

WP4.4 Grid Application Support Services
layer

Dissemination Level: Public

Lead Editor: Giuseppe Laria, CRMPA

05/09/07

Status: Final

D4.4.4

Consolidated Report on the
Implementation of the

Application Support
Services Layer

Version 1.0

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

P
ro
je
c
ts
it
e
:
w
w
w
.m
o
b
il
e
g
ri
d
s
.o
rg

D4.4.4, 1.0

© Akogrimo consortium members page 2 of 126

This is a public deliverable that is provided to the community under the license Attribution-NoDerivs 2.5
defined by creative commons http://www.creativecommons.org

This license allows you to
• to copy, distribute, display, and perform the work
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that this work originated from the
IST-Akogrimo project and has been partially funded by the European Commission under
contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build upon this work without
explicit permission of the consortium

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE

("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE

WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS

OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR

ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are

assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined

below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,

musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,

condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a

Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the

Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image

("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License

with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a

previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other

limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,

perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the

Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio

transmission the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a

performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g.

webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music

rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover

version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the

equivalent in other jurisdictions).

D4.4.4, 1.0

© Akogrimo consortium members page 3 of 126

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives the

exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public

digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright

Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to

make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License,

and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work

You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work

that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the

Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly

display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the

Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a

Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this

License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the

Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep intact

all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties

(e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other

reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the

Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the

copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided,

however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit

appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer. UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING

THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES

OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF

LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH

EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE

LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR

EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses

terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive

any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the

Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing

the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has

been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless

terminated as stated above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the same

terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the

remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to

the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in

writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings,

agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions

that may appear in any communication from You. This License may not be modified without the mutual written agreement of the

Licensor and You.

D4.4.4, 1.0

© Akogrimo consortium members page 4 of 126

Context

Activity 4 Detailed Architecture, Design & Implementation

WP4.4 Grid Application Support Service layer

Dependencies This deliverables uses specifically the input of the deliverables D4.4.3,
D4.4.2, D4.4.1 .

Contributors: CRMPA, HLRS, DATAMAT, CCLRC, TID, ATOS

Contributors (in alphabetical Order): Reviewers:

ATOS: Section 3.2, Annex A.3 S.Wesner, J.Jahnert, Nuno Inacio
CCLRC: section 3.1, 3.3, 4
CRMPA: section 1, section 2, 3.1, 3.2, 4, Executive
Summary

DATAMAT: section 3.3
TID: section 3.2, 3.3
USTUTT: section 3.4

Version Date Authors Sections Affected

0.1 31/05/07 CRMPA Introduction update, Section 2 update

0.2 29/06/07 All Section 3 update

0.3 20/07/07 CRMPA Created section 4 updating/improvement
section 3.5 of D4.4.3

0.4 31/07/07 CRMPA Executive Summary and Conclusions

0.5 31/08/07 CRMPA Internal review recommendations
implementation

1.0 05/09/07 CRMPA Quality check recommendations
implementations

D4.4.4, 1.0

© Akogrimo consortium members page 5 of 126

Table of Contents
Table of Contents...5

List of Figures ...7

List of Tables ..9

Abbreviations..10

Executive Summary ...12

1. Introduction ...14

1.1. Implementation Scope ..14

1.2. Document structure...15

2. Prototype Overview..17

2.1. Prototype Software Components ..17

2.2. Overview of available features ...19

2.2.1. BVO Administration ..20

2.2.2. OpVO creation..23

2.2.3. OpVO Use ...28

3. Final prototype GASS services ...31

3.1. VO management subsystem...32

3.1.1. BVO Manager..32

3.1.2. OpVO Manager...33

3.1.3. User Agent ...36

3.1.4. Service Agent Factory...41

3.1.5. Participant Registry ...44

3.1.6. OpVO Broker..53

3.2. SLA High Level..56

3.2.1. SLA-Access ..56

3.2.2. SLA-Translator ..58

3.2.3. Contract/Template-Repository ..60

3.2.4. SLA Negotiator ...65

3.3. BP enactment..71

3.3.1. WorkFlow Registry ...71

3.3.2. Enactment Engine ..75

3.3.3. WorkFlow Manager ..79

3.3.4. Monitoring Daemon...80

3.3.5. Sip Broker WS-Interface ..82

3.4. Grid Service Discovery Service..87

D4.4.4, 1.0

© Akogrimo consortium members page 6 of 126

3.4.2. Functionality ..87

4. Security infrastructure...95

4.1. Introduction ..95

4.1.1. Multi domain and security ...95

4.2. Attack Model ..98

4.3. Vulnerability Analysis ..100

4.4. Defence Approach...101

4.4.1. Security model: basic concepts..101

4.4.2. Assumptions ..104

4.5. Security infrastructure overview...104

4.5.1. Functionalities..104

4.5.2. Interactions between the components...108

4.5.3. Involved technologies ..111

5. Conclusions..112

References ...113

A.1. Participant Profile ..114

A.2. VO token...114

A.3. Akogrimo SLA documents ...115

A.3.1. SLA rationales ..116

A.3.2. Akogrimo SLA documents ..117

D4.4.4, 1.0

© Akogrimo consortium members page 7 of 126

List of Figures
Figure 1 - WF based OpVO...12

Figure 2 - Generalized OpVO model ...12

Figure 3 - Interactions between the software components..19

Figure 4 - Subscription to the BVO ..21

Figure 5 - SP publishes a service..22

Figure 6 - OpVO initial setup...24

Figure 7 - Retrieving OpVO description and identify services ...25

Figure 8 - Retrieving WF template and identify services..26

Figure 9 - WF Deployment...27

Figure 10 - Final Setup ..28

Figure 11 - A mobile user uses the OpVO...29

Figure 12 - BVO Manager interaction sequence ...33

Figure 13 - OpVO Manager population sequence ..35

Figure 14 - UA interactions sequence ...38

Figure 17 - FactorySA interactions sequence...44

Figure 18 - Data structures related to Participant Registry ..52

Figure 19 - OpVOBroker flowchart..53

Figure 20 - OpVOBroker interactions sequence...55

Figure 21 - SLA Access interactions sequence ..57

Figure 22 - SLA Translator interactions sequence ..60

Figure 23 - SLA Contract and Template Repository ..61

Figure 24 - SLA Document Read Control Flow ...63

Figure 25 - SLA Document Write Control Flow ..64

Figure 26 - SLA Negotiator interactions...67

Figure 27 - SLA-Negotiator sequence diagram representing the handling errors case....................71

Figure 28 - Workflow Registry Interfaces...74

Figure 29 - Enactment Engine interactions sequence ..77

Figure 30 - Enactment Engine interactions sequence ..78

Figure 31 - MD interactions sequence ..81

Figure 32 - Enactment Engine/Sip Broker WS-Interface sequence diagram85

Figure 33 - EMS Sip Broker WS-Interface Sequence Diagram...86

Figure 34 - GrSDS Design Overview..87

Figure 35 - GrSDS Proxy Error Handling ...92

Figure 36 - ADONIS Business Management Toolkit ..93

Figure 37 - ADONIS Service Categorisation...94

D4.4.4, 1.0

© Akogrimo consortium members page 8 of 126

Figure 38 - BVO definition...96

Figure 39 - BVO described as an Administrative Domain. ...96

Figure 40 - OpVO domain creation. ...97

Figure 41 - The end user accesses the OpVO ...98

Figure 42 - Security focus within Akogrimo ..99

Figure 43 - High level view of attacks in interactions between external user and BVO/OpVO.101

Figure 44 - UA and SA overview...102

Figure 45 - End User AA..109

Figure 46 - AA between services inside the VO..110

Figure 47 - BVO participant profile example ..114

Figure 48 - VO Tokens ...115

Figure 49 - Akogrimo Agreement definition approach ..116

Figure 50 - HL and LL Templates and Contracts ...117

D4.4.4, 1.0

© Akogrimo consortium members page 9 of 126

List of Tables
Table 1 - Prototype Software Components..17

Table 2 - Roles and associated authorization rules..20

Table 3 - Akogrimo Unix software stack..31

Table 4 - Akogrimo Windows Software Stack...31

Table 5 - BVO manager service methods...32

Table 6 - OpVO manager service methods..34

Table 7 - User Agent methods ...36

Table 8 - Service Agent methods ...43

Table 9 - Application methods exposed by the SA of the ECG_DG ...43

Table 10 - Participant Info service methods ..45

Table 11 - VOInfo service methods..48

Table 12 - Participant Name Service methods...50

Table 13 - OpVOBroker methods...54

Table 14 - SLA-Access service methods...56

Table 15 - SLA Translator service methods...58

Table 16 - SLA repository service methods ...61

Table 17 - SLA-Negotiator methods...65

Table 18 - Workflow Registry Data structure ..72

Table 19 - WF Registry service methods ..72

Table 20 - Enactment engine methods ...75

Table 21 - WF manager service methods ...79

Table 22 - Monitoring Daemon service methods..80

Table 23 - Sip Broker WSRF service...82

Table 24 - Sip Broker Producer Service..83

Table 25 - GrSDS service methods ...87

Table 26 - GrSDS Search Request...89

Table 27 - GrSDS Search Response ..89

Table 28 - OpVO Description Example ..90

Table 29 - IIS Web.config File ...91

Table 30 - Involved Technologies of the GrSDS Proxy ..92

Table 31 - Involved Technologies of the Service Repository..93

Table 32 - VO authentication use case..105

Table 33 - Intra VO Authentication use case...105

Table 34 - VO authorization use case ...106

Table 35 - Intra VO Authorization use case ..107

D4.4.4, 1.0

© Akogrimo consortium members page 10 of 126

Abbreviations

Akogrimo Access To Knowledge through the Grid in a Mobile World

ASS Application Specific Services

BVO Base Virtual Organization

BVOm BVO Manager

CM Context Manager

ECG Electrocardiogram

ECG_DA Electrocardiogram Data Analyzer

ECG_DV Electrocardiogram Data Visualizer

ECG_DG Electrocardiogram Data Generator

EMS Execution Management Service

EEngine Enactment Engine (also known as WorkFlow Engine)

EPR End Point Reference

GASS Grid Application Support Services

GrSDS Grid Service Discovery Service

GT4 Globus Toolkit 4

GW Gateway

HE Hosting Environment

MD Monitoring Daemon

MDL Medical Data Logger

OpVO Operative Virtual Organization

OpVOBr OpVO Broker

OpVOm OpVO Manager

PM Policy Manager

PR Participant Registry

SA Service Agent

D4.4.4, 1.0

© Akogrimo consortium members page 11 of 126

SA_DI Service Agent for Direct Invocation

SA_WF Service Agent for Workflow

SDFS Service Description Fact Sheet

SIP Session Initiation Protocol

SIP_Br WS-Int SIP Broker WS-Interface

SLA Service Level Agreement

SLA_A SLA Access

SLA_N SLA Negotiator

SLA_N_F SLA Negotiator Factory

SLA_R SLA Repository

SLA_T SLA Translator

UA User Agent

UAF User Agent Factory

WF Workflow

WF_R Workflow Registry

WM Workflow Manager

WM_F Workflow Manager Factory

WS Web Service

WSDL Web Service Description Language

D4.4.4, 1.0

© Akogrimo consortium members page 12 of 126

Executive Summary

This document assumes a general understanding of Akogrimo concepts and a high level
knowledge of Grid Application Support Service layer architecture (see deliverables [1] “The
Mobile Grid Reference Architecture” and for more details [2] “Architecture of Application
Support Service Layer”).

It describes the final release of the Akogrimo Grid Application Support Service (GASS)
prototype. All the implemented components are described including interfaces and involved
technologies.

Starting from the requirements introduced by the Akogrimo demonstrator, the WP4.4
participants have updated the existing implementation in order to provide an infrastructure able
to operate the demonstration phase.

These updates have affected the OpVO creation phase that in this release has been modified in
order to meet more general requirements. The overall principles did not change and there has
been no additional components necessary as the additional requirements could be realised by
slight modifications of existing ones.

In particular, the OpVO model has been further generalized. The initial solutions had been based
on the assumption that an OpVO is workflow driven with a logically centralized workflow
execution as shown in Figure 1:

Figure 1 - WF based OpVO

Figure 1 shows an OpVO centrally controlled by a WF. Each interaction from the UA to the SAs
passes through the WF and each activity related to the OpVO can be designed using a workflow.

The updates of the GASS prototype realises now a more generalized OpVO model as shown in
Figure 2 below.

Figure 2 - Generalized OpVO model

In Figure 2, the OpVO allows invoking directly the SA without having a centralized control of
the invocation flow. In this case the user on the Mobile Terminal (MT) can invoke a specific

D4.4.4, 1.0

© Akogrimo consortium members page 13 of 126

service of the OpVO at any time maintaining the control of the invocation flow for some specific
services.

This document updates the previous deliverable D4.4.3 (see [13]) describing the changes
introduced in the prototype implementation for this extended OpVO model.

Furthermore the existing report has been updated in order to improve the description of:

� GASS security infrastructure

� SLA document in Akogrimo

D4.4.4, 1.0

© Akogrimo consortium members page 14 of 126

1. Introduction

This document is the final version of the implementation report related to the Grid Application
Support Service (GASS) layer of Akogrimo project.

It is an update of [8] that already described implementation of the GASS layer. In the last project
period some changes in the implementation were introduced in the frame of the maintenance
activities of WP4.4 and these updates had been driven by results of the evaluation process (see
[12]) in order to appropriately run the demonstrator scenario.

The recommendations did not request radical changes to the existing implementation and many
sections of this deliverables has not been modified with respect to the previous one (see [13]). In
section 1.2, it is explained which sections of the document are affected by the main changes in
order to help readers that have already read D4.4.3 to focus just on the updated parts. D4.4.4
fully supersedes D4.4.3.

It is assumed that the reader is already familiar with the Akogrimo concepts and has a high level
knowledge of GASS layer architecture (see [1] and for more details [2]).

The GASS layer represents the “front-end” of the Akogrimo platform. It provides high level
services that allow the application to have an entry point to leverage on the Akogrimo platform
capabilities. In particular, this layer provides two main features:

� Management of the Base VO.

� Creation and management of the Operative VO.

The design has split the architecture in four main subsystems:

� VO management: includes services to manage Base VO and Operative VO.

� SLA High Level1: it provides services to manage negotiation and contract definition during
the OpVO creation phase

� BP enactment: it provides services to manage the instantiation, execution and monitoring of a
workflow template.

� Grid Service Discovery Service (GrSDS): it is the “yellow pages” of the BVO and it can be
searched for services published by a Service Provider participating in the BVO

A security infrastructure across the different subsystems has been designed and the
implementation provides the features described in section 4.

The details about all available components and related functionalities are provided in section 3.

1.1. Implementation Scope

The final prototype of the GASS layer (hereafter “Prototype”) implements the architecture
designed in [2] and, integrated with the prototypes implemented in the other Work Packages, will
be the basic infrastructure running the demonstrator scenario. Thus the goal of this prototype is
to support properly the execution of the demonstrator, during the validation phase of Akogrimo
project, in particular, providing the following capabilities:

1
 The SLA management is split in two different parts: the SLA High Level (part of GASS layer) and SLA
Enforcement (part of Grid Infrastructure Service Layer). The SLA High Level, mainly addresses the negotiation
phase and the management of SLA templates and contracts. Once a service is being used, parts of the SLA
Management have to supervise the execution phase, to ensure that the service is running as agreed (This is the role of
SLA Enforcement).

D4.4.4, 1.0

© Akogrimo consortium members page 15 of 126

� Populating and administrating the Base VO

� Searching and negotiating services to be invoked during the execution of a workflow

� Creating and populating an OpVO. It includes:

� Creating instances of OpVO management and monitoring services

� Creating and running dedicated workflow instances

� Assuring invocations from the workflow towards the services negotiated with the
Service Providers

� Use of the OpVO that includes:

� Running and monitoring the workflow instance execution

� Adapting the workflow execution in accordance with the context changes

� Managing interactions between the user invoking the OpVO (i.e. workflow) and
the OpVO (i.e. workflow) invoking services in the Service Provider administrative
domain

� Preventing unauthorized access to BVO and OpVO environment

1.2. Document structure

After this introductive section explaining the scope and the goal of the Prototype, this report is
organized as follows:

� Section 2 (overview): it provides an overall overview of the behaviour of the Prototype
describing how each capability listed in section 1.1 is made available through the interaction
between the components of Akogrimo infrastructure. The overall behaviour of the prototype
did not change but some additional features were introduced in order to meet the
requirements from the demonstrator scenarios. This updated behaviour required the
following updates in section 2:

� A new Section 2.2.1.4 was introduced to explain the meaning of the OpVO description

� The OpVO creation process description (Section 2.2.2) has been slightly modified, in
particular, changes affect section 2.2.2.2.

� The OpVO use includes now the case of service invocation that does not pass through
the WF (see section 2.2.3).

� Section 3 (GASS components details): reports technical details about the implementation of each
component developed within the frame of GASS layer. The description of each component
implementation was modified just in some cases, we can distinguish three type of sections
depending on the introduced updates:

� No changes occurred: there are not relevant changes in sections 3.1.4, 3.1.5, 3.2.3, 3.3

� Minor changes related to the interface definition: they affect mainly section 3.1.1, 3.1.3,
3.1.6, 3.2.1, 3.2.2

� More relevant changes affects

� Sections 3.1.2: to address the updated OpVO creation process

� Section 3.2.4 related to SLA Negotiation: changes explain interaction with PM.
Additionally, Annex A.3 has been added in order to provide details about the use of an
SLA document in Akogrimo

D4.4.4, 1.0

© Akogrimo consortium members page 16 of 126

� Section 3.4 related to the Discovery Service: changes affect the interface and internal
data structure to include the OpVO description

� Section 4(security infrastructure): this section describes the security infrastructure and it is an
updated version of section 3.5 in previous D4.4.3. The updates focused on providing more
details and to address feedbacks from progress meeting.

� Section 5 (conclusions): summarizes the implementation results and provides suggestions for
future implementations tasks to be performed beyond the Akogrimo project lifecycle. This
section has been updated according with the last implementation.

D4.4.4, 1.0

© Akogrimo consortium members page 17 of 126

2. Prototype Overview

2.1. Prototype Software Components

Table 1 summarizes all the software components implemented in the final prototype and for each
component a brief description about the provided functionalities has been included. In order to
have a comprehensive understanding refer to section 3 that provides a detailed description of
components functionalities, technical choices and components interactions.

Table 1 - Prototype Software Components

Subsystem Software component Description

User Agent Factory – UAF It allows to dynamically create the UA for
each new participant of the BVO

Service Agent Factory - SAF It allows to dynamically create the SA
that will act on behalf of external services
inside the OpVO

Operative VO Broker Factory –
OpVOBr_F

It is in charge of managing the process to
search and negotiate for services to be
invoked by the OpVO

Base VO Manager – BVOm The Base VO Manager is the key part of
the policy and authorization enforcement
at the top level of the Base VO

Operative VO Manager Factory –
OpVOm_F

The Operative VO Manager takes the
role of coordinating the OpVO creation
process

VO
Management

Participant Registry – PR The Participant Registry service is
actually constituted by three services that
provide different kind of information on
the BVO/OpVO and their participants

SLA Negotiator Factory – SLA_N_F SLA-Negotiator Service represents the
service that has to be contacted in order
to lead the service negotiation process in
the SP domain.

SLA Access – SLA_A This service provides all necessary
functionalities that other components
could require from the SLA document
template and contract.

SLA Translator Factory– SLA_T_F This service is the only responsible for
providing access to SLA documents
(SLA-Template and SLA-Contract) and
get (or set) information of them

SLA
Negotiation

SLA Repository – SLA_R The SLA Template Repository allows
storing and retrieving of SLA documents

D4.4.4, 1.0

© Akogrimo consortium members page 18 of 126

Subsystem Software component Description

Monitoring Daemon – MD The purpose of this service is to provide
a web service interface that the Context
Manager and SLA Enforcement can use
to notify BP Enactment about context
changes or SLA violations

WF Manager Factory – WM_F Its purpose is to transform workflow
templates into workflows that can be
carried out by the Enactment Engine;
part of this transformation includes
service instantiation and registration for
context changes (with the Context
Manager) and SLA violations (with SLA
Enforcement).

Enactment Engine – E_E2 The Enactment Engine is the component
of the Business Process Enactor in
charge of enacting specific BPEL
processes submitted by the Workflow
Manager component.

SIP Broker WS-Interface This service does not represent a
component itself, but it aims to provide a
WSRF service interface to the Sip Broker
component available in the platform.

BP Enactment

WF Registry - WR The Workflow Registry is the component
in charge of storing implementation files
of published workflows

GrSDS proxy – GrSDS_P

GrSDS

Service Registry – S_R

The service discovery server is divided
into two parts – the service repository
and the service discovery proxy. The
service repository is principally
replaceable, whereas the proxy stays the
same. This way the proxy hides the actual
service registry implementation from the
search clients

Figure 3 shows the static3 relations between the internal components of WP4.4. It includes
interactions with components external to the WP as well. More in detail:

� The dotted lines in the figure show an interaction with a component developed in another
Work Package (the belonging WP is indicated below the service icon)

� The continuous lines show an interaction with a component inside the same Work Package

� The external box groups all subsystem belonging to the WP4.4

2 Also known as Workflow Engine
3Static because they do not show any kind of sequence but just that an interaction can occur between two
components. For details about those relations refer to section 2.2 and to the description of each component (section
3).

D4.4.4, 1.0

© Akogrimo consortium members page 19 of 126

� The internal boxes group components belonging to the same subsystem (e.g. VO
management)

� The label associated to a line explains which communication protocol is used in that
interaction.

Figure 3 - Interactions between the software components

The table and figure above provide the basic background in order to understand the description
of the Prototype behaviour described in detail in the next subsections. The SIP Broker WS-
Interface is not included in the above figure because it does not represent a component itself (see
section 3.3.5 for details).

2.2. Overview of available features

Section 1.1 introduced the main features provided and they can be grouped in three main
scenarios covered by the Prototype:

� BVO administration;

� OpVO creation;

� OpVO use

This section describes how the Prototype works (as a whole) in order to provide the features
necessary to address the above scenarios and which components are involved to carry out each
specific feature.

D4.4.4, 1.0

© Akogrimo consortium members page 20 of 126

2.2.1. BVO Administration

The precondition to address any scenario is to set up a Base VO and configure it. In order to set
up a BVO it is necessary to install all the services listed in Table 1 according with the hosting
environment requirements described in section 3. All the hosting machines are assumed to be
part of the same administrative domain4

In order to populate the BVO (including new members and services) some configuration actions
have to be taken up and they are necessary to operate the following scenarios.

The functionalities associated to the configuration are executed by the administrator and they are:

� Definition of roles and rules valid inside the BVO

� Subscription to BVO

� Publishing services in the BVO

� Storing WF templates inside the BVO

2.2.1.1. Definition of roles and rules

Table 2 summarizes the general authorization rules associated with the main role that a
participant can play within a BVO

Table 2 - Roles and associated authorization rules

Role Rule

Customer They are allowed to:

� Search for application

� Create OpVO that supports the selected application

� Use the created OpVO

Service Provider They are allowed to publish a service in the GrSDS providing the required
information

Administrator He/she is allowed to configure the BVO services

The component involved to provide this functionality is the Policy Manager. This is a service
developed in WP4.3. The Administrator will use the PM administrative interface to add new
policies that will describe the rules above (see [5] for details about the Policy Manager).

In this particular case, the rules are related to the authorization process and the associated
authorization policies.

2.2.1.2. Subscription to the BVO

The following steps are necessary to subscribe a new BVO participant:

� The subscriber is member of a trusted NP domain

� Associating a role to the new subscriber

4 Apart from the negotiator hosting machine. Each SP will have a SLA Negotiator Factory installed in the private
administrative domain.

D4.4.4, 1.0

© Akogrimo consortium members page 21 of 126

� Creating a UA instance associated to the new member

� Defining the profile of the new member

� Updating the BVO Participant Registry with the new member and the associated profile

� Updated the member profile in the home domain A4C

All the above operations are performed by the Administrator using the Participant Registry
administrative GUI. That means to create a new member in the PR and to store the associated
profile (see Annex A.1 for details about the content of the member profile).

If the subscription is successful the administrator of the home domain will update the member
profile in his home domain (see [3] for details)

Figure 4 describes the subscription process and a possible deployment of the involved services:

� The Administrator uses the Administrative GUI to add BVO participants and to associate
them to the User Agent and profile

� The Administrative GUI updates the PR on the basis of the actions required by the
administrator

Both Administrative machine and PR Hosting machine are hosted in the same administrative
domain (hereafter BVO domain).

Figure 4 - Subscription to the BVO

2.2.1.3. Publishing services in the BVO

A member subscribed as Service Provider (SP) can publish the services he is able to provide. In
order to do that the SP has to invoke the GrSDS providing all the required information in the
publication process.

It is possible to do that in two different ways:

1. By communicating offline to the BVO domain Administrator the services to be published

2. By using a software client running in the SP domain to publish directly the information in
the GrSDS

The first case is performed by the BVO domain administrator using an administrative GUI.

Administrator

2
SOAP

1

D4.4.4, 1.0

© Akogrimo consortium members page 22 of 126

Figure 5 - SP publishes a service

The most interesting case is the second one that implies interactions between different domains
and the above Figure 5 sketches the behaviour of the system:

1. A member subscribed as Service Provider invokes his UA to publish a service

2. Before performing the operation the UA asks the BVO Manager (BVOm) for
authenticating and authorizing the request. The BVOm:

2.1. Checks the identity5 with the A4C of the SP home domain6

2.2. Retrieves the role associated to the identity from the PR

2.3. Retrieves the policy associated to the role and takes a decision

3. If the authentication and authorization are successful, the UA invokes the publication on
the GrSDS on behalf of the Service Provider.

2.2.1.4. Storing OpVO descriptions

The GrSDS has to be populated with the description of the OpVOs. In the last prototype, there
was a one to one mapping between an OpVO and the WF description. That meant that all the
services invocations by the OpVO to external providers were triggered by the WF executed in
the OpVO perimeter. On the other side all the incoming invocations to the OpVO were
forwarded to the WF engine that started the execution of the WF associated to that invocation.

5 See deliverable [1] for details about Akogrimo identity model and management
6 The SP home domain is the domain of the Network Provider where the SP is registered (see section 4.1.1 for
description of Akogrimo multidomain model).

D4.4.4, 1.0

© Akogrimo consortium members page 23 of 126

An update has been introduced in order to allow the invocation of external services without
passing through the WF engine (see section 2.2.3 for more details).

As result of this requirement it was necessary to define an XML schema for the “OpVO
description” that includes:

� The list of services (and their description) that can be invoked directly without passing
through the WF engine

� The identifier of the WF template that is necessary to operate the OpVO

This description is stored in the GrSDS (see section 3.4 for further details) following the same
process described in section 2.2.1.3)

2.2.1.5. Storing WF templates

The WF Repository of the Base VO has to be populated with the WF templates associated to the
available applications (e.g. eHealth, eLearning, DHCM…).

The BVO Administrator does that using a dedicated client that allows storing the template and
the associated description files that allow searching for services to be orchestrated in the specific
template and to deploy the WF described by the template.

2.2.2. OpVO creation

If a BVO is established, the members can start using it. In particular, the authorized members
(customers) can ask for creating an OpVO. The OpVO is the environment that will allow
executing and invoking the application. The creation of an OpVO implies the creation of a
dedicated domain (inside the BVO domain) that will be owned by the customer that has asked
for its creation, hereafter the OpVO domain.

The OpVO creation can be logically split in four phases that in any case are executed in sequence
and are part of a single process:

� Initial OpVO domain setup

� Search and negotiation for services to be invoked during the OpVO operation

� WF deployment

� Final setup

2.2.2.1. Initial OpVO domain setup

A BVO member registered as a customer can start the process that ends with the creation of an
OpVO. Figure 6 describes the first phase of this process:

Figure 6 - OpVO initial setup

1

Figure 6 depicts the following behaviour:

1. A customer of the BVO invokes his UA to ask the creation of an OpVO

2. Before processing the request the UA asks the BVOm for authentication and authorization
of the requestor. The following steps 3.x are similar to the ones described in section 2.2.1.3
Figure 5

3. The UA processes the request invoking the BVOm that actually starts the initial setup
creating an instance of:

3.1. OpVOm invoking the OpVOm_F

3.2. OpVOBr invoking the OpVOBr_F

3.3. WM invoking the WM_F

3.4. Each new instance is a new member of the BVO then the BVOm invokes the PR
to update the list of participants

2.2.2.2. Search and negotiation

All services necessary to manage the OpVO have been created in the initial setup. The following
phase actually starts the interactions among the different services. In particular this phase focuses
on:

� Retrieving the OpVO description

� Searching and negotiating services to be invoked without the intermediation of the WF
engine

� Retrieving the WF template

� Searching the services to be negotiated in order to execute the WF.

Searching and negotiation steps are always the same even if performed twice.

1
: S
O
A
P

Figure 7 - Retrieving OpVO description and identify services

Figure 7 shows how the prototype components interact to start the OpVO creation process:

D4.4.4, 1.0

© Akogrimo consortium members page 26 of 126

1. This step follows step 3 of the initial OpVO setup phase: the BVOm invokes the new
OpVOm instance to create the OpVO passing references to all created instances.

2. The OpVOm needs to know which OpVO has to be created, then on the basis of the
parameter passed by the BVOm retrieves from the GrSDS the XML file describing the
OpVO. Such description includes two main information:

2.1. A reference to the workflow template that is the core of the OpVO

2.2. The description of services that will be invoked directly (i.e. without passing
through the WF engine)

3. The OpVOm extracts the service descriptions and forwards them to the OpVO Broker
asking for providing references to available services of the specified type

3.1. OpVOBr searches the GrSDS7 to find out service provider potentially able to
provide the services

3.2. For each service the OpVOBr gets a list of potential SP and then invokes the
related SLA Negotiator service to establish a contract. In step 3.2.2 the negotiator
checks with the EMS the availability of resource to provide the services with the
required quality of service and returns a counter offer

3.3. OpVOBr checks the offer and invokes negotiator to accept or refuse it. In step
3.3.1, if the negotiation is successful, the negotiator reserves resources with the
EMS to make the service available at the required time and a final contract is
established.

At the end of step 3 a set of parameters to be used in order to invoke the negotiated
services are forwarded back to the OpVOm

Figure 8 - Retrieving WF template and identify services

7 For details about how to perform this query refer to section 3.4

D4.4.4, 1.0

© Akogrimo consortium members page 27 of 126

Figure 8 shows how the prototype components interact to find out the services to be
orchestrated by the workflow:

1. This step is the result of GrSDS invocation to retrieve the OpVO description that will
include the WF template identifier as well.

2. The OpVOm invokes the WM to instantiate the required WF.

2.1. WM retrieves the associated WF template (it includes description of services to be
invoked by the WF)

2.2. WF asks the OpVOm for providing the single services to be orchestrated

3. OpVOm forwards the service description to the OpVOBr asking for providing references
to available services of the specified type (the following steps 3.x are the same as the ones
described to explain Figure 7)

At the end of step 3 a set of parameters are forwarded back to the OpVOm to invoke the
negotiated services.

2.2.2.3. WF Deployment and SA creation

After the previous phase, all the information is available and it is possible to start the phase that
brings to the deployment of the WF and to the creation of all the Service Agents required to
operate the OpVO.

Node2

Node5

Node4

WR

SA_F

WM

OpVOm

2
: S
O
A
P

1: SOAP

3.1: SOAP

3.2: SOAP

3: SOAP

BVO

Domain

SA_1

SA_n

Node3

PR

Node6

E_E

Figure 9 - WF Deployment

The OpVOm receives references to the negotiated services and additional information to invoke
them and then it invokes:

1. The SA Factory for instantiating a SA for each negotiated service. Each SA instance is
configured on creation with the information to invoke the associated service

D4.4.4, 1.0

© Akogrimo consortium members page 28 of 126

2. The PR to include the new SA instances that are now members of the BVO

3. The WM providing the references to the SA instances that are related to external services
to be invoked by the workflow execution.

3.1. The WM gets the WF description

3.2. The WM includes in this description the SA to be invoked during the execution
and deploy this WF in the E_E.

At the end of this phase:

• A WF can be invoked on the E_E

• All SAs that are not invoked by the E_E are ready to be used for direct invocation8

2.2.2.4. Final Setup

After the WF deployment phase the environment is ready to execute the WF, some final setup
actions have to be performed in order to allow each service to interact properly.

Figure 10 - Final Setup

The final setup consists in configuring the MD and the UA to allow, respectively, monitoring of
WF execution and invocations to the WF and SAs from the customer:

1. The WF Manager (WM) retrieves from the template the events (e.g. context changes,
faults,…) on which the workflow engine has to be notified

2. The WM configures the MD with this information

2.1. The MD subscribes to the CM to be notified about the specific context changes
information

3. Step from 3 to 6 are the final ones: the process is successful and all the information are
passed back until the BVOm, that configures the UA in order to inform about the services
to be invoked (i.e. SAs to be invoked directly and workflow deployed in the E_E).

2.2.3. OpVO Use

The following Figure 11 describes the operation behaviour of the final GASS layer prototype and
it is similar to the behaviour of the last GASS layer prototype. As already explained for the first

8 Hereafter the term direct invocation is used to refer to the invocations to SA that are not triggered by the E_E.

D4.4.4, 1.0

© Akogrimo consortium members page 29 of 126

prototype, depending on the workflow script deployed in the Enactment Engine the steps 3.x
and 3.y will be different.

With respect to the last prototype release, the main difference is the direct invocation from the
UA to the SA. The following figure introduces two types of SAs: Service Agent for Direct
Invocation (SA_DI) and Service Agent for Workflow (SA_WF).

They are actually the same type of component and there is no technical difference between them.
The difference is related to their scope: the SA_DI are invoked directly by the UA while the
SA_WF are invoked by the E_E during the WF execution.

Node1

Node2

Node3

Node5

NodeX

UA_X

E_E

MD

SA_WF_3

SA_WF_1

SA_WF_4

SA_WF_2

PR

OpVOm

mobile User

MT

1

A4C

2

OpVO

3.x

3.y.z

CM

3.y

E
M
S

3.x.y

WP4.3
WP4.2

2.1
2.2

S
O
A
P

SOAP

SOAP

SOAP

Diameter

SOAP

SOAP

SOAP

SOAP

SOAP

SOAP

WP4.1

S
IP
_
B
r W

S
-In
t

SOAP

PM

2.3

SOAP

WM

NodeY

SA_DI_1

SA_DI_n

3

3.z

Figure 11 - A mobile user uses the OpVO

The meaning of each interaction9 labelled with a sequence number is the following:

1. The mobile user (MU) has logged on the network and he/she has a reference to a list of
UA. The MU chooses an application User Agent (UA) from the set of agents available for
him/her. He/she will invoke the UA using the associate token and specifying the method
and parameters to be invoked.

2. The UA invokes the OpVOm to validate the token received by the MU as part of the
SOAP message headers

a. OpVOm asks the A4C server for authenticating the incoming request

9 On each connection between two components the protocol used for communication is specified. The most of
interactions are established using SOAP over HTTP.

D4.4.4, 1.0

© Akogrimo consortium members page 30 of 126

b. If the authentication is successful, then the OpVOm calls the PR to retrieve the
role associated to the identity of the requestor

c. The OpVOm retrieves from the PM the authorization rights associated to the
role and takes an authorization decision.

3. If the validation is successful the UA will invoke the method on a specific service inside
the OpVO. The UA will have a list of possible services to be invoked and it will select the
right one on the basis of the request coming from the MU. In the specific case, the UA
will invoke:

a. The methods exposed by the Enactment Engine to start the execution of a
branch of the workflow. During the workflow execution the engine will invoke
the SAs that will act inside the OpVO on behalf of the external services
involved in the workflow (invocations labelled with 3.x10). Furthermore, it will
invoke the SIP Broker WS-Interface, as well if a SIP call is required. During the
workflow execution the Monitoring Daemon (MD) will receive notification11
from the Context Manager (CM) about a context change (or also other kind of
events). The Enactment Engine will be informed about these changes through
the WM and the workflow execution will be adapted depending on the event.

b. The methods exposed on the SA_DI (invocations labelled with 3.z12)

4. The Service Agents (both SA_DI and SA_WF) will forward the request to the EMS
running in different administrative environment (the one of the Service Provider hosting
the business service). In Figure 11, just one EMS is shown but several EMS can be
involved depending on the result of negotiation phase (see section 2.2.2.2).

10 This specific numbering (3.x and 3.x.y for invocations from SA to EMS) has been used to remark that the
sequence of invocations is not known a priori but depend on the workflow design (they are linked to the Figure 11).
Then several invocations can be associated to 3.x and for each of them a related invocation 3.x.y will be sent to the
EMS
11 Similar considerations can be done for 3.y numbering. Actually it is not known a priori how many and when
context changes will happen.
12 Similar considerations explained in 10 can be done here as well. In this case there is not a sequence of invocations
infact such sequence is established by the external requestor.

D4.4.4, 1.0

© Akogrimo consortium members page 31 of 126

3. Final prototype GASS services

This section outlines in detail the implemented components for the final prototype. The
components have been implemented using two major software stacks as agreed within Activity 4
and WP5.1. Table 3 and Table 4 list the components involved in each stack.

Table 3 - Akogrimo Unix software stack

 Unix/Java/WSRF Software Stack

Operating System Linux Ubuntu

Programming language Java running in runtime environment for Linux

Web Server Apache Tomcat 5

SOAP engine Axis

WS-Resource framework GT4 core

Table 4 - Akogrimo Windows Software Stack

 Windows/.NET/WSRF
Software Stack

Windows/.NET/WSRF/
Enterprise stack

Operating System MS Windows 2003 Server MS Windows 2003 Enterprise
Edition

Programming language C# running on .NET Framework
1.1

C# running on .NET
Framework 1.1

Web Server IIS 6.0 IIS 6.0

Tomcat 5.0.28

SOAP engine Microsoft WSE 2.0 SP3 Microsoft WSE 2.0 SP3

WS-Resource framework WSRF.NET v2.1 WSRF.NET v2.1

XML Database Xindice 1.1b4

Finally in the following subsections for each software module will be described the interface.
Each method will be identified with the notation “E-X-Y-Z”:

E = External interface

X = Service/group name

Y = Subservice of X

D4.4.4, 1.0

© Akogrimo consortium members page 32 of 126

Z = Method name

For example the external method GetApplicationList belonging to BVO manager service that is
part of the VO management service group will be identified with: E-BVO-VO-
GetApplicationList.

3.1. VO management subsystem

3.1.1. BVO Manager

3.1.1.1. Brief Overview

The Base VO Manager is the key part of the policy and authorization enforcement at the top
level of the Base VO. The Manager interacts as a “mediator” between the participant’s registry,
A4C server, policy manager and external requestors. All service requests to the VO pass through
the manager and are validated against the A4C server and information from the policy manager
and participant’s registry is used by the BVO to authorise the request. Depending on the reply
from the A4C server the Base VO manager either refuse or allow the request entering the Base
VO. If access is granted the Base VO Manager creates an OpVO Manager and starts the process
to create a new OpVO. Finally, the Participants registry is updated with the new participant’s
credentials.

3.1.1.2. Functionality

Table 5 provides a list of the available methods on each service. The methods have been grouped
in categories.

Table 5 - BVO manager service methods

BVO manager

Incoming request management

Description This group includes methods to manage the incoming requests for joining to the
BVO.

E-BVO-VO-GetApplicationList

TokenAgentType[] getApplicationList(String token, String participantId)

Description The BVO Manager receives a request for the list of applications that this
participant (identified by the participantID) is allowed to execute.. The success
return value is an array of EPR’s which link to the deployed workflows and
service agents for invocation of the application. .

3.1.1.3. Interactions with other components

3.1.1.3.1. Main behaviour

The BVO manager interacts with (see also Figure 11):

� The User Agent

� The A4C (component outside the WP4.4)

D4.4.4, 1.0

© Akogrimo consortium members page 33 of 126

� The Policy Manager

� The PR

In the following Figure 12 the sequence diagram of these interactions is shown.

Figure 12 - BVO Manager interaction sequence

The above sequence provides details about the interaction related to step 1 in Figure 11 (in
particular, steps 1, 1.1, 1.2)

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (e.g. for BVO Manager see section 3.1.1.2).

For information about A4C see [3].

3.1.1.3.2. Alternative behaviour

Unexpected and exception related behaviours of the BVO Manager can be caused by

� Calls to a method using wrong data types.

� Failure to provide correct authentication credentials when communicating with an interface.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. All errors are logged.

3.1.1.4. Involved technologies

The implementation of this component comprises of the logic necessary to interact with the A4C
server, policy manager and participant registry (see Figure 12), using the return value in order to
provide the requestor with specific token allowing him to invoke the application. This
component has been implemented using the Akogrimo Unix/Java Software Stack.

3.1.2. OpVO Manager

3.1.2.1. Brief Overview

The Operative VO Manager (OpVO Manager) takes the role of the VO manager in terms of
authentication and authorisation of service calls to the VO during the execution of application
specific services from the service provider domain within an Akogrimo application. Service
providers once they have been authenticated by the Base VO, receive a token that can be

D4.4.4, 1.0

© Akogrimo consortium members page 34 of 126

validated by the OpVO manager during the lifetime of the Akogrimo application it is valid for.
The token is essentially a set of textual assertions.

The tokens are simple strings and the tokens are passed every time as a part of the SOAP
message headers. The User Agent once authenticated has a OpVO with a token associated with it
created by the BaseVO.

3.1.2.2. Functionality

Table 6 provides a list of the available methods on each service. The methods have been grouped
in categories.

Table 6 - OpVO manager service methods

OpVO manager

StartOpVO

Description This invocation on the OpVO triggers the OpVO population process and the
OpVO’s interaction with services in the Service Provider Domains.

E-OpVO-startOpVO

String [] startOpVO (String token, String OpVOID)

Description The OpVO Manager is invoked to create an instance of an OpVO. The token is
passed to the OpVO for use when the VO invokes services in the Service
Provider domains. The OpVO once started calls the GrSDS to retrieve the
OpVO decription. From this workflowIDs and direct services needed in the
OpVO are extracted. In the case of the direct services the OpVO Broker is
invoked and then the Service Agent Factory (SAF) to get the service instances.
The Workflow ID is used to retrieve a WorkflowID from the workflow registry,
the service requirements for the workflow are then stripped out of this and the
OpVO Broker and SAF are invoked to get service instances for the Workflow.
The workflow is then populated with these EPR’s and passed to the Workflow
manager for deployment, the result of this call returns a EPR. This is returned
with the EPRs of the direct Services to the BaseVO.

3.1.2.3. Interactions with other components

3.1.2.3.1. Main behaviour

The OpVO population phase for the direct services is illustrated in Figure 13

D4.4.4, 1.0

© Akogrimo consortium members page 35 of 126

Figure 13 - OpVO Manager population sequence

The above sequence provides details about the interactions related to Figure 8

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service.

After the step 12 in Figure 13 all the Service Agent for direct invocation and the workflow as well
are available to start to use the OpVO and the respective references are passed back for final
configuration purpose.

3.1.2.3.2. Alternative Behaviour

Unexpected and exception related behaviours of the OpVO Manager can be caused by

� Calls to a method using wrong data types.

� Failure to call the correct OpVO instance.

� Authentication errors.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. The OpVO instance error sometimes is caused a failure to
destroy existing instances of OpVO’s that have been used. All errors are logged.

D4.4.4, 1.0

© Akogrimo consortium members page 36 of 126

3.1.2.4. Involved technologies

The implementation of this component has dealt with logic to validate the token passed by the
UA (see Figure 13). This component has been implemented using the Akogrimo Unix/Java
stack.

3.1.3. User Agent

3.1.3.1. Brief Overview

This service belongs to VO Management topic and represents a user inside the OpVO. Moreover
it is in charge to manage secure accesses to the application. The User Agent provides a standard
front-end to be invoked from the outside. The OpVO user always will invoke the methods on
the UA that will generate, in an automate way, the invocation of the right service inside the
OpVO. The UA exposes a fixed interface but depending on the input parameters passed to the
invokeApplication method (see section 3.1.3.2), it is able to invoke a Web Service without
knowing it in advance. This capability introduces a relevant automation in the frame of
Akogrimo, because the platform provides a single generic service that allows invoking all the
services available inside the BVO and OpVO. This is particularly important in the OpVO
because it is not possible to know in advance the interfaces to invoke the workflow, and the UA
provides the features to avoid to implement ad hoc client for each different workflow, because it
exposes a fixed interface and create dynamically (at run time) the client to invoke the web service
exposed by the workflow.

The service is implemented as a WSRF service, in this way, it will possible to have a dedicate UA
instance for each different external user.

3.1.3.2. Functionality

3.1.3.2.1. Interfaces

Table 7 provides a list of the available methods on the UA. The methods have been grouped in
categories.

Table 7 - User Agent methods

UserAgent

Application methods

Description This group includes methods called from outside the BVO/OpVO to ask for a
service inside the BVO/OpVO

E-UA-InvokeApplication

public arrayOfXmlElement InvokeApplication(string methodName, arrayOfXmlElement
inputMethodParameters)

D4.4.4, 1.0

© Akogrimo consortium members page 37 of 126

UserAgent

Description This method allows starting the execution of a specific method on a service
inside the OpVO. The OpVOToken is passed in the SOAP message. This token
is extracted and elaborated by the SOAP message filter configured to guarantee
the access to the User Agent instance only by authenticated and authorized
requestors.

It returns the object with invocation results or null.

E-UA-GetMethodParameterTemplate

public string[] GetMethodParameterTemplate(string method)

Description This method provides details about the input parameters that the requestor has
to use when he invokes a method via the UA. The parameter method specifies the
name of the method that we are looking for its input parameters. An Xml
template is the result of this invocation and it shows the Xml serialization of
every input parameters for the method specified.

E-UA-GetMethodList

public string[] GetMethodList()

Description This method allows to an external invoker to retrieve the list of services available
for the invocation inside the OpVO. For each service the returned list contains
the name of the public methods available to OpVO members.

Configuration methods

Description This group includes methods to be invoked in order to configure the User
Agent. For example it is necessary to provide the services available in the
OpVO, to set security policies…

E-UA-SetVOManager

public bool SetVOManager(string VOManagerEPR)

Description This method allows to set the endpoint of the VO Manager that supervises the
VO that is accessible via the UA instance. This endpoint is used by the UA to
ask for the authentication and authorization of any incoming request for any
service inside the VO. A boolean value is returned to specify the result of the
configuration.

E-UA-Configuration

Public void Configuration(string serviceURL, string methodName, string[]
xmlInputParametersFormat)

Description This method allows configuring the UA with the information about the services
(endpoint and methods name) it can invoke in the OpVO.

D4.4.4, 1.0

© Akogrimo consortium members page 38 of 126

3.1.3.3. Interaction with other components

3.1.3.3.1. Main behaviour

The UA interacts with (see also Figure 11):

� The MT

� The OpVO Manager

� The EEngine

� The SA

Figure 14 shows the sequence diagram of these interactions:

Figure 14 - UA interactions sequence13

Furthermore, in order to understand the meaning of each invocation, refer to the table of
functionalities in the section related to the specific service (in general, it is the section 3.x.y.2). In
step 8, method() is a method exposed by the service to be invoked by the UA. It will be selected
on the basis of the parameters passed through the InvokeApplication() method. In particular,
serviceX could be the service exposed by the EEngine or a SA inside the OpVO, the latter
happens in case of an OpVO that requires a direct invocation.

3.1.3.3.2. Alternative behaviour

The source of exceptional behaviour can be:

� Invocation timeout

� Authentication/Authorization failed

� Undefined method

� Dynamic proxy generation error

13 The first interaction between the MT and the UA can also be implemented invoking the method
GetMethodParameterTemplate.

D4.4.4, 1.0

© Akogrimo consortium members page 39 of 126

� Incompatible type/number of parameters

Invocation timeout exception is generated when the UA invokes the destination service but it
doesn’t receive a response in a defined time interval. The connection with the destination service
is closed and an exception is forwarded to the requestor.

The other exceptions can be generated during the elaboration of the incoming request by the UA
as shown in the following flow chart.

D4.4.4, 1.0

© Akogrimo consortium members page 40 of 126

No

No

Yes

Yes

No

No

Extract SAML ID
Token

Invoke
BVOManager

Is a valid
token?

“Authentication/Authori

zation failed” exception

No

SOAP Message Filter

is a valid
method?

“Undefined method”

exception

Retrieve service endpoint
Generate dynamic proxy

Forward request to UA

Get invoked method

Download WSDL

download ok?

Compile proxy

Compilation
error?

Check type and number of

parameters

Yes

Parameters
errors?

Yes

End

User Agent

End

End

 Request elaboration

End

End

“Proxy Generation”

exception

“Proxy Generation”

exception

“Incompatible type/number

of parameters” exception

Start

Figure 15 - UA flowchart

D4.4.4, 1.0

© Akogrimo consortium members page 41 of 126

3.1.3.4. Involved technologies

The implementation of this component has dealt with the logic to generate, at run time, starting
from a WSDL document, the proxy14 code that will allow invoking the Web Service associated to
the WSDL document (the WSDL document is retrieved at run time depending on the input
parameters). This component has been implemented using the Windows/.NET/WSRF software
stack.

The service is implemented using Web Service technology and in particular it will work with
SOAP over HTTP. Furthermore it is able to elaborate the SOAP messages interacting with the
SOAP pipeline in order to extract the VOToken from the related SOAP headers.

3.1.4. Service Agent Factory

This component has not been modified respect to previous demonstration

3.1.4.1. Brief Overview

This service belongs to VO Management topic and represents a service inside the OpVO.
Moreover, it is in charge of creating at runtime a Service Agent service (creation and deploy of a
simple web service) used as gateway between OpVO domain and SP domain. Furthermore it
creates service agent EPR and set information on created service agents.

The service is implemented as a simple WS.

3.1.4.2. Functionality

The Service Agent Factory is a component used to create in a dynamic way service agent service
inside the OpVO domain. This component is invoked (CreateInstance method) by
OpVOManager and performs the following actions:

1. create any service someone ask it
a. create virtual directory on IIS to deploy created WS
b. create physical directory on the file system (actually only the same where is

deployed FactorySAService service), if not exists
c. create all needed code files describing WS to deploy. To create the main WS file

(nameservice.asmx.cs) is used information contained in a config file (ServiceConfig)
passed by who ask the service creation.

d. compile created code
e. Runtime service aggregating (specific WSRF.NET task)

2. create resource to associate to the service
a. uses information (EMS url and Reservation EPR, that is the unique identifier of

the service instance produced by EMS at reservation time, which service agent
will be associated) passed by who ask the service creation.

So it is needed to pass to CreateInstance method of FactorySA service two input parameters:

1. ServiceConfig that is a string containing an xml document where we have some
information needed to create a specific service agent. This information is:

a. Name service contains the name of the service agent

14 Proxy is synonymous of stub

D4.4.4, 1.0

© Akogrimo consortium members page 42 of 126

b. Methods contains one or more method that will be exposed by service agent. For
each method is mandatory to specify the method name and input and output
parameter type.

2. ResourceInfo is a structure that contains the information that will be maintained in the
SA resource. This information is composed by:

� The EPR to the AdvanceReservation resource that was created at the end of the
reservation phase. This EPR has been serialized into a string and is used as
parameter when invoking the EMS service;

� slaID string used as parameter when invoke EMS service;

� EMS URI to use to set up EMS proxy

As return value of CreateInstance method has an EndpointReferenceType describing Service
Agent service of which is asked creation. The following figure show actions made by FactorySA
service when CreateInstance method is invoked.

3.1.4.2.1. Data structure

No data structure is available for this service.

<?xml version="1.0"?>

<description xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <service name = "Generator"/>

 <methods>

 <method name="generateData">

 <param_input type="string"/>

 <param_output type="string"/>

 </method>

 <method name="HelloWorld">

<?xml version="1.0"?>

<description xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <service name = "Generator"/>

 <methods>

 <method name="generateData">

 <param_input type="string"/>

 <param_output type="string"/>

 </method>

 <method name="HelloWorld">

Figure 16 - Service configuration format

D4.4.4, 1.0

© Akogrimo consortium members page 43 of 126

3.1.4.2.2. Interfaces

Table 8 provides the list of the available methods on the Service Agent. The methods have been
grouped in categories.

Table 8 - Service Agent methods

ServiceAgentFactory

Instance Creation

Description This group includes one method to create the service inside the OpVO

E-FactorySA-CreateInstance

EndpointReferenceType CreateInstance(string ServiceConfig, Information ResourceInfo)

Description Allows to create the SA service by using serviceConfig param and its EPR by
using ResourceInfo param

In Table 8, the method belonging to “Instance Creation” allows creating a Service Agent, but the
methods belonging to “Application” category will be specific to each Service Agent.

For example, the SA associated to the ECG_DG external service will expose the following
application methods:

Table 9 - Application methods exposed by the SA of the ECG_DG

ECG_DG ServiceAgent

Application methods

Description This group includes all the methods that are a replication of the methods
exposed by the external ECG Data Generator service represented by this SA
inside the OpVO.

E-SA-ECG_DG-GenerateData

public data generateData (string patientName)

Description This method has the same external behaviour as the one described in the
Application Specific Service section (see section 3.4.2)

3.1.4.3. Interaction with other components

3.1.4.3.1. Main behaviour

For this testbed, the FactorySA interacts with:

� OpVOManager

Figure 17 shows the sequence diagram of these interactions.

D4.4.4, 1.0

© Akogrimo consortium members page 44 of 126

Figure 17 - FactorySA interactions sequence

3.1.4.3.2. Alternative behaviour

No recovery actions are foreseen for this component

3.1.4.4. Involved technologies

The FactorySA has been implemented using Windows/.NET/WSRF software stack.

3.1.5. Participant Registry

3.1.5.1. Brief Overview

The Participant Registry service is actually constituted by three services that provide different
kinds of information on the BVO/OpVO and their participants. These services are:

� Participant Info: this service will contain and manage all information related to participant
features in the context of BVO/OpVO. This service will allow creating a WS-Resource
associated to each participant and storing information related to the specific participant. In
fact, it is able to manage information related to each different participant about:

� Tokens

� Roles

� User Agent EPRs

� Application and BVO/OpVO Manager identifier

� VO info: This service will manage information related to VO (BVO or OpVO) about its
participants and its manager identifiers (name identity and endpoint reference). There will be
a WS-Resource for each BVO/OpVO storing the mentioned information

� ParticipantNameService: This service will manage the mapping table in order to maintain
an association between participant identifier and the endpoint reference of the resource
created for him/her into the ParticipantInfo. By retrieving the endpoint reference it is
possible to access to the participant related information. This service is a simple Web Service.

D4.4.4, 1.0

© Akogrimo consortium members page 45 of 126

3.1.5.2. Functionality

Table 10 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 10 - Participant Info service methods

Participant Info

Tokens and agent management

Description The methods in this group manage the list of pairs, OpVOtoken and related
User Agent EPR, associated to each participant and stored in the WS-resource
that represents that represents them.

E-PR-ParticipantInfo-InsertTokenAgent

public string InsertTokenAgent(string agentEpr, TokenType token)

Description Insert a token and an UA EPR to access a service in an existing participant WS-
Resource.

The result is the token identifier if operation is successful, otherwise "failure"

E-PR-ParticipantInfo-UpdateTokenAgent

public bool UpdateTokenAgent(TokenAgentType oldEntry, TokenAgentType newEntry)

Description Updates a pair token and UA EPR of a participant with a new one.

E-PR-ParticipantInfo-UpdateToken

public bool UpdateToken(TokenAgentType oldEntry, TokenType newToken)

Description Updates data in a token.

Return true or false.

E-PR-ParticipantInfo-UpdateAgent

public bool UpdateAgent(TokenAgentType oldEntry, string newAgent)

Description Updates UA data, in particular, the EPR of the UA.

Return true if the update is successful, false otherwise

E-PR-ParticipantInfo-RemoveTokenAgent

public bool RemoveTokenAgent(TokenAgentType entry)

Description Removes a token and its UA EPR associated to a participant

Returns true if operation is successful, false otherwise

D4.4.4, 1.0

© Akogrimo consortium members page 46 of 126

Participant Info

E-PR-ParticipantInfo-RetrieveTokenList

public TokenType[] RetrieveTokenList()

Description Retrieves the tokens’ list of the participant

Returns token type list if has success, null object otherwise

E-PR-ParticipantInfo-RetrieveAgentList

public EndpointReferenceType[] RetrieveAgentList()

Description Retrieve the UA EPRs’ list of the participant

Returns endpoint reference type list if has success, null object otherwise

E-PR-ParticipantInfo-RetrieveTokenAgentList

public TokenAgentType[] RetrieveTokenAgentList()

Description Retrieves the list of tokens and UA EPRs associated to the participant

It returns the full list if successful, null object otherwise

Profile Management

Description The methods in this group manage the profiles15 associated to
each participant and stored in the WS-resource that represents it
(so each method invocation doesn’t need to specify the
participant identifier: each WS-Resource on which the method is
invoked is associated to a specific participant). Each participant
can have different profiles each of one related to an OpVO
where he/she has involved in.

E-PR-ParticipantInfo-AddProfile

public string AddProfile(ParticipantProfileType participantProfile)

Description Adds a profile for the participant

Returns the profile identifier if operation is successful, "failure"
otherwise

E-PR-ParticipantInfo-UpdateProfile

public bool UpdateProfile(ParticipantProfileType oldProfile, ParticipantProfileType newProfile)

15 The participant profile has not been used in the first prototype. The Participant Registry has been designed and
implemented in order to manage it. In A.1, some notions are provided about what a profile is.

D4.4.4, 1.0

© Akogrimo consortium members page 47 of 126

Participant Info

Description Updates an existing profile of the participant

It returns true if the operation is successful, false otherwise

E-PR-ParticipantInfo-RemoveProfile

public bool RemoveProfile(ParticipantProfileType profile)

Description Removes a participant profile

It returns True if the operation is successful, false otherwise

E-PR-ParticipantInfo-RetrieveProfile

public ParticipantProfileType RetrieveProfile(string profileId)

Description Retrieves a profile of the participant

It returns the profile associated to the identifier if operation is
successful, null object otherwise

E-PR-ParticipantInfo-RetrieveProfileListId

public string[] RetrieveProfileListId()

Description Retrieves the list of profile identifiers associated to the
participant

Returns one or more profiles associated to the participant

Property management

Description This group of methods allows to manage the properties
associated to each participant. Participant properties include:
identifier of BVO Manager where the participants is registered,
identifier of OpVOs where participant is involved, identifiers of
application owned by the participant, …

E-PR-ParticipantInfo-ConfigureParticipantProperty

public bool ConfigureParticipantProperty(ParticipantProperty prop)

Description Configures property of the participant.

It returns true if the configuration is successful, false otherwise.

E-PR-ParticipantInfo-UpdateParticipantProperty

public bool UpdateParticipantProperty(ParticipantProperty oldProp, ParticipantProperty
newProp)

D4.4.4, 1.0

© Akogrimo consortium members page 48 of 126

Participant Info

Description Updates properties of a participant

It returns true if the update is successful, false otherwise.

E-PR-ParticipantInfo-RetrieveParticipantProperty

public ParticipantProperty[] RetrieveParticipantProperty()

Description Retrieves participant properties

Returns participant properties array if operation is successful, null
otherwise

E-PR-ParticipantInfo-RemoveParticipantProperty

public bool RemoveParticipantProperty(ParticipantProperty prop)

Description Removes property of participant

Returns True if deletion is successful, false otherwise

E-PR-ParticipantInfo-SetParticipantIdentifier

public bool SetParticipantIdentifier(string id)

Description Set identifier of participant

Returns True if setting is successful, false otherwise

E-PR-ParticipantInfo-GetParticipantIdentifier

string GetParticipantIdentifier()

Description Returns the participant identifier

Table 11 - VOInfo service methods

VOInfo

Participant reference management

Description This group of methods manage the reference of participant inside a VO.
For each VO we will have a dedicated WS-Resource and it will store
information about the participants. (so each method invocation doesn’t
need to specify the VO identifier: each WS-Resource on which the
method is invoked is associated to a specific VO).

E-PR-VOInfo- AddParticipantReference

D4.4.4, 1.0

© Akogrimo consortium members page 49 of 126

VOInfo

public bool AddParticipantReference(ParticipantMapping partRef)

Description Allows to add participant reference information in particular the
participant id and the EPR of the related resource of the participant info
service

It returns true if the operation is successful, false otherwise

E-PR-VOInfo-UpdateParticipantReference

public bool UpdateParticipantReference(ParticipantMapping oldPartRef, ParticipantMapping
newPartRef)

Description It updates participant reference information

It returns true if the operation is successful, false otherwise

E-PR-VOInfo- RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string partId)

Description It allows to retrieve the participant endpoint reference

Returns the participant endpoint reference if successful, null otherwise

E-PR-VOInfo- RemoveParticipantReference

public bool RemoveParticipantReference(ParticipantMapping partRef)

Description Remove participant reference information

Returns true if the operation successful, false otherwise

BVO/OpVO Manager setting

Description This groups includes methods that allow to set OpVO/BVO related
information on the WS-Resource that represents the OpVO/BVO itself

E-PR-VOInfo-SetVOIdentifier

public bool SetVOIdentifier(string id)

Description Set the VO (BVO or OpVO) identifier

returns true if the operation is successful, false otherwise

E-PR-VOInfo-GetVOIdentifier

public string GetVOIdentifier()

D4.4.4, 1.0

© Akogrimo consortium members page 50 of 126

VOInfo

Description Get the OpVO/BVO identifier

Returns the identifier if the operation is successful, "failure" otherwise

E-PR-VOInfo-SetManagerIdentifier

public bool SetManagerIdentifier(string id)

Description Set the (BVO or OpVO) Manager identifier

Returns True if the operation is successful, false otherwise

E-PR-VOInfo-GetManagerIdentifier

public string GetManagerIdentifier()

Description Get the (BVO or OpVO) Manager identifier

Returns the identifier if the operation is successful, "failure" otherwise

E-PR-VOInfo-SetManagerEpr

public bool SetManagerEpr(string manEpr)

Description Set the (BVO or OpVO) Manager EndpointReferenceType

Returns true if the operation is successful, false otherwise

E-PR-VOInfo-GetManagerEpr

public string GetManagerEpr()

Description Get the (BVO or OpVO) Manager EndpointReferenceType

Returns the EPR (serviceUrl#resourceID) if the operation is successful,
"failure" otherwise

Table 12 - Participant Name Service methods

ParticipantNameService

Mapping table management

Description This group of methods manage a table that stores the mapping between
unique identifier of the participant and the EPR of the associated
participant resource in the Participant info service

E-PR-ParticipantNameService-CreateParticipantMappingCollection

public bool CreateParticipantMappingCollection()

D4.4.4, 1.0

© Akogrimo consortium members page 51 of 126

ParticipantNameService

Description Create the collection to map participant identifiers (or unique user name)
and related endpoint reference

It returns true if the collection is created right, false otherwise

E-PR-ParticipantNameService-CheckCollectionExistence

public bool CheckCollectionExistence()

Description Check if the collection '/db/Akogrimo/ParticipantMapping' is already
created in Xindice

Returns true if the collection exists, false otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingCollection

public bool RemoveParticipantMappingCollection()

Description Removes the collection used to maintain mapping between participant
identifier and their endpoint reference

Returns true if the operation is successful, false otherwise

E-PR-ParticipantNameService-AddParticipantMappingEntry

public string AddParticipantMappingEntry(string participantId, EndpointReferenceType epr)

Description Adds an entry inside the mapping table

Returns Participant identifier if the operation is successful, false
otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingEntry

public bool RemoveParticipantMappingEntry(string participantId)

Description Removes a participant from the collection

It returns true if the action is successful, false otherwise

E-PR-ParticipantNameService-RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string participantId)

Description Retrieves a document from a collection

Returns the document if the operation is successful, null otherwise

For each component explained in this section we show the data structure they use to manage the
set of data required to manage BaseVO participants.

D4.4.4, 1.0

© Akogrimo consortium members page 52 of 126

Figure 18 - Data structures related to Participant Registry

The VOInfo component uses an array of ParticipantMapping; for each BaseVO participant it
contains a participant identifier and the EPR of the WSRF resource that represents this user in
the BaseVO.

The ParticipantInfo component uses an array of the following structures:

� PartipantProfileType contains the profile of the participant to BaseVO

� TokenAgentType contains the token to be used when invoking an User Agent instance

� ParticipantProperty contains information about the VO the participant is involved in

3.1.5.3. Interactions with the other components

The PR interacts with (see also Figure 11):

� The BVO Manager

� An administrative client

The interaction with the BVO Manager has been described in 3.1.1.3.

The invocations related to the management methods (e.g. update, add and remove) come from
the administrative client and they are not reported here

3.1.5.4. Involved technologies

The implementation of this component has dealt with logic underpinning the management of
BaseVO members. It provides a registry which exposes functionalities to collect personal
information about each member, (the username valid in the context of the BaseVO, his profile
listing his role in the BaseVO) to store information (username, profile) about all members of the
BaseVO. This component has been implemented using the Windows/.NET/WSRF/Enterprise
stack.

D4.4.4, 1.0

© Akogrimo consortium members page 53 of 126

3.1.6. OpVO Broker

This component has been changed to follow changes in the GrSDS service. Now OpVOBroker
supplies the getServices method where the input parameter is an array of XmlElement and not a
simple XmlElement. For each XmlElement containing in the array of XmlElement OpVOBroker
will invoke GrSDS service to obtain the list of Service Provider matching user’s requirement

3.1.6.1. Brief Overview

The OpVOBroker service is a component of VO Management block and it is important for
enacting of OpVO activities.

It interacts with GrSDS component to look for available services and then selects the services
which are able to satisfy the user’s needs according to his/her profile.

On the base of this service list the OpVOBrokerInstance starts the negotiation phase with a
specific service provider. In each service provider domain is a Negotiator service instance that is
in charge to negotiate contract with OpVOBroker and returns it a list of information needed to
use a purchased service.

3.1.6.2. Functionality

getService Invocation

Contact GrSDS service

Foreach SP contacts

Local Negotiator service

To start negotiation

proposedContract

is ok?

no

SP is discarded

Yes

Establish contract with SP

Figure 19 - OpVOBroker flowchart

The above flowchart describes what happens to OpVOBroker service when getService method is
invoked. OpVOBroker is in charge of invoking GrSDS service to retrieve a list of Service

D4.4.4, 1.0

© Akogrimo consortium members page 54 of 126

Provider satisfying requirement used to make the search. In each SP domain there is a Negotiator
service that is in charge of starting the negotiation process between the SP and the requestor.
When Negotiator service is invoked, it returns to OpVOBroker a pre-Contract which has to be
evaluated. If pre-Contract satisfies some constraints, OpVOBroker asks the Negotiator service to
establish contract that will be returned to the requestor.

3.1.6.2.1. Data structure

No data structure is available for this service.

3.1.6.2.2. Interfaces

Table 13 provides a list of the available methods on the OpVOBroker. The methods have been
grouped in categories.

Table 13 - OpVOBroker methods

OpVOBroker

Discovery methods

Description This group includes methods called from outside to ask for a list of services
satisfying requirements

E-OpVOBroker-getService

public arrayOfXmlElement getService(arrayOfXmlElement serviceRequirements)

Description This method allows starting a discovery of a services satisfying each service
requirement contained in the input parameter array

Configuration methods

Description This group includes methods to be invoked in order to configure the
OpVOBroker instance.

E-OpVOBroker-setEPR

public void setEPR(EndpointReferenceType participantRegistryEPR, EndpointReferenceType
policyManagerEPR)

Description This method allows configuring the OpVOBroker with the know EPR of the
PolicyManager service and ParticipantRegistry service.

3.1.6.3. Interaction with other components

3.1.6.3.1. Main behaviour

The OpVOBroker interacts with (see also Figure 7 and/or Figure 8):

� The GrSDS service

� The Negotiator service

D4.4.4, 1.0

© Akogrimo consortium members page 55 of 126

In Figure 20 the sequence diagram of these interactions is shown.

OpVOManager

getService()

OpVOBroker

searchForServicesEx

GRSDS

Service provider list

startNegotiation()

Negotiator

proposedContract

evaluateContract()

establishContract()

result

List of result

For each SR

Figure 20 - OpVOBroker interactions sequence

3.1.6.3.2. Alternative behaviour

The OpVOBroker could find errors during the invocations of the external services, GrSDS
service and Negotiator service. The source of exceptional behaviour can be the network
connection between OpVOBroker and GrSDS or Negotiator. Network connection problems
usually result in a time-out on the client side and could be handled by a second attempt or an
increased time-out value. Increasing the time-out value for requests from the OpVOBroker to
the GrSDS or Negotiator can be done by setting in the implementation code the timeout value of
the proxy service (GrSDS or Negotiator) to infinite. No other recovery actions are foreseen for
GrSDS service, instead for Negotiator service the error handling depends on the kind of error
returned.

3.1.6.4. Involved technologies

This OpVOBroker component has been implemented using the Windows/.NET/WSRF
software stack.

D4.4.4, 1.0

© Akogrimo consortium members page 56 of 126

3.2. SLA High Level

3.2.1. SLA-Access

3.2.1.1. Brief Overview

This service provides all necessary functionalities that other components could require from the
SLA document template and contract. Unlike SLA-Translator, SLA-Access does not access
directly the documents stored in the repositories (SLA-Templates and SLA-Contracts), but it uses
the SLA-Translator by passing the document Id and the specific tag it is looking for. So the SLA-
Access contains the logic to retrieve and manipulate data from/to SLA template and contracts.

The SLA-Access has been implemented as a WS-Resource developed in C# (.NET) which
exposes, at this moment, three methods (setParamToPreSLAContract, CreateLLContract and
getQoSParameters). These methods offer to the consumer a way for accessing to concrete data
of a specific document.

All these methods define what to do with concrete parts of the document, that is, to retrieve the
service information, the description of the service, get some parameters, or for example to update
the content of some tags, all of them carried out with a support service as the SLA-Translator.

3.2.1.2. Functionality

Table 14 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 14 - SLA-Access service methods

SLA-Access

SLA contracts and templates management

Description This group of methods allows to access the SLA templates/contracts
and to modify them in a transparent with respect to the XML details.

E-SLA-Access-CreateLLContract

public string CreateLLContract(string userSPTemplateID,

Low_level_parameter[] LLParameters,string expiration_time, string AREPR)

Description It allows filling specific sections of SLA template, identified by
userSPTemplateID, with the value of low level parameters that are
specified in the LLParameters object.

It returns a string if the operation has success, null object otherwise

E-SLA-Access-setParamToPreSLAContract

public string setParamToPreSLAContract(string UserSpTemplateID, int

HLParams, string expirationTime)

D4.4.4, 1.0

© Akogrimo consortium members page 57 of 126

SLA-Access

Description It allows filling specific sections of Pre SLA contract, identified by
userSPTemplateID, with the value of high level parameters that are
specified by HLParams object.

It returns a string if the operation has success, null object otherwise

E-SLA-Access-getQoSParameters

public objQoS getQoSParameters(string SLADocId)

Description This method is used to retrieve QoS parameters and thresholds to be
monitored

It returns an object with QoS parameters if the action has success,
null object otherwise

3.2.1.3. Interactions with the other components

The SLA Access interacts with:

� The EMS that invokes it from the Grid Infrastructure Services Layer (actually any
component interested in retrieving information on the SLA contract has to invoke the SLA
Access). In the first prototype, the EMS is the only component that invokes the SLA Access.

� The SLA Translator

In the following Figure 21 the sequence diagram of these interactions is shown.

Figure 21 - SLA Access interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (In general, it is the section 3.x.y.2).

The interactions shown in Figure 21 take place during the Hosting Environment (HE) setup (see
section 5.3.2 in [4]).

3.2.1.3.1. Alternative behaviour

The source of exceptional behaviour can be:

� Invocation timeout

D4.4.4, 1.0

© Akogrimo consortium members page 58 of 126

� External Exception

Invocation timeout exception is generated when the SLA-Access invokes the SLA-Translator
service but it doesn’t receive a response in a defined time interval. The connection with the
destination service is closed and an exception is forward to the requestor.

The external exceptions are generated by the SLA-Translator and then forward to the requestor
without any manipulation.

3.2.2. SLA-Translator

3.2.2.1. Brief Overview

This service is the responsible for providing access to SLA documents (SLA-Template and SLA-
Contract) and get (or set) information of them. For each document the associated ID is managed
and SLA-Translator interacts with the repositories in order to retrieve the appropriate document.

The SLA-Translator has been implemented as a WSRF compliant service developed in C#
(.NET) which exposes two methods (getData and setData) for getting/setting information from
a document. There are only two methods offered to stress on the main use of this service, but
each one has a set of input parameters which value have an influence on its results, so they can
be seen as a generalization of many more methods.

This type of implementation allows choosing among different types of results just by changing
the input parameters of both operations.

3.2.2.2. Functionality

Table 15 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 15 - SLA Translator service methods

SLA- Translator

SLA Contracts and Templates management

Description This group of methods allows processing the XML document that
represents the SLA contract/template

E-SLATranslator- getData

public string getData (string docType, string SLADocId, string rootTag, int occurrence)

D4.4.4, 1.0

© Akogrimo consortium members page 59 of 126

SLA- Translator

Description This method will be used for retrieving specific sections from a
template or contract.

In getData method, the consumer has to specify the type of
document being requested (“Template” or “Contract”) and the
document ID, as well as the tag name involved in the operation by
setting the simple tag name or a concrete root tag.

Furthermore, it also has to specify how many occurrences it expects
from the results that is choosing between the first occurrence found
(1) / the first one and its siblings (2)./ all the occurrences (3).

It will return a string that will represent the XML document
containing all the information that matches the requirements in
input.

E-SLATranslator- setData

public string setData (string docType, string SLADocId, objUpdateTag objUpdate)

Description This method will be used for setting a specific tag in a template or
contract.

In setData method, the consumer has also to specify the type of
document being requested (“Template” or “Contract”) and the
document ID. Furthermore, it also has to fill a specific object type
with the data it wants to update.

It returns a string containing the new ID of the updated document if
the operation is successful, null otherwise

3.2.2.3. Interactions with the other components

The SLA interacts interacts with:

� The SLA Access

� The SLA Repository

Figure 22 shows the sequence diagram of these interactions.

D4.4.4, 1.0

© Akogrimo consortium members page 60 of 126

Figure 22 - SLA Translator interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service.

The interactions shown in Figure 22 take place during the HE setup (see section 5.3.2 in [4]).

3.2.2.4. Involved technologies

The SLA Translator implements the logic to retrieve a specific field required by the SLA-Access
from the SLA document. Actually this logic is implemented through the couple: SLA-Access and
SLA Translator.

It is implemented as a WS-Resource. There will be an SLA-Access instance associated to a
specific SLA-Translator

Implementation has been done using the Windows/.NET/WSRF/Enterprise Software Stack.

3.2.3. Contract/Template-Repository

3.2.3.1. Brief Overview

The SLA Template Repository allows storing and retrieving of SLA documents. This service is
used as a storage facility by the SLA-Translator.

D4.4.4, 1.0

© Akogrimo consortium members page 61 of 126

Figure 23 - SLA Contract and Template Repository

The SLA Template/Contract Repositories are currently implemented as two regular Web
Services deployed in C# virtualizing a file system or storing documents in a XML database.

3.2.3.2. Functionality

Table 16 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 16 - SLA repository service methods

SLA- Repository

Storing SLA contracts and templates

Description This group of methods allows to store and retrieve templates and
contracts from the repository

E-SLARepository- storeTemplate

public string StoreTemplate(string templatePath, bool overwrite)

Description The StoreTemplate() method accepts a path to a local file
(templatePath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA templates with the same
name. Currently the name is used to identify the SLA template
document.

E-SLARepository- GetTemplate

public XmlDocument GetTemplate(string templateId)

D4.4.4, 1.0

© Akogrimo consortium members page 62 of 126

SLA- Repository

Description Given the name of an SLA Template as templateID, the method
GetTemplate() retrieves the document and returns it as an
XmlDocument

E-SLARepository- storeContract

public string StoreContract (string contractPath, bool overwrite)

Description The StoreContract() method accepts a path to a local file
(contractPath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA Contract with the same
name. Currently the name is used to identify the SLA Contract
document.

E-SLARepository- GetContract

public XmlDocument GetContract (string contractId)

Description Given the name of an SLA Contract as ContractID, the method
GetContract () retrieves the document and returns it as an
XmlDocument

3.2.3.3. Interaction with the other components

The SLA Repository interacts with the SLA Translator. In general, any component interested in
retrieving a contract and/or a SLA template has to invoke it.

The interaction has been already described in section 3.2.2.3

The methods related to storage functionalities have been used using dedicated client in order to
store the XML document to be retrieved during the HE setup (see section 5.3.2 in [4]).

3.2.3.3.1. Main Behaviour

The regular behaviour consists of store, update and retrieve operations of SLA documents. No
computational or otherwise complex internal operations are involved.

3.2.3.3.2. Alternative Behaviour

The source of exceptional behaviour can be one or more of the following:

� The network connection

� The IIS Web-server

� The .NET runtime environment

� The Xindice database (if SLA contracts are stored in the database)

� The file system (if SLA contracts are stored on disk)

� The implemented functionality

D4.4.4, 1.0

© Akogrimo consortium members page 63 of 126

Network connection problems usually result in a time-out on the client side and could be handled
by a second attempt or an increased time-out value. Problems of the Web-server or the .NET
runtime environment are considered out of the scope of this document. So the main sources of
exceptional behaviour are the database or hard disk and the implementation itself. All of these
errors are reported to the client by mean of exceptions. Following diagram gives an overview of
the exception handling control flow when SLA documents are retrieved from the repository.

Start

End

Extract XML root

node

Use Database

Retrieve the

storage path from

the config file

Read XML file

from disk

File I/O Error Throw Exception

Retrieve the name

of the DB

collection from the

config file

Read XML node

from DB

DB Error

Extract XML root

node

YesNo

Yes Yes

No No

Figure 24 - SLA Document Read Control Flow

When documents are stored in the repository the control flow is slightly more complex as can be
seen in the following diagram:

D4.4.4, 1.0

© Akogrimo consortium members page 64 of 126

Start

End

Extract XML root

node

Use Database

Retrieve the

storage path from

the config file

Store XML file on

disk

File I/O Error Throw Exception

Retrieve the name

of the DB

collection from the

config file

Store XML node in

DB

DB Error

Extract XML root

node

YesNo

Yes Yes

No No

Create SLA

Contract Node

Directory existsCreate directory
DB collection

exists

Create DB

collection

DB Error

Throw ExceptionThrow Exception

Disk I/O Error

Yes Yes

NoNo

No No

Yes Yes

Figure 25 - SLA Document Write Control Flow

3.2.3.4. Involved technologies

The implementation of this component has dealt with the management of SLA documents. It
provides a repository to archive these documents and exposes functionality to parse the content
of the document and to retrieve specific information.

SLA Repository has been developed using regular Windows ASP.net Web service using C# as
implementation language and it will represent a simple interface to a file system.

It is implemented using the Windows/.NET/WSRF software stack and the Xindice 1.1b4: native
XML database.

D4.4.4, 1.0

© Akogrimo consortium members page 65 of 126

3.2.4. SLA Negotiator

3.2.4.1. Brief Overview

SLA-Negotiator Service represents the service that is contacted by the Operative VO Broker
component (OpVoBr) in order to lead the service negotiation process in the SP domain. The
OpVoBr has previously requested to the Grid Service Discovery component the list of service
providers that offer a particular service. Then the OpVoBr contacts the SLA-Negotiator service
of the given service provider to initiate and lead the negotiation process. From an
implementation point of view, SLA-Negotiator is a MultiResource Factory Service prepared for
the co-existence of several Virtual Organisation working in parallel. That means that there is a
service that exposes an operation to generate SLA-Negotiator service instances.

3.2.4.2. Functionality

Next, we include some tables in order to detail the functionality and implementation of the two
operations exposed by SLA-Negotiator:

Table 17 - SLA-Negotiator methods

SLA-Negotiator

Operations

Description This group includes methods called from OpVOBroker in order to perform
service negotiation.

E-SLANG-StartNegotiation

public String do_startNegotiation(String serviceID, String userID, String hlparam, String
expirationTime, String UserSPTemplateId)

Description This method allows starting the negotiation of a given service for a given user
with certain high level parameters. The aim of this operation is to establish a
contract between the user and the Service Provider where the terms are
expressed as high level functionalities. It is important to note that the
information enclosed in this contract refers to high level requirements (i.e.
refresh time less than X seconds) and not to low level parameters like cpuUtil
and diskUtil. Negotiator will look up the resource availability and invoke the
SLA-Access to store the Contract into the Repository with the high information
parameter information.

E-SLANG-EstablishContract

public String do_establishContract(String serviceID)

D4.4.4, 1.0

© Akogrimo consortium members page 66 of 126

SLA-Negotiator

Description Once agreed with the Contract including the high level requirements, SLA-
Negotiator tells EMS to carry out the advanced reservation of resources to
provide the agreed Contract. Finally, SLA-Negotiator stores the SLAContract,
including the low level parameters, into the repository via SLA-Access to be
available for the SLA-enforcement process once execution starts. It is important
to remark that this contract includes the low level parameters that are going to
be monitored by the SLA enforcement mechanism.

3.2.4.3. Interaction with other components

First, we include a table summarizing the components which SLA-Negotiator interact with as
well as the protocol used:

Interaction with other components Protocol

Policy Manager SOAP/HTTP

EMS SOAP/HTTP

SLA-Access SOAP/HTTP

More detailed information is shown in the sequence diagrams including the interactions taking
placed in both operations:

D4.4.4, 1.0

© Akogrimo consortium members page 67 of 126

Figure 26 - SLA Negotiator interactions

As it can be seen in the sequence diagram, SLA-Negotiator interacts with Policy Manager in
order to retrieve the low level parameters that corresponds to the high level parameters chosen
by user. The mapping between the high and low level parameter is stored following a policy
format. Next, we include an example of a Policy Attachment for the Acquisition Resource
Service

<?xml version="1.0" encoding="UTF-8" ?>

<wsp:PolicyAttachment xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy">

 <wsp:AppliesTo>

 <PolicyContext xmlns:pm="http://www.akogrimo.org/namespaces/PolicyManager"
xmlns="http://www.akogrimo.org/namespaces/PolicyManager">

 <Subject>

 <Attribute AttributeId="urn:akogrimo:PolicyManager:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">

 <AttributeValue>http://server.akogrimo.com/SLAMappings</AttributeValue>

 </Attribute>

 </Subject>

D4.4.4, 1.0

© Akogrimo consortium members page 68 of 126

 <Resource>

 <Attribute AttributeId="urn:akogrimo:PolicyManager:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">

 <AttributeValue>http://server.akogrimo.com/SLAMappings</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

 <Attribute AttributeId="urn:akogrimo:PolicyManager:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>ARS</AttributeValue>

 </Attribute>

 </Action>

 </PolicyContext>

 </wsp:AppliesTo>

 <wsp:Policy>

 <sla:HLMappings xmlns:sla="http://www.akogrimo.org/namespace/SLAManagement"
xmlns="htp://www.akogrimo.org/namespace/SLAManagement">

 <sla:HighLevelParameter Id="Gold">

 <sla:LowLevelParameter>

 <sla:paramname>cpuLoad</sla:paramname>

 <sla:maxvalue>2</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GHz</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>DiskSpace</sla:paramname>

 <sla:maxvalue>2</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GB</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>MemoryUsage </sla:paramname>

 <sla:maxvalue>2</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GB</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>Bandwidth</sla:paramname>

 <sla:maxvalue>gold</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>Gold</sla:paramUnit>

D4.4.4, 1.0

© Akogrimo consortium members page 69 of 126

 </sla:LowLevelParameter>

 </sla:HighLevelParameter>

 <sla:HighLevelParameter Id="Silver">

 <sla:LowLevelParameter>

 <sla:paramname>cpuLoad</sla:paramname>

 <sla:maxvalue>1.5</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GHz</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>DiskSpace</sla:paramname>

 <sla:maxvalue>1</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GB</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>MemoryUsage </sla:paramname>

 <sla:maxvalue>1024</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>MB</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>Bandwidth</sla:paramname>

 <sla:maxvalue>silver</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>Silver</sla:paramUnit>

 </sla:LowLevelParameter>

 </sla:HighLevelParameter>

 <sla:HighLevelParameter Id="Bronze">

 <sla:LowLevelParameter>

 <sla:paramname>cpuLoad</sla:paramname>

 <sla:maxvalue>1</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GHz</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>DiskSpace</sla:paramname>

 <sla:maxvalue>0.5</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>GB</sla:paramUnit>

 </sla:LowLevelParameter>

D4.4.4, 1.0

© Akogrimo consortium members page 70 of 126

 <sla:LowLevelParameter>

 <sla:paramname>MemoryUsage </sla:paramname>

 <sla:maxvalue>512</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>MB</sla:paramUnit>

 </sla:LowLevelParameter>

 <sla:LowLevelParameter>

 <sla:paramname>Bandwidth</sla:paramname>

 <sla:maxvalue>bronze</sla:maxvalue>

 <sla:minvalue>0</sla:minvalue>

 <sla:paramUnit>Bronze</sla:paramUnit>

 </sla:LowLevelParameter>

 </sla:HighLevelParameter>

 </sla:HLMappings>

 </wsp:Policy>

</wsp:PolicyAttachment>

where the mappings between the high level parameter (Gold, Silver and Bronze) to the low level
parameters (cpuLoad, DiskSpace, Memory Usage and Bandwidth) can be seen inside tag Policy.

The object retrieved from Policy Manager is an XML document where this info is stored. Next,
SLA-Negotiator checks with EMS the availability of resources with the obtained low level
parameters from the Policy Manager. In the case that there are resources available, the EMS
returns back the EPR of the Negotiation Resource. Finally in this first phase, SLA-Negotiator
pushed SLA-Access to create the User-Service Provider contract where the high level parameters
have to be included. The Low level information has been decided to be stored in a different
contract since this information should be absolutely transparent to the user. For example, a
general user only understands if its screen refresh time is less or greater than a given number of
seconds, but he does not care about the resources values required to obtain such performance
(cpuLoad, memoryUsage….).

The second operation exposed by SLA-Negotiator has the aim to generate and store a different
contract that includes the low level parameter information. This contract is basic for the SLA
enforcement process. Once the service starts running the EMS initiates the SLA enforcement
mechanism to be sure that the user enjoys the service in the terms established in the contract (i.e.
refresh time less than X seconds). The sequence diagram establishes that in the phase apart from
creating/storing the new contract, SLA-Negotiator indicates EMS to perform advance
reservation of resources.

3.2.4.3.1. Error handlings

So far, SLA-Negotiator interacts with different components (Policy Manager, EMS and SLA-
Access) when OpVoBr invokes one of the two operations exposed by the Service
(startNegotiation and establishContract). The sequence diagrams defined so far do not include
the case where the EMS does not find any resource available with the current low level
parameters. For this particular case, no recover mechanism has been defined so far.

D4.4.4, 1.0

© Akogrimo consortium members page 71 of 126

Now, once EMS can not find resources available for the current HLParam, SLA-Negotiator will
inform OpVoBr to try to negotiate the service with another Service Provider or launch another
mechanism.

Next we include the sequence diagram where the NULL management is depicted:

Figure 27 - SLA-Negotiator sequence diagram representing the handling errors case

3.2.4.4. Involved technologies

The development of this component involved the WSRF implementation provided by java WS-
Core Container included in GT4.0.1

3.3. BP enactment

3.3.1. WorkFlow Registry

3.3.1.1. Brief Overview

The Workflow Registry is the component in charge of storing implementation files of published
workflows. Such files will be stored in relational databases, along with annotations necessary for
semantically identifying workflows. A unique key identifies each workflow and its semantic
annotations. Semantic annotations are stored as simple keywords.

The Workflow Registry contains Business Process Execution Language (BPEL) templates that
correspond to the Business Processes. In addition the Workflow Registry contains what is called
“Process Deployment Descriptor”. This additional file is related to the workflow template(s) and
it contains the name of the abstract services. The abstract services will be substituted with
concrete services by the Workflow Manager. In this way the Workflow Manager component
should not parse the entire BPEL script.

D4.4.4, 1.0

© Akogrimo consortium members page 72 of 126

The Workflow Registry makes use of the MySQL relational database. It is exposed as a web
service that offers methods to upload/retrieve templates. The web service is implemented in
Java.

The template search could be done based on the unique workflow identifier or based on simple
keywords.

3.3.1.2. Functionality

3.3.1.2.1. Data Structure

The Workflow Registry makes use of a MySQL database where information about workflow
templates is stored.

The database has the structure reported in Table 18.

Table 18 - Workflow Registry Data structure

Field Type Brief Explanation

Filename String File name of the workflow template.

TemplateID String Template identifier. This identifier coincides
with the ones reported in the GrSDS.

SPDomain String Domain application of the Service Provider.

FileID String File identifier. This field differs from the
template identifier. It is an internal ID used
to physically retrieve the workflow template
file.

3.3.1.2.2. Interfaces

Table 19 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 19 - WF Registry service methods

WF- Registry

Storing WF templates

Description This group of methods allows to store and retrieve WF templates
to/from the repository.

E-BPE-WFRegistry- Store

workflowID store(WFTemp[], filename, tempID, SPdomain)

Description It returns a workflow identifier assigned by database upon success.
The parameters are: the workflow template files (BPEL and PDD),
the filename to be associated to the wf template, the template
identifier, the Service Provider domain.

D4.4.4, 1.0

© Akogrimo consortium members page 73 of 126

WF- Registry

E-BPE-WFRegistry- Get

WFTemp[] get(workflowID)

Description It returns the workflow template (BPEL and PDD) files upon
success. The input parameter is the workflow identifier.

E-BPE-WFRegistry-Update

result update(workflowID, keywords[], values[])

Description It returns success or failure. The parameters are the workflow
identifier, the keywords to be updated and their new values. The
admitted keywords are: “temeplateID”,”Filename”,”SPDomain”.

E-BPE-WFRegistry-Remove

Result Remove(workflowID)

Description It returns success or failure. This function removes the specified
workflow from the database. The parameter is the workflow
identifier.

3.3.1.3. Interactions with other components

3.3.1.3.1. Main Behaviour

The Workflow Registry interacts with:

� The Service Provider

� The Workflow Manager

The Service Provider is in charge of storing the workflow template files to the Workflow
Registry.

The Workflow Manager is in charge of retrieving the workflow template files from the Workflow
Registry.

Workflow template files can updated/removed by the Service Provider.

D4.4.4, 1.0

© Akogrimo consortium members page 74 of 126

Figure 28 - Workflow Registry Interfaces

In Figure 28 the sequence numbers outline that a workflow template could be retrieved after it
has been uploaded. In any case the two actions do not need to be one just after the other.

3.3.1.3.2. Alternative behaviour

The possible causes of failures are:

� The filename is already present in the Workflow Registry

� The template identifier (templateID) does not exist

� The Workflow template file is corrupted

In the first two cases the request should be submitted again with the correct parameters. If the
Workflow Template file is corrupted, the Workflow Registry returns an error that is reported to
the upper layer, that is to the Workflow administration level. No automatic recovery is foreseen
and the error should be communicated to the Service Provider.

3.3.1.4. Involved technologies

The implementation of this component has dealt with the management of WF related files stored
in the associated relational database. This service implements the logic to associate the different
files between them and it virtualizes the access to the database through a Web service interface.

Involved technologies:

� MySQL: Relational Database

� Basilar Web Service specifications (SOAP, WSDL)

� Java programming language

� Linux Ubuntu Operating system

� Tomcat: Web Service

� Axis: SOAP engine

D4.4.4, 1.0

© Akogrimo consortium members page 75 of 126

3.3.2. Enactment Engine

3.3.2.1. Brief Overview

The Enactment Engine (also called Workflow Engine) is the component of the Business Process
Enactor in charge of enacting specific BPEL processes submitted by the Workflow Manager
component. The Enactment Engine will support execution of BPEL processes by calling services
with a WSDL description.

The Enactment Engine will be exposed to external entities as a normal web-service to which
invocation of methods will be possible. Methods will include those for starting and cancelling a
business process, those for inspecting and retrieving inputs and outputs to/from the workflow
and status information of a workflow.

3.3.2.2. Functionality

3.3.2.2.1. Data Structure

No data structure is available for this service.

3.3.2.2.2. Interfaces

Table 20 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 20 - Enactment engine methods

Enactment- engine

Workflow instances management

Description This group of methods allows to manage the workflow instances
living inside the Enactment Engine

E-BPE-EEngine-deployBpr

processID deployBpr(bpelFile)

Description This method is used for submitting a workflow to the engine for
enactment. It is semantically equivalent to the method

“workflowRef Submit(wfTemplateFile)“ described in section
3.2.2.4.3 of deliverable [2]

It returns an identifier of the deployed workflow.

E-BPE- EEngine-resumeProcess

bool resumeProcess (processID)

D4.4.4, 1.0

© Akogrimo consortium members page 76 of 126

Enactment- engine

Description This method is used for asking the engine to start the enactment of
a submitted workflow. It is semantically equivalent to the method
“Start(workflowRef)“ described in section 3.2.2.4.3 of deliverable
[2]

It returns success or failure

E-BPE-EEngine-terminateProcess

bool terminateProcess (processID)

Description This method is used for asking the engine to totally cancel the
enactment of a submitted workflow. It is semantically equivalent to
the method “Cancel(workflowRef)“ described in section 3.2.2.4.3
of deliverable [2]

It returns success or failure

E-BPE-EEngine-getprocessList

process_list getProcessList()

Description This method is used for asking the engine the list of processes
already submitted. Note that the resulting list includes all deployed
processes, not only those actually executing.

E-BPE-EEngine-getProcessState

process_state getProcessState(processID)

Description This method is used for asking state information about a
workflow. It is semantically equivalent to the method “wf_state

GetWFState(workflowRef)“ described in section 3.2.2.4.3 of
deliverable [2]

E-BPE-EEngine-setVariable

process_variable setVariable(processID, name)

Description This method is used for setting value and state of a specific
variable of a specific workflow. This method is very important
because it used to set any context change happening during the
workflow execution.

E-BPE-EEngine-getVariable

process_variable getVariable(processID, name)

D4.4.4, 1.0

© Akogrimo consortium members page 77 of 126

Enactment- engine

Description This method is used for asking value and state of a specific variable
of a specific workflow. It is semantically equivalent to the method

“wf_variable InspectVar(worfklowRef)“ described in section
3.2.2.4.3 of deliverable [2]

Business process logic related methods

Description This group will include all the methods that are strictly related to
the business process logic. Of course, they will be different
depending on the business process design itself, so they are not
listed here, because they are application specific..

3.3.2.3. Interaction with other components

3.3.2.3.1. Main behaviour

The Enactment Engine interacts with:

� UA

� SA

� Monitoring Daemon

� WF Manager

In Figure 29 the sequence diagram of the above interactions is shown, in particular, it refers to
the interactions with the business logic related methods.

Figure 29 - Enactment Engine interactions sequence

The above sequence provides details about the interaction related to step 3 in Figure 11

D4.4.4, 1.0

© Akogrimo consortium members page 78 of 126

In order to understand the meaning of each invocation, please refer to the table of functionalities
in the section related to the specific service (sections 3.x.y.2). Actually, apart from the method
invoked by the Workflow Manager, the other ones are generic names because they are related to
the application logic, and during the workflow instance execution several methods on the
application services are invoked. The sequence of interactions doesn't reflect a real temporal
sequence because the invocation of SA depends on the business logic of the workflow.

The object that in Figure 25 is labelled with “EEngine” actually is the running instance of the
application workflow (it is run by the EEngine).

The interaction with the Workflow Manager is performed during the OpVO creation to
configure the Enactment Engine and it involves the management methods. The following
sequence describes this interaction that involves an invocation from a generic client that actually
during the OpVO creation is the OpVO Manager.

Figure 30 - Enactment Engine interactions sequence

3.3.2.3.2. Alternative behaviour

The Workflow Engine could encounter internal errors or can receive an error during the
execution of the services it invokes.

In case of internal errors no recovery actions are foreseen unless the Business Process Designer
has modelled the workflow to take care of them. No automatic recovery actions are foreseen.

In case of errors during the invocation of external services, the error handling depends on the
modelling of the specific workflow. The Workflow Engine is able to catch errors thrown by the
services and it is able to takes recovery actions like: new invocation, alternative branch execution.

3.3.2.4. Involved technologies

The implementation of this component has dealt with the logic to administer the ActiveBPEL
Engine. Some API provided by the ActiveBPEL Engine has been used in the implementation
and it has been implemented as a Web Service to simplify interactions with other components
using Java as programming language.

Involved technologies:

� ActiveBPEL engine: BPEL script execution engine.

� JDK: 1.4.2_09-b05 (mandatory).

� Ant: 1.6.5 (mandatory).

D4.4.4, 1.0

© Akogrimo consortium members page 79 of 126

3.3.3. WorkFlow Manager

3.3.3.1. Brief Overview

This is a component of the Business Process Enactment service (the other components being the
Enactment Engine (EE), the Monitoring Daemon (MD) and the Workflow Registry (WR)). Its
purpose is to transform workflow templates into workflows that can be carried out by the
Enactment Engine; part of this transformation includes service instantiation and registration for
context changes (with the Context Manager) and SLA violations (with SLA Enforcement). It also
receives context/SLA notifications from the MD and (possibly) interrupts or redirects the
current workflow. A Workflow Manager (WM) is created (by an OpVO Manager, or by another
Workflow Manager); thus each instance of the WM manages a single workflow. (More strictly, it
manages a single instance of a workflow template; this may generate multiple workflows.)

The WF manager implements a limited set of functionalities, in particular related to the
management of context change and the business process deployment.

3.3.3.2. Functionality

Table 21 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 21 - WF manager service methods

WF- Manager

Workflow instantiation

Description It includes a group of methods that allows to set up the
environment to manage the workflow during its execution.

E-BPE-WM-CreateWF_Manager

EndPointReferenceType CreateWF_Manager(WFTemplate)

Description Create a new Workflow Manager to handle a workflow template
(supplied as parameter).

It returns a reference to the new WF Manager instance.

OpVO Manager-WM-DeployWF

EndPointReferenceType DeployWF_Manager(WFTemplate)

Description Deploy workflow to the enactment engine, it returns a reference to
the new deployed WF in the EE.

3.3.3.3. Interactions with the other components

The WF Manager interacts with the Workflow Repository to extract the workflow template, and
it calls the Enactment Engine to update context and deploy workflows.

D4.4.4, 1.0

© Akogrimo consortium members page 80 of 126

3.3.3.3.1. Alternative Behaviours

Unexpected and exception related behaviours of the Workflow Manager can be caused by

� Calls to a method using wrong data types.

� Failure to call the correct Workflow Manager instance.

These are the two behaviours we have encountered through both human and machine error, and
purposeful use of incorrect data. The Workflow Manager instance error sometimes causes a
failure to destroy existing instances of Workflow Manager that have been used. All errors are
logged.

3.3.3.4. Involved technologies

The component has been realised using the UNIX/Java/WSRF software stack and was particular
using the WS-Notification implementation of GT4 Core.

3.3.4. Monitoring Daemon

3.3.4.1. Brief Overview

This is a component of the Business Process Enactment service (the other components being the
Workflow Manager (WM), the Enactment Engine (EE) and the Workflow Registry (WR)). Its
purpose is to provide a web service interface that the Context Manager and SLA Enforcement
can use to notify BP Enactment about context changes or SLA violations. It may perform some
processing on the received notifications (such as further filtering and (in the longer term) concept
mapping), before passing them to the WM for decisions/ action.

3.3.4.2. Functionality

Table 21 provides a list of the available methods on each service. The methods have been
grouped in categories.

Table 22 - Monitoring Daemon service methods

Monitoring Daemon

MD Administration

Description It includes a group of methods that allows to administrate the MD

E-BPE-MD-Create

EndpointReferenceType Create()

Description Create a new Monitoring Daemon. It is expected to be invoked by
a WM, so that each WM has (to all intents and purposes) a
dedicated MD

E- BPE-MD-GetContext

Public GetContext(userID)

D4.4.4, 1.0

© Akogrimo consortium members page 81 of 126

Monitoring Daemon

Description To be used by a client to query the last known context for a user
ID.

3.3.4.3. Interactions with the other components

The MD interacts with:

� The Context Manager

� The Workflow Manager

In Figure 31, the sequence diagram of these interactions is shown. The Workflow Maanger is not
included in this sequence because it interacts with the MD in a different phase to instruct (see
below). Furthermore the Workflow manager is invoked by the MD to be informed about context
changes.

Figure 31 - MD interactions sequence

In order to understand the meaning of each invocation, refer to the table of functionalities in the
section related to the specific service. (In general, it is the section 3.x.y.2).

It is worth mentioning that in order to subscribe to the CM the MD has to be instructed to do
that. In the complete Akogrimo picture, the WF Manager will instruct the MD, during the OpVO
creation, passing it the information about the context which it has to subscribe on. The MD calls
the WF Manager to update context in workflows upon any significant context updates it receives
from the workflow manager.

Details about the interactions between MD and CM can be found in [3] section 5.2.2.

3.3.4.4. Alternative behaviour

Unexpected and exception related behaviours of the Monitoring Daemon can be caused by

� Calls to a method using wrong data types.

� Registration of wrong context variable to user

� Error in update sensitivity

Passing wrong data types to the MD has been encountered through both human and machine
error, and purposeful use of incorrect data. The registration of a user to the MD and subsequent
registration with the context manager is a process that relies on good network connectivity.
Failure causes the workflow manager to stall. Sensitivity of the RFID tag on the sensor has

D4.4.4, 1.0

© Akogrimo consortium members page 82 of 126

caused multiple context alerts being sent to the Monitoring Daemon in a short space of time.
This has the effect of the MD overwriting previous updates and triggering multiple calls to the
workflow engine in short spaces of time. This has the potential to negatively affect the behaviour
of the workflow engine. All events and errors are logged in the service.

3.3.4.5. Involved technologies

Implemented using the UNIX/Java/WSRF software stack. Furthermore it uses the WS-
Notification implementation available in GT4 core.

3.3.5. Sip Broker WS-Interface

3.3.5.1. Brief overview

This service does not represent a component itself, it is included in the Sip Broker component.
A full description of the Sip Broker component more related to the SIP protocol can be found in
official Akogrimo deliverable D4.1.3 (see [7]). Keeping this in mind, from now on we will refer to
the WS-Interface as a component even when it is only a part of it.

This component aims to provide a WSRF service interface to the Sip Broker component
available in the platform and explained in detailed in deliverables of WP4.1 and WP4.2. Among
the functionalities offered by this service can be found

� Establish a sip call between two users

� Allows to add a person to a multivideoconference already in place.

� Allow the transfer of an audio/video session from one device to other

� Obtain connection details of the mobile services running in different terminals

� Notify the change of the features of mobile services

This functionality is offered by means of two services: SipBroker WSRF service and the Sip
Broker Notification Producer service.

3.3.5.2. Functionality

Table 23 details the signature of the operations exposed by Sip Broker WSRF service:

 Table 23 - Sip Broker WSRF service

Sip Broker WSRF service

Sip Broker WSRF Service

Description This group of methods allows communication with the Sip Broker
component.

E-BPE-SBI-startSession

int startSession(user1,user2,sessionType,OpVOToken)

D4.4.4, 1.0

© Akogrimo consortium members page 83 of 126

Sip Broker WSRF service

Description This method is used when a SIP Call between two akogrimo users
is required. The variables user1 and user2 represent the identifiers
of the Akogrimo users, sessionType represents the type of session
(application/sdp) and the OpVOToken is a token to ensure that the
request comes from the right Operative VO.

In addition, this method also allows to user2 to be added to a
multivideoconference where user1 belongs to.

It returns an int telling success (0) or failure and in case of failure,
the type of failure.

E-BPE- SBI-transferSession

int transferSession (user1,user2,device,sessionType,OpVPToken)

Description This method is used when a transfer of a session (between two
users) has to be carried out from the current terminal to a new
device. User1 and user2 are the Akogrimo users that are having an
audio/video session, device represent the identifier of the new
device where the session is going to be transferred, sessionType
indicates the type of the session (in this case application/sdp) and
OpVOToken is a token to ensure that the request comes from the
right Operative VO

It returns an int telling success (0) or failure and in case of failure,
the type of failure.

E-BPE-SBI-getConnectionDetails

Connection details getConnectionDetails (userID,serviceID)

Description This method is used for asking the connection details of a service
(or all services) of a certain user. It returns a string which includes
the URL at which the service can be found and the availability.

Table 24 provides the description of the operations provided by Sip Broker Producer Service

Table 24 - Sip Broker Producer Service

Sip Broker Notification Producer service

Sip Broker Notification Producer Service

Description This service notifies the change on the connection details of
mobile services to which EMS have been subscribed.

D4.4.4, 1.0

© Akogrimo consortium members page 84 of 126

Sip Broker Notification Producer service

E-BPE-SBI-subscribe

void subscribe(topic)

Description This method is exposed in order to let other service to subscribe to
some of its topics. This service only exposes a topic which informs
the consumer service of the availability of mobile services. So far,
EMS has to subscribe to this service to know online where the
mobile services are located and their availability.

E-BPE- SBI-setState(state)

void setState (state)

Description This method is used to update the topic and to provoke a
notification to all consumers being subscribed to this topic. These
topics include information of the availability and location of a
mobile service associated to a certain Akogrimo user.

3.3.5.3. Interactions with other components

3.3.5.3.1. Main behaviour

The Sip Broker Interface service interacts with the following components:

� Enactment Engine

� EMS

The Enactment Engine interacts with the Sip Broker when it is required either to establish a SIP
Call between two Akogrimo users or when a session transfer has to be carried out.

D4.4.4, 1.0

© Akogrimo consortium members page 85 of 126

Figure 32 - Enactment Engine/Sip Broker WS-Interface sequence diagram

EMS needs information about mobile services. In this sense, Sip Broker is the service that is able
to provide mobile services online. The information can be provided in two different ways:

� By invoking an operation directly (getConnectionDetails from Sip Broker WSRF)

� By subscription/notification mechanism (Subscribe from Sip Broker Notification
Producer)

D4.4.4, 1.0

© Akogrimo consortium members page 86 of 126

Figure 33 - EMS Sip Broker WS-Interface Sequence Diagram

3.3.5.3.2. Alternative behaviour

The Sip Broker WS-Interface is prepared to handle certain errors coming from the SIP
infrastructure modules. The return value in the operations invoked by the Enactment Engine
accounts for this type of errors. As it can be seen in the functionality section, the return value of
these two operations (startSession and transferSession) is an int whose value indicates if the process
has been carried out with success/failures. The meaning of the specific values are the same for
both methods (0 SUCCESS, 1 DECLINED, 2 FAILED, 3 TIMEOUT, 4UAERROR and 5
NOTFOND). For instance, DECLINED means that then doctor does not want to make the

D4.4.4, 1.0

© Akogrimo consortium members page 87 of 126

call, FAILED one of the callers is not registered, TIMEOUT occurs when some of the callers is
waiting too much to accept the call and NOTFOUND occurs when a grid transfer is being
requested but no grid call is in progress).

The component will be updated during the maintenance phase in order to handle unexpected or
erratic behaviours.

3.3.5.4. Involved technologies

Both services have been developed using the WSRF and WS-Notification implementation issued
by Globus Toolkit 4.0. The services are deployed in the Kava WS-Core container also included in
the Globus Toolkit 4.0.1 version.

3.4. Grid Service Discovery Service

3.4.1.1. Brief Overview

The service discovery server is divided into two parts – the service repository and the service
discovery proxy. The service repository is principally replaceable, whereas the proxy stays the
same. This way the proxy hides the actual service registry implementation from the search clients.
In the testbed following configuration is used:

� Service Repository: ADONIS Business Process Management Toolkit with Akogrimo specific
extensions running on a Windows machine

� GrSDS Proxy: C# Web-service running on a Windows machine

Figure 34 gives an overview.

Figure 34 - GrSDS Design Overview

3.4.2. Functionality

The functionality of the GrSDS is logically divided into publishing of service descriptions and
searching for services. Publishing involves publish, update and delete operations. The search
functionality is accessed via the methods SearchForServices() and SearchForServicesEx().

Table 25 - GrSDS service methods

GrSDS

Service Search

Description The OpVOBroker or a GUI client may use the GrSDS to find the
desired services.

D4.4.4, 1.0

© Akogrimo consortium members page 88 of 126

GrSDS

E-GRSDS-SearchForServices

public XmlElement SearchForServices(XmlElement serviceRequirements)

Description This method returns the first service description that matches the
service requirements passed as input

E-GRSDS-SearchForServicesEx

public XmlElement SearchForServicesEx(XmlElement serviceRequirements)

Description This method returns a list of services descriptions that matches the
service requirements passed as input

Service Publishing

Description Service providers can publish descriptions of the services they
offer. The service publishing functionality of the GrSDS allows to
store, update and delete service descriptions in the service registry.

E-GRSDS-PublishService

public string PublishService(XmlElement serviceDescription)

Description PublishService() stores the service description in the service
registry and creates a new unique id for that service description.

The newly created service id is returned as a string value.

E-GRSDS-UpdateService

public void UpdateService(string serviceId, XmlElement serviceDescription)

Description This method allows to update the service description of an existing
service. The service id is the unique id that was returned from the
PublishService() call.

E-GRSDS-DeleteService

public void DeleteService(string serviceId)

Description Given the unique service id, this method deletes the service
description from the service registry.

OpVO Descriptions

D4.4.4, 1.0

© Akogrimo consortium members page 89 of 126

GrSDS

Description The GrSDS acts as a repository for OpVO Descriptions. These are
XML descriptions of service requirements plus one or more
workflow ids.

E-GRSDS- PublishOpVODescription

public string PublishOpVODescription(XmlElement opVODescription)

Description The XML contained in the XmlElement that is passed into the
method is stored in the repository. A unique identifier is generated
and returned as a string value. The unique identifier can be used to
retrieve the stored OpVO Description.

E-GRSDS- GetOpVODescription

public XmlElement GetOpVODescription(string opVODescriptionId)

Description The OpVO Description can be retrieved with
GetOpVODescription() by passing in the unique identifier that
was generated by PublishOpVODescription().

3.4.2.1. Interactions with the other components

3.4.2.1.1. Main Behaviour

The main functionality of the GrSDS is to allow publishing of and searching for services. The
message elements of a search request and a response are show in the following two tables.

Table 26 - GrSDS Search Request

Descriptive Name Search Request Message Element

Service Category category

Service Type serviceType

Geographical Location location

Table 27 - GrSDS Search Response

Descriptive Name Search Response Message Element

Service Name serviceName

Service Description serviceDescription

Service Id serviceId

Service Provider Name serviceProviderName

D4.4.4, 1.0

© Akogrimo consortium members page 90 of 126

Descriptive Name Search Response Message Element

Service Provider Id serviceProviderId

SP Internal Service Id serviceProviderServiceId

Workflow Id workflowId

SLA Template Id slaTemplateId

Context Id contextId

Negotiator URL negotiatorURL

Negotiator Resource Id negotiatorResourceId

BaseVO baseVO

OpVO Description Id opVODescriptionId

Searches are performed by the OpVO Broker in the OpVO creation phase or by a customer.

The information that is provided by the Service Provider when a service is published consists of
the content of both tables.

Following is an example of an OpVO Description:

Table 28 - OpVO Description Example

<?xml version="1.0" encoding="utf-8"?>

<OpVODescription xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="">

<OpVOName>OpVO1</OpVOName>

<OpVODescription>This is the eprs for OpVO1</OpVODescription>

<OpVOCategory>DM</OpVOCategory>

<OpVOId>OpVO1</OpVOId>

<ServiceRequirments>

<ServiceRequirement xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<category xmlns="http://www.akogrimo.org/GrSDS">eLearning</category>

<serviceType xmlns="http://www.akogrimo.org/GrSDS">AR</serviceType>

<location></location>

</ServiceRequirement>

</ServiceRequirments>

<workflowIDs>

<workflowID> workflow1</workflowID>

</workflowIDs>

</OpVODescription>

3.4.2.1.2. Alternative Behaviour

The source of exceptional behaviour can be one or more of the following:

D4.4.4, 1.0

© Akogrimo consortium members page 91 of 126

� The network connection between the client and the GrSDS proxy, or the network
connection between the GrSDS proxy and the Service Registry

� The IIS Web-server or the Tomcat Web-server

� The .NET or Java runtime environment

� The implemented functionality of either the GrSDS proxy or the Service Registry

Network connection problems usually result in a time-out on the client side and could be handled
by a second attempt or an increased time-out value. Increasing the time-out value for requests
from the GrSDS proxy to the Service Registry can be done by editing the Web.config file of the
GrSDS proxy Web-service.

Table 29 - IIS Web.config File

<configuration>

 <system.web>

 ...

 <httpRuntime executionTimeout="123" ... />

 ...

 </system.web>

</configuration>

The httpRuntime executionTimeout is the maximum duration in seconds that a request to
the Service Registry is allowed to take before it is considered timed-out.

Problems of the Web-server or the .NET or Java runtime environment are considered out of the
scope of this document. So the main sources of exceptional behaviour are the implementation of
the Service Registry and the GrSDS proxy.

The GrSDS design uses the adapter design pattern to abstract from the concrete implementation
technology that is used for the Service Registry component. In the Akogrimo demonstration
scenarios the ADONIS Business Management Toolkit is used as Service Registry. Because
ADONIS is commercial software, the detailed internal error handling is out of the scope of this
document. In principle any database with adequate search capabilities could be used as service
registry. The purpose of the GrSDS proxy is to internally interface with the given implementation
technology. So the following error handling flow chart deals only with the GrSDS proxy.

D4.4.4, 1.0

© Akogrimo consortium members page 92 of 126

Figure 35 - GrSDS Proxy Error Handling

The error handling flow chart of the service publishing functionality is identical in that the
parameters are converted into the required format and passed on to the Service Registry.

3.4.2.2. Involved technologies

The following two tables show the technologies used for the GrSDS Proxy service and the
Service Repository.

Table 30 - Involved Technologies of the GrSDS Proxy

GrSDS Proxy

Operating System Windows 2003 Server

Web-Server IIS 6.0

D4.4.4, 1.0

© Akogrimo consortium members page 93 of 126

GrSDS Proxy

Other Components .NET Runtime v1.1

The GrSDS Proxy that interfaces with the actual Service Registry was designed to be a rather
light weighted standard Web-service making it possible to use different underlying search
engines.

Table 31 - Involved Technologies of the Service Repository

Service Repository (ADONIS Business Process Management Toolkit)

Operating System Windows 2003 Server

Web-Server Apache Tomcat 5.5

Other Components Java 1.5.0_08

The ADONIS Business Process Management Toolkit is a commercial software package
developed by BOC Asset Management.

Figure 36 - ADONIS Business Management Toolkit

Service modelling is only a small part of the functionality of ADONIS. The richness of the
modelling capabilities ranges from simple WSDL descriptions to semantic technologies like topic
maps, which are used to model specific geographic locations and the service categorisation (see
Figure 37).

D4.4.4, 1.0

© Akogrimo consortium members page 94 of 126

Figure 37 - ADONIS Service Categorisation

D4.4.4, 1.0

© Akogrimo consortium members page 95 of 126

4. Security infrastructure

4.1. Introduction

This section gives an overview of the overall security infrastructure developed in the frame of the
Grid Application Support Service work package. It is worth mentioning that, due to their
relevance, in Akogrimo the multi domain aspects had a huge impact on the security infrastructure
design choices, so before describing the developed security infrastructure the Akogrimo multi
domain model is introduced again here.

Furthermore in order to put the reader into the picture, the Akogrimo attack model is recalled
here (see [1] for details) and a description of the main vulnerabilities that could affect the GASS
layer infrastructure are summarized. Finally the basic concepts underlying the GASS security
infrastructure and the complete overview including the overall assumptions are described.

4.1.1. Multi domain and security

A Virtual Organization is a dynamic collection of heterogeneous and distributed resources, which
cooperate to satisfy common goals. Usually, the VO resources (users, services and physical
resources) are owned and controlled by various organizations, these can often be viewed as
separated by physical computing domains. In this model the Home Domain is responsible for the
local administration of these resources and controls access to them according to their internal
policies management mechanisms. In Akogrimo, we have identified five types of Home Domain:

� Customer domain; is an organization that buys services available in the Grid environment
and makes these services available to its end users

� Network domain; is the domain of an organization providing network capabilities to access
VO resources

� Service Provider domain; is the owner organization of resources involved in the VO, on the
service level access to the VO’s is managed by this domain.

� BVO domain; is the Akogrimo management services hosting domain and maintains the list of
resources and members participating to VO activities; resources belong to Service Provider
domain and members belong to the Customer domain

� OpVO domain; it is a logical domain created at run time in order to group all resources
which are need to collaborate and to deliver a service to Customer domain. This domain lives
in the BVO domain and includes resources from BVO and Service Provider domains.

The Figure 38 shows the relations between the BVO and the other domains, in particular it
points out the presence of management services in the BVO domain which support this domain
activities.

D4.4.4, 1.0

© Akogrimo consortium members page 96 of 126

Figure 38 - BVO definition

In [1] a domain is defined as “administrative aspect of an organization (e.g. an Enterprise or a Company, a
University Department or a Hospital) that comprises a set of individuals and resources. In a domain, the resources
(hardware and software) are owned and managed by a common administrative authority”. We further detail
this definition introducing the concept of Administrative Domain, which is a domain that includes
at least an authentication and authorization authority and a list of members (see Figure 39).

Figure 39 - BVO described as an Administrative Domain.

The authentication and authorization service is a local authority that has to supervise the
member’s activity inside the domain; a repository exposed as service is used to manage domain
list of members.

These components have an important role in a typical Akogrimo scenario, because it is based on
the collaboration and cooperation between members of these domains. The main issue is
allowing safe resources sharing and utilization, which requires:

� verify the identity of a requestor,

� check if the requestor is a member of the domain

� verify policies in order to authorize the request

To describe how interactions span the identified domains, we describe a generic service
provisioning scenario. We suppose that a BVO is created and all Akogrimo management services
have been configured and initialized. We assume an agreement has been established between a

BVO administrator

Base VO

Member List
Repository

AA
authority

Other Mng services

BVO LOGIC DOMAIN

Management Service

BVO

Members

Service Provider
domain

Network

Provider domain

Customer

domain

D4.4.4, 1.0

© Akogrimo consortium members page 97 of 126

Service Provider and the BVO Manager for the sharing of some resources/services which are
hosted in the domain of the Service Provider. Furthermore, we assume a Customer organization
is a member of the BVO and it wishes to make available a service, provided by the BVO, to its
end users.

As a member of the BVO, the Customer asks for the execution of an Akogrimo application
which in turn leads to the creation of an OpVO which provides the requested services to fulfil
the Akogrimo application requirements. The creation of the OpVO is authorized by BVO
management services and requires collaboration between services in the BVO and in the Service
Provider domains to negotiate the service instance that can fulfil Customer requirements. In
particular, User and Service Agent instances are created; they assume an important role from the
security view point because they are the component that should allow the cross and multi domain
communication, in fact, they guarantee the secure communication from the external domain to
the OpVO (external user of the OpVO) and from the OpVO towards the external domains
(Service Provider domains. The logical OpVO domain is created and all selected service instances
become members of this domain.

Figure 40 summarizes the process described above:

Figure 40 - OpVO domain creation.

Then the customer can allow to its members to access OpVO functionalities according to rights
defined in the Customer domain. An invocation starts from this user in the Customer domain
and it passes through one (or more) Network Provider Domains to obtain access to the network.
Then the request arrives into the OpVO domain, and from this domain several invocations have
to start in order to use services in Service Provider domains involved in the OpVO execution. Of
course also these last invocations must pass through several Network Provider domains that

User Agent Service Agent

OpVO creation

M
em

b
er o

f

Member of

Ask for OpVO creation Member of

Member of

Customer domain

BVO

Service Provider
domain

Service Provider
domain

Member of

OpVO

The customer asks for the OpVO creation as shown by red arrow. This request is elaborated by BVO services,
which as to negotiate with the Service Providers the QoS for service instances (green arrows). Negotiated
service instances become member of the OpVO and Service and User Agent instances are created

D4.4.4, 1.0

© Akogrimo consortium members page 98 of 126

cannot be known in advance because the invoked services could be on mobile devices. These
steps are described in Figure 41.

Figure 41 - The end user accesses the OpVO

The flow of inter domains interactions typical of the Akogrimo environment and described in
this section have been taken into account in the design of the WP4.4 security infrastructure.

From the implementation viewpoint the following assumptions have been taken:

� BVO and OpVO will belong to the same secure perimeter. Even if several OpVO will be
created inside a BVO, from security viewpoint all the services will belong to the same secure
perimeter (the BVO perimeter). Although separate OpVO tokens will exist.

� Customer plays the user role as well

� Network provider is taken into account in the communication between costumer and BVO
domain (red line in Figure 41).

4.2. Attack Model

This section summarizes the analysis performed in the frame of WP3.1 and, in particular, in
D3.1.3 (see [1]) about the targets and severity of attacks that are relevant from the architecture
viewpoint. Below

Figure 42 shows a matrix that describes the interaction between the main Akogrimo entitities that
could be affected by an attack.

The colour of the field provides the level of relevance of each attack:

Member of

Member of

Member of

Customer Clients

Customer domain

BVO

Service Provider
domain

Service Provider
domain

Network

Provider domain

Network

Provider domain

OpVO

An end user, from the Customer domain, accesses to OpVO functionalities as shown by red arrows. The
OpVO invokes services belong to Service Provider domains, as shown by green arrows, to orchestrate service
capabilities and deliver the final service to the end user. The access to services in the OpVO and in Service
Provider domains is realized via Network Provider domains.

D4.4.4, 1.0

© Akogrimo consortium members page 99 of 126

� The red colour highlights more relevant attacks

� Green colour refers to secondary attacks

� White field are of the Akogrimo scope.

User Terminal OpVO BaseVO

Customer

Domain

Network

Provider

Service

Provider

User

4/4/4

relevant

but out of

scope 4/2/2 1/2/1 2/3/2 4/2/2

4/3/3

Not

specific to

Akogrimo

1/1/1

Accounting;

SLA

Terminal 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2

OpVO 1/1/1 1/1/1 1/2/1 1/3/1 1/2/1 4/4/4 1/3/1

BaseVO 1/1/1 1/1/1 1/2/1 4/4/4 1/2/1 2/3/2 1/2/1

Customer

Domain 4/1/1 2/2/2 1/3/1 1/3/1 4/3/3

4/3/2

Not

specific to

Akogrimo 1/3/1

Network

Provider 4/3/3 4/2/2 2/3/2 2/3/2 4/4/4

4/3/2

Not

specific to

Akogrimo 4/4/4

Service

Provider 2/2/2 3/3/3 1/1/1 1/3/1 1/2/1 1/3/1 1/3/1

Attacker

T
a

rg
e
t

Figure 42 - Security focus within Akogrimo

GASS prototype deals with VO management aspects and then the fields particularly relevant are
related to attacks that have as target the BVO and OpVO. The provision of security in GASS
prototype will have as reference the following guidelines:

� The developed components are Web Service communicating by SOAP message over http.
Web services security is still evolving, like Web services infrastructure itself. Web services are
tightly coupled to the network transport layer, and they can be secured using so-called
transport level security but it is also possible to use message level security:

� Transport level security (HTTP Basic / Digest and SSL, for example) is the usual "first
line of defence", as securing the transport mechanism itself makes Web services
inherently secure. The trade-off is transport dependency.

� Message level security can be more effective and has the added flexibility that the message
can be sent over any transport.

� GASS security infrastructure focuses on message level security

Looking at

� Figure 42, in particular, at OpVO and BVO target rows, it is easy to infer that many attacks
can be of interest for GASS infrastructure. Anyway the focus will be on the ones having the
high relevance (1/1/1)

From a general viewpoint the security mechanisms cover the following main primitives:

Relevance in Akogrimo/likelihood in Akogrimo/impact
1 high – 4 low

D4.4.4, 1.0

© Akogrimo consortium members page 100 of 126

� Authentication: it is the capability of identifying entities. Users and services require
authentication in a secure environment.

� Authorization: service access has to be controlled in order to allow only the authorized access
and under authorized conditions.

� Confidentiality: enables only the intended recipients to be able to determine the contents of
the confidential message.

� Message integrity: ensures that unauthorized changes made to messages or documents may
be detected by the recipient.

4.3. Vulnerability Analysis

This section has the goal of providing more details about the vulnerability related to the relevant
attacks identified in the Akogrimo security matrix. It was already underlined as the GASS
infrastructure components are implemented following the Web Service paradigm and the related
security infrastructure is based on message level security. Because of these architectural and
technological choices the vulnerability analysis is related to web services vulnerability (see [14] for
details) and how it could affect the GASS middleware.

With respect to the attacks with relevance (1/1/1) in

Figure 42, the following attack groups have been identified:

� User Credential Attacks: they are generated due to compromise of the user’s system or by
intercepting user messages. They result in user impersonation, compromising the user
credentials. In the specific case of Web Service message level security this kind of attacks can
be originated by XML Security Credentials tampering. In fact, user credentials are in the form
of XML wrapped user certificates that can be signed and/or encrypted then possible
vulnerability can result from XML content manipulation allowed by a poor implementations
of the WS-Security specification [6].

� Wire Intelligence Attacks: Different classes of attacks can be generated in case service-level
communication is intercepted or eavesdropped. They include: Man In The Middle, credential
compromise, session hijack, brute force attacks,... Referring to message level security these
types of attacks can be generated through:

� SOAP/XML Protocol Attacks: SOAP messages are exchanged over http and networt
transport protocols, then they can be susceptible of classic transport level attacks.

� XML Credentials Tampering: similar considerations of the previous group are valid here
but in this case credentials are not compromised on the user side but through message
interception.

� Malefactor Initiated Attacks: An infrastructure such as the GASS infrastructure can be
object of traditional Web Service techniques that include: WSDL probing, malicious XML
content, brute force attacks.

� Service Management Attacks: This type of attacks can be originated if the site hosting the
services is not configured appropriately (e.g. improper Authentication and Authorization
mechanisms)

� End Service Attacks: They leverage on vulnerability on the end-Web Service site. Also in
this case there are basic characteristics of Web Service that can create potential risks, such as:

� Malicious inputs: examples could be command line code embedded into documents that
are parsed by the application or use of input including nested elements having the goal of
stressing the input parsing.

D4.4.4, 1.0

© Akogrimo consortium members page 101 of 126

� External references in XML schema and document: typically an XML document can
point to external reference in order to build at run time the document itself. If these
references are not trustworthy they could be source of malicious data.

� Coercive Parsing: this risk is related to the ability of exploit the legacy XML enabled
components in the existing infrastructure.

The following Figure 43 shows a high level overview of the distribution of attacks during the
interaction between the customer using a mobile terminal and the BVO/OpVO.

The figure shows just a general view that could be applied to several systems based on Web
Service and more in general on remote communications. The following sections describe how the
GASS infrastructure is protected with respect some of these attacks and the details of security
infrastructure that provides this defence.

Figure 43 - High level view of attacks in interactions between external user and BVO/OpVO

4.4. Defence Approach

Identifying the most important fields in which security work has to be done in Akogrimo helped
to understand on focusing the GASS security infrastructure.

As already mentioned

Figure 42 allows inferring that the attacks from external user towards the BVO/OpVO have the
highest relevance, likelood and relevance. On the side, the previous section 4.3 summarized the
typical vulnerability groups that can affect the interaction under investigation.

The GASS security infrastructure does not have the goal of covering all the described threats but
it focuses on Wire intelligent attacks and on the design of a robust AuthN/AuthZ mechanism
against this kind of attacks.

4.4.1. Security model: basic concepts

In a dynamic environment, such as in a VO, each entity is bound to its own administration
domain where it is identified. The VO is built upon sharing of resources, capabilities and
information derived from several organizations or groups owning security mechanisms and
policies in order to achieve the common objective, the following considerations must be taken
into account:

� VO entities: with the term ‘entity’ we refer to a resource or user visible and interoperable at
VO level. Following the OGSA aims, both resources and user are virtualized as Grid services

Malefactor
initiated attacks

D4.4.4, 1.0

© Akogrimo consortium members page 102 of 126

and at VO level a user is represented by the ‘User Agent’ while a service by the ‘Service
Agent’. User/service agent is the way to allow these kinds of entities to interact among them
in the Akogrimo BVO context.

� Each entity belongs to an administration domain: The BVO will maintain information about
the most representative entities (e.g. services providers, network providers, service customers,
etc.). On the other hand, each administration domain is in charge of managing its members
and should provide security policies for accepting foreign mobile members.

� An entity can be, also temporarily, bound to different administration domain and thus
participate in the BVO. The A4C subsystem is taken into account for authentication of
entities.

� Service and User Agents: are strategic components (used also for security purpose) which
represent user/service interactions inside a BVO/OpVO. They may provide control on the
invocation, for example checking if a given user may invoke a service. Each user and each
service have, inside the OpVO, an associated user/service agent acting as delegate.

Figure 44 - UA and SA overview

The general approach to secure the BVO/OpVO has been to define a secure perimeter to be
efficiently protected throught the definition of well defined access points from the external
“world”. This means that all services inside the BVO/OpVO can not be accessed from the
external and the only invocations to the different BVO/OpVO services described in section 3
can come just through a User Agent (UA). The UA represents the input door of the
BVO/OpVO and then the main efforts have focused on securing such components taking into
account the mobile nature of the users. This choice reduces possible attacks to well known
elements. In fact core components only communicate with other members of the BaseVO
(which includes all OpVO members); OpVO members only communicate with their own OpVO
members and core BaseVO:

Each communication is realized via a SOAP message; to allow the identification and
authentication of the requestor, the SOAP message has to include the appropriate token and has
to be signed with the private key associated to the used token.

When a SOAP message is received, a set of steps allow authenticating the sender:

BB//OOpp VVOO

CCuussttoommeerr ddoommaaiinn

UUsseerr11 UUsseerr22

SSeerrvviiccee

pprroovviiddeerr

SSeerrvviiccee11

SSeerrvviiccee22

UUAA

BB//OOpp VVOO

MMaannaaggeerr

UUAA

SSAA

SSAA

D4.4.4, 1.0

© Akogrimo consortium members page 103 of 126

1. Extract the sender's token.

2. Check the signature (interacting with the A4C)

3. Check the sender's name/role - are they authorized to send this message (ask
BaseVO/OpVO authorization engine

4. Use your own private key to decrypt the message, as the sender will use your public key
to encrypt the message

Below we describe these steps to authenticate a sender as core component or OpVOManager
which use the BaseVO token:

1. Check the BaseVO signature (using your own BaseVO public key from your own
BaseVO token) extract the sender's public key

2. Check the signature on the message

3. Extract the senders name - are they authorized to send this message?

4. Decrypt the message using your own private key.

The sender gets the receiver's public key from their OpVO/BaseVO token (provided by the
OpVoManager/WorkflowManager as part of the workflow setup - thereby only enabling
communication channels corresponding to workflow flows), or they ask the OpVO/BaseVO
Participant registry for it. The major advantage of this scheme is that no call-back to an
authentication service is required, though of course there is nothing to stop the above being
implemented in an authentication service that every receiver just invokes to authenticate the
token.

The disadvantage is revocation - without an authentication service, revocation consists of either
an external authorization step checking a revocation list during authorization, or a revocation list
being propagated by the OpVOManager/BaseVO manager to each of its members. The latter
only makes sense if there is no authorization step, which of course implies that all members trust
each other totally and accept all authenticated messages as legitimate. To protect against an
insider attack (at least partially), an external authorization engine should be used, preferably
connected to the workflow for workflow-based authorization. This ensures that only those
communications that are appropriate to the work of the OpVO and acceptable to the OpVO
owner, Service Provider, etc. are acted upon. It also provides a basic intrusion detection
mechanism capable of spotting a rogue OpVO member. Revoking that member’s token will
immediately isolate them from the other OpVO members.

The above mechanism provides very strong protection against most security attacks, including
man-in-the-middle attacks. It does of course rely on the token distribution mechanism being
secure. The initial token distribution (of the BaseVO tokens) will require a Trusted Third Party
trusted by the BaseVO members (including all the Users and the Service Providers). It also
assumes that the BaseVO and Service Providers core systems are not compromised before or
during this initial token distribution. However, the Intrusion Detection mechanisms referred to
above will assist in identifying and expelling rogue members.

4.4.1.1. Policy Enforcement

Policy is enforced close to the point of decision. In respect to the Akogrimo architecture at the
VO level policy management and enforcement stems from the Base VO. It is therefore the Base
VO manager that has both the authority and means to make and enforce decisions relating to
policy.

D4.4.4, 1.0

© Akogrimo consortium members page 104 of 126

The Base VO is the key authority for VO tokens that it creates, with tokens also being created at
service provider level. It is envisaged that the Policy component at Base VO level will have to
consist of both an engine and tool to design policy (see also sections 3.1.1 and 3.1.2).

4.4.2. Assumptions

Though section 4.4.1 introduced basic concepts that can be applied in general at BVO/OpVO
level the implementation of the GASS security infrastructure has focused on secure access to the
UA that is the front door to the VO domain. The following premises are assumed:

� No attacks will be executed between the core components inside the BVO domain (e.g. BVO
Manager, OpVO Manger, WF Manager,…). In other words, the VO owner considers their
core component secure.

� Misuse of user or attacks in the user domain that can bring to user impersonation are not
considered.

� User needs to be preregistered both at network and VO domain

� Bugs in the infrastructure software (both implemented in Akogrimo and pre-existing - e.g.
SOAP toolkits) that could cause vulnerabilities are not contemplated.

4.5. Security infrastructure overview

According with the basic concepts introduced in section 4.4.1, the Akogrimo security
infrastructure is based on token distribution architecture around an Akogrimo Certificate
Authority (CA). The Akogrimo CA presents methods to create Akogrimo tokens and check the
validity of existing tokens. This service is called in order to authenticate communication within
the Akogrimo VO and between the VO and external service provider domains.

Each communication is realized via a SOAP message; to allow the identification and
authentication of the requestor, the SOAP message has to include a valid token and has to be
signed by a trusted authority. When a SOAP message is received, a set of steps allow
authenticating the sender as VO member.

Of course, as basilar assumption the approach does rely on a secure token distribution
mechanism. The initial token distribution is based on a Trusted Third Party trusted by the VO
members (including customers and service providers). It is also assumed that VO and SP core
systems are not compromised before or during the initial token distribution.

Moreover, policy is enforced close to the point of decision. In respect to the Akogrimo
architecture at the VO level policy management and enforcement stems from the Base VO. It is
therefore the Base VO manager that has both the authority and means to make and enforce
decisions relating to policy.

The Base VO is the key authority for VO tokens that it creates, with tokens also being created at
service provider level.

4.5.1. Functionalities

The main functionalities of the Akogrimo Security infrastructure involve authentication and
authorisation of calls to the VO infrastructure. As discussed in the previous section with respect
to the VO managers the UA provides a token that is authenticated. The requests made to the VO
are authorised using the Akogrimo identity management model that is integrated into the VO
management service.

D4.4.4, 1.0

© Akogrimo consortium members page 105 of 126

According with the multi domain model and the final assumptions introduced in section 4.4, the
security infrastructure has implemented four main use cases involving respectively:

� Authentication and authorization in communication between external requestors (customer
domain or Service Provider domain) and VO domain

� Authentication and authorization in communication between services inside the VO domain

The following tables describe those use cases:

Table 32 - VO authentication use case

Use Case VO Authentication

Description This use case describes how a requestor (end user) is authenticated
when it asks for VO access. We use the generic term VO referring
to BVO and OpVO because we have the same flow of events.

Flow of events:

� The user sends a request to its UA instance and specifies its
SAMLID token and the username used in the VO.

� The request is forward to VO Manager

� The VO Manager sends the SAMIL token and username to
A4C in the Home Network Provider domain

� The A4C in the Home Network Provider domain returns to
VO Manager the result of its authentication process

Actor User, Home Network Provider, User Agent, VO Manager
(BaseVO/OpVOManager)

Preconditions The user has a SAMLID token issued by its Home Network
Provider

The user knows the endpoint of its UA instance

 The UA instance is a member of the VO and has a VO token

Post conditions The user has been authenticated and then the authorization phase
can be started

Table 33 - Intra VO Authentication use case

Use Case Intra VO Authentication

Description This use case describes how authenticate the service to service
communication in the VO.

Flow of events:

� The service sends a request to another service

� The service includes in the request its VO token

� The VO token is forwarded by the receiving service to the VO
Manager

� The VO Manager authenticates the service requestor checking

D4.4.4, 1.0

© Akogrimo consortium members page 106 of 126

Use Case Intra VO Authentication

the validity of its VO token

Actor VO services, VO Manager (BaseVO/OpVOManager)

Preconditions The VO service has a key pair (private, public)

The VO service has to have a VO token issued by the VO Manager

Post conditions The VO service is authenticated as VO member

Table 34 - VO authorization use case

Use Case VO Authorization

Description This use case describes the requestor (end user) authorization
process when he asks for VO functionalities. We use the generic
term VO referring to BVO and OpVO because we have a same
flow of events.

Flow of events:

� The VO Manager checks if the username is valid for the VO
(username is stored in the VO Participant Registry)

� The VO Manager retrieves the role from user profile using the
username value

� The VO Manager invokes Policy Manager to have the set of
authorization policies to be applied for this role

� The VO Manger matches the requested actions with user
privileged in the VO

Actor User, User Agent, VO Manager (BaseVO/OpVOManager), Policy
Manager

Preconditions The user has been authenticated successfully according to the
above VO authentication use case

The user has a username valid for the VO

The user has a profile in the VO

The user profile contains the role of the user in the VO

The role specifies the rights/privileges of the user in the VO

Post conditions The end user has been authorized to invoke the UA instance, which
is able to act on behalf of the user inside the VO.

D4.4.4, 1.0

© Akogrimo consortium members page 107 of 126

Table 35 - Intra VO Authorization use case

Use Case Intra VO Authorization

Description This use case describes the authorization process with regard to the
communication between services inside the same VO. These
services are likely to be BaseVO services or instances of BaseVO
services, such as the OpVO Manager and Workflow Manager
instances. It is not envisaged that service to service provider
domain communication will take place via a Akogrimo VO. We use
the generic term VO referring to BVO and OpVO because we have
a same flow of events.

Flow of events:

� The service (requestor) sends a SOAP request to another
service (destination) inside the same VO including the VO
token

� The request is intercepted by the Policy Enforcement Point
(PEP)16

� The PEP invokes the Policy Decision Point17 (PDP)

� The PDP invokes Policy Manager to retrieve policies about the
use of service destination

� The PDP accesses to requestor role in the VO member
repository

� The PDP matches the requested actions with service rights in
the VO and requestor rights

Actor VO member Services, PEP, PDP, Policy Manager, VO member
repository

Preconditions Each VO member service has a private and public key pair

Each VO member service has a VO token issued by VO Manager

The VO token contains service endpoint as subject and its public
key

The SOAP invocation has to contain the VO token and has to be
signed by the requestor

The SOAP invocation has been authenticated successfully

Each VO member service has a role well defined in the VO

Post conditions The request by VO member service is authorized or blocked

16 From now on the term PEP refers to a SOAP filter in the SOAP engine of the invoked service able to extract
from the SOAP message the header related to the security information sent by the requestor.
17 From now on the term PDP refers to the VO manager (BVO or OpVO) that is able to take an
authentication/authorization decision related to the actions required by a requestor with some credentials.

D4.4.4, 1.0

© Akogrimo consortium members page 108 of 126

Apart from the above use cases, another scenario has to be considered related to the
authentication and authorization for invocations from VO to Service Provider domain.

It is a typical multi-domain scenario because it addresses the issues related to the authentication
of service requestor in the Service Provider domain. The services provided by a Service Provider
are accessible via a Service Agent instance, which acts like a proxy for accessing to the target
services. The SA is a member of a VO. So, this type of authentication involves the VO and
Service Provider domains. The Service Agent, as VO member, has VO token; this token is sent
to Service Provider which parses it to authenticate the requestor as OpVO member and to grant
or block the request.

The process is similar to the one described in the intra domain authentication and same
considerations can be done also for the authorization process. Of course in this case the PEP and
PDP components will be in the SP domain then the Service Provider can choose which
implementation to use.

4.5.2. Interactions between the components

This section provides the list of components involved in the authentication and authorization
(AA) process. Furthermore describes also the interactions between them providing the sequence
diagrams related to the AA for:

� requests from an external user to the VO (see also use cases in Table 32 and Table 34)

� communications between services inside the VO (see also use cases in Table 33 and Table 35)

4.5.2.1. Involved components

4.5.2.1.1. Authentication

The components involved in the authentication process are: VOManager, A4C at Home
Network Provider and the Authentication Decision Point.

The Authentication Decision Point is a special component of the SOAP pipeline and its task is to
verify the validity of security tokens included in the incoming SOAP messages for the service.

The VOManager (see also section 3.1.1 and 3.1.2) and the Authentication Decision Point are
components that are involved in each authentication scenario described above, while the A4C at
Home Network Provider is the core component for the authentication of an end user when he or
she accesses the VO functionalities via his or her User Agent instance (end user authentication
scenario).

4.5.2.1.2. Authorization

The authorization process involves the VOManager, the ParticipantRegistry, the Policy Manager,
and the Policy Enforcement Point (PEP).

The PEP is a filter in the SOAP Engine (actually it is the same of the Authentication Decision
Point) and it starts the process in the pipeline which supervises incoming requests for a service in
order to check if the requestor is authorized to ask for the specified action.

The role of the Policy Decision Point is taken over by the VO manager.

4.5.2.2. Sequence diagrams

Two sequence diagrams are provided here.

D4.4.4, 1.0

© Akogrimo consortium members page 109 of 126

Figure 45 shows the steps for the authentication and authorization of an end user when they use
their User Agent instance to invoke VO functionalities.

Figure 45 - End User AA

1. The SOAP filter catches the SOAP message asking for the invokeService method on the
UA instance

2. The SOAP message is parsed to extract the security information (SAMLID token and
user identity) and the VO manager is invoked to authenticate the requestor

3. The VO Manager checks the signature in the SAMLID token and if it is from a trusted
A4C, invokes the A4C (in the network provider domain) to ask for authentication

4. 5. 6. The A4C performs checks on the SAMLID token and associated identities and
returns the validation results

7. VO manager elaborates and passes back the validation results to the SOAP filter

8. 9. 10. SOAP Filter checks the results and decides to block the request or to continue in
the filters chain invoking the VO Manager for request authorization

11. The VO manager in order to take an authorization decision retrieves the profile
associated to the requestor identity.

D4.4.4, 1.0

© Akogrimo consortium members page 110 of 126

12. The VO manager extracts the role from the received profile

13. 14. It gets the authorization policies from the Policy Manager

15. 16 The VO Manager takes a decision on the basis of the information it has retrieved and
passes back the authorization results

17. 18. 19. The SOAP Filter on the basis of the received results allows the request to be
processed by the UA instance (19) or blocks it (18)

Figure 46 shows how the communication between two services inside the VO (VOservice1 and
VOService2) has to occur from the authentication and authorization viewpoint. As members of
the VO, these services have the VO token which contains service public key and is signed by VO
Manager.

VOService1 tries to invoke the Method() on VOService2.

Figure 46 - AA between services inside the VO

1. The SOAP message for requesting Method() on VOService2 is blocked in the SOAP
Filter of the VOService2 of the SOAP engine

2. The SOAP Filter extracts the security information included in the SOAP message and
asks for authenticating the requestor.

3. 4. If the requestor is authenticated the SOAP Filter asks the VOManager for authorizing
this request on the basis of requestor identity.

5. 6. The VO Manager retrieves the profile of the invoker and the associate role

7. 8. 9. The VO Manager gets the authorization policies associated to the role and takes a
decision.

D4.4.4, 1.0

© Akogrimo consortium members page 111 of 126

10. 11. 12. The SOAP Filter on the basis of the received results allows the request to be
processed by the VOService2 (11) or blocks it (12)

4.5.3. Involved technologies

The implementation of security infrastructure has dealt with the following underlying logic:

� The implementation of SOAP Filter. Furthermore, filter have been implemented using tools
available on hosting platforms (i.e. Axis and WSE) that provides features to manage the
incoming SOAP message according with the WS-Security specification.

� The authentication/authorization process in the VO manager

D4.4.4, 1.0

© Akogrimo consortium members page 112 of 126

5. Conclusions

The goal of the WP4.4 prototype release described in this report was to improve features already
provided in last prototype release in order to run the validation scenario appropriately. The
additional requirements introduced by the validation scenario gave the chance to evaluate the
main weakness of Akogrimo infrastructure and of GASS layer infrastructure in particular.

The main required improvements focused on an extension of the OpVO creation process that in
the last release allowed for creating OpVO completely based on a workflow based centralized
control. These brief conclusions have the aim of summarizing at which extent the current
prototype has met the objective of improving such feature.

The disaster handling scenario required for direct and unstructured communication between the
actors involved in the scenario execution and this kind of requirement was not well supported by
the use of centralized workflow that orchestrates all the actions to be performed during the
OpVO execution.

In order to meet such requirements some changes to the OpVO creation process and to the
Akogrimo OpVO model have been introduced as explained in sections 1and 2.

Such changes did not have a huge impact and they required just some refinements to the existing
components. Though the required changes have highlighted a lack of functionalities in the
existing prototype, the performed work showed how the design of GASS prototype was flexible
enough to be modified with a reasonable effort within the project lifecycle.

A part from the mentioned changes the updated prototype includes also a partial implementation
of the GASS security infrastructure that though does not cover the whole design (some concepts
as the security bridge were not further investigated) has focused on the attacks that have been
considered more relevant from the WP4.4 viewpoint.

We can conclude that the maintenance task has been performed according with the planned goals
covering also the additional requirements identified as result of the validation scenario definition.
Actually this is the most important result because during the last months of the project, the
Akogrimo infrastructure has to be used in order to run the demonstrator and then it is really
important to guarantee the availability of a stable infrastructure for running scenario supposed to
validate the infrastructure itself.

D4.4.4, 1.0

© Akogrimo consortium members page 113 of 126

References

[1] Akogrimo official deliverable: D.3.1.3 “The Mobile Grid Reference Architecture”

[2] Akogrimo official deliverable: D4.4.1 “Architecture of the Application Support Services
Layer”

[3] Akogrimo official deliverable: D4.2.4 “Consolidated Integrated Services Design and
Implementation Report”

[4] Akogrimo official deliverable: D5.1.2 “Integrated Prototype”

[5] Akogrimo official deliverable: D4.3.4 Updated Report on the Implementation of the
Infrastructure Services Layer

[6] http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[7] Akogrimo official deliverable D4.1.3 “Final Service Network Provisioning concepts”

[8] Akogrimo internal deliverable ID4.4.3 “Updated architecture design”

[9] Web Services Agreement Specification (WS-Agreement)
http://forge.gridforum.org/sf/projects/graap-wg

[10] D4.3.1 Architecture of the Infrastructure Services Layer V1

[11] Antonios Litke, Dimitrios Skoutas, Theodora Varvarigou, Mobile Grid Computing:
Changes and Challenges of Resource Management in a Μobile Grid Environment
http://mobilesummit2006.org/

[12] Akogrimo official deliverable D5.3.3 “Updated architecture evaluation report”

[13] Akogrimo official deliverable D4.4.3 “Final Implementation Report of Grid Application
Support Service layer”

[14] “Attacking and Defending Web Services”, Pete Lindstrom – Spire Research Report

D4.4.4, 1.0

© Akogrimo consortium members page 114 of 126

A.1. Participant Profile

When registering to a VO, a participant profile is taken over and stored in the
ParticipantRegistry. If the VO needs more or less attributes, the participant can change the
attributes.

An example of such profile, used in the current implementation is:

Figure 47 - BVO participant profile example

This profile is described using a XML document and the related schema is defined below:

<xs:complexType name="ParticipantProfileTypeParticipantProfileTypeParticipantProfileTypeParticipantProfileType">

<xs:sequence>

<xs:element name="ParticipantIdParticipantIdParticipantIdParticipantId" type="xs:stringxs:stringxs:stringxs:string" />

<xs:element name="ProfileIdProfileIdProfileIdProfileId" type="xs:stringxs:stringxs:stringxs:string" />

<xs:element name="RoleRoleRoleRole" type="xs:stringxs:stringxs:stringxs:string" />

<xs:element name="ParticipantPublicKeyParticipantPublicKeyParticipantPublicKeyParticipantPublicKey" type="xs:stringxs:stringxs:stringxs:string" />

<!—user data -->

<xs:element name="ApplicationIdApplicationIdApplicationIdApplicationId" type="xs:stringxs:stringxs:stringxs:string" />

<xs:element name="PDAPDAPDAPDA" type="xs:booleanxs:booleanxs:booleanxs:boolean" />

<xs:element name="MobilePhoneMobilePhoneMobilePhoneMobilePhone" type="xs:booleanxs:booleanxs:booleanxs:boolean" />

<xs:element name="NotebookNotebookNotebookNotebook" type="xs:booleanxs:booleanxs:booleanxs:boolean" />

<xs:any minOccurs="0000" maxOccurs="unboundedunboundedunboundedunbounded" />

<!--end user data -->

</xs:sequence>

</xs:complexType>

<xs:element name="ParticipantProfileParticipantProfileParticipantProfileParticipantProfile" type="tns:ParticipantProfileTypetns:ParticipantProfileTypetns:ParticipantProfileTypetns:ParticipantProfileType" />

The Participant Registry has been tested using XML document based on the above schema.

A.2. VO token

The architecture is secured by a token and policy enforcement infrastructure. The root of
authority for VO tokens is the BaseVO Manager which provides BaseVO tokens for all members
of the BaseVO. All communication to or from a BaseVO member is accompanied by a BaseVO
issued token. The Operative VO mirrors this. However the OpVO Manager tokens are issued
from the Base VO. Thus allowing the BVO control over the tokens in the static and dynamic VO
infrastructure.

In addition to the BVO Token, when services and user agents join the BaseVO they are also
given the Base VO’s public Key. When they join the OpVO they also receive an OpVO
Membership token and the OpVO public key. The public keys are used to decrypt messages and

Username
User Data (option)
Role
Attributes
Participant Public Key

Profile @ VO

D4.4.4, 1.0

© Akogrimo consortium members page 115 of 126

tokens received from the Base VO or OpVO. This is a simple method of validation, rather than
referring back to the BaseVO/OpVO

Figure 48 - VO Tokens

As the Figure 48 illustrates, the respective VO managers are the trusted validation (CA
equivalent) parties for the individual tokens when sent cross domain, and they share their
respective public keys between their members.

All VO tokens issued from the managers are encrypted using the receiver’s public key and
decrypted by the receiving services public key and the tokens are signed using the sender’s private
keys. Within a domain, all token flow is encrypted. In order to achieve this, public keys of the
individual components sending the messages out are included in the tokens accompanying the
message.

A.3. Akogrimo SLA documents

A key aspect when forming a VO is to decide how its members should interact. What are the
roles within this VO, who is responsible for what, when and how should a certain task be
completed; rules that members are expected to live by and what penalties apply when these rules
are broken. One way of regulating these interactions is by establishing a contract or agreement
that formalizes the business relationship or other part of the relationship between two parties
(SLA). In terms of VO there are a number of SLAs that must be agreed upon and there is much
to be gained if the process of coming to an SLA could be fully or at least partially automated to
follow the fast emerging business needs that a SLA expresses. Usually, for an agreement to be
concluded, negotiations need to take place. In order to negotiate and set up agreements, but also
monitor QoS, web services (and in particular Grid Services) need protocol that govern and
structure interaction between them. In this section, we are going to present an extension of WS-
Agreement [9] with the goal of providing a more complete and articulate protocol and rule to
define an SLA agreement.

D4.4.4, 1.0

© Akogrimo consortium members page 116 of 126

A.3.1. SLA rationales

To justify the use of the SLA template and contract in this section we are going to show our
scenario (without going into detail).

In order to support business applications in a mobile Grid computing environment, the link
between the service that presents to the Grid Middleware and the underlying network has to be
efficient, in order to support efficient implementation of monitoring, negotiation and service
management [11]. Central to this achievement is the SLA Management subsystem at Grid
Middleware layer, that has to encompass and mirror the SLA subsystem at Network layer
including contract definition, SLA negotiation, SLA monitoring and SLA enforcement according
to defined policies. In order to join the two SLA layers the main point is to build a new sub layer
upon the Grid middleware able to create a negotiation mechanism between providers and
consumers of services. In addition, the middleware SLA Enforcement and monitoring
subsystems have also the supervisor role in order to verify that the negotiated contract conditions
of all running services are met. In order to combine the two layers and in particular to handle
service change at the network layer notification is needed.

In Akogrimo the WS-Notification specification is implemented for alerting about abnormal
situations so that SLA Management can undertake effective corrective decisions according to
defined policies. This tight coupling based around negotiation allows the Grid middleware to
become aware of network capabilities aiding efficient cross layer co-operation. A clear example is
shown in the management of the Quality of Service. The SLA contract and its negotiation
considers QoS parameters that belong to both grid resources (CPU use, Memory, Disk space,
etc) and network capabilities (bandwidth, priorities for packet traffic, etc) by means of network
bundles or profiles that telecom operators provide. Thus, the application’s QoS requests are
mapped on these infrastructure QoS parameters.

This novelty is completed with the close interactions between network and grid at runtime. Thus,
any changes on network performance are taken into account by the process that is responsible
for the monitoring of QoS parameters and corrective actions and penalties can be applied
according to the defined policy in a per-case basis. This management of SLA with respect to QoS
illustrates how in the new “Next Generation Grid architectures” SLA is handled as a live
adjustable quantity. Here the SLA management is well supported aiding flexibility and
adaptability in order to manage externally hosted services toward a combined business goal.

Contracts
preparation

Agreement Negotiation

Agre
eme

nt Re
ques

t

Figure 49 - Akogrimo Agreement definition approach

The Figure 49 describes a High Level approach of the Agreement definition in Akogrimo.

D4.4.4, 1.0

© Akogrimo consortium members page 117 of 126

When a Customer asks for an Agreement to an “Agreement Provider”, it (interacting with a
Discovery Information Service, step 2 in the Figure 49) retrieves information related to the
chosen service, i.e. a High Level SLA Template about the service that takes into account some
“Human Understandable” QoS values. These values are afterwards translated according to a
mapping policy to the respective “low level” QoS parameters, which are transparent to the final
user and are the actual measurable grid and network properties, which are monitored in run-tine
(step 3 in the Figure 49).

Then the real negotiation phase starts: the HL SLA Template contains information related to the
LL SLA Template that contains the low level requirements to negotiate.

Finally, the Application Provider interacting with the Infrastructure Layer, looks for the best
suitable host that is able to deliver the Application taking into account “well defined” low level
QoS parameters. If the negotiation has success the two contracts, HL and LL, are prepared and
stored in the Agreement Repository.

The Figure 50 summarizes the relationship among the different produced documents.

Figure 50 - HL and LL Templates and Contracts

A.3.2. Akogrimo SLA documents

In this section we are going to show the different templates and contracts that participate in the
Negotiation phase.

A.3.2.1. Low Level Agreement Template

As said before, when a SP deploys a new Business Service inside the Base VO has to provide
SLA Templates for the service as well. The Low Level Agreement Template (as the other
“Agreement” documents) is arranged according to the WS Agreement Specification with some
extensions.

Below is provided a short description of a WS-Agreement SLA Structure; then an example of a
LL SLA Template is provided.

SLAs state the terms of agreements between a consumer and provider as a contract for the
provider to perform a service or to provide agreed resources.

D4.4.4, 1.0

© Akogrimo consortium members page 118 of 126

Name identifies a SLA document.

Context defines key facts about the agreement, like the expiration
time, the agreement initiator/responder and the service provider –
they can be different.

The terms define the content of an agreement. It is expected that
most terms will be domain-specific defining qualities such as for
example service description, active guarantees, etc.

Service Description Terms (SDT) describe the requirements of the
agreement.

Guarantee Terms describe aspects of the agreement which the parties are contractually obliged to
uphold – often they reference the SDTs.

In an Agreement Template can also be included the optional part Creation Constraints, which
indicates the possible restrictions and values that can have other parts of the agreement.

<?xml version="1.0" ?>

<wsag:Template xmlns="http://www.akogrimo.org/namespaces/SLAManagement"
xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement/agreement_types.xsd
http://www.w3.org/2001/XMLSchema XMLSchema.xsd
http://www.mobilegrids.org/namespaces/SLAManagement/agreement.xsd"
wsag:TemplateId="COPSLL">

<wsag:Name>Common Operational Picture Service LL Template</wsag:Name>

<wsag:Context>

<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

<wsag:ExpirationTime>2007-12-31T14:00:00.000-05:00</wsag:ExpirationTime>

<wsag:TemplateId>COPSLL</wsag:TemplateId>

<wsag:TemplateName>Common Operational Picture Service LL
Template</wsag:TemplateName>

</wsag:Context>

<wsag:Terms>

<wsag:All>

<wsag:ServiceReference wsag:Name="WSDLInterface" wsag:ServiceName="">

<WSDLReference />

</wsag:ServiceReference>

<wsag:ServiceReference wsag:Name="WebAccess" wsag:ServiceName="">

<URL />

</wsag:ServiceReference>

<wsag:ServiceProperties wsag:ServiceName="COPS">

<wsag:Variables>

<wsag:Variable wsag:Name="CpuLoad" wsag:Metric="CpuLoad">

<wsag:Location>//wsag:ServiceLevelObjective/CpuLoad</wsag:
Location>

<MetricDefinition Name="CpuLoad">

<Dictionary>CpuLoad</Dictionary>

<MetricType>float</MetricType>

D4.4.4, 1.0

© Akogrimo consortium members page 119 of 126

<MetricUnit>GHz</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="Bandwidth" wsag:Metric="Bandwidth">

<wsag:Location>//wsag:ServiceLevelObjective/Bandwidth</wsa
g:Location>

<MetricDefinition Name="Bandwidth">

<Dictionary>Bandwidth</Dictionary>

<MetricType>string</MetricType>

<MetricUnit>Quality</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="DiskSpace" wsag:Metric="DiskSpace">

<wsag:Location>//wsag:ServiceLevelObjective/DiskSpace</wsa
g:Location>

<MetricDefinition Name="DiskSpace">

<Dictionary>DiskSpace</Dictionary>

<MetricType>float</MetricType>

<MetricUnit>GB</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="MemoryUsage"
wsag:Metric="MemoryUsage">

<wsag:Location>//wsag:ServiceLevelObjective/MemoryUsage</
wsag:Location>

<MetricDefinition wsag:Name="MemoryUsage">

<Dictionary>MemoryUsage</Dictionary>

<MetricType>float</MetricType>

<MetricUnit>MB</MetricUnit>

</MetricDefinition>

</wsag:Variable>

</wsag:Variables>

</wsag:ServiceProperties>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<CpuLoad>

<comparison>lessInclusive</comparison>

<value />

</CpuLoad>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

D4.4.4, 1.0

© Akogrimo consortium members page 120 of 126

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<Bandwidth>

<comparison>lessInclusive</comparison>

<value />

</Bandwidth>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<DiskSpace>

<comparison>lessInclusive</comparison>

<value />

</DiskSpace>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<MemoryUsage>

<comparison>lessInclusive</comparison>

<value />

</MemoryUsage>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

</wsag:All>

</wsag:Terms>

<wsag:CreationConstraints>

<wsag:Item wsag:Name="CpuTerm">

<wsag:Location>//wsag:ServiceLevelObjective/CpuLoad/value</wsag:Location>

<wsag:ItemConstraint>

<xs:restriction base="xs:float">

<xs:enumeration value="3" />

<xs:enumeration value="2" />

<xs:enumeration value="1" />

</xs:restriction>

</wsag:ItemConstraint>

</wsag:Item>

<wsag:Item wsag:Name="DiskSpaceTerm">

D4.4.4, 1.0

© Akogrimo consortium members page 121 of 126

<wsag:Location>//wsag:ServiceLevelObjective/DiskSpace/value</wsag:Location
>

<wsag:ItemConstraint>

<xs:restriction base="xs:float">

<xs:enumeration value="4" />

<xs:enumeration value="2" />

<xs:enumeration value="1" />

</xs:restriction>

</wsag:ItemConstraint>

</wsag:Item>

<wsag:Item wsag:Name="MemoryTerm">

<wsag:Location>//wsag:ServiceLevelObjective/MemoryUsage/value</wsag:Loca
tion>

<wsag:ItemConstraint>

<xs:restriction base="xs:positiveInteger">

<xs:enumeration value="2048" />

<xs:enumeration value="1024" />

<xs:enumeration value="512" />

</xs:restriction>

</wsag:ItemConstraint>

</wsag:Item>

<wsag:Item wsag:Name="BandwidthTerm">

<wsag:Location>//wsag:ServiceLevelObjective/Bandwidth/value</wsag:Location
>

<wsag:ItemConstraint>

<xs:restriction>

<xs:enumeration value="Gold" />

<xs:enumeration value="Silver" />

<xs:enumeration value="Bronze" />

</xs:restriction>

</wsag:ItemConstraint>

</wsag:Item>

</wsag:CreationConstraints>

</wsag:Template>

A.3.2.2. Low Level Agreement Contract

The Akogrimo template and contract are based on an “Akogrimo XML Schema” that describes
the structure of the Metric “field” used in the negotiation and evaluation phase.

As said before a WS Agreement document is organized in different sections.

The first section contains information related to the service and previous schema.

<?xml version="1.0" ?>

<wsag:Agreement xmlns="http://www.akogrimo.org/namespaces/SLAManagement"
xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement/agreement_types.xsd

D4.4.4, 1.0

© Akogrimo consortium members page 122 of 126

http://www.w3.org/2001/XMLSchema XMLSchema.xsd
http://www.mobilegrids.org/namespaces/SLAManagement/agreement.xsd"
wsag:AgreementId="COPSLL">

<wsag:Name>Common Operational Picture Service LL Contract</wsag:Name>

..

..

<wsag:Context>

<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

<wsag:ExpirationTime>2007-12-31T14:00:00.000-05:00</wsag:ExpirationTime>

<wsag:TemplateId>COPSLL</wsag:TemplateId>

<wsag:TemplateName>Common Operational Picture Service LL
Template</wsag:TemplateName>

</wsag:Context>

..

The agreement Context contains information about the agreement parties, the agreement’s
lifetime, and a reference to the template from which the agreement is created. The most
important field (for us) described in this xml piece is the Expiration Time; it defines a time when
the Agreement expires where the contract expiration time matches with the service reservation
expiration time [10].

..

<wsag:ServiceProperties wsag:ServiceName="COPS">

<wsag:Variables>

<wsag:Variable wsag:Name="CpuLoad" wsag:Metric="CpuLoad">

<wsag:Location>//wsag:ServiceLevelObjective/CpuLoad</wsag:Locati
on>

<MetricDefinition Name="CpuLoad">

<Dictionary>CpuLoad</Dictionary>

<MetricType>float</MetricType>

<MetricUnit>GHz</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="Bandwidth" wsag:Metric="Bandwidth">

<wsag:Location>//wsag:ServiceLevelObjective/Bandwidth</wsag:Loc
ation>

<MetricDefinition Name="Bandwidth">

<Dictionary>Bandwidth</Dictionary>

<MetricType>string</MetricType>

<MetricUnit>Quality</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="DiskSpace" wsag:Metric="DiskSpace">

<wsag:Location>//wsag:ServiceLevelObjective/DiskSpace</wsag:Loc
ation>

<MetricDefinition Name="DiskSpace">

D4.4.4, 1.0

© Akogrimo consortium members page 123 of 126

<Dictionary>DiskSpace</Dictionary>

<MetricType>float</MetricType>

<MetricUnit>GB</MetricUnit>

</MetricDefinition>

</wsag:Variable>

<wsag:Variable wsag:Name="MemoryUsage" wsag:Metric="MemoryUsage">

<wsag:Location>//wsag:ServiceLevelObjective/MemoryUsage</wsag:
Location>

<MetricDefinition wsag:Name="MemoryUsage">

<Dictionary>MemoryUsage</Dictionary>

<MetricType>float</MetricType>

<MetricUnit>MB</MetricUnit>

</MetricDefinition>

</wsag:Variable>

</wsag:Variables>

</wsag:ServiceProperties>

..

In the ServiceProperties section is defined the metrics will be used to detect service violations in
the Akogrimo infrastructure.

..

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<CpuLoad>

<comparison>lessInclusive</comparison>

<value>2</value>

</CpuLoad>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

..

A.3.2.3. High Level Agreement Template

<?xml version="1.0" ?>

<wsag:Template xmlns="http://www.akogrimo.org/namespaces/SLAManagement"
xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement/agreement_types.xsd
http://www.w3.org/2001/XMLSchema XMLSchema.xsd
http://www.mobilegrids.org/namespaces/SLAManagement/agreement.xsd"
wsag:TemplateId="COPSHL">

<wsag:Name>Common Operational Picture Service HL Template</wsag:Name>

<wsag:Context>

<wsag:AgreementInitiator />

D4.4.4, 1.0

© Akogrimo consortium members page 124 of 126

<wsag:AgreementResponder />

<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

<wsag:ExpirationTime />

<wsag:TemplateId>COPSHL</wsag:TemplateId>

<wsag:TemplateName>Common Operational Picture Service HL
Template</wsag:TemplateName>

<VOSPTemplateID>

</VOSPTemplateID>

</wsag:Context>

<wsag:Terms>

<wsag:All>

<wsag:ServiceReference wsag:Name="WSDLInterface" wsag:ServiceName="">

<WSDLReference />

</wsag:ServiceReference>

<wsag:ServiceReference wsag:Name="WebAccess" wsag:ServiceName="">

<URL />

</wsag:ServiceReference>

<wsag:ServiceProperties wsag:ServiceName="COPS">

<wsag:Variables>

<wsag:Variable wsag:Name="QualityService"
wsag:Metric="QualityService">

<wsag:Location>//wsag:ServiceLevelObjective/Quality
Service

</wsag:Location>

<MetricDefinition wsag:Name="QualityService">

<Dictionary>QualityService</Dictionary>

<MetricType>string</MetricType>

<MetricUnit>Quality</MetricUnit>

</MetricDefinition>

</wsag:Variable>

</wsag:Variables>

</wsag:ServiceProperties>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<QualityService>

<comparison>equal</comparison>

<value />

</QualityService>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

</wsag:All>

</wsag:Terms>

<wsag:CreationConstraints>

D4.4.4, 1.0

© Akogrimo consortium members page 125 of 126

<wsag:Item wsag:Name="ServiceLevel">

<wsag:Location>//wsag:ServiceLevelObjective/QualityService</wsag:Location>

<wsag:ItemConstraint>

<xs:restriction>

<xs:enumeration value="Gold" />

<xs:enumeration value="Silver" />

<xs:enumeration value="Bronze" />

</xs:restriction>

</wsag:ItemConstraint>

</wsag:Item>

</wsag:CreationConstraints>

</wsag:Template>

A.3.2.4. High Level Agreement Contract

<?xml version="1.0" ?>

<wsag:Agreement xmlns="http://www.akogrimo.org/namespaces/SLAManagement"
xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement/agreement_types.xsd
http://www.w3.org/2001/XMLSchema XMLSchema.xsd
http://www.mobilegrids.org/namespaces/SLAManagement/agreement.xsd"
wsag:TemplateId="COPSHL">

<wsag:Name>Common Operational Picture Service HL Template</wsag:Name>

<wsag:Context>

<wsag:AgreementInitiator />

<wsag:AgreementResponder />

<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

<wsag:ExpirationTime />

<wsag:TemplateId>COPSHL</wsag:TemplateId>

<wsag:TemplateName>Common Operational Picture Service HL
Template</wsag:TemplateName>

<VOSPTemplateID>

</VOSPTemplateID>

</wsag:Context>

<wsag:Terms>

<wsag:All>

<wsag:ServiceReference wsag:Name="WSDLInterface" wsag:ServiceName="">

<WSDLReference />

</wsag:ServiceReference>

<wsag:ServiceReference wsag:Name="WebAccess" wsag:ServiceName="">

<URL />

</wsag:ServiceReference>

<wsag:ServiceProperties wsag:ServiceName="COPS">

<wsag:Variables>

<wsag:Variable wsag:Name="QualityService"
wsag:Metric="QualityService">

D4.4.4, 1.0

© Akogrimo consortium members page 126 of 126

<wsag:Location>//wsag:ServiceLevelObjective/Quality
Service

</wsag:Location>

<MetricDefinition wsag:Name="QualityService">

<Dictionary>QualityService</Dictionary>

<MetricType>string</MetricType>

<MetricUnit>Quality</MetricUnit>

</MetricDefinition>

</wsag:Variable>

</wsag:Variables>

</wsag:ServiceProperties>

<wsag:GuaranteeTerm wsag:Obligated="ServiceProvider">

<wsag:ServiceScope>

<wsag:ServiceName>COPS</wsag:ServiceName>

</wsag:ServiceScope>

<wsag:ServiceLevelObjective>

<QualityService>

<comparison>equal</comparison>

<value> Gold </value>

</QualityService>

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

</wsag:All>

</wsag:Terms>

</wsag:Agreement >

