

P
ro
je
c
ts
it
e
:
w
w
w
.m
o
b
il
e
g
ri
d
s
.o
rg

WP 4.3 Grid Infrastructure Services Layer

Dissemination Level: Public

Lead Editor: Antonis Litke, ICCS/NTUA

15/02/2007

Status: Final

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

D4.3.3

Report on the
Implementation of the

Infrastructure Services

Layer

Version 1.0

D4.3.3, 1.0

© Akogrimo consortium page 2 of 106

This is a public deliverable that is provided to the community under the license Attribution-NoDerivs 2.5
defined by creative commons http://www.creativecommons.org

This license allows you to
• to copy, distribute, display, and perform the work
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that this work originated from
the IST-Akogrimo project and has been partially funded by the European Commission
under contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build upon this work without
explicit permission of the consortium

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"

OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK

OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF

SUCH TERMS AND CONDITIONS.

1. Definitions
a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified

form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a
collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes

of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any

other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be
considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or

sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative

Work for the purpose of this License.
c. "Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.
f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with

respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous

violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on

the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,

perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the

Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission
the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a
performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g.

webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music
rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover version")

D4.3.3, 1.0

© Akogrimo consortium page 3 of 106

and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other

jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make

such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to make

Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and
You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work You

distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that alter

or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must
keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly

perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner

inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does
not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective

Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by

clause 4(b), as requested.
b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep intact all

copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or

pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g. a sponsor
institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other reasonable means, the name

of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the Uniform Resource Identifier, if any,

that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for
the Work. Such credit may be implemented in any reasonable manner; provided, however, that in the case of a Collective Work, at a

minimum such credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other

comparable authorship credit.

5. Representations, Warranties and Disclaimer. UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF

TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR

OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO

YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE

LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY

DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination
a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination

of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at

any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is

required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated
above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the same

terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the

minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings,

agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and

You.

D4.3.3, 1.0

© Akogrimo consortium members page 4 of 106

Context

Activity 4 Detailed Architecture, Design & Implementation

WP 4.3 Grid Infrastructure Services Layer

Dependencies Based on work from WP 3.1, WP 4.1, WP 4.2 and WP 4.4.

Contributors: Annalisa Terracina (DATAMAT), Antonis Litke (ICCS/NTUA), Daniele Bocci
(CRMPA), Francesco D’Andria (ATOS Origin), Giulio Negro (CRMPA), Giuseppe Laria (CRMPA),
Hannes Eichner (BOC), Ivanov Momtchil (BOC), Josep Martrat (ATOS Origin), Kleopatra
Konstanteli (ICCS/NTUA), Nadia Romano (CRMPA), Robert Woitsch (BOC), Sergio Romero
(TID), Jesús Movilla (TID), Tom Kirkham (CCLRC), Vassiliki Andronikou (ICCS/NTUA)

Reviewers: Cristian Morariu (University of Zurich), Juan E. Burgos (TID)

Approved by: Victor Villagrá, Universidad Politécnica de Madrid, Spain, as Quality Assurance
Manager

Version Date Authors Sections Affected

0.1 14/11/2006 ICCS/NTUA Table of Contents

0.2 19/12/2006 All Initial contribution compiled into the
document. Sections affected: EMS, Data
Management Services, SLA-Enforcement
Service, Monitoring Service, Metering
Service, Policy Manager Service, SSDS ,
Annex B

0.3 15/01/2007 DATAMAT, TID,
ICCS/NTUA, BOC

Updated contribution compiled into the
document. Sections affected: EMS,
DMS, Monitoring Service, Metering
Service, SSDS , Annex A/B

0.4 26/01/2007 DATAMAT, CRMPA,
CCLRC

Updated contribution compiled into the
document. Sections affected: Data
Management Service, Policy Manager,
Annex A

0.5 5/02/2007 ICCS/NTUA Pre-final version sent to internal
reviewers

0.6 13/02/2007 All Updated contributions addressing
reviewers’ comments compiled into the
document.

1.0 15/02/2007 ICCS/NTUA Final version

D4.3.3, 1.0

© Akogrimo consortium members page 5 of 106

Table of Contents
1. Introduction.. 14

1.1. Scope of the Akogrimo Grid Infrastructure Services Layer... 14

1.2. Services Overview... 15

2. Implemented Akogrimo Grid Infrastructure Services ... 17

2.1. Execution Management Service (EMS)... 17

2.1.1. EMS Design.. 17

2.1.1.1. Functionality... 21

2.1.1.2. Use Cases.. 29

2.1.1.3. Interactions with other services .. 34

2.1.2. EMS Implementation.. 35

2.1.2.1. Involved Technologies ... 35

2.1.2.2. Configuration and Deployment .. 36

2.1.3. Security Considerations... 36

2.2. Data Management Service (DMS).. 37

2.2.1. DMS Design ... 37

2.2.1.1. Functionality... 37

2.2.1.2. Use Cases.. 40

2.2.1.3. Interactions with other services .. 43

2.2.2. DMS Implementation ... 44

2.2.2.1. Involved Technologies ... 44

2.2.2.2. Configuration and Deployment .. 44

2.2.3. Security Considerations... 45

2.3. Monitoring Service.. 45

2.3.1. Monitoring Service Design... 45

2.3.1.1. Functionality... 46

2.3.1.2. Use Cases.. 48

2.3.1.3. Interactions with other services .. 52

2.3.2. Monitoring Service Implementation ... 53

2.3.2.1. Involved Technologies ... 54

2.3.2.2. Configuration and Deployment .. 54

2.3.3. Security Considerations... 55

2.4. Service Level Agreement Enforcement Services (SLA-Enforcement Services).................. 55

2.4.1. SLA-Enforcement Services Design... 55

2.4.1.1. Functionality... 55

2.4.1.2. Use Cases.. 57

D4.3.3, 1.0

© Akogrimo consortium members page 6 of 106

2.4.1.3. Interactions with other services .. 60

2.4.2. SLA-Enforcement Services Implementation... 61

2.4.2.1. Involved Technologies ... 61

2.4.2.2. Configuration and Deployment .. 61

2.4.3. Security Considerations... 62

2.5. Metering Service.. 62

2.5.1. Metering Service Design ... 62

2.5.1.1. Functionality... 62

2.5.1.2. Use Cases.. 65

2.5.1.3. Interactions with other services .. 69

2.5.2. Metering Service Implementation ... 69

2.5.2.1. Involved Technologies ... 70

2.5.2.2. Configuration and Deployment .. 70

2.5.3. Security Considerations... 70

2.6. Policy Manager Service... 70

2.6.1. Policy Manager Service Design.. 70

2.6.1.1. Functionality... 71

2.6.1.2. Use Cases.. 71

2.6.1.3. Interactions with other services .. 73

2.6.2. Policy Manager Service Implementation .. 73

2.6.2.1. Involved Technologies ... 75

2.6.2.2. Configuration and Deployment .. 75

2.6.3. Security Considerations... 75

2.7. Semantic Service Discovery Service (SSDS) ... 76

2.7.1. SSDS Design... 76

2.7.1.1. Functionality... 77

2.7.1.2. Use Cases.. 81

2.7.1.3. Interactions with other services .. 89

2.7.2. SSDS Implementation... 89

2.7.2.1. Involved Technologies ... 90

2.7.2.2. Configuration and Deployment .. 90

2.7.3. Security Considerations... 90

3. Interoperability issues .. 91

GT4 vs WSRF.NET... 91

4. Conclusions... 92

Annex A. Design Details... 95

D4.3.3, 1.0

© Akogrimo consortium members page 7 of 106

EMS – SIP Broker interaction.. 95

Annex B. API of Services ... 97

B.1. EMS API .. 97

B.2. DMS API ... 98

B.3. Monitoring Service API ... 99

B.4. SLA Enforcement Service API... 99

B.5. Metering Service API ... 100

B.6. Policy Manager Service API .. 100

B.7. SSDS API... 101

D4.3.3, 1.0

© Akogrimo consortium members page 8 of 106

List of Figures
Figure 1: Layered diagram of Akogrimo.. 14

Figure 2: WP4.3 services interactions overview ... 16

Figure 3: EMS services and their internal interactions .. 20

Figure 4: Example of low level QoS parameters .. 21

Figure 5: Sequence diagram for the Advertisement phase.. 22

Figure 6: Sequence diagram for the Negotiation and Discovery phase ... 23

Figure 7: Sequence diagram for the Advance Reservation phase ... 25

Figure 8: Sequence diagram for the Execution phase .. 28

Figure 9: EMS use case... 29

Figure 10: Storing Data sequence diagram.. 38

Figure 11: Retrieving Data sequence diagram... 38

Figure 12: Transferring Data sequence diagram... 39

Figure 13: Querying Stored Data sequence diagram.. 39

Figure 14: Access Stored Data sequence diagram.. 40

Figure 15: DMS use cases .. 40

Figure 16: Resource Creation sequence diagram.. 46

Figure 17: Start Monitoring sequence diagram... 47

Figure 18: Stop Monitoring sequence diagram... 47

Figure 19: Notification Handling sequence diagram ... 48

Figure 20: SLA interfaces.. 56

Figure 21: Sequence diagram for the Activation phase .. 56

Figure 22: Sequence diagram for the Service Use phase ... 57

Figure 23: Metering component and A4C in Akogrimo ... 63

Figure 24: Sequence diagram of the Metering Service execution... 64

Figure 25: Metering Service use cases .. 65

Figure 26: Require Policy sequence diagram... 71

Figure 27: Policy Context.. 74

Figure 28: Policy Attachment .. 74

Figure 29: Semantic Service Discover Service: Interfaces and Components .. 77

Figure 30: Sequence diagram Service Discovery .. 80

Figure 31: SSDS use cases.. 82

Figure 32: EMS-SIP Broker interactions ... 96

D4.3.3, 1.0

© Akogrimo consortium members page 9 of 106

List of Tables
Table 1: Services involved in the Negotiation phase of EMS .. 23

Table 2: Services involved in the Advance Reservation phase... 25

Table 3: Services involved in the Execution phase .. 29

Table 4: Advertise service use case... 30

Table 5: Negotiate SLA contract use case ... 31

Table 6: Reserve resources use case ... 32

Table 7: Execute business service use case.. 33

Table 8: EMS interactions with other Akogrimo services .. 34

Table 9: Upload Data use case .. 40

Table 10: Retrieve Data use case... 41

Table 11: Transfer Data use case ... 42

Table 12: DMS interfaces... 43

Table 13: Monitoring resource creation use case ... 48

Table 14: EMS enabling of the monitoring process on the previously created resources Use Case.. 49

Table 15: EMS disabling of the monitoring process on a previously created resource Use Case 50

Table 16: Notification sent from Metering to Monitoring Consumer resource Use Case................... 51

Table 17: Monitoring interactions with other Akogrimo services ... 52

Table 18: SLA creation and execution Use Case.. 57

Table 19: Violation Detection and Best Policy Application Use Case.. 59

Table 20: SLA-Enforcement interactions with other Akogrimo services .. 60

Table 21: Services involved in the execution of the Metering service... 65

Table 22: Manage of lifecycle Use Case... 66

Table 23: Collect Metering Info Use Case... 67

Table 24: Collect Accounting Info Use Case.. 68

Table 25: Metering Service interactions with other Akogrimo services.. 69

Table 26: Require Policy Use Case ... 71

Table 27: Policy Manager interactions with other services ... 73

Table 28: Meta-Model for Service Discovery ... 78

Table 29: Modelling Service Requirements Use Case.. 82

Table 30: Modelling Service Semantic Use Case .. 83

Table 31: Modelling Service Provision Use Case ... 84

Table 32: Register Service Use Case... 85

Table 33: Upload Discovery plug-in Use Case ... 85

Table 34: Browsing for Services Use Case .. 86

Table 35: Searching Services Use Case .. 87

D4.3.3, 1.0

© Akogrimo consortium members page 10 of 106

Table 36: Discovering Services Use Case .. 88

Table 37: SSDS interactions with other Akogrimo services ... 89

Table 38: GT4 and WSRF.NET services .. 91

Table 39: EMS Interface .. 97

Table 40: DMS Interface.. 98

Table 41: Monitoring Interface ... 99

Table 42: SLA Enforcement Interface... 99

Table 43: Metering Interface ... 100

Table 44: Policy Manager Interface .. 100

Table 45: SSDS interface.. 101

D4.3.3, 1.0

© Akogrimo consortium members page 11 of 106

Abbreviations

Akogrimo Access To Knowledge through the Grid in a Mobile World

A4C Authentication, Authorization, Accounting, Auditing and Charging

BPEL Business Process Execution Language

CPU Central Processing Unit

DAO Data Access Object

DMS Data Manager Service

EMS Execution Management Services

EPR Endpoint Reference

GRAM Grid Resource Allocation Manager

GT4 Globus Toolkit 4

GUI Graphical User Interface

MDS Monitoring and Discovery System

NR Negotiation Resource

OASIS Organization for the Advancement of Structured Information Standards

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture Data Access and Integration

OpVOBroker Operative VO Broker

OWL Web Ontology Language

OWL-S Web Ontology Language-Services

QoS Quality of Service

RFT Reliable File Transfer

RR Reservation Resource

SDC Semantic Service Discovery Component

SIP Session Initiation Protocol

SLA Service Level Agreement

SMC Semantic Service Modelling Component

D4.3.3, 1.0

© Akogrimo consortium members page 12 of 106

SOAP Simple Object Access Protocol

SP Service Provider

SQL Structured Query Language

SSDS Semantic Service Discovery Service

SSL Secure Sockets Layer

SWRL Semantic Web Rule Language

TLS Transport Level Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

VO Virtual Organization

WS Web Services

WSDL Web Service Definition Language

WSI Web Services Inter-operability

WSRF Web Services Resource Framework

XML Extensible Mark-up Language

D4.3.3, 1.0

© Akogrimo consortium members page 13 of 106

Executive Summary
This document describes the design and implementation of the services that belong to the WP4.3
Grid Infrastructure Services Layer of the Akogrimo project, the architecture of which was presented
in D4.3.1 (Architecture of the Infrastructure Services Layer) [1]. The Grid Infrastructure Services
Layer defines a service-oriented architecture which consists of a set of services capable of providing
the core Grid functionality. These capabilities include issues such as service discovery, advance
reservation, execution management, monitoring, SLA enforcement, policy management and others.

The services that encapsulate the capabilities mentioned above are the Execution Management
Service, the Data Management service, the Monitoring service, the Service Level Agreement
Enforcement services, the Policy Manager, the Metering service and the Semantic Service Discovery
Service. For each of these services, this document focuses on the following issues:

• Design: The functionality of the services is being described through the use of sequence
diagrams and use cases.

• Implementation: It focuses on the technologies that were used for the development of each
service and describes the configuration needed by them.

• Security: Considerations regarding the security are included for each service. The
convergence of these considerations will lead to the definition of a security framework that
will be vertically applied to all services that reside in the Grid Infrastructure Services Layer.

The Annex presents details on the design of the services as well as their corresponding APIs, in
order to clarify their functionality and interactions with other modules.

D4.3.3, 1.0

© Akogrimo consortium members page 14 of 106

1. Introduction

This deliverable describes the functionality of the services that were developed within the Akogrimo
WP 4.3 and it is a continuation of the work presented in D4.3.1 (Architecture of the Infrastructure
Services Layer) [1] and D4.3.2 (Prototype Implementation of the Infrastructure Services Layer) [2],
that were based on D3.1.1 (Overall Architecture Version 1) [3] and D3.1.3 (Overall Architecture
Definition and Layer Definition) [4] respectively. This document provides details on the design, the
implementation and the configuration/deployment of the services that reside in the Grid
Infrastructure Services Layer.

1.1. Scope of the Akogrimo Grid Infrastructure

Services Layer

The Akogrimo Grid Infrastructure Services Layer is placed in the middle of the Akogrimo
architecture and is responsible for providing the core Grid functionalities. The following figure gives
a conceptual overview of the layers defined in the Akogrimo infrastructure.

SOAP

SOAP/DIAMETER

SOAP

Mobile Network Layer (WP 4.1)

Grid Infrastructure Services Layer (WP 4.3)

 Grid Application Support Services Layer (WP 4.4)

Mobile Network Middleware Layer (WP 4.2)

Figure 1: Layered diagram of Akogrimo

In particular, the layers that comprise the Akogrimo architecture are:

• Mobile Network Layer (WP 4.1)

This layer is responsible for the provisioning and management of the network. It deals with issues
such as mobility, QoS provisioning and handover.

• Mobile Network Middleware Layer (WP 4.2)

This layer is in charge of context management (including SIP enriched presence provisioning and
handling), local and grid semantic service discovery as well as authentication, authorization,
accounting, auditing and charging.

• Grid Application Support Services Layer (WP 4.4)

This layer is responsible for the provisioning and management of the VO and workflow
orchestration.

D4.3.3, 1.0

© Akogrimo consortium members page 15 of 106

The Grid Infrastructure Services Layer is positioned on top of the Mobile Network Middleware
Layer and below the Application Services Layer and is able to establish communication with all the
layers, including the Mobile Network Layer. Its key aim is the provisioning and management of the
Akogrimo Grid through Open Grid Services Architecture (OGSA) [5] compliant grid services.
OGSA aims to define and standardize an open architecture for Grid-based systems.

Although up to now the OGSA specification is still in a draft form, it has already identified the most
important services that should exist in Grid systems. Depending on the Akogrimo specific needs
and key goals, a number of these services have been chosen and incorporated into the Grid
Infrastructure Services Layer.

These OGSA compliant services are built upon the Web Services Resource Framework (WSRF) [6],
which is a family of specifications developed by the OASIS [7] that specifies the way of developing
and managing stateful Web Services that are required by the OGSA specification. The development
of the chosen services was based on the Globus Toolkit 4 (GT4) [8] developed by The Globus
Alliance [9] and WSRF.NET [10] platforms, both of them including a full implementation of the
WSRF specification.

1.2. Services Overview

The basic role of the WP4.3 layer is to manage the execution of the services on request of the Grid
Application Support Service Layer, aiming to fulfil the Grid requirements, addressing the
performance issues in a transparent way to the user and conforming to the determined Service Level
Agreement (SLA). The services one can encounter in the Grid Infrastructure Services Layer,
addressing the specific requirements as identified by the consortium and the OGSA specification,
are listed below:

� Execution Management Service (EMS): Apart from the execution of the services that are
offered to the Akogrimo clients, this service deals with the advertisement, negotiation, discovery
and reservation of the resources needed for the execution.

� Data Management Service (DMS): This service deals with the discovery, transfer and access
of large data within the Grid.

� SLA Enforcement services: This group of services is responsible for the detection of SLA
violations and enforcement of the SLA contractual terms.

� Metering Service: This service is supplementary to the monitoring and accounting services and
deals especially with the measurement of resource usage.

� Monitoring Service: This service provides for the monitoring of the resource consumption
during the execution and is the link between the Metering service and the SLA Enforcement
group of services.

� Policy Manager Service: This service comprises the functionality concerned with the
management of rules and the policies which apply in the execution of services within the
Akogrimo framework.

� Semantic Service Discovery Service (SSDS): This service provides for the discovery of
services in the Mobile Network Middleware Layer, acting as a link between the discovery process
performed in the Grid Infrastructure Services and Network Middleware Layers.

In the following figure, a high level view of the WP4.3 services and their interactions is depicted.

D4.3.3, 1.0

© Akogrimo consortium members page 16 of 106

EMS

W
S

R
F

-e
n
a

b
le

d

Monitoring

related services

Discovery

Reservation

Execution
Monitoring

Metering

QoS Broker

SLA

enforcement

related services

SLA-Access

SLA-Decisor

SLA-Controller

CPU, disk
memory

notifications

Network
notifications

Violation
notifications

R
es
er

ve
/A
ct
iv
a
te

R
ese

rve
/A

ctivate

C
h
eck

 ne
tw
o
rk

Retrieve SLA

QoS notifications

DMSSSDS

Policy Manager
Retrieve Policy A4C Business

services

SLA-Negotiator

Discover

V
io
la
tio

n
no

tif
ic
at
io
ns

R
eserve/E

xecu
te

A
cc

ou
nt
in

g
in
foViolations

Negotiation

N
e
g
o
tia

te

WP4.3
service

WP4.2
service

WP4.1
service

WP4.4
service

Reserve/Activate

Reserve resources Reserve network

SIP Broker
 Mobile users info

SIP Notifications

Figure 2: WP4.3 services interactions overview

D4.3.3, 1.0

© Akogrimo consortium members page 17 of 106

2. Implemented Akogrimo Grid
Infrastructure Services

2.1. Execution Management Service (EMS)

The Execution Management Service (EMS) comprises the central controller of the business service1
execution in Akogrimo Framework and is developed on the GT4 platform. Built on the basis of the
OGSA and WSRF specifications, the EMS is responsible for finding candidate services, selecting the
most suitable execution location, making advance reservation on selected resources, initiating and
managing/monitoring the execution of a business service. In order to address these tasks and at the
same time ensure continuous conformation to the terms of the SLA contract as well as awareness of
changes in the location of mobile users, the EMS works closely together and involves numerous
interactions with many other Akogrimo services.

2.1.1. EMS Design

General Concepts

Although, the EMS is designed so as to address the specific needs of the Akogrimo project with
respect to its overall architecture, it builds heavily on the OGSA Framework specifications. The
challenge was to design an OGSA compliant EMS service that can guarantee QoS enforcement by
exploiting the functionalities offered by the rest of the services in the Akogrimo Framework, while
at the same time addressing the main goal of the Akogrimo project which is the development of a
mobile aware Grid. These requirements have been met by the Akogrimo EMS in the following
ways:

Mobile awareness: By interfacing with the SIP Broker service the EMS is able to keep track of the
current location of the “mobile” users. The SIP Broker acts as a gateway service in front of WP4.2
SIP Server responsible for receiving and translating requests made by the EMS. The SIP Broker
interacts with the SIP Server in order to find the current service End Point Reference (EPR) and its
availability status. When there is a change in the client’s status, a notification message is generated by
the SIP Broker. This notification message includes information about the availability/unavailability
of the mobile client. In case of availability, the new location of the mobile client and the list of
services that are hosted there are included in the notification message. These notifications are
propagated to the EMS through the use of a WS-Notification mechanism, established between the
EMS and the SIP Broker. Whenever such a notification is received, the EMS is responsible for
updating the registry it uses to store info for mobile users and reallocate resources in case the shift
takes place during the actual execution of a business service. For more information refer to Annex
A.

1 The term business service is used though out this document to refer to the application services that are offered to the
clients through the Akogrimo framework

D4.3.3, 1.0

© Akogrimo consortium members page 18 of 106

OGSA compliancy: The EMS addresses the basic set of requirements that must be met by an
execution management service according to the OGSA specifications:

� Discovery of candidate services/Selection of winner service: The EMS is able to
discover a candidate set of business services that meet the clients’ needs and restrictions, as
expressed in their SLAs. Available mobile services are discovered through the use of a
mobile registry that is constantly updated with information by the SIP Broker, whereas non-
mobile services are discovered through the use of an Index service that is included and
deployed by default into the Java WS container of the GT4 as part of the WS MDS
subsystem. The GT4’s Index service is so versatile a service that can serve both as a local
index as well as a VO-wide index. The Index service that is deployed in the same location as
the EMS, acts as the central VO index to which all Index services deployed in different
containers through out the underlying Grid are registered. The “advertisement” of the
business service includes information related to low level performance parameters such as
memory, CPU and disk storage. All available business services are registered to their local
Index service. Local registrations propagate to the EMS’s Index Service after a specific
period of time. The EMS in this case acts as a gateway service in front of the central Index
service, which is responsible for making requests to and interpreting the responses from the
Index service. The EMS queries its Index service to find resources matching the requested
by the client low level performance parameters and returns a candidate set of available
resources.2 Once the list of candidate locations is known, the EMS decides where the
execution should really take place by following very simple rules, based on low level
performance parameters. However, the selection mechanism could be enhanced so as to
involve different selection algorithms that optimize different objective functions or attempt
to enforce different policies or SLAs.

� Advance reservation of resources: Two different types of advance reservation are
supported by the EMS: (1) Service resource reservation and (2) Network resource
reservation. Advance service resource reservation is achieved by creating instance
resources of all services involved in the execution (the business service, the SLA-
Enforcement and Monitoring group of service). Those services are developed on the WS-
Resource Factory pattern [12][13] that enables the management of multiple resources
through the use of a factory service that creates instance resources of the service. Whenever
the EMS wants to create a new business resource, it contacts the factory service that
corresponds to the business service. The factory service returns to the EMS an EPR
(Endpoint Reference)3 to the newly created business resource. After obtaining the EPR to
the resource, the EMS manages its lifecycle by setting the termination time of the resource
equal to the time that the SLA-contract becomes invalid. Only the client for whom the
business resource is created can access it. On the other hand, advance network resource
reservation is achieved through the use of the QoS Broker service. The EMS contacts the
QoS Broker service requesting a specific network bandwidth during the entire lifetime of the
business service execution. Also, EMS will be able to achieve advance system resource
reservation by reserving disk storage through the Data Manager Services once this
functionality is fully supported by the latter. The resources are allocated at reservation start
time and released when the SLA contact expires.

2 Because of its advanced flexibility and functionality, it was decided that the EMS will use the GT4’s MDS instead of
the SSDS. The latter supports the GrSDS service (WP4.2) in the discovery process of Mobile Network Middleware
Layer.
3 The EPR is a pair of a Unique Resource Identifier (URI) and a key, which differentiates an instance of a resource from
all other instances of the same resource.

D4.3.3, 1.0

© Akogrimo consortium members page 19 of 106

� Initialization/Management/Monitoring of execution: Once the execution of the
business service has started, it is managed and monitored in order to achieve continuous
conformance to the contractual terms of SLAs. In case of execution failure or failure to meet
the SLA criteria and depending on the explicit type of failure, EMS is able to reallocate the
execution. In order to detect possible failures and maintain the state of the execution
between possible reallocations, a fault-detection in conjunction with a recovery scheme is
being used. The EMS establishes a WS-Notification mechanism with the business services in
order to receive notification messages every time a property of the business resource
changes its value. Resource properties provide to the EMS a view on the current state of the
resource. Every time the EMS receives a notification message it stores the new value of the
resource property. If a failure occurs during the execution of the business service and the
creation of new business resource is needed (either on the same or different location), the
EMS will set the resource properties to the last known ones before the failure occurs. This is
a first approach to a recovery scheme used by the EMS that makes use of the WS-Resource
specification in order to maintain the state of the business resources.

QoS enforcement: During the execution of the requested service the QoS requirements that are
expressed in the SLA contract must be fulfilled through the management of the execution and the
associated Grid resources. In order to achieve this, EMS exploits the functionalities offered by the
Akogrimo Monitoring and SLA Enforcement groups of services to the fullest.

Design Details

Instead of designing a complicated service responsible for all tasks involved in the execution
management process, the EMS is a set of sub-services, with each of them addressing a specific task.
Although from the client’s perspective it appears to be a single Grid service, actually the EMS is a
composition of the six Grid services listed below:

• Core Gateway service, which acts as a gateway service, offering a single-point of access to the
EMS whilst “hiding” its details and complexity from the clients. It is therefore responsible
for interpreting client’s requests, delegating them to the appropriate EMS sub-services,
orchestrating the interactions between the latter and returning the results to the clients.

• Advertisement service, which is used by the Service Providers (SPs) to advertise their services in
the index service used by the EMS in the discovery process. The SPs run an Advertise client
application on their local machines, providing all information necessary to form the
advertisement of the service. The advertisement is registered with the index service which is
running locally on the SP’s container. The EMS index service, which acts as the SP-wide
index service, automatically aggregates the advertisements from all index services in the SP
domain.

• Negotiation service, which is responsible for interpreting requests for the negotiation of the
terms of the client’s SLA contracts. The Negotiation service contains a resource factory that
creates Negotiation Resources (NRs). The NRs are persistent resources used to store
information related to the negotiations. After a successful negotiation, the EPR to the NR
that was created is returned to the Core Gateway service, which in turn passes it to the client.

• Reservation service, which is in charge of performing advance reservation on the service and
network resources needed for the execution and monitoring of the business service. Upon
successful reservation, a persistent Reservation Resource (RR) is created and all information
related to the reservation is stored inside it. The EPR to the RR is returned to the Core
service and through it to the client.

• Execution service, which is in charge of the coordination of the SLA Enforcement and
Monitoring groups of services and the actual execution of the reserved business resources as

D4.3.3, 1.0

© Akogrimo consortium members page 20 of 106

well as being responsible to take corrective actions when needed. At the end of the
execution of the business service, the result is returned to the Core Gateway service. The
Core Gateway service filters the result and sends it to the client.

• Discovery service, which is responsible for finding available services, registered in the underlying
Grid, that meet the QoS parameters defined in the SLA. It is designed so as to follow rules
based on low level performance parameters related to the execution of the service, such as
CPU, memory, network bandwidth and disk capacity as well as the availability of the service
and the price that the client is willing to pay. It is built on top of the GT4’s MDS Index
service. The Discovery service is not only used by the Negotiation service but by the
Reservation and Execution services when reallocation is needed.

A high level view of the EMS services and their internal interactions is depicted in Figure 3: EMS
services and their internal interactions.

Core
Gateway

SP-wide
Index

Client

EMS

Service 1

Service N

VO

Advertisement

execute

negotiate

reserve

discover

discover

discover query

Indexed in

Service

Provider

Domain 1

Service

Provider

Domain N

Execution

Reservation

Negotiation

Discovery

Service
Provider

Service

Provider

Advertisement Index

Index

 Figure 3: EMS services and their internal interactions

D4.3.3, 1.0

© Akogrimo consortium members page 21 of 106

2.1.1.1. Functionality

The functionality of the EMS is divided into four phases: 1) Advertisement of business services, 2)
Negotiation and Discovery phase, 3) Advance Reservation phase and 4) Execution and Monitoring
phase. The first phase is not connected to the rest and may take place at any time, whereas the
remaining three are part of a sequence that leads to the actual execution of the business service.

1) Advertisement of business services

In this phase, the SP can advertise his services with QoS properties to the EMS. The SP must
specify a unique within his domain name for the service (serviceID)4, the URI of the service
(serviceURI) as well as the values of low level parameters related to its performance. An example of
the low level parameters that are used in action is shown in Figure 4: Example of low level QoS
parameters. Figure 5: Sequence diagram for the Advertisement phase, shows the sequence diagram
for this phase:

1. The SP runs an Advertise client application on his local machine, specifying a serviceID, a
serviceURI and values for the low level performance parameters.

2. The Advertise client filters given values to check if they have accepted format and are within
a logical range and then invokes the Advertisement service, which runs in the SP’s container.
In particular, at this point the Advertise client invokes the Register operation, requesting that
the advertisement be included in the list of the advertised services by this SP.

3. The Register operation of the Advertisement service triggers the creation of a WS-Resource
called Advertisement. Each service for sale in the VO is represented by an Advertisement
resource in the SP’s container.

4. Upon creation, the Advertisement resource registers with the Advertisement Index running
locally on the SP’s container, which gathers information on the advertisements in the SP’s
machine.

5. After some time, the local registrations will propagate to the EMS’s Index service which will
also cache the data stored in the SP’s local Advertisement index service.

 <QoSParams>

 <QoSItems>

 <QoSItem>
 <param>cpuSpeed</param>

 <paramValue>3.5</paramValue>

 <paramType>MHz</paramType>
 </QoSItem>

 <QoSItem>
 <param>diskSpace</param>

 <paramValue>1</paramValue>

 <paramType>GB</paramType>
 </QoSItem>

 <QoSItem>

 <param>memory</param>
 <paramValue>1</paramValue>

 <paramType>GB</paramType>

 </QoSItem>
 </QoSItems>

 </QoSParams>

 Figure 4: Example of low level QoS parameters

4 Parameter serviceID is a simple string. One serviceID that is actually used in action is “ECGDataAnalyzer”. Although
it can have any value, it is recommended to use a value that describes the functionality of the business service.

D4.3.3, 1.0

© Akogrimo consortium members page 22 of 106

Adveritise
client

1: Specify serviceID,
 serviceURI and

low level
performance
 parameters

Advertisement
service

 R

Advertisement

Advertisement
index

EMS
index

Service
Provider

2: Register advertisement

3: Create
advertisement

resource

4: Register

5: Retrieve entry in order
to update cache

Service provider’s components

 Figure 5: Sequence diagram for the Advertisement phase

2) Negotiation and Discovery Phase

During this phase the EMS is in charge of discovering the resources needed for the execution of the
business services based on low level QoS parameters passed by the SLA-Negotiator service. The
phase begins with the SLA-Negotiator service asking the EMS to check for service and network
availability by invoking the checkResourcesAvailability operation on it. Figure 6: Sequence diagram for
the Negotiation and Discovery phase, shows the sequence diagram for this phase:

1. The SLA-Negotiator service invokes EMS Core service providing the serviceID, the
clientID and desired values for the low level parameters.

2. The Core service checks the format of the input parameters and contacts the EMS
Negotiation service if their format is valid. Otherwise, it returns a null value to the SLA -
Negotiator.

3. The Negotiation service after processing the low level parameters invokes the EMS
Discovery service.

4. If the requested service is not a mobile application, the Discovery service queries the EMS
Index service trying to find service resources that meet the client’s requirements. Otherwise,
it checks its mobile registry, where information related to mobile application sent from the
SIP Broker is gathered.

5. A list of candidate services is returned to the Negotiation service.

6. The first service in the list is selected.

7. The Negotiation service contacts the QoS Broker to check the network availability of this
service.

8. If the client’s network criteria are not met by this service, the service is removed from the list
of candidates and steps 6 and 7 are repeated. In case the QoS Broker verifies the availability
of the network, a Negotiation resource (NR) is created.

9. All information related to the negotiation request and the discovered resources is stored into
the Negotiation resource.

D4.3.3, 1.0

© Akogrimo consortium members page 23 of 106

10. The Negotiation service returns the EPR of the NR to the Core service.

11. Finally, the EPR to the NR is returned to the SLA-Negotiator service. In case no match is
found the EPR returned has a null value.

Core
service

1: Provide serviceID,
 clientID and low level

performance
 parameters

Negotiation
service

11: Return the EPR of the
NR

SLA-Negotiator

 R
Negotiation

9: Store info related to request and discovered resources

Discovery
service

8.1:Success? Create Negotiation resource

Index
service

QoS
Broker

10: Return the EPR of
NR

2: Negotiate

3: Discover
4.1: Non mobile

service?
 Query index

EMS components

5: List of candidate
services

6: Select
service

7: Check network availability

Mobile
registry

4.2: Mobile service?
 Query registry

8.2:Failure?
 Select
different

service from
list and
repeat

 Figure 6: Sequence diagram for the Negotiation and Discovery phase

The high-level view of the interactions performed by the EMS as depicted in Figure 6: Sequence
diagram for the Negotiation and Discovery phase in conjunction with Table 1: Services involved in
the Negotiation phase of EMS provides a complete description of the design details and the
behavior of the EMS during the Negotiation and Discovery phase (Table 1 doesn’t contain the
interactions between the subcomponents of the EMS).

Table 1: Services involved in the Negotiation phase of EMS

Service Interaction Interface

QoS Broker Step 7 boolean check_qos_availability(user, SLAid, qos_bundle)

D4.3.3, 1.0

© Akogrimo consortium members page 24 of 106

3) Advance Reservation Phase

After a successful negotiation phase, the SLA-Negotiator service asks EMS to perform advance
service and network reservation on the resources that were discovered during the negotiation phase
by invoking the performAdvanceReservation operation on it. Figure 7: Sequence diagram for the Advance

Reservation phase, shows the sequence diagram for this phase:

1. The sequence begins with the SLA-Negotiator service invoking the EMS Core service,
providing the EPR to the NR that was obtained at the end of the Negotiation phase.

2. The Core service delegates the task to the EMS Reservation service.

3. The Reservation service retrieves the information stored inside the Negotiation resource
during the Negotiation phase (QoS parameters, start and end time of the SLA, URI of the
discovered business service etc).

4. The Reservation service creates a business resource and obtains its EPR.

5. By using the end time defined in the SLA, the Reservation service is able to manage the
lifecycle of the newly created business resource.

6. At next step, the Reservation service creates an SLA-Controller resource.

7. The termination time of the SLA-Controller resource is set to the time the SLA expires.

8. The Reservation service creates a Metering resource.

9. Upon creation, the Reservation service sets the termination time of the Metering resource to
the time the SLA expires.

10. The Reservation service creates a Monitoring resource.

11. The termination time of the Monitoring resource is set to the time the SLA expires.

12. Once the advance service reservation has been performed, the Reservation service proceeds
with the reservation of the network resources by invoking the QoS Broker service

13. The EMS creates a Reservation resource.

14. The EPRs to the resources that were created in previous steps as well as info retrieved from
the Negotiation resource is internally stored into the Reservation resource.

15. The Reservation service then returns the Reservation EPR to the Core service.

16. Finally, the Core service returns the Reservation EPR to the SLA-Negotiator service.

D4.3.3, 1.0

© Akogrimo consortium members page 25 of 106

Core
service

1: Provide EPR
and submit
request for
Advance

 reservation

13: Create reservation resource

4.1: Create
business
resource

14: Add EPR of created resources to the RR

 R
Business

Reservation
service

12: Reserve network resources

15: Return the
 EPR to
the RR

SLA
Controller

SLA
Negotiator

 R
SLA Controller

4.2: Create resource

 R
Negotiation

3: Retrieve info from NR

Business
service

2: Reserve

6.1: Create SLA controller
resource

Metering
service

Monitoring
service

8.1: Create Metering resource

10.1: Create Monitoring resource

16: Return the
EPR to
the RR

EMS
components

7: Set termination time

 R
Metering

 R
Monitoring

 R
Reservation

QoS
Broker

6.2: Create resource

8.2: Create resource

9: Set termination time

10.2: Create resource

5: Set termination time

11.Set termination time

 Figure 7: Sequence diagram for the Advance Reservation phase

The high-level view of the interactions performed by the EMS as depicted in Figure 7: Sequence
diagram for the Advance Reservation phase in conjunction with Table 2: Services involved in the
Advance Reservation phase provides a complete description of the design details and the behavior
of the EMS during the Advance Reservation phase (Table 2 doesn’t contain the interactions
between the subcomponents of the EMS).

Table 2: Services involved in the Advance Reservation phase

Service Interaction Interface

Business Step 4 EndpointReferenceType createResource()

D4.3.3, 1.0

© Akogrimo consortium members page 26 of 106

Step 5 org.oasis.wsrf.lifetime.SetTerminationTimeResponse

setTerminationTime(org.oasis.wsrf.lifetime.SetTerminationTime
setTerminationTimeRequest)

Step 6 EndpointReferenceType create(edu.virginia.cs.gcg.wsrf.ArrayOfXmlElement
portTypeInitializers)

SLA -
Controller

Step 7 org.oasis.wsrf.lifetime.SetTerminationTimeResponse
setTerminationTime(org.oasis.wsrf.lifetime.SetTerminationTime
setTerminationTimeRequest)

Step 8 EndpointReferenceType createResource() Metering

Step 9 org.oasis.wsrf.lifetime.SetTerminationTimeResponse

setTerminationTime(org.oasis.wsrf.lifetime.SetTerminationTime
setTerminationTimeRequest)

Step 10 EndpointReferenceType createResource() Monitoring

Step 11 org.oasis.wsrf.lifetime.SetTerminationTimeResponse

setTerminationTime(org.oasis.wsrf.lifetime.SetTerminationTime
setTerminationTimeRequest)

QoS
Broker

Step 12 boolean set_qos(user, SLAid, qos_bundle)

4) Execution and Monitoring Phase

In this phase, the EMS is responsible for the initialization and management, to completion, of the
business service execution. During the execution, the EMS receives notification messages from the
SLA-Decisor regarding failures to meet its SLA and the applied policy. If the execution fails or if the
SLA violation demands it, EMS will try to reallocate resources. Reallocation implies discovery of
new location and creation on the fly of service resources. The status of the newly created resources
is set to the previous one and execution is restarted. It is also possible that the execution resources
don’t exist anymore due to possible container restarts. EMS is able to understand when the failure
derives from resource loss and will first try to recreate duplicate resources in the same locations.

The sequence begins with a Service Agent requesting the execution of a business service by invoking
the performExecution operation on the EMS Core Gateway service. Figure 8: Sequence diagram for
the Execution phase, shows the sequence diagram for this phase:

1. The Service Agent provides the RR EPR, the client ID, the service method that he
wishes to invoke as well as the input needed by it.

2. The Core Gateway service filters the input and delegates the task to the EMS Execution
service.

3. At first step, the Execution service retrieves the information needed for the execution
from the Advance Reservation resource (SLA-Controller resource EPR, Business
resource EPR, etc) while updating certain Advance Reservation resource properties used
for auditing. The following 3 steps (Step 4, 5 and 6) are performed only if it is the first
request for execution related to the specific SLA, otherwise the steps have already been
performed in previous invocation and the control is handed over to Step 7.

D4.3.3, 1.0

© Akogrimo consortium members page 27 of 106

4. The QoS parameters that are specified in the client’s SLA are retrieved from the SLA-
Access service.

5. Using the EPR of the SLA-Controller resource, the Execution service activates it and
binds it to the specific SLA, business resource and metering resource.

6. On the next step, the Execution service activates the Monitoring resource.

7. Once the Monitoring resource is activated, the Execution service activates the Metering
resource on the server hosting the business resource.

8. After setting up the services that perform the monitoring and SLA enforcement, the
Execution service initiates the execution of the business resource.

 9-13. During the execution, the Metering service sends notification messages to Monitoring
service. These notifications are being forwarded to the SLA-Decisor through the SLA-
Controller. When a violation is detected, the SLA-Decisor propagates the notification to
the EMS along with the policy that should be applied. The EMS filters the message and
propagates it the A4C system and reallocates resources if needed.

 14. At the end of the execution, the Execution service obtains its output.

 15. The Execution service stops the execution of the Metering resource5.

 18. Τhe result of the service execution is reported to the Core Gateway service.

 19. On last step, the result of the execution is returned to the Service Agent.

5 To reduce SOAP message traffic, the Monitoring and SLA-Controller resources are deactivated only at final
invocation. The EMS destroys all resources related to the execution of the service when the SLA expires. The
Reservation resource is not destroyed as it used for auditing purposes.

D4.3.3, 1.0

© Akogrimo consortium members page 28 of 106

Core
service

1: Specify EPR of
reservation resource,
slaID, input for the
service and
submit request

5: First invocation? Activate SLA-Controller

6: First invocation? Start Monitoring

8: Start execution of Business resource

17: Return
execution result

3: Retrieve/Update
reservation info

15: Stop metering

 R
Reservation

Service
Agent

 R
 SLA-Controller

SLA-Decisor
service

12: Violation notification

A4C

13: Report violation to A4C

SLA-Access
service

4: Retrieve QoS
parameters

 R
Metering

 R
Monitoring

Execution
service

 R
Business

2: Execute

7: First invocation? Start Metering

14: Execution result

Loop

16: Return
execution result

9: Meter
notification10: QoS

notification
11: QoS
notification

 Figure 8: Sequence diagram for the Execution phase

The high-level view of the interactions performed by the EMS as depicted in Figure 8: Sequence
diagram for the Execution phase, in conjunction with

Table 3: Services involved in the Execution phase provides a complete description of the design
details and the behavior of the EMS during the Advance Reservation phase (Table 3 doesn’t contain
the interactions between the subcomponents of the EMS).

D4.3.3, 1.0

© Akogrimo consortium members page 29 of 106

Table 3: Services involved in the Execution phase

2.1.1.2. Use Cases

EMS

Negotiate SLA

Reserve service

Service Provider

SLA Negotiator

Advertise service

Execute service

Service Agent

SERVICE PROVIDER

DOMAIN

OPERATIONAL VO

DOMAIN

Figure 9: EMS use case

Service Interaction Interface

Step 5 void activeServiceController(String serviceId, objQoS objQoSData, String slaID) SLA-
Controller

Not shown in
sequence – performed
at final invocation

void destroy()

SLA-Access Step 4 org.akogrimo.www.SLAManagement.SLAAccess.ObjQoS getQoSParameters(String
slaID)

Step 6 String startMonitoring(org.akogrimo.www.namespaces.notifications.Monitoring.Start

MonitoringRequest parameters)

Monitoring

Not shown in
sequence – performed
at final invocation

String stopMonitoring(int parameters)

Step 7 Boolean startMetering(String serviceID, String clientID) Metering

Step 15 Boolean stopMetering(String serviceID, String clientID)

A4C Step 13 To be defined

Business
Service

Step 8 Not standard (depends on the business service)

D4.3.3, 1.0

© Akogrimo consortium members page 30 of 106

Table 4: Advertise service use case

Use Case ID UC_EMS_1

Use Case Name Advertise service

Initiator Service Provider

Primary Actor Advertise client

Additional Actors EMS Advertisement service, MDS Index service

Description The SP invokes EMS Advertise service in order to advertise the existence
of a business service in one of the machines in his domain.

Pre-condition A full GT4 installation and specific configuration is required in the
machine that the business service is running (See section 4.1.2.2 for
details). Also, the Advertise client must be installed in the SPs machine.

Post-condition An “advertisement” for the service is created and registered to the SPs
Advertisement Index service in the form of a persistent WS-Resource.
All advertisements are propagated to the EMS index service after a
specific period of time.

Use Case Functionality

Sequence See Section 2.1.1.1 for a full walk through of the sequence.

Alternatives None

Exceptions The Advertise client filters the values of the parameters that are passed
by the SP. In case one or more parameters have wrong format or an
irrational value, the Advertise client blocks the request and asks from the
SP to re-enter the values of the parameters.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 31 of 106

Table 5: Negotiate SLA contract use case

Use Case ID UC_EMS_2

Use Case Name Negotiate SLA Contract

Initiator SLA-Negotiator service

Primary Actor EMS Core

Additional Actors EMS Negotiation, EMS Discovery, QoS Broker

Description During this phase the EMS is in charge of discovering the resources
needed for the execution of the business services based on low level QoS
parameters passed by the SLA-Negotiator service

Pre-condition All services involved in the Negotiation and Discovery phase (See Figure
6: Sequence Diagram For The Negotiation And Discovery Phase) must
be up and running.

Post-condition All information related to the negotiation request and the discovered
resources is stored into the EMS in the form of a persistent WS-
Resource. The EPR to this resource is returned to the SLA-Negotiator
service.

Use Case Functionality

Sequence See Section 2.1.1.1 for a full walk through of the sequence.

Alternatives None

Exceptions � EMS filters the values of the parameters that are passed by the SLA-
Negotiator. In case one or more parameters have wrong format or an
irrational value, EMS blocks the request and reports error to the
SLA-Negotiator.

� In case a fatal exception occurs that could not be handled by the
EMS, a RemoteException is thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

D4.3.3, 1.0

© Akogrimo consortium members page 32 of 106

Information
Requirements

None

Table 6: Reserve resources use case

Use Case ID UC_EMS_3

Use Case Name Reserve resources

Initiator SLA-Negotiator service

Primary Actor EMS Core

Additional Actors EMS Reservation, QoS Broker, Metering, Monitoring, SLA-Controller,
Business services

Description The SLA-Negotiator invokes EMS in order to perform reservation on
the resources discovered during the Negotiation and Discovery phase.

Pre-condition The SLA-Negotiator must pass EMS a valid EPR to a negotiation
resource, i.e. the negotiation of the SLA must always precede the
reservation.

All services involved in the Advance Reservation phase (See Figure 7:
Sequence diagram for the Advance Reservation phase) must be up and
running.

Post-condition All information related to the reservation request is stored into the EMS
in the form of a persistent WS-Resource. The EPR to this resource is
returned to the SLA-Negotiator service.

Use Case Functionality

Sequence See Section 2.1.1.1 for a full walk through of the sequence.

Alternatives None

Exceptions � In case the business service is not available in the discovered location,
the EMS will try to discover alternate locations that meet the client’s
requirements. If no such location is found, EMS reports failure to the
SLA-Negotiator.

� The Negotiation EPR that is provided by the SLA-Negotiator service
does not exist. This means that the EPR in speak is not valid because
the Negotiation EPRs are persistent. EMS reports failure to the SLA-
Negotiator.

� In case a fatal exception occurs that could not be handled by the
EMS, a RemoteException is thrown.

D4.3.3, 1.0

© Akogrimo consortium members page 33 of 106

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 7: Execute business service use case

Use Case ID UC_EMS_4

Use Case Name Execute business service

Initiator Service Agent

Primary Actor EMS Core

Additional Actors EMS Execution, Metering, Monitoring, SLA-Access, SLA-Controller,
SIP Broker, A4C

Description The Service Agent requests the execution of a business service on
resources reserved during the Advance Reservation phase.

Pre-condition The Service Agent must pass EMS a valid EPR to a reservation resource,
i.e. the reservation of the resources must always precede the execution.

All services involved in the Execution phase (See Figure 8: Sequence
diagram for the Execution phase) must be up and running.

Post-condition All information related to the execution of the service is stored into
EMS. The result of the execution is returned to the Service Agent.

Use Case Functionality

Sequence See Section 2.1.1.1 for a full walk through of the sequence.

Alternatives None

D4.3.3, 1.0

© Akogrimo consortium members page 34 of 106

Exceptions � In case the business service is not available in the discovered location,
the EMS will try to recreate a duplicate resource on same location.

� In case the execution fails or a violation notification is received
during the execution requesting reallocation, EMS will discover
alternate locations that meet the client’s requirements and proceed to
reallocation. If no such location is found, EMS reports failure to the
Service Agent.

� The Reservation EPR that is provided by the Service Agent does not
exist. This means that the EPR in speak is not valid because
Reservation EPRs are persistent. EMS reports failure to the Service
Agent.

� In case a fatal exception occurs that could not be handled by the
EMS, a RemoteException is thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

2.1.1.3. Interactions with other services

The following table summarizes the interactions that EMS has with other Akogrimo services.

Table 8: EMS interactions with other Akogrimo services

Akogrimo service Interaction Protocol

 WP4.1 QoS Broker

-To use the network services of WP4.1.
-To request network resources availability
and reservation

SOAP/HTTP

WP4.1 SIP Broker

-To find out the current location of mobile
services
-To receive notifications related to
movement of client from on mobile
terminal to another

SOAP/HTTP

WP4.2 A4C

To propagate violation notifications for
accounting purposes (to be implemented)

DIAMETER

WP4.3 Metering

To start and stop the metering of a
business service execution

SOAP/HTTP

WP4.3 Monitoring To start and stop the monitoring process SOAP/HTTP

D4.3.3, 1.0

© Akogrimo consortium members page 35 of 106

WP4.3 SLA-Decisor To receive notifications related to
violations of the SLAs (to be implemented)

SOAP/HTTP

WP4.3 SLA-Controller To activate the SLA-Enforcement for the
execution of the business service

SOAP/HTTP

WP4.3 SSDS To perform discovery of candidate
locations (to be implemented)

SOAP/HTTP

WP4.3 Data Management To perform disk storage reservation

(to be implemented)
SOAP/HTTP

WP4.4 SLA-Negotiator
-To check service and network availability
-To confirm reservations

SOAP/HTTP

WP4.4 Business services

-To create resources and manage their
lifecycle

-To monitor their execution

SOAP/HTTP

WP4.4 BP Enactment

To initiate an execution and retrieve the
results of it

SOAP/HTTP

WP4.4 SLA-Access

To receive the QoS parameters that have
to be met

SOAP/HTTP

2.1.2. EMS Implementation

The EMS has been implemented using the GT4 platform and runs under the standalone container
that the toolkit offers. GT4 is an open source Grid middleware that provides the necessary
functionality required to build and deploy fully operational Grid Services. It includes software for
security, information infrastructure, resource management, data management, communication, fault
detection, and portability. It supports the core specifications that define the Web Services
architecture. It also supports and implements the WS-Security [19] and other specifications relating
to security, as well as the WSRF, WS-Addressing and WS-Notification [15] specifications used to
define, name, and interact with stateful resources.

2.1.2.1. Involved Technologies

The GT4 includes many high-level services, developed to take advantage of the potentials that the
toolkit offers to the fullest. Leveraging existing high-level services is a hallmark of application
development. Among the advantages of this approach is the one of advanced functionality and
flexibility as well as the encouragement of service reuse. Depending on the explicit nature of the
EMS, we have decided to leverage the GT4’s WS-GRAM [22] and MDS4 [23] functionalities into it,
using Java WS Core, and in this way create a much more powerful and flexible version of the EMS.

WS-GRAM, the core of the GT execution management, providing services to submit jobs and
monitor their execution on a GT4 based Grid. “Jobs” within the WS-GRAM framework are
considered to be binary executable files. Not all applications are good candidates for exposure as a
Web Service. The WS-GRAM concept and the Web Service concept are two mutually exclusive
approaches. WS-GRAM is meant to be used in situations in which the job requested by the client is
not available as a Web Service but in the general form of a binary executable file. Through the usage
of the WS-GRAM Client Java API and Java WS Core, the WS-GRAM functionality has been
successfully integrated into the EMS. EMS is able to address this need for management of
applications in the form of executable files, while at the same time is able to manage the execution
of application-specific Web Services. From the client’s perspective, there is no difference in the

D4.3.3, 1.0

© Akogrimo consortium members page 36 of 106

EMS behaviour, whether it handles the execution of an executable file or a Web Service. The use of
WS-GRAM is transparent to the client of the EMS.

MDS4 is a WSRF implementation of information services released with GT4. MDS4 builds on
query, subscription, and notification protocols and interfaces defined by the WSRF and WS-
Notification families of specifications and implemented by the GT4 Web Services Core. Building on
this base, we have successfully integrated the functionality of the Index service, one of the two high-
level services that the MDS4 provides, into the EMS and use it for advertisement and discovering
purposes.

2.1.2.2. Configuration and Deployment

In order for EMS to be fully functional, some basic setup, mostly related to WS-GRAM and MDS4
is needed. First of all, EMS should ideally be deployed in one machine per service provider domain.
A full GT4 installation is required on each machine hosting the EMS so that the additional features
of the EMS related to the WS-GRAM and MDS4 will be enabled and fully functional.

A Java core-only installation will not be enough for the machines that host the business services as it
does not include the GT4 Index service necessary for the discovery process. When running the GT4
installer on each of these machines, the wsmds target must be specified. The local Index services of
the machines (downstream Index services) must be registered to the EMS’ Index service (upstream
Index service).

In order to execute the business service through WS-GRAM, a full GT4 installation is strictly
required on the machines that are hosting them. Each of these machines must be configured so as to
trust the CA that issued the certificate that the GT4 installation on the machine hosting EMS is
configured to work with.

2.1.3. Security Considerations

Our primary concern is to protect the EMS system from potential exploits while at the same time
optimize the system performance. All communications among the EMS and the services at the Grid
Layer should be secure and thus require mutual authentication. The same applies for the EMS
interactions with services that reside in different layers and domains.

The EMS intends to make extended use of GSI (Grid Security Infrastructure) [18], the security
framework provided by GT4. More specifically, GSI is a set of tools, libraries and protocols -
layered on top of SSL with mutual authentication performed via X.509 certificates - used in GT4 to
allow users and applications to securely access resources. It includes mechanisms implemented on
top of the WS-Security [19] and WS-SecureConversation [20] specifications and also supports TLS.

EMS can use one or combinations of these security mechanisms, depending on the nature of the
interaction. No matter what security scheme is used, it will be done so with digital signatures to
guarantee authentication and integrity. Because encryption slows down the performance of any
system, it will be used wherever the content of the messages that are exchanged is critical and thus,
obtaining it poses a security threat to the EMS or any other Akogrimo service.

D4.3.3, 1.0

© Akogrimo consortium members page 37 of 106

2.2. Data Management Service (DMS)

2.2.1. DMS Design

The Data Management Service has been designed and developed to satisfy the basic requirements of
the Data Management in a Grid environment. Taking into account the functional requirements of
the Akogrimo domain applications we have focused on three main areas: the transfer of data from
one location to another, the storing of data and finally the access to the data stored. The Data
Management Service has been designed taking into account the OGSA specification in order to be
OGSA compliant.

After a deep survey of the available tools, it was decided to implement the Data Management
Services based on OGSA-DAI (Open Grid Services Architecture Data Access and Integration) [11].
Thus, the architecture of the DMS is strongly related to the OGSA-DAI general concepts and
architecture.

The DMS has been developed as a Web Service that exposes several interfaces. In addition, the
DMS needs a client to be run on the machines where data needs to be copied. This client is a simple
GridFTP server provided by GT4. One of the possible protocols on which OGSA-DAI relies for
the data transfer is the GT4’s GridFTP [24]; other protocols could be used but are not exploited by
the DMS. As a consequence of the use of GT4, the DMS service implementation makes also use of
the GSI provided by GT4 (see Security section for more details).

2.2.1.1. Functionality

The DMS is in charge of data handling; in particular it could be used for: 1) Storing data, 2)
Retrieving data, 3) Transferring data from one location to another, 4) Querying stored data and 5)
Accessing stored data. For each functionality used it is previously checked the identity of the user
and the role inside the OpVO.

1) Storing Data

This functionality permits to upload and store data to the DMS. For each data file uploaded, a
unique identifier is generated. It is possible to specify the filename and two attributes for each data
file. The file uploaded is stored in a file type repository. In addition it is registered in a database,
where the following parameters characterize the file: unique file identifier, file name, file owner,
attribute1, and attribute2. The two attributes have been introduced to allow the user to characterize
the file stored. An example of these attributes could be the following. Suppose the doctor wants to
store two files about patient’s data. The first file has been produced before a particular treatment has
been given to the patient and the second file has been taken after the treatment has been completed.
Attribute1 could be something like ‘treatment Alpha’ for both files. Attribute2 could be in one case
‘before’ and in one case ‘after’. In this way the doctor could search all the files that have been
produced before or after the treatment. More generally, it will be possible to find the file stored by
specifying the two attributes instead of the unique file identifier in a second phase. The data file
could be uploaded using the devoted Web Service interface provided by the DMS.

D4.3.3, 1.0

© Akogrimo consortium members page 38 of 106

Figure 10: Storing Data sequence diagram

2) Retrieving Data

This functionality allows retrieving the files that have been previously stored to the DMS. It is
necessary to specify the filename of the data file and the destination URL where the file should be
copied. The data file could be retrieved using the devoted Web Service interface provided by the
DMS.

Figure 11: Retrieving Data sequence diagram

3) Transferring Data

This functionality allows transferring data from one location to another. In order to be able to copy
the file it is necessary to specify the URL of the source file and the URL of destination file. This
functionality acts as a third party transfer. It is essential that the user knows exactly the location of
the source file. The data file could be transferred using the devoted Web Service interface provided
by the DMS.

D4.3.3, 1.0

© Akogrimo consortium members page 39 of 106

Figure 12: Transferring Data sequence diagram

4) Querying Stored Data

This functionality directly accesses the database where the data files are stored. It is possible to
specify an SQL statement. Meta-information about the file and the unique file identifier are
returned. The ability to retrieve information depends on the role of the user.

Figure 13: Querying Stored Data sequence diagram

5) Accessing Stored Data

This functionality can be used in the case that the file stored is of text type. In such a case, it is
possible to directly access the file content without previously retrieving it. This functionality allows
access to the specified file and obtaining its content as a string. This ability it is very useful for data
file of small dimension; it is possible to directly manipulate the content of the file (without affecting
the original one) for any purpose.

D4.3.3, 1.0

© Akogrimo consortium members page 40 of 106

Figure 14: Access Stored Data sequence diagram

2.2.1.2. Use Cases

In this paragraph we present three relevant use cases: 1) Upload data files, 2) Retrieve data files, 3)
Transfer data files.

Figure 15: DMS use cases

Table 9: Upload Data use case

Use Case ID UC_DM_1

Use Case Name Upload Data

Initiator User

Primary Actor User

D4.3.3, 1.0

© Akogrimo consortium members page 41 of 106

Additional Actors Business Process Designer

Description The user invokes the DMS in order to upload and store data.

Pre-condition A DMS client should be available in the source location where user’s data
files reside.

Post-condition Data files are uploaded and stored to the DMS.

Use Case Functionality

Sequence 1. Choose data files to be uploaded

2. Choose filename and attributes for each data file to be uploaded

3. Upload files

Alternatives None

Exceptions Upload of data fails because of: 1) user not authorized, 2) wrong input
parameters, 3) GridFTP server not running on source machine

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 10: Retrieve Data use case

Use Case ID UC_DM_2

Use Case Name Retrieve Data

Initiator User

Primary Actor User

Additional Actors Business Process Designer

Description The user invokes the DMS in order to retrieve data previously stored.

D4.3.3, 1.0

© Akogrimo consortium members page 42 of 106

Pre-condition A DMS client should be available in the target location where user’s data
files should be copied.

Post-condition Data files are retrieved from the DMS and copied to a local file system.

Use Case Functionality

Sequence 1. Identify files to be retrieved (filename or unique file identifier should
be known)

2. Retrieve files

Alternatives None

Exceptions Retrieve of data fails because of: 1) user not authorized, 2) wrong input
parameters, 3) GridFTP server not running on target machine

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 11: Transfer Data use case

Use Case ID UC_DM_3

Use Case Name Transfer Data

Initiator User

Primary Actor User

Additional Actors Business Process Designer

Description The user invokes the DMS in order to transfer data from one location to
another.

D4.3.3, 1.0

© Akogrimo consortium members page 43 of 106

Pre-condition A DMS client should be available in the source location where user’s data
files reside.

A DMS client should be available in the target location where user’s data
files should be copied.

Post-condition Data files are copied to a specified location.

Use Case Functionality

Sequence 1. Choose data files to be copied

2. Choose a destination target

3. Transfer files

Alternatives None

Exceptions Upload of data fails because of: 1) user not authorized, 2) wrong input
parameters, 3) GridFTP server not running on one or both
source/destination location

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

2.2.1.3. Interactions with other services

The DMS does not interface with other components of Akogrimo. The DMS has been developed as
a stand-alone service that could be directly used as an application service.

Table 12: DMS interfaces

Interfaces Protocols

Upload SOAP/HTTP

Retrieve SOAP/HTTP

Transfer SOAP/HTTP

Cancel SOAP/HTTP

ReadDataFile SOAP/HTTP

D4.3.3, 1.0

© Akogrimo consortium members page 44 of 106

queryData SOAP/HTTP

2.2.2. DMS Implementation

The first implementation of the DMS was based on the Reliable File Transfer (RFT) component of
the GT4 toolkit. This choice has been modified after the first Akogrimo prototype implementation
because the RFT was not flexible enough and didn’t allow for some useful DMS functionalities to
be developed. The OGSA-DAI software makes use of the GT4 toolkit for what concerns the file
transfer but uses a different architecture for what concerns the data handling. It offers more
possibilities and functionalities. In addition it is more configurable, depending on the needs of the
user applications.

For the purposes of the Akogrimo DMS, it has been decided to focus on two key aspects of the
Data Management trying to keep the module as simple as possible. These two aspects are: data
management in general (upload, store, retrieve, and transfer data) and meta-data (keep information
about stored files, search for files and query db). Having in mind the two key aspects of the DMS, it
has been decided to configure OGSA-DAI in order to work on two types of resources: file system
and SQL database. The file system has been chosen to physically store the data files; the SQL
database has been chosen to store meta-data about files.

2.2.2.1. Involved Technologies

The DMS has been developed in Java and it makes use of OGSA-DAI components. It is a Web
Service that exposes several interfaces, one interface for each of the functionalities described in
paragraph 2.2.1.1. The Web Service is the front end of the DMS that makes use of OGSA-DAI
activities. An activity is a component within the OGSA-DAI software which provides a particular
piece of functionality. For example, an activity is provided to perform an SQL query. Each data
service resource (like file system, database, etc) supports a particular set of activities.

The OGSA-DAI software is compliant with two popular Web Services specifications: WSRF and
Web Services Inter-operability (WSI). It has been decided to use the WSRF distribution of OGSA-
DAI for two reasons. Firstly, the WSRF flavour is OGSA compliant and secondly, it offers some
functionality based on the GT4 software like data movement using the GridFTP protocol. The latter
is very important because in a Grid based environment like the one the Akogrimo framework is built
upon, the GridFTP protocol is still the most powerful and reliable protocol for data management.

2.2.2.2. Configuration and Deployment

In order to properly setup the DMS some third parties software should be installed and configured:

• OGSA-DAI provided by the University of Edinburgh,

• GridFTP server provided by GT4

• Tomcat provided by Jakarta

• MySQL provided by MySQL AB.

The following steps should be followed:

1. Install OGSA-DAI WSRF distribution and GridFTP under userA.

2. Install Tomcat under userA.

3. Run OGSA-DAI into Tomcat following the given instruction given by the OGSA-DAI
documentation.

D4.3.3, 1.0

© Akogrimo consortium members page 45 of 106

4. Create an ‘AkoDataService’ data service following the instruction given by the OGSA-DAI
documentation.

5. Create two resources and link them with AkoDataService. The two resources are:
AkoDataServiceRSql and AkoDataServiceRFile. (The two properties file should be
configured).

6. Put the two resources in the configuration directory when deploy the data manager

7. Insert the necessary environment variable into .bashrc of userA

8. Install Tomcat under userB

9. Install Akogrimo DMS under Tomcat of userB

10. userB should be in the same group of userA.

11. Add the following into the .bashrc file:

a. export DM_PATH=/path/to/DataManagementRepository/conf/

b. umask g+w

12. Configure the DataManager.conf located in the DM_PATH

2.2.3. Security Considerations

As previously stated the DMS is based on OGSA-DAI. In particular, in terms of security, it relies on
the use of the GridFTP server powered by the GT4 toolkit. As a consequence the DMS uses the
GSI.

At the current implementation stage the GSI is used and configured with just one fake user. This
means that there is no correspondence between the Akogrimo users registered in the Participant
Registry and the X509 certificate used by the DMS fake user.

In order to integrate the DMS with the Akogrimo security infrastructure we can follow two different
approaches. The first option is that the token created by the A4C should be used instead of the
X509 certificate to authenticate the users with the GridFTP server. The second possibility is that
each token is connected to an X509 certificate. This certificate should be used to authenticate the
users against the GridFTP server.

2.3. Monitoring Service

2.3.1. Monitoring Service Design

The Monitoring component has been designed taking into account scalability and modularity
according to the different functionalities it provides. Consequently, the Monitoring component can
be seen as a set of four components that provide the following functionalities:

� Remote control concerning enabling/disabling of the monitoring process

� Reception of low level parameters from the Akogrimo producer services

� Sending of QoS object to the SLA enforcement components

� Storage of monitoring information about the different SLA/services being monitored

D4.3.3, 1.0

© Akogrimo consortium members page 46 of 106

2.3.1.1. Functionality

The Monitoring service establishes a control over the monitoring process by exposing operations to
the EMS that allow the enabling/disabling of the monitoring process for a certain business service
(resource) the SLA of which has been previously negotiated. Thus, the monitoring process and
functionality are closely affiliated with the SLA enforcement process and functionality. Once, the
EMS initiates the execution of a business service, it has to be monitored until its completion to
ensure continuous conformation to the terms of the client’s SLA contract.

The Monitoring service serves as a link between those components that produce information of
parameters (so-called, low level performance parameters) included in the SLA, such as the Metering
and the QoS Broker services and the SLA-Controller, which is the service in charge of collecting
those parameters, giving them the right format and passing them on to the SLA-Decisor, which is
the service responsible for deciding whether a violation has occurred depending on the agreed-upon
SLA. From now on, in this section, the Metering and QoS Broker services will be referred to as the
“producer services” and the SLA-Controller as the “consumer service”.

Internally, the Monitoring service is composed of four different services that work together to carry
out the tasks assigned to this service. These sub-services are: (1) the MonManagement service that
offers to the EMS a remote control interface to enable/disable operations of the monitoring
process, (2) the MonConsumer service, which is the service that receives the information of low
level performance parameters from the producers’ services, (3) the MonProducer service which is in
charge of propagating to the consumer service the values of low level performance parameters and
(4) the MonRegistry service, which stores valuable information related to the monitoring process of
each service.

Since MonManagement service is a factory service, a resource has to be created by the EMS before
invoking any operation on it, as part of the Advance reservation process. The sequence diagram
corresponding to the resource creation is depicted in the following figure:

Resource Creation

Figure 16: Resource Creation sequence diagram

Next, we present the sequence diagrams that correspond to the start and stop operations exposed by
the MonManagement service and invoked by the EMS.

D4.3.3, 1.0

© Akogrimo consortium members page 47 of 106

Start Monitoring

Figure 17: Start Monitoring sequence diagram

Stop Monitoring

Figure 18: Stop Monitoring sequence diagram

D4.3.3, 1.0

© Akogrimo consortium members page 48 of 106

The final sequence diagram shows the arrival of a notification message from a producer service (in is
example we use the Metering service) to the MonConsumer service and how it is internally handled
by the latter6.

Notification Handing

Figure 19: Notification Handling sequence diagram

2.3.1.2. Use Cases

Table 13: Monitoring resource creation use case

Use Case ID UC_MON_1

Use Case Name Monitoring resource creation

Initiator EMS

Primary Actor EMS

Additional Actors None

Description EMS creates a Monitoring resource per service.

Pre-condition The Java WS-Core container where Monitoring component is deployed
should be up and running.

6 The subscriptions to the Metering and the SLA-Controller service are being carried out during the monitoring enabling
process (See Figure 17: Start Monitoring sequence diagram).

D4.3.3, 1.0

© Akogrimo consortium members page 49 of 106

Post-condition The result of this invocation is the generation of a Monitoring
Management resource and the EPR is returned back to EMS.

Use Case Functionality

Sequence EMS invokes the create operation exposed by the
MonManagementFactory Service.

Alternatives None

Exceptions If a fatal internal error occurs that cannot be handled, a RemoteException is
thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 14: EMS enabling of the monitoring process on the previously created resources Use Case

Use Case ID UC_MON_2

Use Case Name EMS enables the monitoring process on the corresponding resources that
have been created on previous step.

Initiator EMS

Primary Actor EMS

Additional Actors Metering service, SLA-Controller service

Description EMS invokes the startMonitoring operation exposed by the Monitoring
resource.

Pre-condition Container up and running and the monitoring resources should have
been created previously.

Post-condition This action implies two subscriptions: MonConsumer to Metering and
SLA-Controller to MonProducer.

D4.3.3, 1.0

© Akogrimo consortium members page 50 of 106

Use Case Functionality

Sequence 1. MonConsumer to Metering subscriptions accomplished.

2. SLA-Controller to MonProducer service accomplished

3. Storage of monitoring information associated to the service to the
Monitoring Registry.

4. Enable of the monitoring service.

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 15: EMS disabling of the monitoring process on a previously created resource Use Case

Use Case ID UC_MON_3

Use Case Name EMS disables the monitoring process on a resource previously created.

Initiator EMS

Primary Actor EMS

Additional Actors None

Description EMS invokes the stopMonitoring operation exposed by the Monitoring
resource.

Pre-condition Container up and running and the monitoring resources should have
been created previously.

Post-condition This action implies the update in the registry of the status of the
monitoring process associated to this resource.

Use Case Functionality

D4.3.3, 1.0

© Akogrimo consortium members page 51 of 106

Sequence Update of the monitoring process status to FALSE associated to the
resource.

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 16: Notification sent from Metering to Monitoring Consumer resource Use Case

Use Case ID UC_MON_4

Use Case Name Metering sends a notification to Monitoring Consumer resource.

Initiator Metering

Primary Actor Monitoring Consumer

Additional Actors Monitoring Producer, SLA-Controller

Description Once a change on a low level SLA parameter has occurred in a particular
host, the Metering service sends a notification to the corresponding
Monitoring Consumer resource.

Pre-condition Container up and running and the monitoring resources should have
been created previously.

The subscription process has been taken placed successfully.

Post-condition Depending on whether the notification topic is of any interest to the
service, Monitoring Consumer modifies the corresponding Monitoring
Producer resource property to allow the launch of a notification to the
SLA-Controller.

Use Case Functionality

D4.3.3, 1.0

© Akogrimo consortium members page 52 of 106

Sequence 1. Metering sends a notification to the corresponding Monitoring
Consumer resource.

2. Monitoring Consumer resource checks if monitoring is enabled and if
the topic modified is of any interest to the service.

3. In affirmative case, Monitoring Consumer modifies the
corresponding Monitoring Producer resource property to allow the
launch of a notification to the SLA-Controller.

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

2.3.1.3. Interactions with other services

Next we summarize in a table the interactions that the Monitoring Service has with other Akogrimo
components. As previously explained, the functionality of the Monitoring service is targeted at
monitoring the fulfilment of SLAs that have been negotiated for each service. Consequently, its
interactions are closely related with the monitoring manager process component (EMS), the
producer components (Metering and QoS Broker) and the consumer components (SLA-Controller).

 Table 17: Monitoring interactions with other Akogrimo services

Akogrimo service Interaction Protocol

EMS -To create a Monitoring resource and
manage its lifecycle

-To start/stop the monitoring process

SOAP/HTTP

Metering To receive notifications about the
values of the low level performance
parameters

SOAP/HTTP

SLA-Controller To send QoS notifications SOAP/HTTP

QoS Broker To receive notifications about network
parameters (to be implemented)

SOAP/HTTP

D4.3.3, 1.0

© Akogrimo consortium members page 53 of 106

2.3.2. Monitoring Service Implementation

The implementation of the Monitoring service has been done by splitting up the service into four
different services: Monitoring Management, Monitoring Consumer, Monitoring Producer and
Monitoring Registry. The first three subsystems represent different Grid Services deployed in a
container and the last component is just a file directory, where monitoring information about the
different services that are being monitored is stored.

Monitoring Management

This service is the management interface that the Monitoring service exposes to EMS in order to
allow the enabling (startMonitoring) and disabling (stopMonitoring) of the monitoring process of a
certain service. This service has been implemented following the well-known Factory design pattern
which consists in developing a factory service in charge of creating resource instances of the actual
service. Thus, the creation of the Monitoring management resource has to be carried out by
invoking the Create operation of the MonManagementFactory service. Once, the Monitoring
Management resource has been created, the start/stop monitoring can be invoked on this resource

The start operation implies the subscription process of MonConsumer service to Metering (and
QoSBroker) and the subscription of SLA-Controller to MonProducer. So, once the start operation is
invoked, the monitoring process begins and the Monitoring resource can receive notifications by the
Metering service related to the topics that it has subscribed to. The subscription topics are cpuUtil,
memoryUtil and diskUtil. When a notification is received by the Monitoring Consumer resource, some
previous checks have to be performed: firstly, the monitoring process has to be enabled for this
service and secondly, not all topics are of interest to every service. If monitoring is enabled and the
topic modified is of interest for the service, then a change of the Monitoring Producer topic
(Resource Property) is performed in order to launch the corresponding notification to the SLA-
Controller resource. The stop operation simply disables the monitoring process for a particular
service.

Monitoring Consumer

This subsystem represents the monitoring interface to the producers’ services. Producers’ services
are considered to be services that can provide low level SLA parameters information to the
Monitoring consumer. So far, this information is provided only by the Metering service (cpuUtil,
memoryUtil and diskUtil) but the QoS Broker service could also provide info regarding network
bandwidth.

Monitoring Producer

This service represents the monitoring interface to the SLA-Controller service which is the one
interested in the low level SLA parameters information in order to check if SLA contract is being
violated.

Monitoring Registry

This service is a data storage used internally for storing monitoring data. The Monitoring service
stores information about the status of the monitoring process for every service (allowed/denied),
the topics that each service is interested in and some other internal useful monitoring information.
So far, this storage consists of files stored in the directory specified by the property
“service_registry_file” that appears in monitoring.properties file.

D4.3.3, 1.0

© Akogrimo consortium members page 54 of 106

2.3.2.1. Involved Technologies

Monitoring component has been implemented using the WSRF implementations provided and
included within the GT4.0.1 distribution. The specifications involved are WS-ResourceProperties,
WS-ResourceProperties [13] and WS-BaseNotification [15]. All the functionalities of the monitoring
component have been built above these specifications. The component can be deployed in any Java
WS-Core version 4.X. In order to deploy the component on Tomcat container, some minor changes
have to be accomplished.

2.3.2.2. Configuration and Deployment

The monitoring service software is split up in three different sub-services as already explained in
previous sections:

1. Monitoring Consumer involves the following software and configuration files:
es_tid_div2115_akogrimo_services_monitoring_monConsumer.gar, monitoringConsumer.properties

2. Monitoring Producer involves the following software:
es_tid_div2115_akogrimo_services_monitoring_monProducer.gar

3. Monitoring Management involves the following software and configuration files:
es_tid_div2115_akogrimo_services_monitoring_monManagement.gar, monitoring.properties.

The deployment process implies the realization of following steps:

1. Deployment of Monitoring Producer gar:

globus-deploy-gar es_tid_div2115_akogrimo_services_monitoring_monProducer.gar

2. Deployment of Monitoring Consumer gar and the copy of configuration file to
$GLOBUS_LOCATION

globus-deploy-gar es_tid_div2115_akogrimo_services_monitoring_monConsumer.gar

cp monitoringConsumer.properties $GLOBUS_LOCATION/

3. Deployment of Monitoring Management gar and the copy of configuration file to
$GLOBUS_LOCATION

globus-deploy-gar es_tid_div2115_akogrimo_services_monitoring_monManagement.gar

cp monitoring.properties $GLOBUS_LOCATION/

The configuration process means the adjustments of the parameters values enclosed in the
configuration files monitoring.properties and monConsumer.properties. So, it is needed to check the content
of this file in order to adjust the corresponding values. Here, a list of the variables is shown for
monitoring.properties and monConsumer.properties:

- service_registry_file: The name (with full path) of the file where the main features of the
services to be monitored are stored. For instance a “true” value at the end of the record
(line) means that monitoring is enabled.

- service_file_path: The directory name where all the registry files are going to be stored.

- Separator: The combination of keys that are used to separate the features associated to a
service. Each service is stored in a single line and each property is separated by the
“separator” keys combination.

- MonProducerURI and MonConsumerURI: The URL which the Monitoring producer and
consumer are deployed at.

D4.3.3, 1.0

© Akogrimo consortium members page 55 of 106

It is important to create first the directories where the service information is going to be stored
(Monitoring Registry).

2.3.3. Security Considerations

The security implemented in this service is linked to the GT4 security since the Monitoring service
has been designed to be a WSRF-compliant Grid Service deployed in GT4 platform. So far, a full
installation of the GT4 has not been carried out in all machines in the prototype platform so the
security is reduced to those aspects that can be included with no use of the Grid Security
Infrastructure provided by GT4.

The Monitoring service interacts only with the EMS. The latter, is the only service which can invoke
the start/stop monitoring operations. No other service knows the corresponding EPR of the
Factory service to create a monitoring resource and consequently to use it on behalf of it.

2.4. Service Level Agreement Enforcement

Services (SLA-Enforcement Services)

2.4.1. SLA-Enforcement Services Design

Two modules have been identified in the design of SLA Management architecture as far as WP4.3 is
concerned: the SLA-Controller and SLA-Decisor service.

2.4.1.1. Functionality

SLA-Controller

This service is in charge of guaranteeing that all the agreements included in a SLA contract are
respected. It receives and processes all measurements related to the execution of a business service
sent by the Monitoring service and therefore it should be deployed in the same target machine as the
Monitoring service to reduce communication overhead. It checks whether the measurements are
within the thresholds defined in the SLA contract for QoS metrics. Whenever the execution of a
business service does not satisfy these conditions, the SLA-Controller notifies (using a WS-
Notification mechanism) the SLA-Decisor service, which is in charge of starting the appropriate
recovery action.

SLA-Decisor

This service receives and manages notifications from the SLA-Controller service. In turn, it contacts
the Policy Manager service in order to retrieve the most suitable affiliated policy, depending on the
business execution context. This policy includes the actions that must be undertaken, such as
showing informational messages, increasing priorities of processes, applying discounts, destroying
the service, re-instantiating the service, etc. Depending on the seriousness of the violation, the
context of the business service and the overall status of the system, this event can be solved at
domain level or at VO level. In the first case, it may be only necessary to notify the EMS which will
take corrective actions, whereas in the second case, it may be necessary to notify higher layers (e.g.,
workflow manager or other subsystem) to recover from the situation by taking global corrective
actions.

D4.3.3, 1.0

© Akogrimo consortium members page 56 of 106

The next figure depicts the interactions among SLA Enforcement services and other subsystems.
There are two distinct phases: the Activation phase and the Service Use phase. Detailed use cases are
provided below.

EMS

Monitoring
Service

SLAController Factory

SLAController Instante

SLAController Instante

SLAController Instante

SLADecisor

Service

Policy
Manager
ServiceService use phase

Activation phase

Service

Figure 20: SLA interfaces

The following figures show the sequence diagrams which describe the functionality of the SLA-
Enforcement group of service.

During the Activation phase that is part of the EMS’ Advance Reservation phase, the EMS must
create an agent to allow the status control over the business service execution. Afterwards, the SLA-
Controller instance is registered to the SLA-Decisor service, so that the latter will be able to receive
notifications from the SLA-Controller instance.

EMS SLAControllerFactory SLADecisor

SLAControllerInstance1

SLAControllerInstance2

CreateInstance

ActiveServiceController

Create

ActiveSLADecisor

RegisterToServiceDecisor

Figure 21: Sequence diagram for the Activation phase

During the Service Use phase (i.e. the EMS’ Execution phase), the Monitoring service sends
measurements to the SLA-Controller service. The latter decides whether the service is running under
the expected conditions (i.e. the values of the QoS parameters are within the specified thresholds). If

D4.3.3, 1.0

© Akogrimo consortium members page 57 of 106

a violation is detected, the SLA-Decisor service interacts with the Policy Manager service, in order to
find out what appropriate recovery actions should be taken.

EMS Monitoring Service Policy ManagerSLADecisor

SLAControllerInstance1

Send QoS parameter

Send QoS parameter

Violation Retrieve Best Policy

Policy

ActiveSLADecisor

NotificationMessageToEMS

RegisterToServiceDecisor

Send QoS parameter

....

....

....

....

....

Figure 22: Sequence diagram for the Service Use phase

2.4.1.2. Use Cases

Table 18: SLA creation and execution Use Case

Use Case ID UC_SLA-Enforcement_1

Use Case Name SLA-Controller resource creation and execution

Initiator EMS

Primary Actor SLA-Controller

Additional Actors Monitoring Service, SLA-Decisor

Description During the Activation phase, the EMS creates an agent (SLA-Controller
resource) to allow control over the execution status of the service in
speak. Upon creation, the SLA-Controller resource subscribes to SLA-
Decisor. The Monitoring system sends QoS measurements related to
business service execution to the SLA-Controller resource.

D4.3.3, 1.0

© Akogrimo consortium members page 58 of 106

Pre-condition The EMS knows the URI of the SLA-Controller service.

The EMS is able to retrieve (by interacting with the SLA-Access) the
applied QoS bundles

Post-condition An SLA-Controller instance has been created and is able to receive
notification message containing QoS values from the Monitoring service.

Use Case Functionality

Sequence 1. The EMS creates a new SLA-Controller instance.

2. SLA-Controller creates a subscription mechanism to the SLA-
Decisor.

3. The Monitoring service creates a notification mechanism with the
SLA-Controller.

4. The Monitoring Service sends notifications containing QoS
measurements to the SLA-Controller resource.

Alternatives The SLA-Controller service can interact directly with the Monitoring
service to get the QoS measurements of the service.

Flow of events:

� SLA-Controller asks for the current status of the service

� The Monitoring service reads the current QoS

� The Monitoring service sends these values to the SLA-Controller

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 59 of 106

Table 19: Violation Detection and Best Policy Application Use Case

Use Case ID UC_SLA-Enforcement_2

Use Case Name Violation detection & Best Policy application

Initiator SLA-Controller

Primary Actor SLA-Controller

Additional Actors SLA-Controller, SLA-Decisor, Policy Manager, EMS, Monitoring
Service

Description The SLA-Controller evaluates the received QoS measurements and
applies the known filters. If an SLA violation is detected, the SLA-
Decisor is notified. The latter communicates with the Policy Manager in
order to be informed about which policy should be applied.

SLA-Decisor informs EMS or other components about which corrective
actions should be taken (e.g., abort the process, move the service to
another machine, increase the process priority, etc)

Pre-condition � An SLA-Controller resource is correctly created

� A notification mechanism with the Monitoring service is established

� The SLA-Controller resource receives notification messages from the
Monitoring (QoS performance parameters values)

Post-condition The SLA-Decisor has interpreted the policy and has informed the
corresponding service about the action to be taken (e.g., it sends a
notification message to the EMS including the recovery action to be
taken).

Use Case Functionality

Sequence 1. The SLA-Controller filters the received QoS values.

2. When the SLA-Controller detects a violation, it sends a notification
message to the SLA-Decisor

3. The SLA-Decisor contacts the Policy Manager.

4. The Policy Manager searches for the best policy to be applied.

5. The SLA-Decisor sends a notification message to the EMS

Alternatives None

Exceptions None

Use Cases used None

Further Information

D4.3.3, 1.0

© Akogrimo consortium members page 60 of 106

Particular
Requirements

None

Open Issues None

Information
Requirements

None

2.4.1.3. Interactions with other services

The table below shows all the interactions between the SLA-Enforcement group of services and
other Akogrimo services as well as the interactions amongst the SLA-Enforcement sub-services. See
Annex B for more details.

Table 20: SLA-Enforcement interactions with other Akogrimo services

Akogrimo service Interaction Protocol

SLA - Controller

EMS To create a new SLA-
Controller resource

SOAP/HTTP

SLA-Decisor -To establish a notification
mechanism for posterior
communications between
these two modules

-To receive notifications from
SLA-Controller when a
violation is detected.

SOAP/HTTP

Monitoring

-To establish a notification
mechanism for posterior
communications between
these two modules

-To notify the SLA-Controller
about the value of the QoS
parameters related to the
service

SOAP/HTTP

SLA-Decisor

Policy Manager To ask for the best policy to
be applied in case of violation

SOAP/HTTP

SLA-Controller -To establish a notification
mechanism for posterior
communications between
these two modules

-To inform SLA-Decisor
about a violation

SOAP/HTTP

D4.3.3, 1.0

© Akogrimo consortium members page 61 of 106

EMS To notify about the action to
be taken when a violation is
detected during the business
service execution

SOAP/HTTP

2.4.2. SLA-Enforcement Services Implementation

2.4.2.1. Involved Technologies

The SLA implementation can be based on two specifications: WS-Agreement [25] and WSLA [26].
There are not full implementations of SLA standard specifications but the possible alternatives that
can be considered will be shown.

On one hand, WS-Agreement implementation can be found in the Cremona framework included in
IBM Emerging Technologies Toolkit (ETTK) [28]. Cremona (Creation, Monitoring and
Management of WS-Agreement) allows managing the relationships between a service provider and a
service consumer and also provides implementations for creating agreement templates.

On the other hand, there is an implementation of the WSLA framework called “SLA Compliance
Monitor” which is part of the IBM Web Services Toolkit [27], that IBM has developed especially for
Web Services. The WSLA framework consists of a flexible language based on a XML schema that
specifies metrics, penalties, SLA parameters and a way of measuring them.

The WS-Agreement specification document is still in draft format. It defines the structure of
agreements and their templates, but it could be extended and complemented by other terms. In the
Akogrimo project, the mix of both technologies (WS-Agreement and WSLA) could be considered to
obtain the best template, since it is difficult to find implementations that support these specifications
completely.

In terms of SLA Contract definition, the WS-Agreement specification is considered. It defines the
structure of agreements and their templates and it can be extended and complemented by other
terms. However, the analysis of approaches gathered in WSLA (IBM specification) has been taken
into account to define the contract template.

Finally, the SLA-Controller and SLA-Decisor are developed in Microsoft .NET platform and
therefore they use the .NET framework 1.1 with WS Enhancements (WSE 2.0 SP3). The SLA-
Controller is a transient Grid Service, while the SLA-Decisor is a persistent Grid Service. They
make use of WSRF.NET implementation of the University of Virginia (V. 2.1.0). The
communication between these two services is based on the WS-Notification specification.

In terms of SLA Contract definition, the WS-Agreement specification is considered. It defines the
structure of agreements and their templates and it can be extended and complemented by other
terms.

However, the analysis of approaches gathered in WSLA (IBM specification) has been taken into
account to define the contract template.

2.4.2.2. Configuration and Deployment

There can be several configurations for deploying SLA Enforcement sub-services. This will depend
on the strategy to configure the Akogrimo platform. In this section we present a standard approach
with the mentioned version of having part of SLA functionalities (mainly the SLA-Decisor) in a
trusted third party.

D4.3.3, 1.0

© Akogrimo consortium members page 62 of 106

In the reference configuration, we foresee to deploy the SLA-Controller within the Akogrimo
environment on each machine containing the Monitoring module, whereas the SLA-Decisor will be
centralized in one host per SP domain.

� The SLA-Controller will be deployed on every machine the Monitoring subsystem will be
deployed to so that it receives all measurements provided by each specific machine which is
hosting the service. The SLA-Controller cannot be centralized due to the fact that for each service
one of these components will be associated to it. Having one SLA-Controller in the same machine
with the Monitoring Service will allow avoiding unnecessary network communications. The
permanent interaction between these two components makes it necessary to deploy them together.
After the analysis of the measurements received, the SLA-Controller will communicate with the
SLA-Decisor only if/when it decides is necessary.

� The SLA-Decisor will be deployed once for SP domain, in the same way as EMS will do. This
component will receive all notifications produced by active SLA-Controllers and after choosing
the right policies it will decide what the EMS should do. It is not necessary to have one SLA-
Decisor component for each machine because it will only receive direct communications by the
SLA-Controller module, and then it must contact the EMS subsystem or other modules. As it was
pointed out, this module can be deployed in a trusted third party of VO that may store the SLA
contract, in order to guarantee the independence of verifications and the generation of violations.

2.4.3. Security Considerations

The SLA Enforcement subsystem doesn’t have (at least in this phase) particular strict security
requirements. The messages exchanged among the services (internal to the subsystem and external)
are related to “administration issues”. However, an X509-based system could be used in order to
protect the communication between the services, whereas the facility provided by WSE in order to
create a “secure communication” could be also used.

2.5. Metering Service

2.5.1. Metering Service Design

The Metering service is positioned in the Grid middleware layer. Through the measurement of the
resources that are being consumed, the Metering service is able to support the monitoring and the
accounting within the Akogrimo Infrastructure by interacting with the Monitoring service and the
A4C system respectively.

2.5.1.1. Functionality

The functionality of the Metering service can be divided into the following categories:

� Monitoring: The Metering service notifies the Monitoring service about the changes in the values
of the low level performance parameters related to the execution of a service.

� Accounting: An aggregated version of the information that is calculated by the Metering service
is communicated to the A4C system of WP4.2 and used for accounting purposes at the end of
the service execution. The following figure shows a vertical approach of the interaction between
the Metering service and the A4C system.

The low level performance parameters that are measured are listed below:

� CPU usage

D4.3.3, 1.0

© Akogrimo consortium members page 63 of 106

� Memory usage

� Disk usage

� Wall clock time (time that elapsed while the business service was running)

Grid

Middleware

Measurements

Measu
rements

DIAMETER

A4C Module

USER
PROFILES

ACCOUNTING
DATABASE

SERVICES
DESCRIPTION

Akogrimo AAA

Metering

. . .

Grid resource

Measurements

. . .

Monitoring

Grid resource Grid resource

Figure 23: Metering component and A4C in Akogrimo

Figure 24: Sequence diagram of the Metering Service execution, shows the sequence diagram of the
interactions performed by the Metering service

Advance reservation phase

1. ΕΜS provides the IDs of the service, client and SLA and submits request for the creation of
a Metering resource.

2. The Metering service creates a Metering WS-Resource.

3. The termination time of the Metering resource is set to the time the SLA contract expires.

4-6. Upon creation, the Monitoring resource subscribes to the notification mechanism of the
Metering resource.

Execution phase

1. The sequence begins with the EMS asking the Metering resource to start metering the
consumption of resources related to a business service execution, providing the ID of the
client’s SLA contract.

2. Once started, the Metering resource retrieves information related to the execution of the
business service periodically.

3. The information retrieved in previous step is used as input to algorithms that calculate low
level performance parameters related to the execution of the business service (CPU,
memory, etc).

4. If the values of low level performance parameters have changed since the previous
calculation, the Metering service notifies the Monitoring service about this change and
includes the values of the parameters that have changed in the notification message. In order

D4.3.3, 1.0

© Akogrimo consortium members page 64 of 106

to avoid SOAP message traffic, the Metering Service notifies the Monitoring Service only if a
significant change in the values of the performance parameters has taken place.

5. After the end of the business service execution, the EMS stops the Metering service.

6. The Metering service aggregates the values of the low level performance parameters that
have been calculated during the execution of the service and communicates this information
to the A4C system in the form of accounting records.

EMS Metering

E1: Start metering
for a business service
execution

E2: Retrieve
CPU, disk,
memory info

A4C

E3: Calculate
CPU, disk
and memory
usage

E4:Significant
change?
Notify
Monitoring
resource

E6: Communicate
aggregated low level
information to A4C

E5: Stop metering

Loop

R4: Subscribe to
Metering resource

R1: Create Metering
resource

Advance
 reservation

phase

Execution
phase

R2: Create
resource

 R

Metering

R3: Set termination time

 R

Monitoring

 Figure 24: Sequence diagram of the Metering Service execution

The high-level view of the interactions shown in the above figure in conjunction with Table 21:
Services involved in the execution of the Metering service provides a full description of the design
details and behavior of the Metering service. For more information refer to section B.5 of the
Annex.

D4.3.3, 1.0

© Akogrimo consortium members page 65 of 106

Table 21: Services involved in the execution of the Metering service

Service Interaction Interface

Step R0 EndpointReferenceType createMeteringResource(CreateMeteringResource
params)

Step R3 org.oasis.wsrf.lifetime.SetTerminationTimeResponse
setTerminationTime(org.oasis.wsrf.lifetime.SetTerminationTime
setTerminationTimeRequest)

Step E1 boolean startMetering(String slaID)

EMS

Step E5 boolean stopMetering(StopMetering params)

Monitoring Step R4 org.oasis.wsn.SubscribeResponse subscribe(org.oasis.wsn.Subscribe
subscribeRequest

A4C Step R6 A4C Java Client API

2.5.1.2. Use Cases

We consider three use cases for the Metering service: (1) creation and lifecycle management of a
Metering resource (performed by the EMS), (2) collection of metering information (performed by
the Monitoring service) and (3) collection of accounting information (performed by the A4C
system):

METERING SERVICE
EMS

Collect accounting info

A4C System

Monitoring Service

Manage execution
lifecycle

Collect metering info

Figure 25: Metering Service use cases

D4.3.3, 1.0

© Akogrimo consortium members page 66 of 106

Table 22: Manage of lifecycle Use Case

Use Case ID UC_METER_1

Use Case Name Management of lifecycle

Initiator EMS

Primary Actor Metering service

Additional Actors None

Description EMS creates a Metering WS-Resource and manages its execution
lifecycle.

Pre-condition The Metering service is functional only on machines with Linux OS.
The Metering service must be up and running on the machine where
the execution of the business service will take place.

Post-condition A Metering WS-Resource is created and its and its EPR returned to
the EMS. This resource is scheduled to self-destruct when the
affiliated SLA expires.

Use Case Functionality

Sequence 1. EMS invokes the createMeteringResource operation on the Metering
service in the machine where the execution will take place

2. A Metering WS-resource is created and inside it all information is
stored. The EPR of this resource is returned to the EMS

3. EMS invokes the setTerminationTime operation on the resource. If
successful, the Metering resource is programmed to self-destruct when
the SLA contract becomes invalid.

Alternatives None

Exceptions In case an error occurs that Metering service cannot handle,
RemoteException is thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 67 of 106

Table 23: Collect Metering Info Use Case

Use Case ID UC_METER_2

Use Case Name Collect metering info

Initiator EMS

Primary Actor Metering service

Additional Actors Monitoring service

Description EMS activates the Metering WS-Resource

Pre-condition The Metering WS-Resource must be created at the reservation phase.
The Metering service must be up and running on the machine where
the execution of the business service will take place.

Post-condition The values of low level performance parameters are being calculated
periodically and notifications are sent to the Monitoring service when
there is a significant change.

Use Case Functionality

Sequence 1. EMS activates a Metering WS-Resource

2. The Metering WS-Resource calculates the values of low level
parameters periodically and sends out notifications to the Monitoring
service.

Alternatives None

Exceptions In case an error occurs that Metering service cannot handle,
RemoteException is thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 68 of 106

Table 24: Collect Accounting Info Use Case

Use Case ID UC_METER_3

Use Case Name Collect accounting info

Initiator EMS

Primary Actor Metering service

Additional Actors A4C

Description The EMS deactivates the Metering resource.

Pre-condition The Metering service is functional only on machines with Linux OS.
The Metering service must be up and running on the machine where
the execution of the business service will take place.

Post-condition The Metering resource aggregates the values of the low level
performance parameters that have been calculated during the
execution of the service and communicates this information to the
A4C system in the form of accounting records

Use Case Functionality

Sequence 1. EMS activates a Metering WS-Resource

2. The Metering WS-Resource calculates the Values of low level
parameters periodically and sends out notifications to the Monitoring
service.

Alternatives None

Exceptions In case an error occurs that Metering service cannot handle,
RemoteException is thrown.

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 69 of 106

2.5.1.3. Interactions with other services

The following table summarizes the interactions that Metering has with other Akogrimo services.
The services involved, the communication protocol that is being used along with a short description
of the interactions are included.

Table 25: Metering Service interactions with other Akogrimo services

Akogrimo services Interaction Protocols

EMS -To create a Metering WS-
Resource

-To manage its lifecycle

-To activate the Metering WS-
Resource

-To deactivates the Metering WS-
Resource

SOAP/HTTP

Monitoring Monitoring subscribes to a
Metering resource in order to
receive notifications

SOAP/HTTP

A4C To send accounting information to
the A4C system

DIAMETER

2.5.2. Metering Service Implementation

The Metering service was developed on the GT4 platform and makes use of the WS-Resource
Factory pattern and the WS-Notification family of specifications. In particular, it communicates with
the Monitoring service by using a notification mechanism established between the two services. The
notification mechanism is developed on the basis of the WS-BaseNotification [15], a specification
that belongs to the WS-Notication family of specifications that enables the use of the notification
design pattern with Grid Services. More formally, the Metering service has the role of the
notification producer, while the Monitoring service acts as the notification consumer. The Metering
service publishes a set of topics that the Monitoring service can subscribe to, and receive a
notification whenever the value of the topic changes. The subscription to the topics is performed
during the initiation of the execution of the Monitoring service by the EMS. The topics that the
Metering service publishes correspond to the low level performance parameters that are measured
during its execution. Each time the value of a low level performance parameter changes
significantly7, a notification message is automatically generated by the Metering service and sent to
the Monitoring service. The notification message is an XML-like string that includes all the
necessary information about the performance parameter and the service that is affiliated with.

7 This threshold has a different value for each of the parameters that are being measured. For disk usage: |oldValue –
newValue|>20%, for memory usage: |oldValue-newValue|>15% and for CPU usage: |oldValue-newValue|>10%.
These thresholds have been chosen as the most appropriate within the Akogrimo Framework, with respect to the
business services. These values could be easily changed in order to adjust to any new requirments.

D4.3.3, 1.0

© Akogrimo consortium members page 70 of 106

2.5.2.1. Involved Technologies

The technologies involved in the implementation of the Metering service are listed below:

- WSRF and WS-Notification specifications.

- Java WS-Core 4.0.1 included in the GT4 toolkit.

- Java JDK 1.5.0

2.5.2.2. Configuration and Deployment

The Metering component should ideally be deployed in every machine that is hosting a business
service. A full installation of the GT4 is not required on those machines as the Metering service is
fully functional by installing just the Java WS Core component. The current version of the Metering
service has been tested and is fully functional only on Linux platforms.

2.5.3. Security Considerations

All the communications between the Metering service and the services that it interacts with must be
secure. This means that the services must be mutually authenticated. In order to secure the
communication between the Metering service and other GT4 services such as the EMS and the
Monitoring service, we shall take advantage of the security infrastructure that the GT4 provides.
Securing the communication between the Metering service and the A4C system needs a different
approach, since the services are build on different platforms and use different protocols for
communication.

2.6. Policy Manager Service

2.6.1. Policy Manager Service Design

The Policy Manager exists as a distributed service, within the Akogrimo distributed computing
environment. The role of the Policy Manager is to coordinate the activities in the Akogrimo
environment. The Akogrimo policies originate from two main areas of influence. We distinguish
between the global policies that exist in the VO domain and the local policies that exist within the
SP domain. Policies in both of these two domains although they are specific to the rules of the
individual domain, have to function in a manner to ensure interoperability between services from
both domains.

In order to achieve interoperability of services in terms of policy in different domains, the Policy
Manager was positioned inside the VO domain of the Akogrimo framework. The key aim of this
service is to ensure there is no conflict between policies of services using the VO. Within this policy
hierarchy the policy rules in the VO domain take priority over the rules in the SP domain. Policy
requirements have the form of a hierarchical tree. At each node of the tree, there is an instance of
the Policy Manager. The top level node, at the root of the tree, is the VO Policy Manager whereas
the nodes at the lower level of the tree are the SP Policy Managers. In order to achieve this
hierarchy, the SP Policy Managers are configured to refer to the VO Policy Manager.

When a Policy Manager instance is asked for a policy, it forwards the request to the upper policy
node to retrieve the global policies and once this is complete then it performs a search in its local
database for matching policies to apply. When all policies (local and global) are retrieved, they are
merged and the resulting policy is returned to the requestor.

D4.3.3, 1.0

© Akogrimo consortium members page 71 of 106

2.6.1.1. Functionality

The main functionalities carried out by a Policy Manager instance are:

� local policy database management, which includes all the operations used by the administrator to
maintain policies applicable in the domain of this instance

� policy selection, which allows getting the associated to the request policies

� policy intersection, which returns a single policy to the applicant

� query service, which is the external interface of the service

� upper node request handling, which retrieves policies enforced by upper levels.

Most functionalities of the Policy Manager are of low complexity. The functionality that mainly
draws attention is the request of a policy, performed by the operation requirePolicy, as it can involve
an upper Policy Manager instance (i.e. BaseVO Policy Manager from an OpVO Policy Manager). In
following figure, the sequence diagram of this interaction is depicted.

Requestor
BaseVO Policy

Manager
OpVO Policy

Manager

RequirePolicy(Context)

RequirePolicy(Context)

Policy

Search matching
Policy attachment

In a local repository

Search matching
Policy attachment

In a local repository

Merge retrieved policies

Policy

Figure 26: Require Policy sequence diagram

2.6.1.2. Use Cases

Table 26: Require Policy Use Case

Use Case ID UC_PM_1

Use Case Name Require policy

D4.3.3, 1.0

© Akogrimo consortium members page 72 of 106

Initiator Applicant, i.e. an Akogrimo component (service, application, ...) that
needs to know policy information (at this moment, SLA subsystem
interfaces with the Policy Manager)

Primary Actor Applicant

Additional Actors Policy Manager Service.

Description The Applicant needs information to perform its own operations and
contacts own Policy Manager to retrieve that.

Pre-condition The Applicant knows its authoritative Policy Manager reference.

Post-condition The result from the Policy Manager (a policy) will be used to perform the
operation of the Applicant.

Use Case Functionality

Sequence Applicant – Policy Manager: The Applicant fills out a Policy Context with
relevant information about the situation that it has to handle and asks the
Policy Manager for a policy sending this Policy Context

Policy Manager: Checks the policies applicable to the Policy Context
received and eventually forwards the same request to its own upper
Policy Manager

Policy Manager – Applicant: The policies retrieved from the local policy
store and from the upper Policy Manager service are merged and the
result is returned to the Applicant.

Alternatives If the Policy Manager instance has its own upper Policy Manager
configured, it queries the latter too.

Exceptions If, at any time, the Policy Manager encounters an error, it raises an
exception to notify the Applicant about the incapability to provide the
information

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

Obviously, the Policy Managers involved should have meaningful Policy
Attachments concerning the Policy Context of the Applicant.

D4.3.3, 1.0

© Akogrimo consortium members page 73 of 106

2.6.1.3. Interactions with other services

The Policy Manager is the key resource for VO related policies affecting the Akogrimo application
as a whole. It offers to any Akogrimo component a single interface for policy requests (see Annex
section B.6). The Policy Manager is a standalone service, that is, it does not rely on other services to
accomplish its tasks. The only essential relationship it has is with another instance of Policy Manager
that provides higher priority policies when configured.

At the moment, the SLA subsystem is using the Policy Manager to retrieve policies. The
administration of the Policy Manager should be performed manually with the administration client
and no Akogrimo component should use the administration interfaces.

Table 27: Policy Manager interactions with other services

Akogrimo service Interaction Protocol

SLA-Decisor The SLA-Decisor retrieves from the Policy
Manager a policy related to an SLA
violation

SOAP/HTTP

SLA-Negotiator The SLA-Negotiator retrieves from the
Policy Manager the policy related to the
SLA HighLevel-LowLevel Parameter
mapping

SOAP/HTTP

upper PolicyManager The local Policy Manager asks its own
upper Policy Manager (VO), if configured,
to retrieve global policies

SOAP/HTTP

2.6.2. Policy Manager Service Implementation

While most of the service interface parameters are defined to be compliant to WS standards (WS-
Policy [29] and WS-PolicyAttachment [30]), some parts have been defined by the developers. In
particular, these parts include the policy context provided by the client to the Policy Manager service
and the policy scope of WS-PolicyAttachment (the “AppliesTo” tag). Some parts of the XML
language are inspired by XACML specification. Below an example of Policy Context used in the
requests is provided.

<?xml version="1.0" encoding="UTF-8" ?>

<PolicyContext xmlns=”http://www.akogrimo.org/namespaces/PolicyManager”>

 <Subject>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">

 <AttributeValue>seth@users.example.com</AttributeValue>

 </Attribute>

 <Attribute AttributeId="group"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>developers</AttributeValue>

 </Attribute>

 </Subject>

 <Resource>

D4.3.3, 1.0

© Akogrimo consortium members page 74 of 106

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

 DataType="http://www.w3.org/2001/XMLSchema#anyURI">

 <AttributeValue>http://server.example.com/code/docs/developer-guide.html</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>read</AttributeValue>

 </Attribute>

 </Action>

</PolicyContext>

Figure 27: Policy Context

The Policy Context is partitioned into three sections (Subject, Action and Resource) and each
section contains a list of attributes; each attribute is featured by AttributeId, DataType and the
AttributeValue. Below an example of Policy Attachments, stored in the local database, is provided.

<?xml version="1.0" encoding="UTF-8" ?>

<wsp:PolicyAttachment xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

 <wsp:AppliesTo>

 <PolicyContext xmlns=”http://www.akogrimo.org/namespaces/PolicyManager”>

 <Subject>

 <Attribute AttributeId="group"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>developers</AttributeValue>

 </Attribute>

 </Subject> <Resource>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

 DataType="http://www.w3.org/2001/XMLSchema#anyURI">

 <AttributeValue>http://server.example.com/code/docs/developer-guide.html</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>read</AttributeValue>

 </Attribute>

 </Action>

 </PolicyContext>

 </wsp:AppliesTo>

 <wsp:Policy>

 <sec:ProtectionLevel

 xmlns:sec="http://bscw.hlrs.de/bscw/namespaces/Security">privacy</sec:ProtectionLevel>

 <mon:LogLevel

 xmlns:mon="http://bscw.hlrs.de/bscw/namespaces/Monitoring">NOTICE</mon:LogLevel>

 </wsp:Policy>

</wsp:PolicyAttachment>

Figure 28: Policy Attachment

D4.3.3, 1.0

© Akogrimo consortium members page 75 of 106

The current implementation uses a very simple algorithm for matching the requested context with
the context contained in the section “AppliesTo” of the Policy Attachment: all the attributes
contained in the latter have to be present in the first one. Hence, for this algorithm, the Policy
Attachment example does match the previous Policy Context example.

In the design documents, a caching functionality was outlined, but it isn't currently implemented.
The reason is that, after testing and discussing about the usage of the Policy Manager with the other
partners, the need of a tool to easily create and edit the Policy Attachment took priority over the
caching. However the caching comprises only a performance improvement and doesn't obstruct the
functionality of the Policy Manager.

2.6.2.1. Involved Technologies

The Policy Manager Service is implemented on WSRF.NET platform. It does not require other
elements, like database, libraries, etc. The implementation has been as compliant as possible to
existing WS-Policy and WS-PolicyAttachment standards. The implementation language is C#.
Beyond the WSRF.NET libraries, standard .NET distribution libraries are used.

2.6.2.2. Configuration and Deployment

The Policy Manager Service is distributed with an installation package (MSI), an administration
client, a simple Policy Attachment editor and a test client. Enclosed with the test client, some test
files containing Policy Context, Policy Attachment and Policy are provided. Also a library containing
Policy, Policy Attachment and Policy Context objects is included in the distribution; this can be used
to develop clients interacting with the service.

After the installation, a WSRF service is installed and the default WSRF resource is reachable at
URL:

http://<host>/PolicyManager/PolicyManagerService/PolicyManagerService.asmx

Its local database is void and the uplink (to the upper level PolicyManager instance) is null.

In the local file system, the service, the clients and libraries are placed into the IIS root directory
(usually “C:\Inetpub\wwwroot”) at the relative path “PolicyManager”.

To configure the Policy Manager instance the administration client is used: this client allows the
setup of the uplink reference and the loading (or removal) of Policy Attachments.

Using the administration client, you can access a WSRF instance (not the default resource)
appending to the URL “#<ResourceId>”.

2.6.3. Security Considerations

Currently, the service does not perform any internal security checks, and does not have any internal
security policy. Therefore, all tasks related to security are delegated to the hosting platform, in this
case WSRF.NET/IIS as well as the VO it is a member of.

There is a definite requirement for the administrative interfaces of the service to be secured. This is
a key issue as the alteration of policies can break the security and policy balance of the whole
Akogrimo VO.

The security of Policy information from services is a complex issue due to the mix of public and
private information. This issue requires better handling of the applicant identity and its security
attributes (authorizations). However, at the moment, we don't have detected peculiar requirements
to protect individual information in the Akogrimo environment.

D4.3.3, 1.0

© Akogrimo consortium members page 76 of 106

In future Akogrimo implementations it is planned to secure the communication between the SP and
VO domains by using encrypted messaging and security tokens.

2.7. Semantic Service Discovery Service (SSDS)

The Semantic Service Discovery Service (SSDS) is a central repository of service meta-information,
including low level, high level parameters as well as SLAs. The collection of such meta-information
in a central repository enables advanced browsing, searching and discovery mechanisms.

2.7.1. SSDS Design

The SSDS gives the possibility to enrich the service description with semantic information and
provide a plug-in based discovery framework. SSDS also provides an import/export mechanism for
technical (WSDL, BPEL) and semantic (OWL, OWL-S) service descriptions. A modelling interface
enables the individual adaptation of a service meta-information.

All interfaces are available in two forms:

1. as GUIs for developers and administrator to manually adapt the service meta-data and use
the discovery mechanisms as well as

2. in the form of Web Services that are exclusively accessed by the two proxy services: EMS
for WP4.3 and GrSDS for WP4.4.

The provided interfaces are implemented by two components: (1) the Semantic Service Modelling
Component (SMC) which provides a GUI and a Web Service to edit the meta-information of
services and (2) the Semantic Service Discovery Component (SDC) which provides a GUI and a
Web Services to discover services. Both components use the Data Access Object (DAO) that
communicates with the repository that keeps the meta-information of the services. This repository is
an existing Web Service that uses rational databases to implement a meta-model database. Available
scripts and configuration files are used by the DAO to adapt the repository for the needs in
Akogrimo. More specifically, the SSDS has the following components:

Semantic Service Modelling Component (SMC)

The SMC provides a model based design interface. The interface offers methods to list, load, save,
rename or delete models and also a method to load the model library definitions. The SMC offers a
Java Applet GUI or can be alternatively called as a Web Service.

Semantic Service Discovery Component (SDC)

The SDC provides 4 interfaces: (1) the Semantic Service Admin Interface provides methods to
upload, activate or deactivate plug-ins or also to change the plug-ins settings, (2) the Semantic
Service Discovery Interface can be used to get a list with the active discovery plug-ins (discovery
algorithms) and to call a discovery plug-in, (3) the Semantic Service Browsing Interface defines a set
of methods that can be used to browse the services by different point of view (by service output, by
activity, by context, by provider, etc) and (4) the Semantic Service Import/Export interface defines
methods to import or export service definitions (WSDL), service orchestration (BPEL, OWL-S) or
semantic service descriptions (OWL, Topic Maps).

The Discovery Framework offers a Java Struts GUI and an eclipse plug-in GUI. The offered
functionality is also exposed through a Web Service.

D4.3.3, 1.0

© Akogrimo consortium members page 77 of 106

Data Access Object (DAO)

The Data Access Object encapsulates the data access through the Meta-model service interface. It is
also concerned with caching, load balancing and the implementation of fault resistance mechanisms
to guarantee the required performance.

Figure 29: Semantic Service Discover Service: Interfaces and Components

2.7.1.1. Functionality

According to the OGSA specifications, the SSDS is a preparatory service for the EMS, providing
support to the discovery of candidate locations. As the semantic discovery mechanisms are not
limited to low level parameters, the SSDS is also a preparatory service for the GrSDS (Grid Service
Discovery Service). The objectives that are met by the SSDS are listed below:

� Discovery of services: The SSDS should be able to “discover” services according low-level,
high-level parameters and service level agreements. The parameters for the discovery are
application-depending customisation of the SSDS. Standard discovery mechanisms are provided
and can be adapted by the requesting service.

� Modelling of services: The SSDS enables the storing of service meta-data in one central
repository. Services can be modelled by other services such as indexing or agent services, or by
developers or service providers that would like their services to be used under specific –
modelled – circumstances.

� Management of service discovery: The SSDS enables to access the service meta-information
to evaluate the service description and analyse the according service execution. The comparison
of real service execution data and the service description enables optimisation by appropriate
model changes.

The functionality of the SSDS can be categorised into three components: (1) Semantic Service
Model Component (SMC), (2) Semantic Service Discovery Component (SDC) and (3) Data Access
Object (DAO).

D4.3.3, 1.0

© Akogrimo consortium members page 78 of 106

Semantic Service Model Component (SMC)

The SMC enables methods to describe a service via meta-information such as low-level parameter,
high level parameter and service level agreements. The service description via meta-information is
seen as a model. There are different types of models distinguishing the type of the service
description. A service model describes the service coordinates and how to contact and access it, a
workflow model type describes the sequence of services or a semantic adaptive workflow describes
the sequence of services with additional semantic annotation.

The Semantic Service Model Component provides an interface to edit the service description either
via a Java Applet GUI or via direct Access to the interface Web Service.

In the following the model type architecture is presented distinguishing between requirement
models that describe the service requirements and the providing models that describe what services
can provide.

Table 28: Meta-Model for Service Discovery

Model type Description

Process Requirements

Semantic Workflow Contains all the activities, sub process calls and decisions that
are needed to rich a goal. Every activity can be enriched with
information like data needed by the activity, the expected
service level, needed resources and effects. This information is
used as the requirement for the service discovery.

Semantic Level

Topic map model The Topic Map model is a low-level ontology language that is
restricted to some modelling concepts defined in the topic
map standard.

Ontology model If the semantic description requires additional concepts to the
one provided in the topic map, the service modeller can build
its own ontology.

Service Provision

Aggregated Service Model The aggregated Service Model describes aggregated services
using BPEL templates referring to Atomic Service Models.

Atomic Service Model Contains the service definitions. Every service can provide one
or more methods. One method can be provided by more then
one services.

Service Description Models

Provider model This model is used to model the service provider and the
offered services from the provider.

D4.3.3, 1.0

© Akogrimo consortium members page 79 of 106

SLA Model Contains the definitions of the SLA Contracts. Every SLA
Contract has the 4 standard quality of service (QoS)
parameters (response time, latency, availability, and
throughput). Every service can have also service specific
parameters.

Service Source Model Defines the service sources (input/output) as middle layer
between the service method and the data type’s model.

Data Types Model The data type definitions according to WSDL.

Service Effects Model This model type contains the service effects. The effects are
system state changes that are result or precondition of the
service calls.

Table 28: Meta-Model for Service Discovery introduces the meta-model used for Service Discovery
by listing the model types and the according service meta-information. The service requirements to
be discovered are represented in form of semantic workflows and semantic models.

The provisioning models describe available services with some additional information regarding
effect, input/output and data types and their semantic description.

All functionalities necessary to model service requirements and service provision are provided by the
Semantic Service Model Component.

Semantic Service Discovery Component (SDC)

The SDC offers a plug-in based discovery engine. In this scenario we distinguish between:

� Browsing, for viewing and looking through existing models following references form one model
to another,

� Searching, for identifying the location of a given service or identify its existence and

� Discovering, for identifying new insights for a new situation.

Although searching and discovering are very closely related terms – and sometimes used as a
synonym – it is made the distinction to separate searching functionality that is concerned with the
identification of terms in the model repository from discovery algorithms that identify possible
services based on requirement models. The main difference is that using the searching features, the
requestor can identify, compare and analyse information that is explicitly stored in the model
repository, whereas the discovery feature enables the approximation of information which is not
explicitly stored in the model repository but strongly depends on the discovery algorithm.

D4.3.3, 1.0

© Akogrimo consortium members page 80 of 106

Figure 30: Sequence diagram Service Discovery

The Semantic Service Discovery Component offers data access over the Data Access Object using
the browsing interface and a generic discovery plug-in framework. Discovery plug-ins can be written
by any Java programmer using the discovery plug-in API.

Every plug-in must implement the interface DiscoveryMethodPlugIn and write the following
methods:

� getMethod – the method returns the name of the discovery method and a list with all parameters
needed by the discovery.

� install – this method initialises the plug-in. The method becomes the Discovery Dao Factory and
the plug-in properties values as Input.

� discover – this method becomes as input the parameter vector and do the discovery. The return
value is a list with services.

� getProperties – return a list with the properties of the plug-in containing the default values.

Discovery plug-ins can be uploaded, activated and configured by the admin interface. Basic search
and discovering mechanisms are provided by default, but there is the opportunity that each proxy
service requires a set of individual discovery functions.

The SSDS can be queried for the available discovery methods. As soon as one of them is selected a
search can be invoked. The discovery plug-in received via the Data Access Object the data from the
repository. A set of services will be found, according the search-parameters specified (see Figure 30:
Sequence diagram Service Discovery).

Data Access Object

The Data Access Object is responsible to provide data from the model repository that is needed by
the other components. The Data Access Object covers also the caching, failover and the load
balancing. Section B.7 in Annex B provides an overview of the offered methods.

D4.3.3, 1.0

© Akogrimo consortium members page 81 of 106

The Data Access Object provides all functionalities required for the other components in the SSDS
to access the model repository. The DAO interface is not provided externally.

2.7.1.2. Use Cases

We identify three different users of the SSDS: (1) the Service Network Manager who is responsible
for the correct modelling of the services. This user specifies the level of semantic detail and
framework that can be used by the service provider to register their services, (2) the SP who offers
either a single service or a set of services and is able to register services in the framework specified
by the Service Network Manager. In case the SP registers a set of services, it is also able to provide
discovery strategies and (3) the Service Consumer who is able to interact with three different
discovery mechanisms by first contacting the SSDS to get a list of discovery methods. The service
consumer selects the appropriate discovery method and discovers. The use-cases identified for these
three users are listed below.

Service Network Manager

The Service Network Manager can interact with the system in three different ways:

� Modelling Service Requirements (Defining service requirements)

� Modelling Service Semantic (Creating a semantic description, for the classification of the service)

� Modelling Service Provision (Registering the information, how the service will be provided)

Service Provider

For the Service Provider two uses-cases were identified:

� Register Service (Register the service with its WSDL description and its categories, so that is can
be discovered)

� Upload Discovery Plug-In (Register a new Plug-In that allows discovering services)

Service Consumer

For the Service Consumer there are three use-cases:

� Browsing for services (Find services not by specifying criteria directly but browse through
categories or output)

� Searching for services (Find services by specifying criteria)

� Discovering services (Find services with the discovery Plug-Ins)

D4.3.3, 1.0

© Akogrimo consortium members page 82 of 106

Figure 31: SSDS use cases

Table 29: Modelling Service Requirements Use Case

Use Case ID UC_SSDS_1

Use Case Name Modelling Service Requirements

Initiator Service Network Manager

Primary Actor Service Network Manager

Additional Actors None

Description Modelling the service requirements through the modelling component

Pre-condition None

Post-condition None

Use Case Functionality

Sequence Invoke the modelling mechanisms for service requirements

D4.3.3, 1.0

© Akogrimo consortium members page 83 of 106

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 30: Modelling Service Semantic Use Case

Use Case ID UC_SSDS_2

Use Case Name Modelling Service Semantic

Initiator Service Network Manager

Primary Actor Service Network Manager

Additional Actors None

Description Create a semantic description to classify services later on

Pre-condition None

Post-condition Semantic description in form of categories, etc. exists

Use Case Functionality

Sequence Invoke the modelling mechanisms for semantic description

Alternatives None

Exceptions None

Use Cases used None

Further Information

D4.3.3, 1.0

© Akogrimo consortium members page 84 of 106

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 31: Modelling Service Provision Use Case

Use Case ID UC_SSDS_3

Use Case Name Modelling Service Provision

Initiator Service Network Manager

Primary Actor Service Network Manager

Additional Actors None

Description Registering the information for the service provision, e.g. endpoint,
SLA

Pre-condition Service is registered

Post-condition Provision information for service exists

Use Case Functionality

Sequence Invoke the modelling mechanisms to register information for service
provision

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

D4.3.3, 1.0

© Akogrimo consortium members page 85 of 106

Table 32: Register Service Use Case

Use Case ID UC_SSDS_4

Use Case Name Register Service

Initiator Service Provider

Primary Actor Service Provider

Additional Actors None

Description A Service is registered and classified in order to search for it later on

Pre-condition Service semantics were modelled

Post-condition Service(s) are registered

Use Case Functionality

Sequence Register service with WSDL information and categories

Alternatives None

Exceptions Service definition is not valid (WSDL)

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

WSDL-file of the service or URI of WSDL-file,

Categories for service-classification

Table 33: Upload Discovery plug-in Use Case

Use Case ID UC_SSDS_5

Use Case Name Upload Discovery Plug-in

Initiator Service Provider

D4.3.3, 1.0

© Akogrimo consortium members page 86 of 106

Primary Actor Service Provider

Additional Actors None

Description Upload a new plug-in to discover services. The service supports
different discovery mechanisms which can be uploaded on demand.

Pre-condition None

Post-condition One or more discovery plug-ins exist

Use Case Functionality

Sequence Upload plug-in

Alternatives None

Exceptions Plug-in is already existing

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 34: Browsing for Services Use Case

Use Case ID UC_SSDS_6

Use Case Name Browsing for Services

Initiator Service Consumer

Primary Actor Service Consumer

Additional Actors None

Description Find services not by specifying criteria directly but browse through
categories or output

D4.3.3, 1.0

© Akogrimo consortium members page 87 of 106

Pre-condition Discovery Service is running, Search Plug-Ins were registered, Service
descriptions are registered

Post-condition None

Use Case Functionality

Sequence 1. Choose the way of browsing

2. Choose category

3. View result

Alternatives None

Exceptions None

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 35: Searching Services Use Case

Use Case ID UC_SSDS_7

Use Case Name Searching Services

Initiator Service Consumer

Primary Actor Service Consumer

Additional Actors None

Description Find services according to criteria to later invoke them

Pre-condition Discovery Service is running, Search Plug-Ins were registered, Service
descriptions are registered

Post-condition None

D4.3.3, 1.0

© Akogrimo consortium members page 88 of 106

Use Case Functionality

Sequence 1. Specify query to search for services

2. Result of query will be returned

Alternatives None

Exceptions The criteria do not match the allowed values

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

Table 36: Discovering Services Use Case

Use Case ID UC_SSDS_8

Use Case Name Discovering Services

Initiator Service Consumer

Primary Actor Service Consumer

Additional Actors None

Description Find services according to criteria to later invoke them

Pre-condition Discovery Service is running, Search Plug-Ins were registered, Service
descriptions are registered

Post-condition None

Use Case Functionality

D4.3.3, 1.0

© Akogrimo consortium members page 89 of 106

Sequence 1. Get the list of available Discovery Methods

2. Select one method

3. Send the criteria to according to the Discovery Method to the
Search engine

4. Result of query will be returned

Alternatives None

Exceptions No Discovery methods are available

The criteria do not match the allowed values

Use Cases used None

Further Information

Particular
Requirements

None

Open Issues None

Information
Requirements

None

2.7.1.3. Interactions with other services

All interfaces are Web Service calls using SOAP protocol from the proxy services. In the following
table a more detailed look on the offered interfaces is provided.

Table 37: SSDS interactions with other Akogrimo services

Akogrimo service Interaction Protocol

EMS -To discover candidate locations for
the business service execution

-To index and model the business
service locations

SOAP/HTTP

GrSDS -To discover candidate SPs

-To index and model the SP related
information

SOAP/HTTP

2.7.2. SSDS Implementation

The SSDS is a preparatory service that interacts with defined proxy services. The SSDS provides a
flexible discovery framework that enables browsing, searching and discovering of services in a meta-

D4.3.3, 1.0

© Akogrimo consortium members page 90 of 106

data repository and according modelling and administration features that are used by the proxy
services and offered to other Akogrimo services via the proxy.

• EMS

The EMS is a proxy service that uses the SSDS for service candidate location in WP 4.3. The
discovery interface acts not only as a requestor for service discovery but also as an interface for
indexing and modelling the service locations by other WP 4.3 Akogrimo services. Each
registering service provides additional meta-information for the service discovery; the proxy
service forwards the service meta-information to the SSDS.

• GrSDS

The GrSDS is a proxy service that uses the SSDS for Grid service discovery in WP 4.4. The
GrSDS acts not only as a requestor for service discovery but also as an interface for indexing
and modelling for Grid Services by other WP 4.4 Akogrimo services. Each registering service
provides additional meta-information for the service discovery; the proxy service forwards the
service meta-information to the SSDS.

Import /Export Service Meta-information

Indexing services can enter their information via the import/export interface of the proxy service.

Administration

The proxy service administrates the SSDS by up- / downloading the preferred discovery
mechanism. This enables that the discovery service decides based on the application scenario the
selected discovery algorithm.

2.7.2.1. Involved Technologies

The SSDS uses a meta-model repository based on the meta2model framework of MOF. The
description of the services is made in WSDL format and in case of aggregated services in BPEL
format.

For semantic annotation of workflows, the OWL-S notification is used and enriched by semantic
models Topic Maps and OWL. Standard formats like OWL-S, OWL and SWRL xfire.codehaus.org
will be used to include open source reasoner in advanced discovery plug-ins.

2.7.2.2. Configuration and Deployment

The SSDS is a Java service that runs within Tomcat to provide the Web Service interfaces via Xfire
[34]. A JDK 1.4.2_06 or higher (incl. 1.5.x) is required to run all the interfaces of the SSDS.

The Data Access Object has to be implemented on a Windows XP machine, as it is a gSoap Web
Service in a C++ runtime. The installation of the Data Access Object requires also the installation
and configuration of the rational database MSDE.

The communication between the Semantic Service Model / Discovery Component and the Data
Access Object is using SOAP. So it is possible to install the Tomcat and Java service environment
on a Linux machine and separate the Data Access Object to a Windows XP machine.

2.7.3. Security Considerations

The SSDS communicates exclusively with registered proxy services and trusts that the proxy services
establish safe communication with other Akogrimo services. The requesting and responding xml
streams will be encrypted.

D4.3.3, 1.0

© Akogrimo consortium members page 91 of 106

3. Interoperability issues

GT4 vs WSRF.NET

For the development of the Grid Services in WP4.3, two of the most popular platforms in the
development of Grid Services were used: GT4 and WSRF.NET. The following table summarizes
the services which services were developed on which platform.

 Table 38: GT4 and WSRF.NET services

GT4 services EMS, DMS, Monitoring, Metering

WSRF.NET SLA-Controller, SLA-Decisor, Policy Manager

The Akogrimo architecture specifies many interactions between services that were built on those
different platforms. For example, EMS and Monitoring (GT4) interact with the SLA Enforcement
group of services (WSRF.NET). For this reason, these interactions were not only challenging in
terms of design and efficiency but in terms of interoperability as well, since it allowed for checking
whether these two popular Grid development tools, implement the WSRF and WS-related
specifications in a transparent and interoperable way. During the establishment of communication
between them, a small number of inconsistencies were detected and were handled in different ways
and at different levels with some of them even requiring changing the form of the SOAP messages.
These interoperability problems have been gathered in the Akogrimo internal document
“Interoperability Issues” [21].

D4.3.3, 1.0

© Akogrimo consortium members page 92 of 106

4. Conclusions

This deliverable presented the design and implementation of the services that belong to the WP4.3
Grid Infrastructure Services Layer of the Akogrimo project. In this Work Package, the Grid
Infrastructure Services Layer defined a service-oriented architecture which consists of a set of
services capable of providing the core Grid functionality. These capabilities included issues such as
service discovery, advance reservation, execution management, monitoring, SLA enforcement,
policy management and others. The presented services involve the implementation efforts that the
WP4.3 partners carried out until project month 30. The maintenance of these software components
as well as their enhancements (with respect to security aspects and integration within the final
Demonstrator) will be continued until project month 36.

D4.3.3, 1.0

© Akogrimo consortium members page 93 of 106

References
[1] Akogrimo Deliverable D4.3.1 “Architecture of the Infrastructure Services Layer”

https://bscw.hlrs.de/bscw/bscw.cgi/0/36376.

[2] Akogrimo Deliverable D4.3.2.“Prototype Implementation of the Infrastructure Services Layer”
https://bscw.hlrs.de/bscw/bscw.cgi/0/36380.

[3] Akogrimo Deliverable D3.1.1 “Overall Architecture Version 1”
https://bscw.hlrs.de/bscw/bscw.cgi/0/36348.

[4] Akogrimo Deliverable D3.1.3 “Overall Architecture Definition and Layer Integration”
https://bscw.hlrs.de/bscw/bscw.cgi/0/109536.

[5] Global Grid Forum (GGF). http://www/ggf/org/.

[6] OASIS WSRF Technical Committee. http://www.oasisopen.org/committees/
tc_home.php?wg_abbrev=wsrf.

[7] OASIS. http://www.oasis-open.org/.

[8] GlobusToolkit 4. http://www.globus.org/toolkit/.

[9] The Globus Alliance. http://www.globus.org/.

[10] WSRF.NET. http://www/cs.virginia.edu/~gsw2c/wsfr.net.html.

[11] OGSA-DAI. http://www.ogsadai.org.uk/.

[12] “WS-Resource specification”. 1.2 Working Draft 03. Web Services Resource Framework (WSRF)
TC. OASIS. March 8, 2005

[13] “WS-ResourceProperties specification”. 1.2 Working Draft 01. Web Services Resource Framework
(WSRF) TC. OASIS. June, 2004

[14] “WS-ResourceLifetime specification”. 1.2 Working Draft 01. Web Services Resource Framework
(WSRF) TC. OASIS. June, 2005

[15] “WS-BaseNotification specification”. 1.2 Working Draft 03. Web Services Notification (WSN) TC.
OASIS. June, 2005

[16] “WS-Topics specification”. 1.2 Working Draft 03. Web Services Notification (WSN) TC. OASIS.
June, 2005

[17] K.Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling and S.
Tuecke. “From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring &
Evolution”. March 5, 2004. http://www.106.ibm.com/developerworks/library/ws-
resource/ogsi_to_wsrf_1.0.pdf.

[18] Official Globus Security Documentation. http://www.globus.org/toolkit/docs/4.0/security/.

[19] “WS-Security specification”. 1.0. Web Services Security (WSS) TC. OASIS, January, 2004

[20] “Web Services Secure Conversation Language (WS-SecureConversation)”. IBM et al., May, 2004.
http://www-106.ibm.com./developersworks/library/specification/ws-secon/.

[21] “Interoperability issues”. Akogrimo internal document.
http://bscw.hlrs.de/bscw/bscw.cgi/0/162191.

[22] GT4.0 WS-GRAM. http://www-unix.globus.org/toolkit/docs/4.0/execution/wsgram/.

[23] GT Information Services: Monitoring & Discovery System (MDS).
http://www.globus.org/toolkit/mds/.

[24] GT Data Management: GridFTP. http://www.globus.org/toolkit/data/gridftp/.

D4.3.3, 1.0

© Akogrimo consortium members page 94 of 106

[25] “WS-Agreement specification”. March 8, 2005. https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecificationDraft.doc/en/10

[26] Web Service Level Agreement (WSLA) Language Specification.
http://www.research.ibm.com/people/a/akeller/Data/WSLASpecV1-20030128.pdf

[27] IBM Web Services Toolkit. http://www.alphaworks.ibm.com/tech/webservicestoolkit

[28] Emerging Technologies Toolkit (ETTK). http://www.alphaworks.ibm.com/tech/ettk

[29] “WS-Policy specification”. OASIS. September, 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf

[30] “WS-PolicyAttachement specification”. OASIS. September, 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-polat.pdf

[31] “Policy Driven Management for Distributed System”. Morris Sloman, Journal of Network and System
Management, Plenum Press. Vol.2 No. 4, 1994

[32] “Conflicts in Policy-Based Distributed Systems Managemen”. Emil Lupu and Morris Sloman. IEEE
Transaction On Software Engineering, Vol 25, No. 6, Nov/Dec 1999

[33] “Automated Policy-Based Resource Construction in Utility Computing Environments”. Akhil Sahai,
Sharad Singhal, Rajeev Joshi and Vijiay Machiraju.
http://www.hpl.hp.com/techreports/2003/HPL-2003-176.pdf

[34] Codehaus Xfire. http://xfire.codehaus.org/.

D4.3.3, 1.0

© Akogrimo consortium members page 95 of 106

Annex A. Design Details

EMS – SIP Broker interaction

A. Setup

1. EMS subscribes to the SIP Broker’s Notification Producer service in order to receive
notifications about the availability and the location of the mobile users.

2. EMS requests the connection details of each registered mobile user by invoking the
getConnectionDetails method on the SIP Broker WSRF service.

3. SIP Broker WSRF service contacts the Broker Engine requesting a SIP session for the
mobile user.

4. The SIP Broker Engine responds with the connection details of the mobile user.

5. The connections details of the mobile user are sent to the EMS via the SIP Broker WSRF
service.

B. Runtime (Mobile user’s connection lost)

1. The sequence is triggered when the Broker Engine detects that the connection of a mobile
user is lost.

2. The Broker Engine informs the SIP Broker Notification Producer about the lost connection.

3. The SIP Broker Notification Producer service launches a notification.

4. The notification is received by the EMS.

5. The EMS updates the registry it uses to store information about the mobile users. In
particular the mobile user and the services he was in charge of are marked as unavailable.

C. Runtime (Mobile user’s connection recovered)

1. The sequence is triggered when the Broker Engine detects that the connection of a mobile
user has been recovered.

2. The Broker Engine informs the SIP Broker Notification Producer service about the
recovered connection.

3. The SIP Broker’s Notification Producer service launches a notification.

4. The notification is received by the EMS.

5. EMS requests the new connection details of the mobile user from SIP Broker WSRF service.

6. SIP Broker WSRF service contacts the Broker Engine requesting a SIP session for the
mobile user.

7. The Broker Engine responds with the connection details of the mobile user.

8. The new connections details of the mobile user are sent to the EMS via the SIP Broker
WSRF service.

9. The EMS updates the registry it uses to store information about the mobile users. In
particular the mobile user and the services he is now in charge of are marked as available.
The new URI of the services are also stored in the registry.

D4.3.3, 1.0

© Akogrimo consortium members page 96 of 106

EMS
Sip Broker

Notif. Producer
Sip Broker

WSRF

SIP Broker
components

A. Setup 1. Subscribe for notifications

2. Connection details of mobile user REQUEST

5. Connection details of mobile user

B. Runtime
1. Mobile
user’s
connection
lost

 2. User unavailable

 4. Notification message

 5. Update
 mobile registry

C. Runtime 1. Mobile
user’s
connection
recovered

 2. Mobile user available

 3. Trigger
 notification

 4. Notification message

5. Connection details of mobile user REQUEST

8. New connection details of mobile user

9. Update
 mobile registry

 3. Trigger
 notification

Broker engine

4. SIP session established
 (connection details)

3. SIP session for mobile
 user REQUEST

6. SIP session for mobile
 user REQUEST

7. SIP session established
 (connection details)

Figure 32: EMS-SIP Broker interactions

D4.3.3, 1.0

© Akogrimo consortium members page 97 of 106

Annex B. API of Services

B.1. EMS API

 Table 39: EMS Interface

Method Description

Core Gateway service

checkResourcesAvailability Input: CheckResourcesAvailability (a customized object
containing the serviceID, the clientID and the values for the low
level parameters)

Output: An EPR to the Negotiation resource, serialized into a
string

performAdvanceReservation Input: PerformExecution (a customized object containing the
Reservation EPR, the slaID, the name of the method that will be
invoked on the business service and the input needed by this
method)

Output: An EPR to the Negotiation resource, serialized into a
string

performExecution Input: An EPR to a Reservation resource

Output: A string containing the result of the execution

Negotiation service

negotiate Input: Negotiate (a customized object containing the serviceID,
the clientID and the values for the low level parameters)

Output: NegotiateResponse (a customized object containing the
EPR to the Negotiation resource and the URI of the discovered
business service)

Reservation service

reserve Input: Reserve (a customized object containing an EPR to the
Negotiation resource)

Output: ReserveResponse (a customized object containing the
EPR to the Reservation resource)

Execution service

execute Input: Execute (a customized object containing the Reservation
EPR, the slaID, the name of the method that will be invoked on
the business service and the input needed by this method)

Output: ExecuteResponse (a customized object containing the
result of the business service execution. In case the execution fails,
the object contains the reason for the failure)

D4.3.3, 1.0

© Akogrimo consortium members page 98 of 106

Discovery service

discover Input: Discover (a customized object containing the serviceID,
and the values for the low level parameters)

Output: DiscoverResponse (a customized object containing a list
of candidate locations)

Advertisement service

advertiseService Input: AdvertiseService (a customized object containing the
serviceID and the values of the low level QoS properties)

Output: AdvertiseServiceResponse (a customized object
containing the EPR to the Advertisement resource)

B.2. DMS API

Table 40: DMS Interface

Method Description

upload Input: usrID (user identifier), srcUrl (source url of the file to be
uploaded), filename (filename of the file to be uploaded), attributes
(a string that can help identifying the file)

Output: fileID (unique file identifier)

retrieve Input: userID (user identifier), filename (filename of the file to be
retrieved), destUrl (destination url where the file should be copied)

Output: Void

transfer Input: userID (user identifier), srcUrl (source url of the file to be
transferred), destUrl (destination url of the file)

Output: Void

cancel Input: userID (user identifier), fileID (unique file identifier,
returned by the upload method)

Output: Void

readDataFile Input: userID (user identifier), DBname (database identifier where
the files have been stored), fileID (unique file identifier, returned by
the upload method)

Output: fileCont (file content)

queryData Input: userID (user identifier), DBname (database identifier where
the files have been stored), queryStatement (MySQL statement that
contains the query to be performed)

Output: fileID (unique file identifier, returned by the upload
method), data (answer to the query statement)

D4.3.3, 1.0

© Akogrimo consortium members page 99 of 106

B.3. Monitoring Service API

Table 41: Monitoring Interface

Method Description

startMonitoring Input: (1) SLAid (SLA Contract ID to be monitorized) , (2)
MeteringEPR (EPR of the resource supplying low level parameters
info - Subscription mechanism is established between Metering and
Monitoring), (3) SLAControllerEPR (EPR of the resource in charge
of checking if a SLA violation has occurred - Subscription
mechanism is established between Monitoring and SLAController)
and (4) QoSParams (Range of acceptable values of the low level
parameters including in the SLA Contract)

Output: A string:

“200 OK” in case the activation/subscription is successful

“200 KO + Exception” in case of failure

stopMonitoring Input: Void

Ouput: A string:

“200 OK” in case the deactivation is successful

“200 KO + Exception” in case of failure

B.4. SLA Enforcement Service API

Table 42: SLA Enforcement Interface

Method Description

SLA-Controller

ActiveServiceController Input: (1) serviceID (the ID of the service instance has to be
controlled -string), (2) serviceType (the type of the service instance
– string) (3) ObjQoSData (an object containing information about
the QoS parameters to be measured) and (4) contractID (the SLA
Contract document identifier - string) (5) topic (the topic for the
notification process – string)

Output: Void

receiveNotify Input: objQoS (an object representing the QoS parameters to
measured)

Output: Void

SLA-Decisor

ActiveSLADecisor Input: (1) sourceEPR (string–ServiceControllerInstanceEPR) and
(2) ServiceId (string – the ID of the service that is going to be

D4.3.3, 1.0

© Akogrimo consortium members page 100 of 106

controlled)

Output: EPR to the SLA-Decisor

receiveNotify Input: objViolation (an object representing the violation, containing
information like the type of the violation, the time the violation
occurred, etc)

Output: Void

retrieveBestPolicy To be implemented: The SLA-Decisor shall interact with the
Policy Manager to retrieve the best policy related to the business
service. The later shall be able to understand the violation typology
(soft, medium or hard) and decide what necessary actions must be
undertaken, depending on the affiliated policy and the status of the
system.

SendViolationInformation Input: obj_violInfo (an object representing the information on the
type of violation and the corrective action that should be taken)

Output: Void

B.5. Metering Service API

Table 43: Metering Interface

Method Description

createMeteringResource Input: CreateMeteringResource (an object containing information
for the initialization of the Metering resource)

Output: the EPR to the Metering resource

startMetering Input: slaID (the ID of the SLA contract)

Output: Boolean value indicating success

stopMetering Input: StopMetering (an object containing information used for
locating the correct Meter thread)

Output: Boolean value indicating success

B.6. Policy Manager Service API

Table 44: Policy Manager Interface

Method Description

Service Interface

requirePolicy Input: PolicyContext (a structure containing attributes about the
context for which the policy is required; for details see the
implementation doc)

D4.3.3, 1.0

© Akogrimo consortium members page 101 of 106

Output: Policy (the returned Policy, a WS-Policy compliant object)

Administration Interface

listPolicyAttachmentIds Input: None

Output: An array of strings (the list of PolicyAttachment loaded
into the local database; each id will be used to operate over the
related PolicyAttachment)

addPolicyAttachment Input: (1) policyAttachmentId (a string, the key for later access the
PolicyAttachment stored inside the database; no duplicated id is
permitted) and (2) policyAttachment (the PolicyAttachment to store
into the database)

Output: Void

removePolicyAttachment Input: policyAttachmentId (a string, the id of the PolicyAttachment
to remove from datatabase)

Output: Void

getPolicyAttachment Input: policyAttachmentId (a string, the id of the PolicyAttachment
to be retrieved from database)

Output: Void

setUplinkReference Input: uplinkReference (an EPR, the reference of the upper
PolicyManager service)

Output: Void

getUplinkReference Input: None

Output: An EPR (the reference of the upper PolicyManager
service)

B.7. SSDS API

Table 45: SSDS interface

Method Description

Semantic Service Discovery Interface

getDiscoveryMethods Input: None

Output: List with all discovery methods

discover Input: Filter (this object contains the search method name
and a list with key value pairs)

Output: List with services that match the criteria vector

getEndpoints Input: (1) serviceName (the name of the service) and (2)
slaParameterList (list with sla parameter that must be

D4.3.3, 1.0

© Akogrimo consortium members page 102 of 106

covered by the endpoint)

Output: List with service endpoints

Semantic Service Browsing Interface

getCategories Input: None

Output: Returns the hierarchical concepts structure.

getTableOfContents Input: modeltype (an array with model types, that restrict the
table of contents)

Output: returns the model directory tree containing the
models that match the model type filter.

getServicesByCategory Input: concept (a concept)

Output: a list of services that match the concept

getServicesByActivity Input: (1) businessProcess (the name of the process) and (2)
activity (the name of the activity)

Output: List with the services that are mapped to this activity

getServicesByOutput Input: outputName (the name of the output)

Output: List of services that produce the needed output

getModelImage Input: (1) modelid (the id of the model) and (2) scale (the
scale in percent (0 – 100))

Output: Byte array containing the image source in png
format

This method should be used together with the
getModelImageMap method, to allow browsing through the
modelling objects.

getModelImageMap Input: (1) modelid (the id of the model) and (2) scale (the
scale in percent (0 – 100))

Output: XML stream containing the ids and the coordinates
of the objects

Semantic Service Design Admin Interface

createTopicMap Input: topicMapName (the name of the topic map to be
created)

Output: Boolean value indicating success

removeTopicMap Input: topicMapName (the name of the topic map to be
removed)

Output: Boolean value indicating success

createCategory Input: (1) topicMapName (the name of the topic map, in
which a category will be created) and (2) categoryName (the

D4.3.3, 1.0

© Akogrimo consortium members page 103 of 106

name of the category that will be created)

Output: Boolean value indicating success

removeCategory Input: (1) topicMapName (the name of the topic map, in
which a category will be created) and (2) categoryName (the
name of the category that will be created)

Output: Boolean value indicating success

createSLAContractPool Input: SLAContractPoolName (the name of the model to be
created)

Output: Boolean value indicating success

removeSLAContractPool Input: SLAContractPoolName (the name of the model to be
created)

Output: Boolean value indicating success

createSLA Input: (1) slaContractPoolName (the name of the model
where the slaContract can be found) and (2) slaName (the
name of the slaContract)

Output: Boolean value indicating success

removeSLA Input: (1) slaContractPoolName (the name of the model
where the slaContract can be found) and slaName (the name
of the slaContract)

Output: Boolean value indicating success

createSLAParameter Input: (1) slaContractPoolName (the name of the model
where the slaContract can be found), (2) slaName (the name
of the slaContract), (3) slaParameterName (the parameter to
be set and created) and (4) slaParameterValue (the value to be
assigned)

Output: Boolean value indicating success

setSLAParameterValue Input: (1) slaContractPoolName (the name of the model
where the slaContract can be found), (2) slaName (the name
of the slaContract), (3) slaParameterName (the parameter to
be set) and (4) slaParameterValue (the value to be assigned)

Output: Boolean value indicating success

removeSLAParameter Input: (1) slaContractPoolName (the name of the model
where the slaContract can be found), (2) slaName (the name
of the slaContract) and (3) slaParameterName (the parameter
to be removed)

Output: Boolean value indicating success

createServiceDeploymentModel Input: modelName (the name of the model to be created)

Output: Boolean value indicating success

D4.3.3, 1.0

© Akogrimo consortium members page 104 of 106

removeServiceDeploymentModel Input: modelName (the name of the model to be removed)

Output: Boolean value indicating success

createRTE Input: (1) modelName (the name of the model where the
runtime-environment will be stored) and (2) rteName: the
name of the runtime-environment to be stored

Output: Boolean value indicating success

removeRTE Input: (1) modelName (the name of the model where the
runtime-environment is stored) and (2) rteName (the name of
the runtime-environment to be removed)

Output: Boolean value indicating success

registerEndPoint Input: (1) serviceModelName (the name of the model where
the service can be found), (2) serviceName (the name of the
service that will be offered at this endpoint). (3)
serviceDeploymentModelName (the name of the model
where the endpoint will be is stored), (4) rteName (the name
of the runtime-environment), (5) slaContractPoolName (the
name of the model where the slaContract can be found), (6)
slaName (the name of the slaContract valid for the endpoint)
and (7) endPointUrl (the url of th endpointy to be deleted)

Output: Boolean value indicating success

removeEndPoint Input: (1) serviceDeploymentModelName (the name of the
model where the runtime-environment is stored), (2)
rteName (the name of the runtime-environment) and (3)
endPointUrl (the url of the endpoint to be deleted)

Output: Boolean value indicating success

saveService Input: (1) service (an array of services to be saved), (2)
categories (the categories that correspond to the services), (3)
datatypes (datatypes of the service) and (4) overwrite (a
boolean value indicating if a existing service should be
overwritten)

Output: Boolean value indicating success

removeService Input: (1) serviceModelName (the name of the service
model, where the service is stored) and (2) serviceName (the
name of the service to be removed)

Output: Boolean value indicating success

removeServiceModel Input: serviceModelName (the name of the service to be
removed)

Output: Boolean value indicating success

getEndpointsByService Input: serviceName (the name of service the endpoints of
which should be found)

D4.3.3, 1.0

© Akogrimo consortium members page 105 of 106

Output: An array of Strings that contain the address of the
endpoints

listRTE Input: None

Output: An array of ServiceDeploymentModels

listSLA Input: None

Output: An array of the SLAPools that are stored in the
models. The SLAPools itself contain the SLA-contracts.

listCategories Input: None

Output: Categories of the topic maps in form of an array

Semantic Service Import/Export Interface

exportWSDL Input: serviceName (the name of the service)

Ouput: WSDL stream containing the service definition. The
WSDL does not include the service endpoint, because the
service can be provided by more the one service provider
with different SLA. A list of endpoints can be discovered by
the discovery service.

importWSDL Input: (1)wsdlSource (the wsdl), (2) baseUrl (is needed when
the wsdl file references other wsdl files) and (3) overwrite
(boolean value that indicates if the existing services should be
overwritten)

Output: Boolean value indicating the success

exportBPEL Input: bpelName (the name of the BPEL workflow)

Output: BPEL stream

importBPEL Input: (1) bpelSource (the BPEL definition that should be
imported) and (2) overwrite (boolean value that indicates if
the existing workflow should be overwritten).

Output: Boolean value indicating the success

exportOWL Input: ontologyName (the name of the ontology that should
be exported)

Output: OWL stream

importOWL Input: (1) owlSource (the owl source that should be
imported) and (2) overwrite (a boolean value that indicates if
the existing workflow)

Output: Boolean value indicating the success

exportOWLS Input: workflowName (the name of the workflow)

Output: OWSL stream

importOWLS Input: (1) owlsSource (the owl source that should be

D4.3.3, 1.0

© Akogrimo consortium members page 106 of 106

imported) and (2) overwrite (a boolean value that indicates if
the existing workflow)

Output: Boolean value indicating the success

Data Access Object Interface

getTableOfContents Input: None

Output: XML stream containing the model directory
structure

getModelXml Input: modelid (the id of the model)

Output: XML stream containing all modelling object with all
attributes and values.

getModelPicture Input: (1) modelid (the id of the model) and (2) scale (the
scale in percent (0 – 100))

Output: Byte array with the model picture source in png
format

getImageMap Input: (1) modelid (the id of the model) and (2) scale (the
scale in percent (0 – 100))

Output: XML stream containing the coordinates for every
object and relation in the model

createModelDir Input: (1) name (the name of the model directory) and (2)
parentId (the id of the parent directory, null means create in
the root model directory)

Output: Boolean value indicating the success

saveModel Input: (1) name (the name of the model), (2) dirId (the id of
the directory) and (3) adl (the model adl (ADONIS
proprietary format))

Output: the id of the saved model or null if the save fails

renameModel Input: (1) modelId (the id of the model) and (2) name (the
new name)

Output: Boolean value indicating the success

renameDirectory Input: (1) directoryId (the id of the directory) and (2) name
(the new name)

Output: Boolean value indicating the success

deleteModel Input: modelId (the id of the model)

Output: Boolean value indicating the success

deleteDirectory Input: directoryId (the id of the directory)

Output: Boolean value indicating the success

