) and from the OpVO towards the external domains
(Service Provider domains. The logical OpVO domain is created and all selected service instances
become members of this domain.

Figure 34 summarizes the process described above:

User Agent :,

% A Member of
g, P
Y

Service Agent

Member of

Service Provider
domain

. b
&' Member of,/ |3 =
4 \ @
e \ B
Ask for OpVO creation Y, Member of g
\ =
\ o
=8

Service Provider
domain

Customer domain

g B

The customer asks for the OpVO creation as shown by red arrow. This request is elaborated by BVO services,
which as to negotiate with the Service Providers the QoS for service instances (green arrows). Negotiated
service instances become member of the OpVO and Setrvice and User Agent instances are created

Figure 34 OpVO domain creation.

Then the customer can allow to its members to access OpVO functionalities according to rights
defined in the Customer domain. An invocation starts from this user in the Customer domain
and it passes through one (or more) Network Provider Domains to obtain access to the network.
Then the request arrives into the OpVO domain, and from this domain several invocations have
to start in order to use services in Service Provider domains involved in the OpVO execution. Of

© Akogrimo consortium members page 87 of 100

D4.43,1.0

course also these last invocations must pass through several Network Provider domains that
cannot be known in advance because the invoked services could be on mobile devices. These
steps are described in Figure 35.

% .\ B[~ auenbe ” BVO
2

Service Provider
domain V-

Network ~o

<
<
% Provider domain AN
: <

Customer domain

Network

Service Provider
domain

Provider domain

TR
d 3

Customer Clients {A&

An end user, from the Customer domain, accesses to OpVO functionalities as shown by red arrows. The
OpVO invokes services belong to Service Provider domains, as shown by green arrows, to orchestrate service
capabilities and deliver the final service to the end user. The access to services in the OpVO and in Service
Provider domains is realized via Network Provider domains.

Figure 35 The end user accesses the OpVO

The flow of inter domains interactions typical of the Akogrimo environment and described in
this section have been taken into account in the design of the WP4.4 security infrastructure.

From the implementation viewpoint the following assumptions have been taken:

* BVO and OpVO will belong to the same secure perimeter. Even if several OpVO will be
created inside a BVO, from security viewpoint all the services will belong to the same secure
perimeter (the BVO perimeter). Although separate OpVO tokens will exist.

* Customer plays the user role as well

* Network provider is taken into account in the communication between costumer and BVO
domain (red line in Figure 35).

3.5.2. Security infrastructure basics

The security infrastructure of Akogrimo is based on token distribution architecture around an
Akogrimo Certificate Authority (CA). The Akogrimo CA presents methods to create Akogrimo
tokens and check the validity of existing tokens. This service is called in order to authenticate
communication within the Akogrimo VO and between the VO and external service provider
domains.

© Akogrimo consortium members page 88 of 100

D4.43,1.0

Each communication is realized via a SOAP message; to allow the identification and
authentication of the requestor, the SOAP message has to include a valid token and has to be
sighed by a trusted authority. When a SOAP message is received, a set of steps allow
authenticating the sender as VO member.

Of course, as basilar assumption the approach does rely on a secure token distribution
mechanism. The initial token distribution is based on a Trusted Third Party trusted by the VO
members (including customers and service providers). It is also assumed that VO and SP core
systems are not compromised before or during the initial token distribution.

Moreover, policy is enforced close to the point of decision. In respect to the Akogrimo
architecture at the VO level policy management and enforcement stems from the Base VO. It is
therefore the Base VO manager that has both the authority and means to make and enforce
decisions relating to policy.

The Base VO is the key authority for VO tokens that it creates, with tokens also being created at
service provider level. It is envisaged that the Policy component at Base VO level will have to
consist of both an engine and tool to design policy; we use Permis as our Policy engine.

3.5.3. Functionalities

The main functionalities of the Akogrimo Security infrastructure involve authentication and
authorisation of calls to the VO infrastructure. As discussed in the previous section with respect
to the VO managers the UA provides a token that is authenticated. The requests made to the VO
are authorised using the VO and PERMIS identity management authorization that is integrated
into the BaseVO service.

According with the multi domain model and the final assumptions introduced in section 3.5.1,
the security infrastructure has implemented four main use cases involving respectively:

* Authentication and authorization in communication between external requestors (customer
domain or Service Provider domain) and VO domain

* Authentication and authorization in communication between services inside the VO domain

The following tables describe those use cases:

Table 31 - VO authentication use case

Use Case VO Authentication

Description This use case describes how a requestor (end user) is authenticated
when asks for VO access. We use the generic term VO referring to
BVO and OpVO because we have the same flow of events.

Flow of events:

* The user sends a request to its UA instance and specifies its
SAMLID token and the username used in the VO.

* The request is forward to VO Manager

* The VO Manager sends the SAMIL token and username to
A4C in the Home Network Provider domain

* The A4C in the Home Network Provider domain returns to
VO Manager the result of its authentication process

© Akogrimo consortium members page 89 of 100

D4.43,1.0

Use Case VO Authentication

Actor User, Home Network Provider, User Agent, VO Manager
(BaseVO/OpVOManager)

Preconditions The user has a SAMLID token issued by its Home Network
Provider

The user knows the endpoint of its UA instance

The UA instance is a member of the VO and has a VO token

Post conditions The user has been authenticated and then the authorization phase
can be started

Table 32 - Intra VO Authentication use case

Use Case Intra VO Authentication

Description This use case describes how authenticate the service to service
communication in the VO.

Flow of events:
* The service sends a request to another service
* The service includes in the request its VO token

The VO token is forwarded by the receiving service to the VO
Manager

* The VO Manager authenticates the service requestor checking
the validity of its VO token

Actor VO services, VO Manager (BaseVO/OpVOManager)

Preconditions The VO service has a key pair (private, public)
The VO service has to have a VO token issued by the VO Manager

Post conditions The VO service is authenticated as VO member

© Akogrimo consortium members page 90 of 100

D4.43,1.0

Table 33 - VO authorization use case

Use Case VO Authotrization
Description This use case describes the requestor (end user) authorization
process when he asks for VO functionalities. We use the generic
term VO referring to BVO and OpVO because we have a same
flow of events.
Flow of events:
The VO Manager checks if the username is valid for the VO
(username is stored in the VO Participant Registry)
* The VO Manager retrieves the role from user profile using the
username value
The VO Manager invokes Policy Manager to have the set of
authorization policies to be applied for this role
* The VO Manger matches the requested actions with user
privileged in the VO
Actor User, User Agent, VO Manager (BaseVO/OpVOManager), Policy
Manager
Preconditions The user has been authenticated successfully according to the
above VO authentication use case
The user has a username valid for the VO
The user has a profile in the VO
The user profile contains the role of the user in the VO
The role specifies the rights/privileges of the user in the VO
Post conditions The end user has been authorized to invoke the UA instance, which
is able to act on behalf of the user inside the VO.

© Akogrimo consortium members page 91 of 100

D4.43,1.0

Table 34 - Intra VO Authorization use case

Use Case Intra VO Authorization

Description This use case describes the authorization process with regard to the
communication between services inside the same VO. These
services are likely to be BaseVO services or instances of BaseVO
services, such as the OpVO Manager and Workflow Manager
instances. It is not envisaged that service to service provider
domain communication will take place via a Akogrimo VO. We use
the generic term VO referring to BVO and OpVO because we have
a same flow of events.

Flow of events:

* The service (requestor) sends a SOAP request to another
service (destination) inside the same VO including the VO
token

* The request is intercepted by the Policy Enforcement Point
(PEP)B
* The PEP invokes the Policy Decision Point"* (PDP)

* The PDP invokes Policy Manager to retrieve policies about the
use of service destination

* The PDP accesses to requestor role in the VO member
repository

* The PDP matches the requested actions with service rights in
the VO and requestor rights

Actor VO member Services, PEP, PDP, Policy Manager, VO member
repository
Preconditions Each VO member service has a private and public key pair

Each VO member service has a VO token issued by VO Manager

The VO token contains service endpoint as subject and its public
key

The SOAP invocation has to contain the VO token and has to be
signed by the requestor

The SOAP invocation has been authenticated successfully

Each VO member setrvice has a role well defined in the VO

Post conditions The request by VO member service is authorized or blocked

13 From now on the term PEP refers to a SOAP filter in the SOAP engine of the invoked service able to extract
from the SOAP message the header related to the security information sent by the requestor.

14 From now on the term PDP refers to the VO manager (BVO or OpVO) that is able to take an
authentication/authorization decision related to the actions required by a requestor with some credentials.

© Akogrimo consortium members page 92 of 100

D4.43,1.0

Apart from the above use cases, another scenario has to be considered related to the
authentication and authorization for invocations from VO to Service Provider domain.

It is a typical multi-domain scenario because it addresses the issues related to the authentication
of service requestor in the Service Provider domain. The services provided by a Service Provider
are accessible via a Service Agent instance, which acts like a proxy for accessing to the target
services. The SA is a member of a VO. So, this type of authentication involves the VO and
Service Provider domains. The Service Agent, as VO member, has VO token; this token is sent
to Service Provider which parses it to authenticate the requestor as OpVO member and to grant
or block the request.

The process is similar to the one described in the intra domain authentication and same
considerations can be done also for the authorization process. of course in this case the PEP and
PDP components will be in the SP domain then the Service Provider can choose which
implementation to use.

3.5.4. Interactions between the components

This section provides the list of components involved in the authentication and authorization
(AA) process. Furthermore describes also the interactions between them providing the sequence
diagrams related to the AA for:

requests from an external user to the VO (see also use cases in Table 31 and Table 33)

communications between services inside the VO (see also use cases in Table 32 and Table 34)

3.5.4.1. Involved components

3.5.4.1.1. Authentication
The components involved in the authentication process are: VOManager, A4C at Home
Network Provider and the Authentication Decision Point.

The Authentication Decision Point is a special component of the SOAP pipeline and its task is to
verify the validity of security tokens included in the incoming SOAP messages for the service.

The VOManager (see also section 3.1.1 and 3.1.2) and the Authentication Decision Point are
components that are involved in each authentication scenario described above, while the A4C at
Home Network Provider is the core component for the authentication of an end user when he or
she accesses the VO functionalities via his or her User Agent instance (end user authentication
scenario).

3.5.4.1.2. Authorization

The authorization process involves the VOManager, the ParticipantRegistry, the Policy Manager,
and the Policy Enforcement Point (PEP).

The PEP is a filter in the SOAP Engine (actually it is the same of the Authentication Decision
Point) and it starts the process in the pipeline which supervises incoming requests for a service in
order to check if the requestor is authorized to ask for the specified action.

The role of the Policy Decision Point is taken over by the VO manager.

3.5.4.2. Sequence diagrams

Two sequence diagrams are provided here.

© Akogrimo consortium members page 93 of 100

D4.43,1.0

Figure 36 shows the steps for the authentication and authorization of an end user when they use
their User Agent instance to invoke VO functionalities.

end user SOAP Filker YOMananer A4C @ Home Mebwork Provider Domain ParticipantR eqistry PolicyManager U Instance

1 : InvokeService() H H
Lt 21 AuthenticateUsery 1
I

3 WerifyIdentity()

o=

4|: YerifyspMLIDTaken)

Usernamer)

6 1 YerificationResult

7 ¢ AuthenticationResult

& Che kAutHanticatinnResult()

a3 i
E 9 ;i False Access Denied 10 ,quthonzeRequestor()._ :
[

11 : TakeUserPrafiled)

et i

12 : UserProfile

131 GetPolicies()

o S i

14 : PolicySet
15: Zhec@]serPrivileges()

16 ¢ AuthorizationResult

17 1 TheckauthorizationResultd)

r

- 19 ¢ if true InvokeServicel) H
15 : if False Access Denied?) ,u

-

Figure 36 - End User AA

1. The SOAP filter catches the SOAP message asking for the invokeService method on the UA
instance

2. The SOAP message is parsed to extract the security information (SAMLID token and user
identity) and the VO manager is invoked to authenticate the requestor

3. The VO Manager checks the signature in the SAMLID token and if it is from a trusted A4C,
invokes the A4C (in the network provider domain) to ask for authentication

4. 5. 6. The A4C performs checks on the SAMLID token and associated identities and returns
the validation results

7. VO manager elaborates and passes back the validation results to the SOAP filter

8. 9.10. SOAP Filter checks the results and decides to block the request or to continue in the
filters chain invoking the VO Manager for request authorization

© Akogrimo consortium members page 94 of 100

D4.43,1.0

11. The VO manager in order to take an authorization decision retrieves the profile associated to
the requestor identity.

12. The VO manager extracts the role from the received profile
13. 14. It gets the authorization policies from the Policy Manager

15. 16The VO Manager takes a decision on the basis of the information it has retrieved and
passes back the authorization results

17. 18. 19. The SOAP Filter on the basis of the received results allows the request to be
processed by the UA instance (19) or blocks it (18)

Figure 37 shows how the communication between two services inside the VO (VOservicel and
VOService2) has to occur from the authentication and authorization viewpoint. As members of
the VO, these services have the VO token which contains service public key and is signed by VO
Manager.

VOServicel tries to invoke the Method() on VOService2.

YoServicel SOAP Filker YoManager Participant Registey PolicyManager Wi Services

1 : Method()

i -
i 21 Che kﬁ\.ut%nticatianResult()i

[
51 if False block reques

H 4 .ﬁ.uthorizeServiceQ '
! Ll

5 : gekProfile) - '

ey

e Get[fr‘olicies()

B
& PolicySet I

3| Jheck duthorization) : E

: 01 AuthorizationFesult :
' ; 11 ¢ iF brue Method()

' '
' '
' '
' '
' ' -r" '
! ' ' '
: ' ' '
' ' '
Ll ' | '
' '

U?if False block request() ; ;

Figure 37 — AA between services inside the VO

1. The SOAP message for requesting Method() on VOService?2 is blocked in the SOAP Filter of
the VOService2 of the SOAP engine

2. The SOAP Filter extracts the security information included in the SOAP message and asks
for authenticating the requestor.

3. 4. If the requestor is authenticated the SOAP Filter asks the VOManager for authorizing this
request on the basis of requestor identity.

© Akogrimo consortium members page 95 of 100

D4.43,1.0

5. 6. The VO Manager retrieves the profile of the invoker and the associate role

7. 8. 9. The VO Manager gets the authorization policies associated to the role and takes a
decision.

10. 11. 12. The SOAP Filter on the basis of the received results allows the request to be
processed by the VOService2 (11) or blocks it (12)

3.5.5. Involved technologies

The implementation of security infrastructure has dealt with logic underlying:

* The implementation of SOAP Filter. Furthermore, filter have been implemented using tools
available on hosting platforms (i.e. Axis and WSE) that provides features to manage the
incoming SOAP message according with the WS-Security specification.

The authentication/authorization process in the VO manager. It is based on the use of X.509
certificate and PERMIS for authorization

© Akogrimo consortium members page 96 of 100

D4.43,1.0

4. Conclusions

The goal of the WP4.4 prototype release described in this report was to implement the features
that were not addressed during the first implementation cycle.

In the first prototype these missing features were grouped in three main areas:
Dynamic OpVO creation
Improvement of WF instances management

* Security infrastructure

These brief conclusions have the aim of summarizing at which extent the current prototype has
met the objective of providing the above features.

In particular, referring to the above bulleted list:

* The implementation of the dynamic OpVO creation mechanism has covered all the pending
functionalities that were related to this feature. The complete process has been summarized in
section 2.2.2 and it involved the implementation of new services (e.g. OpVOBroker, SLA
Negotiator,...) as well as the update of existing ones (e.g. OpVO Manager, BVO
Manager,...). It is worth mentioning that a preliminary integration of a first release of all
involved services has been successfully tested running a demo of preliminary implementation
of the eHealth scenario.

The mechanism managing the WF instance deployment and WEF dynamic adaptation was
improved, as well. The current implementation does not require offline setup anymore, but all
the required configurations are performed dynamically at run time during the OpVO creation
phase. Also this mechanism has been successfully tested with an intermediate implementation
release, which has provided important feedbacks to finalize the implementation in the right
way.

* The implementation of the security infrastructure is a pending task. Though a final design is
available, a complete implementation is not available yet. This the main implementation task
to be covered during the next months apart from the maintenance activities that can be
required as result of the integration and evaluation phase.

In accordance with the report we can conclude that the most of the goals were met but some
important implementation tasks are still pending and they will be covered during the next five
months when the final implementation is going to be released.

During these months the available services of GASS layer will be integrated with the other
available modules from other WPs and the integrated prototype will be validated through a
quantitative testing that will provide relevant feedbacks that could result in further updates if the
required changes will be evaluated necessary to execute successfully the validation phase.

© Akogrimo consortium members page 97 of 100

D4.43,1.0

References

[1] Akogrimo official deliverable: D.3.1.3 “The Mobile Grid Reference Architecture”

[2] Akogrimo official deliverable: D4.4.1 “Architecture of the Application Support Services
Layer”

[3] Akogrimo official deliverable: D4.2.3 “Final Integrated Services Design and Implementation
Report”

[4] Akogrimo official deliverable: D5.1.2 “Integrated Prototype”

[5] Akogrimo official deliverable: D4.3.2 Prototype Implementation of the Grid Infrastructure
layer

[6] http://www.permis.org/

[7] Akogrimo official deliverable D4.1.3 “Final Service Network Provisioning concepts”

[8] Akogrimo internal deliverable 11D4.4.3 “Updated architecture design”

© Akogrimo consortium members page 98 of 100

D4.4.3,1.0

A.1. Participant Profile

When registering to a VO, a participant profile is taken over and stored in the
ParticipantRegistry. If the VO needs more or less attributes, the participant can change the
attributes.

An example of such profile, used in the current implementation is:

Profile @ VO

Username

User Data (option)
Role

Attributes

Participant Public Key

Figure 38 - BVO participant profile example

This profile is described using a XML document and the related schema is defined below:

<xs:complexType name="ParticipantProfileType">
<xs:sequence>

<xs:element name="Participantld" type="xs:string" />
<xs:element name="Profileld" type="xs:string" />
<xs:element name="Role" type="xs:string" />

<xs:element name="ParticipantPublicKey" type="xs:string" />
<l-user data -->
<xs:element name="Applicationld" type="xs:string" />
<xs:element name="PDA" type="xs:boolean" />
<xs:element name="MobilePhone" type="xs:boolean" />
<xs:element name="Notebook" type="xs:boolean" />
<xs:any minOccurs="0" maxOccurs="unbounded" />
<l--end user data -->

</xs:sequence>

</xs:complexType>
<xs:element name="ParticipantProfile" type="tns:ParticipantProfileType" />

At the moment, the Participant Registry has been tested using XML document based on the
above schema.

A.2. VO token

The architecture is secured by a token and policy enforcement infrastructure. The root of
authority for VO tokens is the BaseVO Manager which provides BaseVO tokens for all members
of the BaseVO. All communication to or from a BaseVO member is accompanied by a BaseVO
issued token. The Operative VO mirrors this. However the OpVO Manager tokens are issued
from the Base VO. Thus allowing the BVO control over the tokens in the static and dynamic VO
infrastructure.

In addition to the BVO Token, when services and user agents join the BaseVO they are also
given the Base VO’s public Key. When they join the OpVO they also receive an OpVO

© Akogrimo consortium members page 99 of 100

D4.43,1.0

Membership token and the OpVO public key. The public keys are used to decrypt messages and
tokens received from the Base VO or OpVO. This is a simple method of validation, rather than
referring back to the BaseVO/OpVO

BVO TOKEN

BYO MNAME

Bv(PUBLIC KEY BvVO MEMBER

SUBJECT'S MAME TOKEN

SUBJECT'S PUBLIC KEY VO MAME

SIGNED BY BYO MAN B PUBLIC KEY OPVO MEMBER
SERVICE NAME TOKEN
IF OPYO MAN PUBLIC
&Eﬂ OPVO MANAGERS

TOKEM

SIGNED BY BYO MAN MEMBER NAME

OPYOMAN FLB KEY
MEMBER ROLE ETC
SIGHMED BY OPWO MAN

Figure 39 - VO Tokens

As the Figure 39 illustrates, the respective VO managers are the trusted validation (CA
equivalent) parties for the individual tokens when sent cross domain, and they share their
respective public keys between their members.

All VO tokens issued from the managers are encrypted using the receiver’s public key and
decrypted by the receiving services public key and the tokens are signed using the sender’s private
keys. Within a domain, all token flow is encrypted. In order to achieve this, public keys of the
individual components sending the messages out are included in the tokens accompanying the
message.

© Akogrimo consortium members page 100 of 100

