

WP 4.2 Mobile Network Middleware

Architecture, Design and Implementation

Dissemination Level: Public

Lead Editor: Fredrik Solsvik, Telenor

14/08/2007

Status: Final

D4.2.4

Consolidated Integrated

Services Design and

Implementation Report

Version 1.0

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

P
ro
je
c
ts
it
e
:
w
w
w
.m

o
b
il
e
g
ri
d
s
.o
rg

D4.2.4, 1.0

© Akogrimo consortium members page 2 of 139

This is a public deliverable that is provided to the community under the license Attribution-NoDerivs 2.5
defined by creative commons http://www.creativecommons.org

This license allows you to
• to copy, distribute, display, and perform the work
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that this work originated from the
IST-Akogrimo project and has been partially funded by the European Commission under
contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build upon this work without
explicit permission of the consortium

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE

("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE

WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS

OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR

ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are

assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined

below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,

musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,

condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a

Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the

Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image

("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License

with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a

previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other

limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,

perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the

Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio

transmission the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a

performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g.

webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music

rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover

version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the

equivalent in other jurisdictions).

D4.2.4, 1.0

© Akogrimo consortium members page 3 of 139

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives the

exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public

digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright

Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to

make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License,

and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work

You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work

that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the

Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly

display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the

Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a

Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this

License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the

Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep intact

all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties

(e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other

reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the

Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the

copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided,

however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit

appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer. UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING

THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES

OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF

LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH

EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE

LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR

EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses

terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive

any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the

Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing

the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has

been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless

terminated as stated above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the same

terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the

remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to

the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in

writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings,

agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions

that may appear in any communication from You. This License may not be modified without the mutual written agreement of the

Licensor and You.

D4.2.4, 1.0

© Akogrimo consortium members page 4 of 139

Context

Activity 4 Detailed architecture, design & implementation

WP 4.2 Mobile Network Middleware Architecture, Design and Implementation

Task 4.2.1 Integrated service platform and middleware for NGG

Dependencies This deliverable depends on and has influence on (to some extent) work
carried out in WP 3.1, 3.2, 4.1, 4.3, 4.4, 5.1, 5.2.

Contributors: Reviewers:

Vicente Olmedo (UPM)
Víctor A. Villagrá (UPM)
Fredrik Solsvik (Telenor)
Hasan (University of Zurich)
David Hausheer (University of Zurich)
Cristian Morariu (University of Zurich)
Peter Racz (University of Zurich)
David Lutz (USTUTT)
Patric Mandic (USTUTT)
Juan E. Burgos (TID)
Bienvenido Gómez (TID)

Internal review by WP4.2 participants.

Review by Akogrimo partners external to WP
4.2:

Nuno Inacio (IT Aveiro)

Kleopatra Konstanteli (NTUA)

Francesco D’Andria (ATOS)

Alfonso Sánchez-Macián (IT-In)

Guiseppe Laria (CRMPA)

Annalisa Terracina (DM)

Approved by: QM

Version Date Authors Sections Affected

0.1 14.07.2007 Fredrik Solsvik Title, version, summary,
frontpages and introduction

0.2 14.07.2007 UniZH Updated the A4C section with the
section submitted by Hasan

0.3 14.07.2007 Fredrik Solsvik Minor changes in the CM section
to reflect the small changes since
last deliverable

D4.2.4, 1.0

© Akogrimo consortium members page 5 of 139

Version Date Authors Sections Affected

0.4 17.07.2007 Hasan Minor update of A4C section and
text formatting

0.5 24.07.2007 Vicente
Olmedo

Minor update of SIP PUA section

Added SIP SD implementation
section

0.6 27.07.2007 Juan E. Burgos Update of SIP SD implementation
section

Final edition for external review

0.7 01.02.2007 Juan E. Burgos Official template

Inclusion of review comments
related to chapters 2 and (partly) 6

0.8 02.08.2007 Hasan Update on A4C section taking into
account (internal) reviewer
comments

0.9 10.08.2007 Juan E. Burgos Added subsection in Introduction
with differences between D4.2.3
and D4.2.4 from some partners

Update on Context Manager
section taking into account
(internal) reviewer comments

0.10 13.08.2007 Juan E. Burgos Update introduction chapter (some
comments from Alfonso and the
description on what’s new of the
remaining components).

Update on chapter 6, considering
most of the comments from
Alfonso

0.11 14.08.2007 Fredrik Solsvik Finalized document for QM
approval

1.0 14.08.2007 Fredrik Solsvik Final version based on review by
QM

D4.2.4, 1.0

© Akogrimo consortium members page 6 of 139

Table of Contents
Table of Contents...6

List of Figures ...9

List of Tables ..12

Abbreviations..14

Executive summary..19

1. Introduction ...20

1.1. Akogrimo Network Middleware layer...20

2. SIP Presence handling ..23

2.1. Presence Agent (PA)..23

2.1.1. Requirements ...24

2.1.2. Design...25

2.1.3. Interfaces ..27

2.1.4. Implementation ...29

2.2. Presence User Agent (PUA)...30

2.2.1. Requirements ...30

2.2.2. Design...32

2.2.3. Interfaces ..33

2.2.4. Implementation ...34

3. A4C ...36

3.1. Requirements ..36

3.2. A4C Overview and Interfaces..38

3.3. SAML Authority Overview and Interfaces ..41

3.4. Authentication and Authorization...42

3.4.1. Network Access Authentication ...42

3.4.2. Authentication based on the IDToken..46

3.4.3. Identity and Profile Management ...47

3.4.4. Authorization of Context Request ...48

3.5. Accounting and Charging ...49

3.5.1. Multi-Domain Accounting and Charging for Compound Services.........................49

3.5.2. Accounting Interface (E-A4C-2.x) ...51

3.5.3. SLA Interface (E-A4C-1.1)..52

3.6. Auditing ...53

3.6.1. SLO Violation and Reimbursement ...54

3.6.2. Auditing API (E-A4C-2.8)...55

3.6.3. A4C Internal Auditing Interface (I-A4C-1.7) ...56

D4.2.4, 1.0

© Akogrimo consortium members page 7 of 139

3.7. Implementation ..56

3.7.1. A4C Server Internal Architecture ...56

3.7.2. A4C Server Implementation Details ..57

3.7.3. A4C Client Internal Architecture..58

3.7.4. A4C Client Implementation Details...59

3.7.5. A4C Database..61

3.7.6. A4C Manager...65

3.7.7. Security Considerations..67

4. Identity Management..68

4.1. Identity and Profiles...68

4.2. Architecture...69

4.2.1. A4C Server ...70

4.2.2. Participant Registry ...71

4.2.3. Mobile Terminal..71

4.3. Communication Schema ...72

4.3.1. Authentication ...72

4.3.2. VO Subscription ...73

4.3.3. Authorization...73

4.4. Key Management Infrastructure and Certification Authority ...73

4.5. Building Confederations ...76

5. Context Manager ...79

5.1. Introduction ..79

5.1.1. Requirements ...79

5.1.2. Implementation status ..81

5.2. Interfaces ...81

5.2.1. Context Manager – A4C ..82

5.2.2. Context Manager – Context consumer..82

5.2.3. Context Manager – SIP Presence Agent ...86

5.2.4. Context Manager – LSDS (SLP Directory Agent)...86

5.2.5. Context Manager – RFID SW ..87

5.2.6. CM – Bluetooth Context Harvester interface...87

5.3. Concepts..87

5.3.1. Location handling ...87

5.3.2. Location Mapping example ...88

5.3.3. Akogrimo Location Model ..88

5.3.4. Semantics/Ontologies..91

D4.2.4, 1.0

© Akogrimo consortium members page 8 of 139

5.3.5. Privacy and access control ...94

5.4. Design & Implementation ..97

5.4.1. Context Engine..97

5.4.2. Databases ...103

5.4.3. Context Gateways ...105

5.4.4. BT Context Harvester ..110

5.4.5. RFID software...113

5.4.6. Context Viewer..115

5.5. Testing ...116

5.5.1. Tools ...116

5.5.2. Test environment ..117

5.5.3. Test data ...117

5.5.4. Test cases..118

6. Service Discovery ..121

6.1. Network Discovery..122

6.2. Device Discovery ...123

6.3. Local Service Discovery ..123

6.3.1. Description of the architecture ...124

6.3.2. Functional Description...125

6.3.3. Implementation ...126

6.4. Grid Service Discovery ...131

Annex A. References...132

Annex B. SIP Presence Handling ...136

B.1. Presence User Agent..136

B.1.1. Test cases ..136

B.1.2. Installation, configuration and usage ..137

Annex C. A4C..139

C.1. QoS Profile Example...139

D4.2.4, 1.0

© Akogrimo consortium members page 9 of 139

List of Figures
Figure 1 WP42 modules in a logical Akogrimo architecture ...21

Figure 2 WP42 modules in a technical Akogrimo architecture with interfaces22

Figure 3 SIP presence framework..23

Figure 4 The Akogrimo SIP Server and the embedded SIP Presence Agent25

Figure 5 The Akogrimo SIP Server and the external SIP Presence Agent..27

Figure 6 SIP Presence User Agent design in the Mobile Terminal...32

Figure 7 New design for the Presence/Context Logic, SIP PUA’s core ...33

Figure 8 Overview of A4C interfaces..39

Figure 9 SAML Authority in the context of A4C Architecture ..42

Figure 10 Components and Interfaces for Network Authentication ...43

Figure 11 Message Sequence for Network Authentication..44

Figure 12 Message Sequence for IDToken based Authentication..46

Figure 13 Akogrimo example of trust establishment..47

Figure 14 Generic User Profile ..47

Figure 15 Accounting and charging data flow ...49

Figure 16 Message Sequence for Accounting ..50

Figure 17 MSC for SLA compliance auditing interactions ..53

Figure 18 A4C Server Internal Architecture ..57

Figure 19 A4C Server - Class Diagram ...58

Figure 20 A4C Client Internal Architecture ...59

Figure 21 A4C Client - Class Diagram..60

Figure 22 A4C Database Structure ..61

Figure 23 Users View of the A4C Manager..65

Figure 24 Identity Management View of the A4C Manager..66

Figure 25 Accounting View of the A4C Manager ...66

Figure 26 Charging View of the A4C Manager ...67

Figure 27 Distributed Storage of the Identity ..70

Figure 28 Architecture (A4C) ...72

Figure 29 Certificate Issuing ...74

Figure 30 CA Hierarchy ..75

Figure 31 Message Flow for Akogrimo user accessing a Shibboleth resource with focus on
attribute transmission. The bridging element acts as Shibboleth Identity Provider and
Attribute Authority. ..77

Figure 32 Message Flow for Shibboleth user accessing an Akogrimo resource with focus on
attribute transmission. The bridging element acts as Akogrimo A4C Server.78

Figure 33 Context Manager – Context consumer interface...83

D4.2.4, 1.0

© Akogrimo consortium members page 10 of 139

Figure 34 Basic functionality of WS-Notification ...85

Figure 35 Context Manager – SIP Presence Agent interface...86

Figure 36 Akogrimopolis areas...89

Figure 37 Akogrimopolis areas labelled ..89

Figure 38 Hospital, Building A, 1st floor..90

Figure 39 Ontology – functionality, complexity, and OWL technology..92

Figure 40 Context ontology for Akogrimo ..93

Figure 41 Basic infrastructure for context management ..94

Figure 42 Main elements in privacy handling...95

Figure 43 Privacy handling – basic flow. ..97

Figure 44 Context Engine - design ..98

Figure 45 WS-Notification Subscribe sequence diagram ...99

Figure 46 WS Callback subscribe sequence diagram ..100

Figure 47 WS-Notifcation get EPR for User sequence diagram...100

Figure 48 Updated SIP presence..101

Figure 49 Notification triggered by RFID update...102

Figure 50 Context Database ...103

Figure 51 SLP Gateway design...106

Figure 52 Context Manager – SLP Directory Agent interface ..107

Figure 53 Structure of SIP Presence GW...108

Figure 54 Basic flow – requesting context through SIP Presence GW..108

Figure 55 Basic flow – context received from SIP PA...109

Figure 56 Computational and location context - example ...110

Figure 57 Using Bluetooth for acquisition of computational context..111

Figure 58 Context Harvester – Modules and external parts ..112

Figure 59 Basic functionality of Context Harvester (CH)..112

Figure 60 Message sequence chart for Context Harvester (CH)...113

Figure 61 Basic elements for provisioning of RFID position ...114

Figure 62 MSC for provisioning of RFID position ..114

Figure 63 Context Viewer interface...116

Figure 64 Service Discovery ...121

Figure 65 SIP Service Discovery role mapping ...124

Figure 66 SIP Service Discovery data flow ..125

Figure 67 SPA architecture ...126

Figure 68 SDS architecture ...127

Figure 69 Application server and SDA internal structure ..128

D4.2.4, 1.0

© Akogrimo consortium members page 11 of 139

Figure 70 SD subscription processing...128

Figure 71 SIP Service Discovery test application ..131

D4.2.4, 1.0

© Akogrimo consortium members page 12 of 139

List of Tables
Table 1 SIP PA – Functional requirements..24

Table 2 SIP PA interfaces (embedded on the SIP Server) ...27

Table 3 SIP PA interfaces (external to the SIP Server) ..28

Table 4 esc.so exported functions ...29

Table 5 SIP PUA – Functional requirements ..31

Table 6 SIP PUA – Non-functional requirements..32

Table 7 SIP PUA Interfaces ...33

Table 8 A4C - Functional requirements and implementation status..36

Table 9 SAML Authority – Functional requirements and implementation status38

Table 10 A4C Interfaces..39

Table 11 SAML Authority Interfaces..42

Table 12 Reimbursement formulae ...54

Table 13 Akogrimo SLO-ID ..55

Table 14 Data fields of the userDetails table ...61

Table 15 Data fields of the customerDetails table ..62

Table 16 Data fields of the serviceDetails table...62

Table 17 Data fields of the avpDetails table ..62

Table 18 Data fields of the avpServiceMapping table ..62

Table 19 Data fields of the serviceProfiles table ...63

Table 20 Data fields of the permissionDetails table ...63

Table 21 Data fields of the sessionDetails table ..63

Table 22 Data fields of the aaRecords table...63

Table 23 Data fields of the dataRecords table ...64

Table 24 Data fields of the avpDataRecordsMapping table ..64

Table 25 Data fields of the AVP_x table..64

Table 26 Data fields of the avpGroups table ...64

Table 27 Data fields of the userTariffs table..64

Table 28 Data fields of the chargingRecords table ...64

Table 29 Components for identity handling ..68

Table 30 Context Manager – Fulfilment of functional requirements...79

Table 31 Context Manager – Non-functional requirements..80

Table 32 Context Implementation status..81

Table 33 Context Manager (CM) - interfaces...81

Table 34 Methods offered by the Context Manager ...83

Table 35 Methods offered by the Context Consumer (callback interface)..84

D4.2.4, 1.0

© Akogrimo consortium members page 13 of 139

Table 36 Methods offered by the Context Manager ...87

Table 37 List of Area types ...88

Table 38 Area name and type ...90

Table 39 Main elements in privacy handling..95

Table 40 Main tables and fields in the Context Database ..104

Table 41 Bluetooth Harvester related fields...104

Table 42 Position with extended location data from Location Model Database104

Table 43 Bluetooth GPS fields...104

Table 44 Fields in Location Model Database...105

Table 45 Users and authorization ..117

Table 46 Locations...118

Table 47 Local services: Excerpt from /etc/slp.reg ...118

Table 48 Sample test table...119

Table 49 A4C test cases...119

Table 50 Location test cases ...119

Table 51 Location test cases ...120

Table 52 IQueryEngine interface definition ..129

Table 53 SDA servlet parameters ..129

D4.2.4, 1.0

© Akogrimo consortium members page 14 of 139

Abbreviations
Term Full text

A4C Authentication, Authorization, Accounting, Auditing and Charging

AA Authentication and Authorization

Akogrimo Access To Knowledge through the Grid in a Mobile World

API Application Programming interface

AR Access Router

BT Bluetooth

BVO Base Virtual Organization

CA Certification Authority

CM Context Manager

CPU Central Processing Unit

CRMPA Centro di Ricerca in Matematica Pura ed Applicata

CV Context Viewer

DA Directory Agent

DD Device Discovery

DOW Description of Work

DTD Document Type Definition

EAP Extensible Authentication Protocol

EMS Execution Management System

EPA Event Publication Agent

EPR EndPointReference (WS-N)

ESA Event Subscription Agent

ESC Event State Compositor

FAT Factory Acceptance Test

GPS Global Positioning System

GrSDS Grid Service Discovery System

GW Gateway

D4.2.4, 1.0

© Akogrimo consortium members page 15 of 139

Term Full text

ID Identifier

IdP Identity Provider

IETF Internet Engineering Task Force

IM Instant Messaging

IMS Information Management System

IP Internet Protocol

IPsec IP Security

JAIN JAVA APIs for Integrated Networks

JMF Java Media Framework

JNI Java Native Interface

LSDS Local Service Discovery System or

Life Signs Detection System

MAC Media Access Control

MSC Message Sequence Chart

MT Mobile Terminal

ND Network Discovery

NGG Next Generation Grid

OGC Open Geospatial Consortium

OGSA Open Grid Services Architecture

OS Operating System

OWL Ontology Web Language

PA Presence Agent

PAA PANA Authentication Agent

PaC PANA client

PANA Protocol for carrying Authentication for Network Access

PC Personal Computer

PDA Personal Digital Assistant

D4.2.4, 1.0

© Akogrimo consortium members page 16 of 139

Term Full text

PIDF Presence Information Data Format

PKI Public Key Infrastructure

PS Presence Server

PUA Presence UA

QoS Quality of Service

RA Registration Authority

RDD Resource Description Document

RFC Request For Comment

RFID Radio Frequency Identification

RMI Remote Method Invocation

RPID Rich Presence Information Data

RSDD Required Service Description Document

RTT Round-Trip Time

SA Service Agent

SAML Security Assertion Markup Language

SAT System Acceptance Test

SD Service Discovery

SDA Service Discovery Agent

SDD Service Description Document

SDS Service Discovery Subscriber

SER SIP Express Router

SIdP Shibboleth Identity Provider

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SLA Service Level Agreement

SLO Service-level Objective

SLP Service Location Protocol

D4.2.4, 1.0

© Akogrimo consortium members page 17 of 139

Term Full text

SOAP Simple Object Access Protocol

SP Service Provider

SPA Service Publication Agent

SQL Structured Query Language

SSO Single Sign-On

SW Software

TID Telefonica I+D

TLS Transport Layer Security

TN Telenor

UA User Agent

UAProf User Agent Profile

UDDI Universal Description, Discovery and Integration

UNIZH University of Zurich

UPM Universidad Politecnica de Madrid

UpnP Universal Plug and Play (Microsoft)

URI Uniform Resource Identifier

URL Uniform Resource Locator

USTUTT University of Stuttgart

UTM Universal Transverse Mercator

VNC Virtual Network Computing

VO Virtual Organization

VRA Violation-Report-Answer

VRR Violation-Report-Request

WAYF Where-Are-You-From

WLAN Wireless Local Area Network

WP Work Package

WS Web Services

D4.2.4, 1.0

© Akogrimo consortium members page 18 of 139

Term Full text

WS-N WS Notification

WSDL Web Services Description Language (XML format for describing
network services)

XML Extensible Markup Language

D4.2.4, 1.0

© Akogrimo consortium members page 19 of 139

Executive summary
This document describes the functionality implemented as part of the network middleware layer
of the Akogrimo architecture. It is an updated version of [D4.2.3] Final Integrated Services
Design and Implementation Report and should be considered an updated version of that
deliverable.

The network middleware layer provides a set of functions to the upper layers, allowing Akogrimo
to present several enhancements to the standard GRID architecture (i.e. OGSA). Specifically, the
network middleware layer offers:

� Cross layer A4C (Authentication, Authorization, Accounting, Auditing, and Charging).

� Service registration and discovery for Grid services and local services (services in the
proximity of the end user)

� Presence, identity and context management.

The software implemented and described here is provided by Akogrimo Work Package 4.2,
Mobile Network Middleware Architecture, Design and Implementation. The software serves as
part of the integrated prototype to be produced in Akogrimo [D5.1.2].

The document has particular focus on the following aspects:

� Requirements

Functional (and to some extent also non-functional) requirements for the various components
have been defined. The purpose is to show the scope of implementation, and to form a basis for
testing

� Interface description

Interfaces are identified, labelled and described to a level of details adequate for developers from
other Work Packages

� Design and implementation

The objective is to show how the required functionality is designed and implemented. State
diagrams and Message sequence charts are widely used

� Testing

A set of test cases are proposed that verify fulfilment of functional requirements

D4.2.4, 1.0

© Akogrimo consortium members page 20 of 139

1. Introduction

Scope

The purpose of this document is to describe functionality developed within Akogrimo Work
Package (WP) 4.2, Mobile Network Middleware Architecture, Design and Implementation. This
includes a listing of components, interface description, design and implementation and suggested
test cases for some components. The described functionality will serve as input for WP51. This
document is an updated version of D4.2.3, Final Integrated Services and Implementation Report
and should be considered as such.

While SIP Presence and Identity Management subsections remain unchanged (chapters 2 and 5
respectivelly), the A4C section has been updated to reflect the final implementation status. Main
updates include the implementation details of the A4C client and server, the complete interface
specification, the updated A4C database description, the description of the graphical user
interface of the A4C server, and security considerations. In Chapter 5 – Context Manager several
changes have been done: updated implementation status, minor changes in interfaces section
(describing GetUserEPR method), RFID software section (mentioning Tag Reader which is used
in the latest demonstration) and tools section (renamed the Location Simulator from
RFIDDummyServer). Finally, implementation details have been added to section 6 regarding SIP
Service Discovery.

This document is meant as a complete report including the latest work in the Work Package.

Intended audience

This document is primarily intended for

� Partners from WP 4.2 and other WP’s involved in design and implementation

� Partners involved in developing Akogrimo Service (e.g. realization of eHealth, eLearning,
crisis management, etc)

� Partners involved in system integration

1.1. Akogrimo Network Middleware layer

Akogrimo

The 6th Framework program IP Akogrimo – Access to Knowledge through the Grid in a mobile World –
aims on the technology level at the integration of mobile communication into the Open Grid
Services Architecture (OGSA). On the application level Akogrimo aims at validating the thesis that
the vision of Grid-based computing and the future development of Grid technologies as well as
the development of Grid infrastructures can and will substantially draw from the integration of a
valid mobility perspective.

D4.2.4, 1.0

© Akogrimo consortium members page 21 of 139

Figure 1 WP42 modules in a logical Akogrimo architecture

Figure 1 provides a logical overview of the Akogrimo architecture. The focus of the Akogrimo
project is on these elements, and is described in deliverables from WP 3.1, WP 4.1, WP 4.3, WP
4.4 and this one.

Network Middleware Layer

The purpose of the Network Middleware layer is to provide a set of basic infrastructure functions
including cross-layer Authentication, Authorization, Accounting Auditing and Charging (A4C),
presence and context management, and semantic service discovery. Implementation of
functionality in this layer is also the topic of this document. The different modules are shown in
Figure 2. In this document we describe design and implementation for the Mobile Network
Middleware layer. This description focuses on the following parts:

� Session Initiation Protocol (SIP) for presence handling Provisioning and maintenance of SIP
Presence (SIP SIMPLE) for end users

� A4C Addressing issues related to Authentication, Authorization, Accounting, Auditing and
Charging

� Context Manager Collection and distribution of end user context

� Service Discovery (LSDS - Local Service DS and GrSDS - Grid Service DS)
Registration of and search functionality for local (close to the user) and Grid services

D4.2.4, 1.0

© Akogrimo consortium members page 22 of 139

Figure 2 WP42 modules in a technical Akogrimo architecture with interfaces

D4.2.4, 1.0

© Akogrimo consortium members page 23 of 139

2. SIP Presence handling

As explained in D422 [D4.2.2], SIP is one of the chosen mechanisms to provide context
information within the scope of the Akogrimo project. The SIP Presence handling framework, as
part of the generic context provisioning architecture, is depicted in the following figure, where
the SIP interactions domain has been highlighted:

1. Some service

requests for some user’s

context information

1. The user sends a PUBLISH

message updating his/her presence

information

2. The SIP PA updates

user’s presence info.

Context Manager

Service Host

2. Context Manager sends A SUBSCRIBE

message requesting for a subscription to

the user’s SIP Presence information.

3. The SIP PA creates the

subscription

1. The SIP PA sends a NOTIFY

message containing the

requested user’s presence

information

2. The Context Manager updates the user

context information and informs all suscribers

SIP PA

MT
End user

SIP domain
 Publication phase

 Subscription phase

 Notification phase

Figure 3 SIP presence framework

Each colour/type of line represents a different phase of the presence information flow:

� Publication phase: some presentity (a SIP entity whose presence information is going to be
stored and distributed) makes public its presence information.

� Subscription phase: some presence watcher request for presence information.

� Notification phase: the presence watcher is notified with the presentity presence information.

The requirements, basics and most of the architectural details were described in D421 [D4.2.1]
and D422 [D4.2.2].

From an architectural and implementation perspective, the SIP presence framework in Akogrimo
comprises two main components: the Presence Agent (PA) which is part of the network
infrastructures, and a Presence User Agent (PUA) running at the mobile terminals. Additionally,
the Context Manager implements a subscription agent based on the SIP Communicator in order
to perform the required presence subscriptions. This section is intended to provide a description
of the new features that have been added to these components.

2.1. Presence Agent (PA)

SIP Presence Agent handles SIP presence subscriptions and publications, and generates the
corresponding notifications when the status of certain presentity changes. A detailed description
of the architecture can be found at D422 [D4.2.2].

SIP Presence Agent has been built as a dynamic C library embedded on SIP Server, which will be
implemented starting from the SIP Express Router (an open-source implementation) and will run
in a Linux/Ubuntu machine; however, an alternative implementation that has a separate server

D4.2.4, 1.0

© Akogrimo consortium members page 24 of 139

hosting the Presence Agent – based on the application server being evaluated to support the SIP
Service Discovery Service – is also being considered. Some of the advantages of this alternative
implementation would be:

� Availability of a Java implementation (since it would be implemented as a Java servlet instead
of a C library).

� Code reutilisation (since SIP Service Discovery is also based on the SIP event framework).

� A better alignment with the IMS architecture.

2.1.1. Requirements

The following table summarises the status of the functional/non-functional requirements
described in D422. Note that some of them have been enhanced, while others have been
deprecated, as a result from the conclusions we have obtained from the first cycle.

Table 1 SIP PA – Functional requirements

Req. nr Description Status 1

F 1 Presence/Context document handling

F 1.1 PUBLISH method support Supported.

F 1.2
Presence Information Data Format (PIDF)
format support

Supported.

New: document integrity checking
support, configurable by the user.

F 1.3 RPID format support

Supported.

New: document integrity checking
support, configurable by the user.

F 1.4
Default event state (when no info. from the
user is available)

Supported.

New: configurable by the user

F 1.5
Event State Compositor (aggregation from
different sources)

Supported, but unused.

F 1.6
State deltas support (users provide only the
information that changed, but the PA
maintains the complete state)

Deprecated. It is only an
optimisation issue, and
implementation efforts have been
reallocated to other tasks.

F 1.7 Permanent storage (database support)
It is an optional requirement, just to
protect information against a server
shutdown. Not implemented.

F 2 Subscriptions handling

F 2.1 SUBSCRIBE method support Supported

F 2.2 NOTIFY method support Supported

D4.2.4, 1.0

© Akogrimo consortium members page 25 of 139

Req. nr Description Status 1

F 2.3
Presence Authorisation policies (who is
allowed to request presence information)

Supported, configurable by the PA
administrator.

F3 Generic

F 3.1
Fully RFC compliance (all possible response
codes for all possible “abnormal” situations)

Work in continuous progress. Several
bugs were detected and fixed.

F 3.2
Access to the stored information
(publications and subscriptions) using the
SER command-line tool

Added, for monitoring purposes.

N Non-functional

N1
Running on Linux (Ubuntu) on a PC
platform

Done

N2 Performance improvement (efficiency, speed) Mostly done.

1 Status row references only the status for the implemented solution (based on SER and co-
located with the SIP Sever)

2.1.2. Design

The detailed description regarding the SIP Presence Agent design provided at D4.2.2 [D4.2.2] is
still valid. For clarification purposes, we have included also here the figure describing the internal
SIP Server architecture, showing the functional description of the whole component, with special
focus on the subset of components and interfaces directly involved in presence/context handling
(the rest of them have been blurred in the figure).

Figure 4 The Akogrimo SIP Server and the embedded SIP Presence Agent

D4.2.4, 1.0

© Akogrimo consortium members page 26 of 139

The SIP Presence Agent provides SIP-related presence/context information delivered by the
users using the SIP method PUBLISH to the Context Manager through a presence watcher
interface (SIP SUBSCRIBE and NOTIFY). The presence/context status is stored in a database,
which can be associated to the Location Database if we consider that the information it stores is
part of the user context. In fact, the registration information could be useful to provide a “default
user context” when there is no more information available. For example, if the presence
information of a non-registered user is requested, the PA could send and empty or neutral body
of information to the Context Manager to indicate this unavailability.

Location Database and Presence Agent are both exclusive WP4.2 components; however, other
SIP Server components, like the Broker Engine or the embedded SIP proxy, play some roles in
the WP42 interactions

The SIP Broker Engine, as the core part of the SIP Server, implements the interconnection logic
between the different SIP entities as well as the interfaces with other network entities. It takes
decisions based on the nature and the content of all incoming requests, previously pre-processed
by the SIP proxy. This means that the SIP proxy acts as a listener on the available SIP ports of
the SIP Server (typically the 5060 port) and first it decides if the SIP Server should process the
corresponding incoming message. If yes, it passes it to the Broker Engine, which depending on
the receive message, routes it to the corresponding subcomponent (i.e. REGISTER messages to
Registrar Server, PUBLISH messages to Presence Agent, incoming INVITE to the A4C IF sub-
module for first authentication…). From the perspective of the SIP Presence handling, both the
Broker Engine and the embedded SIP proxy should include some logic to deliver incoming
SUBSCRIBE and PUBLISH requests to the PA module.

Note that even if the Presence Agent was not co-located with the SIP Server (as the alternative
implementation based on the application server is evaluating) the proposed design would not be
significantly modified, as Figure 5 describes; the SIP Server’s embedded SIP proxy would deliver
all SIP presence-related requests and responses to the external PA using the external SIP
interface being used to forward all requests that the SIP Server is not going to process (E-SIP-3).
Obviously, current internal I-SIP-1.6.2 and I-SIP-1.7.1 would disappear.

D4.2.4, 1.0

© Akogrimo consortium members page 27 of 139

Figure 5 The Akogrimo SIP Server and the external SIP Presence Agent

2.1.3. Interfaces

In general, there are no significant changes from the description provided in D4.2.2; however,
some considerations should be taken into account. Next table summarises them:

Table 2 SIP PA interfaces (embedded on the SIP Server)

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

PA

WP4.2

[I-SIP-1.7.1]

Broker Engine

WP4.2

Handling of incoming PUBLISH and SUBSCRIBE
requests

-Input: incoming message

-Return: OK/Error

C API

Presence/Context
Database

WP4.2

[I-SIP-1.6.2]

PA

WP4.2

Handling (storage, retrieval…) of (persistent)
publications and subscriptions.

C API

SIP proxy

WP 4.2

[I-SIP-1.1.1]

Broker Engine Handling replies and notifications (SIP NOTIFY)
to the MT. This interface is exposed directly by the
Broker Engine to the PA.

C API

PA SIP watcher in
Context

SIP presence/context subscriptions (SIP watcher
interface, SUBSCRIBE and NOTIFY methods)

SIP

D4.2.4, 1.0

© Akogrimo consortium members page 28 of 139

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

WP4.2

[E-SIP-5]

Manager

WP4.2

-Input: UserID (AoR, default SIP URI)

-Return: Presence Event State

PA

WP4.2

[E-SIP-1]

PUA in MT

WP4.2

SIP presence document upload (PUBLISH)

-Input: UserID, Presence Event State

-Return: OK/Error

SIP

PA

WP4.2

[E-SIP-5]

PUA in MT

PUA in another
component

WP4.2

SIP presence/context subscriptions (SIP watcher
interface, SUBSCRIBE and NOTIFY methods)

-Input: UserID (AoR, default SIP URI)

-Return: Error: 403 “Forbidden” (1st phase), Presence
Event State (2nd phase)

SIP

The interface I-SIP-1.6.2 (a C API offered by the Presence/Context Database to the Presence
Agent library) for storage and retrieval of persistent publications and subscriptions has not been
implemented yet, accordingly to the fact that this is an optional requirement.

The implementation of the watcher interface of E-SIP-5 (subscriptions and notifications of
presence status to end-user terminals, or another entity containing a SIP User Agent (UA), like
the SIP Broker) will have a strong dependency with the adopted decision regarding authorisation
policies. It is necessary to adopt some mechanism in order to restrict which subscriber can
access to the presence information of some presentity. Several alternatives were evaluated (e.g.
the implementation of RFC 3857 [Ros04-2], “A watcher information Event Template-Package
for the Session Initiation protocol” to let the user to adopt a final decision on the subscriptions.
In this way, the PA could “learn” dynamically the allowed watcher list of a user; or an extension
to the presence document, by adding a list of allowed users). Finally, we adopted a solution based
on the maintenance of allowed watcher lists preloaded in the server, in a user basis, since it is the
easiest to implement that fits all the Akogrimo project requirements.

If we consider having a separate PA from the SIP Server, the list of interfaces are reduced to a
couple of standard SIP interfaces.

Table 3 SIP PA interfaces (external to the SIP Server)

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

PA

WP4.2

[E-SIP-5]

SIP watcher in
Context
Manager

WP4.2

SIP presence/context subscriptions (SIP watcher
interface, SUBSCRIBE and NOTIFY methods)

-Input: UserID (AoR, default SIP URI)

-Return: Presence Event State

SIP

PA

WP4.2

SIP Server SIP presence document forwarding (PUBLISH)

-Input: UserID, Presence Event State

SIP

D4.2.4, 1.0

© Akogrimo consortium members page 29 of 139

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

[E-SIP-3] -Return: OK/Error

SIP presence/context subscriptions forwarding
(SUBSCRIBE and NOTIFY methods)

-Input: UserID (AoR, default SIP URI)

-Return: Presence Event State

PA

WP4.2

[E-SIP-5]

PUA in MT

PUA in another
component

WP4.2

SIP presence/context subscriptions (SIP watcher
interface, SUBSCRIBE and NOTIFY methods)

-Input: UserID (AoR, default SIP URI)

-Return: Error: 403 “Forbidden” (1st phase), Presence
Event State (2nd phase)

SIP

2.1.4. Implementation

As mentioned before, the current version of the Akogrimo PA has been built as a SER module
named esc.so. ESC is the acronym of Event State Compositor, which is a generalisation of the
Presence Agent for any kind of event as defined in RFC 3903 [Nie04].

SER 0.8.14 already included a version of a Presence Agent (named pa.so), but it is incomplete
and experimental (e.g with no support to SIP PUBLISH). For that reason, a new a complete
library was developed from scratch.

The library exports some new functionality to be invoked from the ser.cfg configuration file.
Next table summarises exported functions.

Table 4 esc.so exported functions

Function Description Parameters

handle_publish
This function handles incoming
PUBLISH request

None when invoked from
ser.cfg file (1)

handle_subscription
This function handles incoming
SUBSCRIBE request

None when invoked from
ser.cfg file (1)

(1) The SER framework passes implicitly the incoming SIP message structure to the function.

A detailed description of the Presence Agent implementation, as well as the detailed description
of the processing of the incoming SIP PUBLISH and SUBSCRIBE requests can be found in
section 3.4.1 of D422 [D4.2.2]. No relevant changes have been introduced.

The first significant add-on from the description provided at D.4.2.2 is the extension of the SER
command-line utility (serctl command) to check the status of the publications and subscriptions.
It is a command-line utility which can perform the management tasks needed to operate SER:
watching server status, show in-RAM users. We have extended it in order to monitor the current
status of the presence documents and subscriptions.

D4.2.4, 1.0

© Akogrimo consortium members page 30 of 139

Most significant changes are related to the several configurable parameters the library offers.
Considering the new additions, the current configurable parameters are:

� The detail level of the logs (for debugging purposes a traces mechanism – independent from
the SER traces framework – has been included. This allows the library debugging without
“interferences” from the rest of the SER code).

� The periodic timeout the library checks the validity of both publications and subscriptions.

� The maximum permissible value for subscription validity.

� The maximum permissible value for publication validity.

� A filename containing the “default” presence document (to be sent when no information
from the presentity were available).

� The mechanism to validate an incoming presence document (no validation at all, only xml
validity checking, validation using a DTD [XML] or validation using an xmlSchema
[xmlSchema]). Related to the last two options, a file containing the DTD or xmlSchema
document for validation use can be also specified. Note that that a DTD makes it possible to
validate the structure of relatively simple XML documents, but that's as far as it goes. It can't
restrict the content of elements, and it can't specify complex relationships or provide support
for future extensions on the xml definition. For these reasons, xmlSchema is the preferred
option.

� A filename containing the presence authorisation policies (who can access to the presence
information of certain URIs, in a per-URI basis; entities with full access can be also
especified).

The alternative version of the SIP Presence Agent being evaluated basically consists of a Java
servlet which implements the required functionality. This servlet have been deployed in a services
container (or Application Server, following the IMS terminology) based on a modified Tomcat
that comprises a JAIN SIP-based SIP UA, and is fully compliant with the SIP Servlet API
specification [JSR116]. This alternative implementation was evaluated because the usage of the
Application Server is being considered as the basis for the SIP Service Discovery framework and
most of the code components could be re-used (both SIP Presence and SIP Service Discovery
are based on the SIP Event Framework).

2.2. Presence User Agent (PUA)

Akogrimo’s SIP Presence User Agent is a key component of the SIP Presence infrastructure.
This infrastructure is in charge of collecting and delivering the presence and context information
needed in several parts of the Akogrimo platform, i.e. the Context Manager or the SIP Broker.

The SIP PUA allows applications to publish desired presence and context information about the
user in the Akogrimo SIP infrastructure, as well as to subscribe to other users’ information. Thus,
the SIP PUA is built from the combination of a publication agent and a subscription agent.

The following sections describe the SIP PUA’s requirements and design, as well as its interfaces
with other components and implementation details.

2.2.1. Requirements

The following tables show the progress of each of the functional and non functional
requirements presented in D4.2.2. Requirements can be divided into two main blocks, F1 and F2,
which are related with publication and subscription capabilities, respectively.

D4.2.4, 1.0

© Akogrimo consortium members page 31 of 139

Table 5 SIP PUA – Functional requirements

Req. nr Description Status

F 1 Presence/Context document handling

F 1.1 PUBLISH method support Supported.

F 1.2 Publication refreshment Supported.

F 1.3 Publication update Supported.

F 1.4 Unpublication (publication removal) Supported.

F 1.5 PIDF format support Partially supported.

F 1.6 RPID format support Partially supported.

F 1.7 Event State Composition (aggregation from different sources) Deprecated, since it
was not used in the
use cases.

F 1.8 Publication expiration handling Supported.

F 2 Subscriptions handling

F 2.1 SUBSCRIBE method support (sender) Supported.

F 2.2 Subscription refreshment Supported.

F 2.3 Subscription update Supported.

F 2.4 Unsubscription (subscription removal) Supported.

F 2.5 Subscription expiration handling Supported.

F 2.6 NOTIFY method support (receiver) Supported.

As shown in the table, basic publication functionality is fully supported. F1.2 and F1.3 are
implemented as an interface to allow publication of information from the different applications
residing in the machine that make use of the SIP PUA to expose presence and/or context
information. Since PIDF and RPID define a huge amount of attributes and parameters, this
interface has been analyzed and designed carefully to come up with a solution characterized by
the compromise between flexibility and maintainability. F1.4 is related to the capability of several
applications to publish presence data in such a way that the complete information for a user is
correctly composed from these partial descriptions.

The functionality needed for subscription to users’ presence information has also been
implemented and tested. Furthermore, some enhancements have been performed to allow
transparent management of multiple simultaneous subscriptions. Even it has not already been
used in Akogrimo testbeds, it is also possible for a user to subscribe to information for another
user. Only the SIP Broker uses this functionality.

D4.2.4, 1.0

© Akogrimo consortium members page 32 of 139

Table 6 SIP PUA – Non-functional requirements

Req. nr Description Status

N 1 Running on Linux (Ubuntu) on a PC platform Done.

N 2 Running on PDA platform. Done.

2.2.2. Design

The SIP PUA has undergone a complete redesign since D4.2.2 in response to the deep redesign
performed in the underlying SIP UA. The SIP PUA has been adapted to the new interfaces and
its functionality improved.

In spite of this redesign, the overall architecture remains unchanged. In this architecture, the logic
was contained within a single subcomponent called “Presence/Context Logic”, as depicted in the
figure below.

Figure 6 SIP Presence User Agent design in the Mobile Terminal

As can be seen in the figure, the SIP PUA is composed by four main components:

� Presence/Context Logic: This is the central component. It gathers presence and context
data from the Context Manager (CM) Client and the applications. From this data, a PIDF
XML document will be created and sent via the SIP UA.

� Presence/Context Description Module: This module is targeted at the creation of
presence documents in various formats. It encapsulates XML creation functionality and
future XML parsing capabilities.

D4.2.4, 1.0

© Akogrimo consortium members page 33 of 139

� Application Interface Module: This module will be used to provide an appropriate
interface to the application in case the Java interface is not enough or any transformation is
needed. As applications are to be decided, so it is this interface.

� Context Interface Module: If any adaptation of the Java interface provided by the
Presence/Context Logic to the CM Client is to be done, it will be done in this component.
For the moment, the Java interface is enough, so this component will not be materialized in
implementation.

As stated before, the Presence/Context Logic subcomponent holds the logic needed for presence
publication and subscription. This component was implemented monolithically for phase 1,
where requirements were not as demanding as they are in subsequent phases. The enhancements
to SIP PUA’s functionality and the redesign of the SIP UA have led to a new design perspective
for this subcomponent. This approach is depicted in the next figure.

Figure 7 New design for the Presence/Context Logic, SIP PUA’s core

As can be seen in the figure, the new design basically consists in a modularization of the previous
functionality and the addition of the entities needed to satisfy the extra requirements. This
approach enhances maintainability and scalability, as functionality is reduced within each
individual subcomponent.

Furthermore, the EPA and the ESA provide a generic SIP event handling architecture that eases
the deployment of new event packages. In order to support new event types, it is only needed to
create new classes that use the services offered by the EPA (for event state publication) and the
ESA (for event subscription and notification). These new classes will only need to take care of
event-specific particularities.

This architectural and implementative approach is in line with the IETF’s specifications related
with SIP event frameworks.

2.2.3. Interfaces

As the overall design proposed in D4.2.2 has not been updated, SIP PUA interfaces have not
suffered any changes, apart from the interface with the different applications willing to publish
presence data. Most of these interfaces are well defined and were implemented and tested in the
first prototype. The next table summarizes these interfaces

Table 7 SIP PUA Interfaces

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

D4.2.4, 1.0

© Akogrimo consortium members page 34 of 139

Server:

Component
(Layer)

[Interface Label]

Client:

Component
(Layer)

Purpose Protocol

SIP UA
(MT – WP4.1)
[I-SIP-3.1]

SIP PUA
(MT – WP4.2)

Sending and reception of SIP messages (PUBLISH,
SUBSCRIBE and NOTIFY).

Java Interface

SIP PA
(MT – WP4.2)
[I-SIP-3.2]

Presence/Context
Description
Module

(MT – WP4.2)

Conversion from applications and CM Client
provided attributes to PIDF/RPID XML and vice
versa.

Java Interface

SIP PUA
(MT – WP4.2)
[I-SIP-3.3]

CM Client IF
Module

(MT – WP4.2)

SIP PUA interface adaptation for CM Client (if
needed).

Java Interface

SIP PUA
(MT – WP4.2)
[I-SIP-3.4]

App IF Module
(MT – WP4.2)

SIP PUA interface adaptation for applications (if
needed).

Java Interface

SIP PA
(SIP Server –

WP4.2)
[E-SIP-1]

SIP PUA
(MT – WP4.2)

Publication of user presence and context
information (PUBLISH).

-Input: UserID, Presence Data

-Return: Publication Status

SIP

SIP PA
(SIP Server –

WP4.)2
[E-SIP-5]

PUA in MT
(MT – WP4.2)

SIP presence/context subscriptions (SIP watcher
interface, SUBSCRIBE and NOTIFY methods)

-Input: UserID (AoR, default SIP URI)

-Return: Error: 403 “Forbidden” (1st phase),
Presence Event State (2nd phase)

SIP

SIP PUA
(MT – WP4.2)
[E-SIP-7]

CM Client
(MT – WP4.2)

Provide the PUA with context information.

-Input: Link to User Agent Profile (String)

-Return: Operation Result

Java Interface

SIP PUA
(MT – WP4.2)
[E-SIP-8]

Applications
(MT – WP5.2)

Provide the PUA with user presence information.

-Input: Attributes

-Return: Operation Result

Java Interface

Most of these interfaces have already been exhaustively tested in the various demonstrations that
have been performed.

About the E-SIP-8 interface, in first and second phases, the SIP PUA was able to send stored
presence documents, but was not able to create new ones from data provided by the applications
and the CM Client. From now on, however, the SIP PUA is offering an appropriate interface
allowing applications to provide the needed information in the form of attributes defined in
PIDF/RPID recommendations. The PUA will then build PIDF/RPID XML documents from
the information provided via this interface and send them to the SIP PA in the SIP Server.

2.2.4. Implementation

The SIP Presence User Agent has been implemented as a reusable component in the form of a
Java library. The functionality provided to applications using this library can be divided into two
main branches: publication and subscription. These two faces are implemented via separated
subcomponents to enhance maintainability and scalability. This section will describe its
subcomponents in more detail.

D4.2.4, 1.0

© Akogrimo consortium members page 35 of 139

Publication functionality is implemented by the Event Publication Agent or EPA for short. This
subcomponent handles the status of the publication of the presentity corresponding to the user
of the terminal the EPA is running in. This publication status handling involves creating,
maintaining, updating and removing the presentity’s publication in the SIP Presence Agent
running at the SIP Server. Of course, publication creation, update and removal must be done
“manually” by the user of the subcomponent, but the user can choose to let the EPA refresh the
publication automatically. This automatic, built-in publication refreshment mechanism avoids the
need for the user to take care about the periodic messages that must be sent to the SIP PA to let
it know that the publication is still valid.

To actually act upon this publication status, the EPA interchanges the needed SIP signalling with
the SIP PA. The messages interchanged are defined in RFC 3903 [Nie04]. The EPA offers an
event-based interface in order to inform the user about the different results of the operations
requested.

The second subcomponent, the Event Subscription Agent or ESA, is in charge of the
functionality needed to support subscription to presence information. This functionality is used
by the SIP Broker to get information about the users running Web Services. It could also be
potentially used by a user to get presence information about any other user.

Subscription to presentities’ data involves the handling of the subscription itself, which is carried
out in a fashion similar to publication handling, but also the management of incoming
notifications from the SIP PA. The ESA offers method to allow subscription creation,
refreshment, update and removal. As the EPA does, the ESA also implements automatic
management of subscription expiration and refreshment.

The operation of the ESA requires the use of special SIP messages, defined as an extension to
the ones specified in the core recommendation. These messages are SUBSCRIBE, for
subscription management, and NOTIFY, for notification handling. SUBSCRIBE and NOTIFY
are the basis of the SIP-Specific Event Notification Framework, defined in RFC 3265 [Roa02].

Taking advantage of the new SIP User Agent’s support for multiple, simultaneous dialogs, the
ESA is able to handle several subscriptions at the same time. This is done transparently for the
user, who receives an identifier of the subscription when its creation is requested. This identifier
will be issued in future requests to indicate which subscription they are being asked for. In order
to inform the user about the result of the requested operations, the ESA offers an event-based
interface. This interface is also used to deliver to the user the notifications coming from the SIP
PA.

The SIP PUA is laid on top of the SIP UA, which manages the needed SIP signalling exchanges.
For more information about the SIP UA, please refer to Akogrimo’s deliverable D4.1.3 [D4.1.3].

As explained, Akogrimo’s SIP Presence Framework is based in SIP’s extensions for Event
Publication and Notification. However, events in these extensions are defined from a general
point of view and are not constrained to presence. With this idea in mind, a similar approach has
been used to implement service discovery capabilities using the existing SIP infrastructure. This is
known as SIP SD, and it is being analyzed within Akogrimo. The SIP SD infrastructure is very
similar to the described infrastructure for presence, with the type of information exchanged being
the main difference. These similarities have been taken into account in the design of the EPA and
the ESA, so that both of them can be reused in the future SIP SD deployment. A single
parameter provided at construction time is needed to use EPA and ESA either for presence or
for service discovery.

D4.2.4, 1.0

© Akogrimo consortium members page 36 of 139

3. A4C

The A4C system provides the necessary functionality for authenticating users, authorizing access
to services, accounting and charging for service usage, as well as auditing within Akogrimo. It
provides an interface to other components which allows them to access and store key
information about users and their usage of services: this data is stored within a central database
that is maintained by the A4C Server. The A4C Server tightly interacts with the SAML Authority
to authenticate users and to create IDTokens, which are cryptographic values, identifying the
user’s authentication assertion. Therefore, the SAML Authority is also described in this section.

3.1. Requirements

Table 8 provides an overview of the key requirements of the A4C component and the current
implementation status.

Table 8 A4C - Functional requirements and implementation status

Req.
nr

Description Implementation Status

F 1 Authentication

F 1.1 Authentication of users based on PANA
(username/password) for network access.

Implemented

F 1.2 Authentication of users based on SAML (IDToken)
for grid services and network services (e.g. SIP).
Verification of the authentication based on the
IDToken.

Implemented

F 1.3 Single-sign-on support based on SAML (IDToken). Implemented

F 1.4 IDToken management, generation and verification. Implemented

F 1.5 Additional authentication mechanisms. Not implemented (optional)

F 1.6 Private Authentication generation Not implemented (optional)

F 2 Authorization

F 2.1 Authorization of network services (i.e. type of access,
QoS)

Implemented

F 2.2 Provide QoS Profile to the QoS Broker Implemented

F 2.3 Provide the generic user profile Implemented

F 2.4 Provide anonymous/pseudonymous access to
different services

Pseudonymous access
implemented

F 2.5 Authorize User or Service Provider (SP) Implemented
(used by Context Manager)

D4.2.4, 1.0

© Akogrimo consortium members page 37 of 139

Req.
nr

Description Implementation Status

F 3 Accounting

F 3.1 Accounting for network services usage (e.g. volume,
QoS)

Implemented

F 3.2 Support of accounting during handover and roaming Implemented

F 3.3 Accounting for grid services usage, support of grid
accounting parameters

Implemented

F 3.4 Accounting for compound services, support of
service hierarchy

Implemented

F 3.5 Multi-domain support, correlation of accounting
records from different domains related to the same
service

Implemented

F 4 Auditing

F 4.1 Manage, record and store auditing events (e.g. SLA
violation events received from the EMS)

Implemented

F 4.2 Non-repudiation of service usage Obsolete (optional)

F 4.3 Auditing of A4C messages exchanged between
domains

Obsolete (not a task of A4C)

F 5 Charging

F 5.1 Charge calculation for service consumption based on
accounting records and tariff profiles

Implemented

F 5.2 Support of service-specific and user-specific tariff
profiles

Implemented

F 5.3 Charging for compound services, support of service
hierarchy

Implemented

F 5.4 Multi-domain support for the charge calculation Implemented

F 5.5 Charging record exchange between domains Not implemented (the
alternative, i.e., the exchange of
accounting records, is
implemented)

F 5.6 Single bill support, create bills for users Implemented

D4.2.4, 1.0

© Akogrimo consortium members page 38 of 139

Req.
nr

Description Implementation Status

F 6 Generic

F 6.1 Manage and store user profiles Implemented

F 6.2 Manage and store tariff profiles Implemented

F 6.3 Manage and store accounting records Implemented

F 6.4 Manage and store charging records Implemented

F 6.5 Session support, binding A4C tasks together Implemented

F 6.6 Secure communication (IPSec, TLS), protect inter-
domain communication

Provided by OpenDiameter

Table 9 provides the same information for the SAML Authority.

Table 9 SAML Authority – Functional requirements and implementation status

Req.
nr

Description Implementation Status

F 1 IDToken Management

F 1.1 IDToken generation (e.g. user@akogrimo.org) Implemented

F 1.2 Verification of the IDToken and provision of the
SAML authentication assertion

Implemented

F 1.3 SAML attribute assertion generation Implemented

F 1.4 Signature and encryption of IDToken Implemented

F 1.5 Signature and encryption of SAML Assertions Implemented

F 1.6 Provision of a token with delegation support Not implemented (optional)

3.2. A4C Overview and Interfaces

Figure 8 provides an overview of the external and internal interfaces of the A4C component. The
A4C Server is a central entity providing A4C functions. Akogrimo network components
requiring A4C functions use the A4C Client Library to communicate with the A4C Server via the
Diameter protocol [Cal03]. The A4C Client Library provides an API either in C++ or in Java.
There is an optional interface between A4C Server and SLA Repository, which enables the
retrieval of charging information if it was negotiated dynamically. The A4C Server also interacts

D4.2.4, 1.0

© Akogrimo consortium members page 39 of 139

with other A4C Servers in support of authentication, authorization, accounting, auditing, and
charging.

Akogrimo uses the Security Assertion Markup Language (SAML) [SAML] to provide the
IDToken. The SAML Authority assists the A4C Server in the authentication process and
provides IDToken management and verification. The SAML Authority interfaces directly with
the A4C Server in the form of request and response messages.

For more details on the deployment of the A4C infrastructure refer to [D4.2.2].

Figure 8 Overview of A4C interfaces

Table 10 provides a complete list of all interfaces of the A4C infrastructure. The table also
includes references to the description of the interfaces. Interfaces, that have not changed, are
described in detail in [D4.2.2]. New interfaces and updates in the interface specification are
described in the subsequent sections.

For the implementation architecture of the A4C Client and Server refer to [D4.2.2].

Table 10 A4C Interfaces

Server:
Component
(Layer)
[Interface
Label]

Client:
Component
(Layer)

Purpose Interface/Protocol Reference/Status

A4C Server
(WP4.2)

[I-A4C-1.1] –
[I-A4C-1.8]

A4C Client
(WP4.2)

Provide A4C tasks Diameter D4.2.2/unchanged

A4C Server
(WP4.2)

[I-A4C-1.1] –
[I-A4C-1.8]

A4C Server
(WP4.2)

Communicate with other A4C
Servers or servers of other domains
to perform A4C tasks.

Diameter D4.2.2/unchanged

D4.2.4, 1.0

© Akogrimo consortium members page 40 of 139

Server:
Component
(Layer)
[Interface
Label]

Client:
Component
(Layer)

Purpose Interface/Protocol Reference/Status

A4C Server
(WP4.2)

[I-A4C-1.1]

A4C Client
(WP4.2)

User authentication and transmission
of IDToken, public userIDs, and VO
parameters.
-Input: loginName, password
-Return: OK/Error. In case of OK,
IDToken, public userIDs, and VO
parameters are transferred.

EAP/Diameter Section 3.4/new

A4C Client
(WP4.2)

[I-A4C-2.11]

Access Router
PAA

(WP4.2)

Authentication of users:
-Input: UserID, credentials, serviceID
-Return: IDToken or Deny

C++ API D4.2.2/obsolete
(updated by the
A4C client PAA
interface)

A4C Client
(WP4.2)

[I-A4C-2.11]

PAA
(WP4.2)

User authentication and transmission
of IDToken, public userIDs, and VO
parameters.
-Input: loginName, password
-Return: OK/Error. In case of OK,
IDToken, public userIDs, and VO
parameters are transferred.

C++ API Section 3.4/
updated

PAA
(WP4.2)

[I-A4C-4.1]

PaC
(WP4.2)

User authentication and transmission
of IDToken, public userIDs, and VO
parameters.
-Input: loginName, password
-Return: OK/Error. In case of OK,
IDToken, public userIDs, and VO
parameters are transferred.

PANA Section 3.4/new

PaC
(WP4.2)
[E-PaC-1]

MT
(WP4.1)

User authentication and transmission
of IDToken, public userIDs, and VO
parameters.
-Input: loginName, password
-Return: OK/Error. In case of OK,
IDToken, public userIDs, and VO
parameters are transferred.

Java API Section 3.4/new

A4C Client
(WP4.2)

[E-A4C-2.4]

Access Router
(WP4.1)

Exchange of user authentication
related data, i.e., notification of the
AR about user login, logout, access
termination, authentication result,
and the AR can request access
termination.

C++ API Section 3.4/new

A4C Client
(WP4.2)

 [E-A4C-2.4]

Access Router
(WP4.1)

Accounting:
-Input: UserID, sessionID, serviceID,
accounting data
-Return: OK/Error

C++ API D4.2.2/unchanged

A4C Client
(WP4.2)

[E-A4C-2.3]

QoS Broker
(WP4.1)

QoS authorization and retrieve QoS
profile:
-Input: UserID, serviceID
-Return: QoS profile, (parent sessionID)
(QoS profile is defined in the scope
of WP4.1)

C++ API D4.2.2/unchanged

A4C Client
(WP4.2)

[E-A4C-2.2]

SIP Server
(WP4.1)

AAA in case of SIP registration and
invite.
Authentication, Authorization:
-Input: UserID, IDToken, serviceID
-Return: OK/Error, new IDToken

C++ API D4.2.2/unchanged

A4C Client
(WP4.2)

[E-A4C-2.9]

Context
Manager
(WP4.2)

Retrieve generic user profile:
-Input: UserID
-Return: generic user profile

Java API D4.2.2/unchanged

D4.2.4, 1.0

© Akogrimo consortium members page 41 of 139

Server:
Component
(Layer)
[Interface
Label]

Client:
Component
(Layer)

Purpose Interface/Protocol Reference/Status

A4C Client
(WP4.2)

[E-A4C-2.12]

Context
Manager
(WP4.2)

Authorize access to context
information
-Input: serviceRequestorID, objected
-Return: true/false

Java API Section 3.4/new

A4C Client
(WP4.2)

[E-A4C-2.6]

VO Manager
(WP4.4)

Authentication based on IDToken:
-Input: UserID, IDToken, serviceID
-Return: OK/Error, new IDToken

Java API D4.2.2/unchanged

A4C Client
(WP4.2)

[E-A4C-2.5]

VO Manager
(WP4.4)

Retrieve service profiles.
-Input: userID, serviceID
-Return: serviceProfile/Error.
Publish service profiles.
-Input: userID, serviceID, serviceProfile
-Return: OK/Error.

C++/Java API Section 3.4/
updated

A4C Client
(WP4.2)

[E-A4C-2.7]

Metering
(WP4.3)

Accounting:
-Input: UserID, sessionID, serviceID,
accounting data
-Return: OK/Error

Java API D4.2.2/unchanged

A4C Client
(WP4.2)

[E-A4C-2.8]

Monitoring
(WP4.3)

Auditing of service events
-Input: UserID, sessionID, serviceID,
eventID, eventData
-Return: OK/Error

Java API D4.2.2/obsolete
(interface between
A4C client and
EMS is used
instead)

A4C Client
(WP4.2)

[E-A4C-2.8]

EMS
(WP4.3)

Auditing of service events
-Input: sessionID, eeventID, eventData,
(SLAContractID)
-Return: OK/Error

Java API Section 3.6/new

SLA
Repository
(WP4.4)

[E-A4C-1.1]

A4C Server
(WP4.2)

Retrieve a SLA contract for getting
the charging specification.
-Input: SLAContractID
-Return: SLA-Contract/Error

SOAP Section 3.5/new

A4C Client
(WP4.2)

[E-A4C-2.x]

A4C SOAP
Gateway

Provide a SOAP based interface for
A4C tasks.

Java API D4.2.2/obsolete

A4C SOAP
Gateway

Akogrimo
Component
(WP4.3,
WP4.4)

Access A4C services. SOAP D4.2.2/obsolete

A4C Client
(WP4.2)

[E-A4C-2.1]

LSDS
(WP4.2)

Authorize User or SP C++ API D4.2.2/unchanged

3.3. SAML Authority Overview and Interfaces

Akogrimo uses the Security Assertion Markup Language (SAML) to send security information in
the form of authentication and attribute assertions to the Akogrimo components. SAML
provides an additional security block concerning high confidential information (like
authentication and attribute information of a user) in the Akogrimo architecture. SAML is a
secure interoperable language used to share user’s information from the A4C Server to other
components in order to provide Single Sign-On (SSO) capability to the user and to offer attribute
sharing of the user to other components. In order to provide SAML messages, a SAML Engine is
needed in Akogrimo. This is the SAML Authority. The SAML Authority is part of the security
infrastructure in Akogrimo. It generates XML messages based on the SAML standard to send

D4.2.4, 1.0

© Akogrimo consortium members page 42 of 139

authentication and attribute information. The SAML Authority is an internal subcomponent of
the A4C Server. It aims at supplying IDTokens and SAML assertions to the A4C Server. The
A4C Server contacts the SAML Authority when it requires to generate IDTokens and to verify
such tokens presented by different components. Figure 9 shows the integration of the SAML
Authority in the A4C system architecture.

D
ia

m
ete

rD
iam

eter

Figure 9 SAML Authority in the context of A4C Architecture

More information related to the SAML Authority can be found in chapter 4 (“Identity
Management”).

Table 11 SAML Authority Interfaces

Server:
Component
(Layer)
[Interface
Label]

Client:
Component
(Layer)

Purpose Protocol Reference

SAML
Authority
(WP4.2)

[I-A4C-5.1]

A4C Server
(WP4.2)

Generate IDToken.
-Input: userID
-Return: IDToken/Error
Validate IDToken.
-Input: IDToken
-Return: OK/Error
Generate SAML Attribute Assertion
(not used)
-Input: Attributes, serviceID, userID
-Return: AttributeAssertion/Error

SOAP D4.2.2

3.4. Authentication and Authorization

Authentication and authorization within the A4C include different aspects. Network
authentication is based on PANA and EAP, and it is described in Section 3.4.1. The A4C Server
is also responsible for storing user and service profiles, which is described in Section 3.4.2.
Additionally, the A4C Server provides an interface to the Context Manager in order to authorize
context request. This is described in Section 3.4.3.

3.4.1. Network Access Authentication

Network authentication is an important function within the A4C architecture. It supports the
authentication of users for network login based on username and password. Network
authentication is an important task the user has to go through prior to any usage of any

D4.2.4, 1.0

© Akogrimo consortium members page 43 of 139

Akogrimo service. The PANA Client (PaC) in the Mobile Terminal (MT) supports the
authentication of the user against the A4C server of the user’s home domain. The Access Router
(AR) acts as a PANA Authentication Agent (PAA) towards the MT and uses the authentication
service of the A4C Server to receive an authentication decision. After successful authentication
the user gains network access via the AR and the user is also assigned an IDToken that is used
for authentication against other Akogrimo services in the AkogrimoVOs later on. The IDToken
is based on SAML [SAML] and issued by the SAML Authority of the home A4C Server. Besides
the IDToken, the user also receives information about his public userIDs and the VO parameters
of subscribed services.

Figure 10 Components and Interfaces for Network Authentication

Figure 10 shows the network components participating in the network authentication process
and the interfaces between them. Authentication is based on the Extensible Authentication
Protocol (EAP) in which authentication messages are encapsulated. The A4C architecture uses
MD5 based authentication with username and password for user authentication. However, EAP
supports various authentication methods that can be integrated in the A4C architecture. The
communication between the MT and the AR is established via the Protocol for carrying
Authentication for Network Access (PANA) [For05], while between AR and A4C Server the
Diameter protocol is used. EAP messages are transferred between MT and A4C Server
transparently for the AR. The AR forwards EAP messages transmitted between MT and A4C
Server in both directions, i.e. the AR takes EAP messages received in a PANA message from the
PaC and forwards it to the A4C Server in a Diameter message; and it takes EAP messages
received in a Diameter message from the A4C Server and forwards it in a PANA message to the
PaC. This way the communication between the three entities continues as part of the
authentication method on the top of EAP. Once the A4C Server decides on the authentication of
the user, it issues a Success/Failure message. On the basis of this, the user is either given access
to the network or his request is rejected.

The MT includes the PaC library that provides all authentication related functions via the PaC
API over the E-PaC-1 interface. Over this interface the MT can initiate the user authentication
and after successful authentication it receives the IDToken, the public userIDs, and VO
parameters, which are transferred in EAP-Notification messages to the MT. The public userIDs
are displayed by the MT and the user can select the one that he wants to use for the subsequent
service access (cf. Section 3.4.2 for further details). The VO parameters include the service and
VO name the user is subscribed to, the User Agent (UA) URI where the user can access the
service, and an optional text based description (cf. Section 3.4.2 for further details).

The AR includes the PAA and the A4C Client libraries that assist the user to authenticate and
provides a communication interface to the AR over the E-A4C-2.4 interface. Between the PAA
and A4C Client there is an internal interface (I-A4C-2.11) that is not visible to the AR. The A4C
Client API in the AR enables the AR to request the termination of a current network access

D4.2.4, 1.0

© Akogrimo consortium members page 44 of 139

session and it is also used to notify the AR about the authentication process, user login, user
logout, and access termination.

The I-A4C-4.1 interface provides the PANA based communication between MT and AR. The I-
A4C-1.1 interface enables the communication between AR and A4C Server via the Diameter
protocol. Both interfaces are A4C internal.

MT AR A4C Server

PANA-PAA-Discover

PANA-Start-Request(ISP Info, Name, ID)

PANA-Start-Answer(selected ISP)

PANA-Auth-Request(EAP Identity Req)

PANA-Auth-Answer

PANA-Auth-Request(EAP Identity Response)

PANA-Auth-Answer

Diameter-EAP-Request(EAP Identity)

Diameter-EAP-Answer(EAP MD5 Challenge Req)

PANA-Auth-Request(EAP MD5 Challenge Req)

PANA-Auth-Answer

PANA-Auth-Request(EAP MD5 Challenge Response)

PANA-Auth-Answer

Diameter-EAP-Request(EAP MD5 Challenge Response)

Diameter-EAP-Answer(EAP Notification with IDToken)

PANA-Bind-Request(EAP Success)

PANA-Bind-Answer

PANA-Auth-Request(EAP Notification with IDToken)

PANA-Auth-Request(EAP Notification Response)

PANA-Auth-Answer

PANA-Auth-Answer

Diameter-EAP-Request(EAP Notification Response)

Diameter-EAP-Answer(EAP Success)

SAML Auth

Generate IDToken

IDToken

Figure 11 Message Sequence for Network Authentication

The message sequence for successful user authentication based on MD5 is shown in Figure 11.
The mobile terminal acts as a PaC that can communicate with the PAA component in the AR via
the PANA protocol. The A4C Client component in the AR communicates with the A4C server
via the Diameter protocol. The communication starts with the PANA-PAA-Discover message
sent by the MT to find available ARs. The AR sends a PANA-Start-Request containing
information about the network provider, such as its name and ID. In turn, the MT selects a
network provider from the list and sends its selection back to the AR in the PANA-Start-Answer.
These messages are part of the handshake phase.

After the handshake, the AR issues a PANA-Auth-Request to the MT, containing an EAP
message requesting the identity of the user. The PANA-Auth-Answer is sent back as an
acknowledgement and afterwards the MT sends the user’s identity in the PANA-Auth-Request,
which is acknowledged by the AR. The AR forwards the user’s identity to the A4C server in the
Diameter-EAP-Request message. The A4C server replies with a Diameter-EAP-Answer,
containing an EAP MD5 challenge. The challenge is forwarded to the MT in the PANA-Auth-

D4.2.4, 1.0

© Akogrimo consortium members page 45 of 139

Request. The MT replies to the challenge in the PANA-Auth-Request containing an EAP MD5
Challenge Response. The AR forwards the EAP message with the answer to the challenge to the
A4C server, which in turn can verify the identity of the user.

If the authentication is successful, the A4C server requests the generation of an IDToken from
the SAML Authority. Then, the A4C Server sends the IDToken, the user’s public identities, and
VO parameters to the AR in an EAP Notification that is encapsulated in the Diameter-EAP-
Answer. The EAP Notification is forwarded to the MT in the PANA-Auth-Request message.
After the EAP Notification is acknowledged, the A4C server sends the EAP Success to the AR,
which is forwarded to the MT in the PANA-Bind-Request. The MT replies with a PANA-Bind-
Answer, which closes the authentication process.

In order to support network access authentication, the A4C infrastructure provides several
interfaces that are described in the following sections.

3.4.1.1. A4C Internal Interfaces (I-A4C-1.1, I-A4C-2.11,

I-A4C-4.1)

The A4C Internal Interfaces I-A4C-1.1, I-A4C-2.11, and I-A4C-4.1 provide the transfer of
authentication related data between A4C Client and A4C Server via Diameter, between A4C
Client and PAA, and between PaC and PAA via PANA, respectively. These interfaces enable the
transmission of username and password to the A4C Server and the retrieval of IDToken, public
userIDs, and VO parameters. Refer also to [D.4.2.2].

3.4.1.2. Authentication API for the MT (E-PaC-1)

The authentication interface provided by the PaC library is used within the MT for user
authentication during the network access request. The authentication API provides the following
class and methods:

� class Authenticator (loginName, password)

The Authenticator class provides the authentication functions for the MT. The class is
initiated by the user’s login name and his password. When it is instantiated, it automatically
makes one authentication request.

Methods of the Authenticator class:

� void setUsername(char* username)

Changes the username used for authentication.

� void setPassword(char* password)

Changes the password used for authentication.

� int getResultCode()

Returns the authentication result: OK/Err.

� void reAuthenticate()

Makes an authentication request.

� char* getToken()

Returns the IDToken received from the A4C Server.

� int getNumberIDs()

Returns the number of public IDs received for the authenticated user.

D4.2.4, 1.0

© Akogrimo consortium members page 46 of 139

� char* getPublicID(int i)

Returns the i-th public ID.

� char* getServiceID(int i)

Returns the VO associated with the i-th public ID.

� char* getServiceAccess(int i)

Returns the user agent URI from the VO attached to the i-th public ID.

3.4.1.3. Authentication API for the AR (E-A4C-2.4)

The A4C Client API in the AR enables the communication between AR and A4C for
authentication purposes. The AR can request the A4C Client to terminate the network
connection, e.g., for administrative reasons. Via the interface the A4C Client can notify the AR
about the outcome of the authentication process (i.e. success or failure) and it can also inform the
AR if the user logs out or the network access connection is terminated due to other reasons (e.g.,
loss of wireless signal).

3.4.2. Authentication based on the IDToken

The A4C Server supports authentication based on the SAML IDToken. An Akogrimo
Component, e.g., the BaseVO Manager, can request authentication by sending an AA-Request
(AAR) to the A4C Server. The message includes the username, the SAML IDToken, and the
serviceID. The A4C Server requests the verification of the IDToken from the SAML Authority.
After verifying the IDToken, the SAML Authority sends back the result to the A4C Server. The
A4C Server responds with an AA-Answer (AAA) to the Akogrimo Component.

The message sequence chart of the IDToken based authentication is shown in Figure 12.

Figure 12 Message Sequence for IDToken based Authentication

3.4.2.1. IDToken based Authentication API (E-A4C-2.2/2.6)

The IDToken based authentication API provides the interface to perform authentication based
on the SAML IDToken. The authentication API provides the following class and methods:

� AuthnContainer authenticationVerificationRequest(UserName, IDToken, ServiceID)

The authenticationVerificationRequest() method is used to verify a user’s authentication, based
on an IDToken that he provides. The result of the authentication verification will be stored
in the AuthnContainer object. This method will be used by the VO Manager during a
user’s VO Login and by the SIP Proxy for performing a SIP Registration for a user.

D4.2.4, 1.0

© Akogrimo consortium members page 47 of 139

3.4.3. Identity and Profile Management

One of the most important tasks of the A4C infrastructure is to verify a user’s identity before
granting him access to services. Whilst knowing the identity of a user is the main requirement for
service accounting and charging, for privacy purposes users often prefer to use different digital
identities when accessing different services. The A4C infrastructure supports the multi-domain
provisioning of services by offering a federated identity mechanism that allows Single Sign-On
(SSO) and provides support for virtual user identities. A virtual user identity is created whenever
a user wants to use a service of a service provider without revealing his real identity to that
provider. The main requirement for providing SSO and virtual identity support is to have trust
agreements between different administrative domains.

C
on

tract

C
on

tr
ac

t

Figure 13 Akogrimo example of trust establishment

As the A4C Servers are the components that verify user identities, trust relationships between
domains can be created by having trust relationships between the A4C Servers of the respective
domains. A trust relationship between two A4C Servers implies that messages, authentication
decisions, accounting, auditing and charging records are accepted from the trusted partner A4C
server.

Federated identity management is supported by integrating SAML within a Diameter-based A4C
infrastructure. Besides the SSO support, SAML also provides support for secure retrieval of
identity attributes. More details on federation identity can be found in Section 4.

The main role of the A4C Server in the Identity and Profile management process is the
provisioning of user identities and profiles. All the identities of a user are stored in the A4C
Server in the home domain of the user. After a successful authentication the A4C Server sends all
the public identities of the users together with a list of VOs in which the user is registered to the
mobile terminal. Based on this information, the user can choose the identity he wants to use.

Services to which users are subscribed may require the storage of a service profile. Such a profile
would contain information specific for the given service (e.g. language in which the user prefers
the service to be delivered, or the default codec to use for voice encoding). As the service profiles
are service specific, it is up to the service to define what the corresponding service profile should
contain. Service profiles are stored transparently in the A4C Server of the service providers who
deliver those services.

<?xml version="1.0" encoding="UTF-8"?>

<GUP>

 <userID>alice@akogrimo.org</userID>

 <RfidTag>D2C7F651B28804004659255641102102</RfidTag>

 <SipUri>alice@akogrimo.org</SipUri>

</GUP>
Figure 14 Generic User Profile

D4.2.4, 1.0

© Akogrimo consortium members page 48 of 139

Figure 14 shows an example of a Generic User Profile. Such a profile is bound to a public
identity and is used to store attributes specific to that public identity. The example here contains
only information required by the e-Health scenario, but it can be extended with other parameters.

An example of a service profile can be found in Annex C.1. The presented example shows a
network QoS profile for user alice@akogrimo.org.

In order to store and retrieve profiles, the A4C infrastructure provides one interface that can be
called using an A4C Client. This profile management interface is described in the next section.

3.4.3.1. Profile Management API (E-A4C-2.5)

The ID and Profile Management interface is described in [D4.2.2], Section 4.2.2. In addition to
the previous description, two new methods are required for the interface E-A4C-2.5 that will be
used by the VO to publish and query service profiles:

� serviceProfile serviceProfileRequest(userID, serviceID)

The serviceProfileRequest() method is used for retrieving the service profile of a user.

� void serviceProfilePublish(userID, serviceID, serviceProfile)

The serviceProfilePublish() method is used for publishing a service profile for a given user
in the A4C Server.

3.4.4. Authorization of Context Request

Access to context information for users needs to be protected so only authorized services can
have access to the context of a specific user. The interface presented here, although currently
only used by the Context Manager, might be used in the future also by other components to
request authorization. For that, service specific modules need to be implemented in the A4C
Server in order to support service-specific authorization policies.

The authorization for access to context information will be performed by checking whether a
requester identified by a unique identifier may have access to the context of an object identified
as well with a unique identifier. The authentication of the two identifiers (checking whether the
requester really is who he claims to be and if the context really belongs to the right object) will be
performed internally by the Context Manager by using certificates. More details can be found in
section 5.3.5.3.

In order to support authorization of context request, the A4C infrastructure provides one
interface that can be called using an A4C Client. This interface is described in the next section.

3.4.4.1. Context Access Authorization API (E-A4C-2.12)

The Context Access Authorization interface provides means for the CM to verify with the A4C if
a particular requestor of a context may have access to that context. For this purpose, the A4C
Client class provides one method that can be used to verify authorization:

� int authorizationRequest(requesterID, objectID)

� requesterID – the serviceID of the service who wants access to context information

� objectID – the userID for which context information is requested

� the method returns 1 if authorization is successful or 0 otherwise.

D4.2.4, 1.0

© Akogrimo consortium members page 49 of 139

3.5. Accounting and Charging

The A4C infrastructure supports accounting of service usage both for network services and grid
services. Based on the collected accounting records the A4C Server performs charging for service
usage. For more details on accounting and charging in A4C refer also to [D.4.2.2].

3.5.1. Multi-Domain Accounting and Charging for
Compound Services

The multi-domain service provisioning aspect has an impact not only on the authentication of
users, but also on the accounting and charging of compound services. As a VO groups together
multiple service providers that agree to work together in order to provide high-level services to
users, the accounting and charging mechanisms of these service providers need to support the
accounting and charging of all the corresponding service sessions while presenting the user with a
single, aggregated bill that hides all the details about the sub-services required for the service
execution and delivery.

In Akogrimo a Single-Sign-On (SSO) approach was chosen for reducing the number of contracts
with SPs a user has to manage. Based on the contracts between SPs, users may access services in
administrative domains with which they do not have any contract. Figure 13 of the previous
section above shows a scenario in which a user has a contract with his home domain. Based on
the contract/trust relationships between service providers, the user may request services from the
BaseVO domain. This services may further aggregate services like Service A or Service B from
other SP domains. As the user only maintains a contract with his home domain, he will only
accept bills from this one, thus the home domain of a user will act as a bill aggregator for all
services the user requested.

A contract and trust relation between the BaseVO and service providers assures that whenever a
user requests a service from the SP, the SP can send the service charge fee to the BaseVO and
expects that the BaseVO pays for that service session.

Such an approach requires the communication of charging records and/or accounting records
between administrative domains. An accounting record contains information about the degree of
service usage at a given time, while a charging record contains information about the overall
service session, like the total amount of resources used and the total charge of the session.

Figure 15 Accounting and charging data flow

D4.2.4, 1.0

© Akogrimo consortium members page 50 of 139

Figure 15 shows the accounting and charging data flow in the multi-domain grid environment,
where network operators and service providers offer the complete service to the user. In each
network operator and service provider domain there is an A4C server that receives and collects
service usage data in the form of accounting records from components participating in the
service provisioning and performing service usage metering (e.g., the access router in the network
operator domain). A4C servers in the participating domains transfer session records to the A4C
server in the BaseVO domain, since the BaseVO domain is the central entity managing the
service provisioning. Session records can include accounting records and charging records,
depending on the business model and contract between the providers. The A4C server in the
BaseVO domain sends aggregated session records to the A4C server in the user’s home domain.
These records enable the home domain to prepare a single bill, containing all charges for
accessed services in the grid environment.

In case charging specifications are negotiated dynamically at service request, the session record
also contains the SLA-Contract-ID that identifies the SLA established between providers. Based
on the SLA-Contract-ID the A4C Server can retrieve the appropriate SLA and charging
specification from the SLA Repository and can perform the charge calculation for the given
session.

AR A4C Server

ACR(Start, ...)

ACR(Interim, ...)

ACR(Stop, ...)

ACR(Event, ...)

ACA()

ACA()

ACA()

ACA()

Figure 16 Message Sequence for Accounting

The messages related to accounting are shown in Figure 16. The figure only shows the AR but
the same applies for other components as well. The Accounting-Request (ACR) Diameter
message is used to send accounting records to the A4C Server. The Accounting-Answer (ACA)
message contains the response of the A4C Server.

Two different kinds of accounting types can be differentiated. If the service has a measurable
length, the AR has to send a Start Record at session start in the first Accounting-Request and a
Stop Record on session termination in the last Accounting-Request. The Start Record is used to
initiate an accounting session. The Stop Record is sent to terminate an accounting session and
contains the cumulative accounting data relevant to the session. The A4C Server determines
whether to send additional Interim Records. In this case the AR has to send Interim Records
periodically in a certain interval specified by the A4C Server. The Interim Record contains
cumulative accounting data for an existing accounting session. If the service is a one-time event,
meaning that the start and stop of the event are simultaneous, then the AR sends Event Records
to the A4C Server. The Event Record contains all accounting data relevant to the service.

D4.2.4, 1.0

© Akogrimo consortium members page 51 of 139

3.5.2. Accounting Interface (E-A4C-2.x)

The accounting interface is divided into the following two sub-interfaces:

� AccountingClient – manages the communication with the A4C Server, manages different
accounting sessions from the same client.

� AccountingRecord – serves as a container for the accounting data to be sent to the A4C Server.

� AccountingResponse – is a helper class and serves as a container for the answers received from
the A4C Server.

The AccountingClient interface offers the following methods:

� bool accountingClientStart(ConfigFilename)

The accountingClientStart() method is used for starting the A4C accounting client.

� AccountingResponse accountingSessionStart(UserName, ServiceID,
ParentSessionID)

The accountingSessionStart() method is used for creating a new A4C accounting session for a
given user and service instance. Whenever a user starts a service session, an accounting
session is created and all accounting records created during the service session will be sent in
this accounting session.

The following is the list of parameters and return values of this method:

� ParentSessionID: is a String containing the A4C session id of the process that started the
service. Can be the A4C session ID of the authentication session or the A4C session ID
of the accounting session of the parent process.

� AccountingResponse: is a container that stores the answer received from the A4C Server and
has the following attributes:

� SessionID: is a String containing the A4C session id of the newly created A4C
accounting session. This parameter will be further used to map accounting records to
accounting session.

� AccountingInterval: is an integer and specifies the interval to be used between two
consecutive accounting records

� boolean sendAccountingRecord(SessionID, AccountingRecord)

The sendAccountingRecord() method is used to send an accounting record to the A4C Server.
The accounting record needs first to be created, filled with the required AVPs and then sent.
The following is the list of parameters and return values of this method:

� SessionID: The A4C accounting session ID to which the accounting record belongs to

� boolean: True, if the request was successful

� AccountingRecord createAccountingRecord(SessionID)

The createAccountingRecord() method is used to create an accounting record. The accounting
record will be automatically filled with some required AVPs like username, serviceId, etc..

The following is the list of parameters and return values of this method:

� SessionID: contains the session ID of the accounting session to which the accounting record
belongs

D4.2.4, 1.0

© Akogrimo consortium members page 52 of 139

� AccountingRecord: is an object that will act as a container for the metrics that need to be
included in the accounting record

The AccountingRecord sub-interface offers the following methods:

� ResultCode addAVP(AvpID, Value)

The addAVP() method is used for adding an Attribute-Value-Pair to an existing
AccountingRecord object. It will be used whenever a metering component needs to add a
metered parameter to an accounting record.

The following is the list of parameters and return values of this method:

� AVPID: is the identifier of the parameter to be included in the accounting record, as
defined in the Diameter dictionary

� Value: parameter’s value

� ResultCode: specifies if the operation was successful or not.

� ResultCode removeAVP(AvpID)

The removeAVP() method is used for removing an Attribute-Value-Pair from an existing
AccountingRecord object.

The following is the list of parameters and return values of this method:

� AVPID: is the identifier of the parameter to be included in the accounting record, as
defined in the Diameter dictionary

� Value: parameter’s value

� ResultCode: specifies if the operation was successful or not.

3.5.3. SLA Interface (E-A4C-1.1)

In order to support the retrieval of charging information from the SLA, the A4C infrastructure
has an interface with the SLA Repository. The SLA interface will be used by the A4C Server to
retrieve the charging specification in the SLA contract from the SLA Repository. The charging
specification is used to calculate the charge for a given service session. In case the charging
scheme is negotiated dynamically, accounting records and auditing records have to include the
SLA-Contract-ID in order to enable the A4C server to identify the SLA to be applied for the
session. Note, that this interface will only be needed if the appropriate charging scheme will be
negotiated during the SLA negotiation process. If only the QoS parameters are negotiated, the
SLA interface is not needed. In that case the A4C server will have the fixed charging scheme
available locally. Charging information will be stored in the database of the A4C Server.

� ResultCode retrieveSLAContract(SLAContractID, &SLA)

The retrieveSLAContract() method is used by the A4C server to retrieve the SLA contract
from the SLA Repository. The following is the list of input parameters and return values of
this method:

� SLAContractID: a string representing the identifier of the SLA contract generated for the
service session.

� &SLA: an object representing the SLA contract as a result of the method call.

� ResultCode: a boolean representing whether the task was completed successfully or not.

D4.2.4, 1.0

© Akogrimo consortium members page 53 of 139

3.6. Auditing

Auditing can generally be defined as an examination of audit trails to ensure compliance with pre-
established specifications, including procedures, policies, and agreements or contracts. The
auditing objective within Akogrimo is to detect any violations to an SLA and to react according
to the SLA. Akogrimo defines reimbursements for affected customers if a provider is not able to
fulfill the SLOs specified. With respect to SLA compliance auditing, an A4C server is responsible
for collecting, processing, and storing of SLA violation reports obtained from the EMS
(Execution Management Service). During charge calculation these reports will be checked and
reimbursements will be applied according to the negotiated SLA for the service that was
monitored. A4C auditing will not take any further actions such as controlling the service instance,
as this is done by the EMS.

Figure 17 shows the sequence of messages to report auditing events to the A4C server. During
service provisioning, a monitoring component receives notifications with respect to CPU,
storage, and memory usage from the Metering service. In order to reduce traffic, the Metering
service sends out a notification only when the difference between the new and old value of a QoS
parameter exceeds a certain threshold. The Monitoring service also gets notifications related to
network layer from the QoS Broker. The Monitoring service informs SLA Controller when a
notification is received.

Figure 17 MSC for SLA compliance auditing interactions

The SLA Controller determines whether the service is running under the expected condition, i.e.,
whether the QoS parameters are within the thresholds defined in the SLA. If a violation occurs,
the SLA Controller sends a violation report to the SLA Decisor which contacts the Policy
Manager to take the appropriate actions. Afterwards, the SLA Decisor propagates the violation to
the EMS through a notification message.

The EMS, having received the notification message, reports the event to the A4C server with the
help of an A4C client. The A4C client creates a Violation-Report-Request (VRR) message and
sends it to the A4C server. Included in the message are the violation type and the violation degree
that was detected as well as the accounting sessionID of the session for which this violation is

D4.2.4, 1.0

© Akogrimo consortium members page 54 of 139

reported. Possible violation types for a service are stored in the A4C server. The A4C Server
responds with a Violation-Report-Answer (VRA).

3.6.1. SLO Violation and Reimbursement

As mentioned in the previous section a reimbursement is applied if an SLO is violated. Each
SLO is given an identifier which is called an SLO-ID to allow for later references when reporting
a violation event. Table 12 lists and describes only that part of information in an SLA which is
relevant for auditing.

Table 12 Reimbursement formulae

Information Item Type Example Remark

Contract (SLA)-ID String 20061116-01 Each SLA must be uniquely
identified by an SLA-ID.

Service-ID String VoIP-Gold An SLA may specify more than
one service. Each service is
identified by a Service-ID.

SLO-ID Unsigned
Integer

5 (Jitter) An SLA may specify several SLOs
for a particular service. Each SLO
is identified by an SLO-ID.

SLO Expression Jittermax < 100 ms
and Jitteravg < 50
ms

An SLO defines an expression
representing a specific condition to
be met. In general, this expression
is composed of relational and
logical expressions. The relational
expressions relate QoS parameters
with specific target values.

Violation Degree Unsigned
Integer

1 (Severe) To allow for finer granularity of
SLO violation evaluations, degrees
of violation are introduced. Each
degree corresponds to a particular
violation condition.

Violation Condition Expression Jittermax > 250 ms
or Jitteravg > 150
ms

A violation condition is defined for
a particular violation degree.

Base
Reimbursement

Unsigned
Integer

10 EUR/event The reimbursement to be applied if
there is a violation to the SLO
irrespective of the degree of
violation.

Reimbursement
Weight

Unsigned
Integer

150 For each violation degree a weight
factor in percentage of base
reimbursement is also defined.

Table 13 presents a list of pre-defined SLO-IDs to be used within Akogrimo. The list is not
considered to be complete and is extensible to allow for other types of violations.

D4.2.4, 1.0

© Akogrimo consortium members page 55 of 139

Table 13 Akogrimo SLO-ID

Akogrimo SLO-ID Meaning

1 Downlink Throughput

2 Uplink Throughput

3 End-to-end Delay

4 Round-Trip Time (RTT)

5 Jitter

6 Packet Loss

7 CPU Usage

8 Memory Usage

9 Storage Usage

3.6.2. Auditing API (E-A4C-2.8)

The auditing interface E-A4C-2.8 will be used by EMS to inform A4C on detected SLA
violations during service provisioning. This interface is implemented as an API providing the
following classes and methods:

� Class A4CClient

An object of this class implements the auditing functionality of an A4C client to
communicate with an A4C server. Following public methods are provided:

� AuditingReport createAuditingReport(acctgSessionID)
This method is used to create an AuditingReport object. The string parameter
acctgSessionID identifies the affected accounting session for which an auditing report is
to be generated.

� ResultCode sendAuditingReport(AuditingReport)
Calling this method will cause the A4C client to send to the A4C server a VRR message
constructed from the object parameter AuditingReport. This method returns immediately
if there is an error in sending the VRR message, otherwise, it will return after a VRA
message has been received. The value of the ResultCode is an integer denoting whether
the task was completed successfully or not. A non-zero value means that there was an
error.

� Class AuditingReport

An object of this class holds information about the violation event. This class provides the
following public method:

� int addReportItem(violationType, violationDegree, violationText)
Each violation event is described by invoking this method with the respective values of
the parameters:

D4.2.4, 1.0

© Akogrimo consortium members page 56 of 139

� The parameter violationType is an unsigned integer to identify a specific type of
violation. It must refer to a pre-defined SLO-ID.

� The parameter violationDegree is an unsigned integer denoting the degree of violation
which will have impact on the amount of reimbursement to be paid.

� The parameter violationText is an information string which will not be processed by
A4C, but stored.

3.6.3. A4C Internal Auditing Interface (I-A4C-1.7)

The auditing interface I-A4C-1.7 will be used by an A4C client to report SLA violations to an
A4C server. The communication is based on Diameter protocol, whereby a new command code
is needed for the definition of VRR/VRA messages.

3.7. Implementation

The implementation description of the A4C infrastructure provides the internal architecture and
implementation details of the A4C Server and A4C Client. Additionally, the A4C database
structure is described.

3.7.1. A4C Server Internal Architecture

The internal architecture of the A4C Server depicts the fine design of the A4C implementation
prototype. The internal A4C Server architecture is shown in Figure 18. It consists of the
following components:

� Diameter Library: It is responsible for the handling of the Diameter protocol. It acts as a
message dispatcher and sends and receives Diameter messages. It is based on the
OpenDiameter library [OPENDIAM].

� AA Component: It is responsible for authentication and authorization. It includes several
subcomponents, i.e. NET Authn Handler, SIP Authn Handler, VO Authn Handler, User
Profile Handler, SD AA Handler, and QoS Profile Handler, which provide various AA
functions. It also includes the SAML Authority Client which enables a SOAP based
communication with the SAML Authority.

� Accounting Component: It controls and manages the accounting process.

� Auditing Component: It is responsible for the handling of auditing event messages.

� Charging Component: It is responsible for charging and it supports post-paid charging based
on a service-dependent and flexible tariff specification.

� A4C Database: It stores user profiles, authentication information, accounting and charging
related configuration data, and accounting and charging records. It is a MySQL database
[MySQL].

� Database Interface: It provides the communication with the A4C Database.

� Management Interface: It provides an interface for the management and configuration of the
A4C Server for the network administrator.

� SAML Authority: It generates and manages SAML IDTokens required for the authentication
process. It is a separate component but highly related to the A4C Server.

D4.2.4, 1.0

© Akogrimo consortium members page 57 of 139

Figure 18 A4C Server Internal Architecture

3.7.2. A4C Server Implementation Details

As Figure 19 shows the main class in the server implementation is A4CServer. It uses an
AA_Server, implemented as a singleton, for dealing with authentication, authorization and
auditing messages. The accounting and charging related messages are dealt by an Acct_Server
also implemented as a singleton. The proper delivery of Diameter messages to the right server
class is done by the A4CServerAllocator class. The interface to the storage database is the
A4Cdb class which in Akogrimo is based on mysql++ library. The communication between the
A4C Server and the SAML Authority is done through the SAMLAuthorityClient class. This
class is a C++ wrapper to a SOAP client that communicates with the SAML Authority for
requesting and validating IDTokens.

The data received by the A4C Server is processed in one of the dedicated message handlers:
NetAuthnMsgHandler for network-based authentication, ProfileMsgHandler for
requesting service profiles for users, VOAuthnMsgHandler for validating IDTokens during the
VO-Login phase, AuditRecordMsgHandler for processing violation messages,
AuthzMsgHandler for authorization of access to context management and
AccountingSessionHandler for processing accounting records.

D4.2.4, 1.0

© Akogrimo consortium members page 58 of 139

1

1

1

1

1

1

1

1

1

1
1 1

1

Figure 19 A4C Server - Class Diagram

3.7.3. A4C Client Internal Architecture

The internal architecture of the A4C Client depicts the fine design of the A4C implementation
prototype. The internal architecture of the A4C Client is shown in Figure 20. The A4C Client
consists of the following components:

� Diameter Library: It is responsible for the handling of the Diameter protocol. It acts as a
message dispatcher and sends and receives Diameter messages. It is based on the
OpenDiameter library [OPENDIAM].

� AA Component: It is responsible for authentication and authorization. It includes several
subcomponents, i.e. NET Authn Handler, SIP Authn Handler, VO Authn Handler, User
Profile Handler, SD AA Handler, and QoS Profile Handler, which provide various AA
functions. It communicates with the AA Component in the A4C Server.

� Accounting Component: It supports the accounting process and enables to send accounting
records. It communicates with the Accounting Component in the A4C Server.

� Auditing Component: It supports the auditing process and enables to send auditing events. It
communicates with the Auditing Component in the A4C Server.

� SAML Client: It provides the SAML assertion handling, e.g. the verification of its validity.

� A4C Client API: It provides the interface of the A4C Client library both in C++ and Java
using JNI [JNI].

D4.2.4, 1.0

© Akogrimo consortium members page 59 of 139

Figure 20 A4C Client Internal Architecture

3.7.4. A4C Client Implementation Details

A4C Client implementation is centered on the A4CClientEngine class as depicted in Figure 21.
This class acts as an interface to the different modules that implement the different specific
functionalities of the A4C Client:

� AA_Profile: used for request of service profiles

� AA_Authz: uses for request of service authorization.

� AA_VOAuthn: used for request of IDToken validation

� PAA: used for instantiating a PANA Authenticator for intermediation of network
authentication

� AuditingReport: used to send violation reports

� AccountingSessionManager: used to create accounting sessions and to send
accounting records in these sessions

D4.2.4, 1.0

© Akogrimo consortium members page 60 of 139

1

*

1

*

1

*

1*

1 1

1

*

1

1

Figure 21 A4C Client - Class Diagram

D4.2.4, 1.0

© Akogrimo consortium members page 61 of 139

3.7.5. A4C Database

The structure of the A4C database is shown in Figure 22. In the following the database tables and
their fields are explained in detail.

Figure 22 A4C Database Structure

User and customer details

The data fields of the userDetails and customerDetails tables are shown in Table 14 and Table 15
respectively. They include generic attributes like username, password, and personal details.

Table 14 Data fields of the userDetails table

Data Field Data Type Description

userId Integer Database internal identifier of the user

username Varchar(45) Username in user@domain (NAI) format

password Varchar(20) Password of the user

customerId Integer The customer identifier of the user

lastName Varchar(45) Last name

firstName Varchar(45) First name

street Varchar(45) Street

city Varchar(45) City

zip Varchar(20) Zip code

country Varchar(45) Country

email Varchar(45) Email address

phoneOffice Varchar(45) Phone number office

D4.2.4, 1.0

© Akogrimo consortium members page 62 of 139

Data Field Data Type Description

phoneRes Varchar(45) Phone number residence

phoneMobile Varchar(45) Phone number mobile

sipURI Varchar(45) Default SIP address of the user

rfidTag Varchar(45) RFID tag associated to the user

bvoManager Varchar(45) Reference to the BVO Manager

flags Integer Internal flags for management purposes

Table 15 Data fields of the customerDetails table

Data Field Data Type Description

customerId Integer Database internal identifier of the customer

lastName Varchar(45) Last name

firstName Varchar(45) First name

organization Varchar(45) Organization

street Varchar(45) Street

city Varchar(45) City

zip Varchar(20) Zip code

country Varchar(45) Country

email Varchar(45) Email address

phone Varchar(45) Phone Number

billCurrency Char(3) Currency used for billing

flags Integer Internal flags for management purposes

Service details and profiles

The serviceDetails table shown in Table 16 stores available services, specified by a service
identifier. Additionally, each service has a name and an optional description.

Available AVPs used in Diameter messages are listed in the avpDetails table (Table 17). Each
AVP is defined with its Diameter AVP code, AVP name, and the data type of the AVP. Each
type of AVP is stored in a separate table (cf. Table 25), which is specified by the avpTableName
field.

The relation between services and AVPs are defined in the avpServiceMapping table (Table 18),
which specifies the AVPs used for a particular service. The serviceProfiles table (Table 19) lists
for every user the enabled services with the service profile. The profile defines the network QoS
parameters enabled for the user.

The permissionDetails table (Table 20) specifies possible access rights per user and service.

Table 16 Data fields of the serviceDetails table

Data Field Data Type Description

serviceId Varchar(255) Identifier of the service

serviceName Varchar(45) Name of the service

description Varchar(255) Description of the service

Table 17 Data fields of the avpDetails table

Data Field Data Type Description

avpCode Integer Diameter AVP code

avpName Varchar(45) Name of the AVP

description Varchar(255) Description of the AVP

dataType Varchar(45) Data type of the AVP

avpTableName Varchar(45) Name of the database table storing this type of
AVP

Table 18 Data fields of the avpServiceMapping table

Data Field Data Type Description

avpCode Integer Reference to the AVP

D4.2.4, 1.0

© Akogrimo consortium members page 63 of 139

Data Field Data Type Description

serviceId Varchar(255) Reference to the service

Table 19 Data fields of the serviceProfiles table

Data Field Data Type Description

userId Integer Reference to the user

serviceId Varchar(255) Reference to the service

profile Varchar(45) File name of the profile

Table 20 Data fields of the permissionDetails table

Data Field Data Type Description

userId Integer Reference to the user

serviceId Varchar(255) Reference to the service

accessLevel Varchar(45) Access permission

Session details

The sessionDetails table (Table 21) is used to store all A4C session related information. The
session is identified with a globally unique session identifier, specified by the Diameter protocol.
The session might have a parent session, if it is part of a compound service with a session
hierarchy. The session is associated to a user, a service and to a provider domain. It has a start
and an end time. The flags field defines the state of the session, i.e. running, terminated, charged.

Table 21 Data fields of the sessionDetails table

Data Field Data Type Description

sessionId Varchar(255) Session identifier

parentSessionId Varchar(255) Session identifier of the parent session

serviceId Varchar(255) Reference to the service

userId Integer Reference to the user

homeDomain Varchar(45) Home domain of the user

providerDomain Varchar(45) Domain of the service provider

startTime Timestamp Start time of the session

endTime Timestamp End time of the session

flags Integer State of the session, i.e. running, terminated,
charged

Authentication and authorization records

The aaRecords table (Table 22) stores authentication and authorization events associated to a
session. It specifies the user and service the request was received for. The type field includes the
type of the request, e.g., network authentication, IDToken based authentication, profile retrieval.
The result of the authentication and authorization, e.g., accept or deny, is stored in the result
field. The timestamp specifies the time the record was created. Finally, the remark field can
include additional information related to the authentication and authorization, e.g., the IDToken
returned.

Table 22 Data fields of the aaRecords table

Data Field Data Type Description

recordId Integer Identifier of the record

sessionId Varchar(255) Reference to the session

type Varchar(45) Type of the authentication/authorization event,
e.g., network authentication, IDToken based
authentication, profile retrieval

username Varchar(255) Reference to the user

serviceId Varchar(255) Reference to the service

result Varchar(255) Result of the authentication/authorization.

D4.2.4, 1.0

© Akogrimo consortium members page 64 of 139

Data Field Data Type Description

timestamp Timestamp Timestamp of the record

remark Varchar(255)

Accounting and auditing records

Accounting and auditing records are mapped to several tables in the database. The dataRecords
table (Table 23) stores the records with the record identifier, the type of the record, the reference
to the related session, and the timestamp. The content of the records, i.e. the AVPs, are stored in
the AVP_x tables. Every AVP has a separate AVP_x table, where x is the Diameter code of the
AVP. The mapping between records and AVPs is realized by the avpDataRecordsMapping table
(Table 24), which associates the recordId with avpId and avpCode. The avpGroups table (Table
26) is used to map grouped AVPs.

Table 23 Data fields of the dataRecords table

Data Field Data Type Description

recordId Integer Identifier of the record

recordType Integer Type of the record, 0 = accounting, 1 = auditing

sessionId Varchar(255) Reference to the session

Timestamp Timestamp Timestamp of the record

Table 24 Data fields of the avpDataRecordsMapping table

Data Field Data Type Description

recordId Integer Reference to the record

avpId Integer AVP index in AVP_x table

avpCode Integer Diameter AVP code

Table 25 Data fields of the AVP_x table

Data Field Data Type Description

avpId Integer Database internal index

avpValue According to
the AVP type

Value in the AVP

Table 26 Data fields of the avpGroups table

Data Field Data Type Description

groupId Integer Identifier of the group

avpId Integer Database internal index

avpCode Integer Reference to the AVP

Tariffs and Charging records

The userTariffs table (Table 27) specifies the tariff file associated to a certain user, service and
domain. The tariff file contains the charging specification. The chargingRecords table (Table 28)
stores data related to charging records.

Table 27 Data fields of the userTariffs table

Data Field Data Type Description

userId Integer Reference to the user

serviceId Varchar(255) Reference to the service

domainName Varchar(45) Name of the domain providing the service

tariffFile Varchar(45) File name of the tariff specification

Table 28 Data fields of the chargingRecords table

Data Field Data Type Description

recordId Integer Identifier of the record

sessionId Varchar(255) Reference of the session

Charge Float Charge for the session

D4.2.4, 1.0

© Akogrimo consortium members page 65 of 139

Data Field Data Type Description

Currency Char(3) Currency used for the record

timestamp Timestamp Timestamp of the record

3.7.6. A4C Manager

The A4C Manager provides a graphical user interface to control and configure the A4C server. It
enables the management of customers, users and services, the monitoring of authentication
results and accounting records, and the performance of charge calculation and billing.

The A4C Manager is implemented as a stand-alone application in Java. It uses the A4C database
in order to set, update, and retrieve information related to customers, users, authentication
events, accounting and charging records. Figure 23 shows the users view of the A4C Manager. It
enables the addition, update and removal of users in the A4C database. A user record includes
the username, password, personal data (like name, address, e-mail address, and telephone
numbers), the SIP URI, and the RFID tag.

Figure 23 Users View of the A4C Manager

Figure 24 shows the identity management view of the A4C Manager. This view enables the
management of public identities, service profiles, and tariff specifications. Public identities can be
assigned to a username-service ID pair, where the public identity will be used when the user
accesses the given service. Similarly, the service profile can be assigned per user-service pair.
Finally, the tariff specification defines the tariff file to be used in the charge calculation. Separate
tariff files can be assigned per user, service, and domain.

D4.2.4, 1.0

© Akogrimo consortium members page 66 of 139

Figure 24 Identity Management View of the A4C Manager

The accounting view of the A4C Manager is shown in Figure 25. It enables the monitoring of
accounting records. Accounting records are listed per accounting session. In the accounting
record details, all AVPs of a selected accounting record are shown. The session list can be filtered
per user and service.

Figure 25 Accounting View of the A4C Manager

The charging view of the A4C manager is shown in Figure 26. It provides the view of charging
records and the possibility to generate bills. Charging records can be filtered by customer, user,

D4.2.4, 1.0

© Akogrimo consortium members page 67 of 139

and service. For terminated sessions the charge calculation can be performed and a bill can be
prepared for the defined billing period. The bill is created per customer separately.

Figure 26 Charging View of the A4C Manager

3.7.7. Security Considerations

The A4C is a key component with respect to security, since it provides security mechanisms by
itself, namely authentication and authorization. Other functions, like accounting, auditing, and
charging work with highly sensitive data. Thus, the provisioning of A4C functions in a secure
manner is of key importance. The implementation of A4C is done on top of OpenDiameter
framework which has a library implementing Transport Layer Security (TLS). Since message
authentication, integrity protection, and encryption between A4C components are implemented
in an OpenDiameter library, A4C as an OpenDiameter application does not need to implement
its own message transport security. To secure the communication between an (application)
service and an A4C Server, the service has to use a separate A4C Client and be assigned a
separate certificate. This allows the A4C Server to have separate TLS connections to every
service and identify and authenticate the service based on its certificate.

D4.2.4, 1.0

© Akogrimo consortium members page 68 of 139

4. Identity Management

Federated Identity Management is a crucial topic in Akogrimo due to the importance of the
information conveyed and its implications for all layers.

Since there is more than one entity in Akogrimo which needs access to the information regarding
user’s identity, a system is designed in a simple and transparent way that fits all needs. Especially
in authentication and authorization tasks, the involved components must ensure that they get all
necessary information. Therefore a Distributed Federated Identity Management has been
developed to fulfil specific requirements for privacy and security.

The following sections explain the concept of the Akogrimo approach and give a brief overview
of the identity architecture and the involved components.

4.1. Identity and Profiles

The identity of the user is the key information in the further accounting of service usage and bill
creation. The identity of a user was introduced in [D3.1.1] and further explained in [D3.1.3].

The user consists of a set of characteristics that are required to be stored either in the home
domain or a service provider domain. Some of these attributes are considered to be of a generic
nature and consist of personal user information (name, gender, age, bank account nr., etc.)
Another subset of attributes is related to the home domain of a user and contains information
like policies to be applied after a user logs in. The personal user information and home domain
specific attributes should be stored inside the home domain of a user. A third subset of attributes
contains service-specific information. This set of attributes can be stored either in the home
domain or in the service provider domain that provides the service. A user profile consists of the
set of all characteristics of a user (personal, home domain related, service related). An identity
profile in Akogrimo is a subset of the whole user profile which contains just the attributes which
are relevant for a service or a group of services. Many identity profiles which are service
dependent can match to the same user.

In the normal life, the user identity which is usually presented depends on the type of
organization. For instance, the identity profile that an employee presents at work -with attributes
like social security number, Health insurance number among others- is different to the profile
that a user presents, for example, at a travel agency – with attributes like interesting countries,
type of trip…etc.

It is desired in Akogrimo that the user can choose the attributes (excluding demanded attributes)
he wants to share within a Base Virtual Organization, which is seen actually as another service or
compound service. Depending on several factors such as the content, the purpose and the nature
of the VO, he will want to customize the set of attributes that form his identity profile for that
service. In Akogrimo, the personalization will be done by the user, at the Base VO registration in
a very straightforward way. He will be able to select the attributes that are already stored in the
home domain and include other ones at that phase.

In this case, it is considered that the user can have several identity profiles and digital identities –
but only one within one Base VO. It is a matter for the user if he wants to use the same identity
profile for several VOs.

Table 29 shows relevant terms with its characteristics for identity management and the purpose
of the usage and the components involved. A combination of these is used to guarantee
pseudonymity.

Table 29 Components for identity handling

D4.2.4, 1.0

© Akogrimo consortium members page 69 of 139

Name Type Purpose Involved Components

Login-Name String Authentication MT, A4C, SAMLAuthority

Username String Authentication MT, A4C, SAMLAuthority,
Participant Registry

IDToken String Authentication MT, A4C, SAMLAuthority

Profile List of Attributes Authorization MT, A4C, Participant Registry

Attribute String Authorization MT, A4C, Participant Registry

Role Attribute Authorization MT, A4C, Participant Registry

4.2. Architecture

There are three main components that handle with Identity Management issues, the A4C Server
(include the SAML Authority), the Participant Registry and the Mobile Terminal.

Figure 27 shows a sketch of the components implied in the Distributed Federated Identity
Management that are described in this section. All the components are described in detail in
other chapters in this document or in other deliverables. Hence they are only characterized in a
short way in the following subsections.

D4.2.4, 1.0

© Akogrimo consortium members page 70 of 139

Figure 27 Distributed Storage of the Identity

4.2.1. A4C Server

The main tasks of the A4C Server related to Federated Identity Management are to authenticate
the user during the initial login and all later authentication phases and to store the generic user
profile. When it validates a user during the login–phase the SAMLAuthority is requested to
generate an IDToken for him and to issue an authentication assertion. If an authentication is
requested from a service the A4C Server received the Identity Token of the user and forwards it
to the SAMLAuthority. From the Authority it will receive the login-name of that user so it is able
to validate user’s identity using the identity overview stored in a database.

For Identity Management purpose it has to communicate with

� Mobile Terminal: Send IDToken after login

� Policy Management System of services and VOs: to receive validation requests

� SAML Authority: Send IDToken and receive SAML Authentication Assertions

� Virtual Organization Manager: To update any changes in user profiles between Participant
Registry and A4C Database

Further information to the A4C Server can be found in Chapter 3 and in [D4.2.2] (Chapter 4).

4.2.1.1. SAMLAuthority

The SAMLAuthority is responsible for validating user’s identity and generating SAML assertions
[SAMLAssertion]. Each time the A4C Server receives a request to validate an Identity Token, the

D4.2.4, 1.0

© Akogrimo consortium members page 71 of 139

request is forwarded to the SAMLAuthority. The SAMLAuthority responds by sending the
related log-in name, thus the A4C Server is able to check if the IDToken and the provided
identity match. It can also send identity profiles of the user in a SAML attribute assertion.

� SAML Database: In the SAML Database all Authentication Assertions are stored together
with some user related information that is needed to validate the tokens.

� Interface SAMLAuthority – A4C Server: Since all information that is sent by the
SAMLAuthority passes to A4C Server the SAMLAuthority needs only the interface to the
A4C Server even though the information the Authority produces may be sent to more
components.

Further information about the SAMLAuthority and it’s interfaces and functions can be fond in
[D4.2.2] (Sections 4.3.1, 4.4.3, 4.4.4).

4.2.2. Participant Registry

The Participant Registry is part of a VO and thus not part of the network architecture. It stores
all relevant information that user needs inside this VO (service specific profile). The design and
implementation of the Participant Registry is not a part of WP4.2 and described in [D3.1.2]
(Section 6.4.1), [D4.4.1] (Section 3.1) and [D4.4.2] (Section 2.1.5).

The purpose of the Participant Registry related to Identity Management is to store the profile
information required by the VO and provide it to the Policy Management System when
requested.

� Interfaces to A4C: The Participant Registry needs to communicate with the user’s Home
A4C to update profile changes. This is done by communication via the VO manager, since
both A4C and Participant Registry have interfaces to that component.

4.2.3. Mobile Terminal

The Mobile Terminal is responsible for the IDToken and thus it stores the user’s identity. Each
time an authentication is needed it sends the IDToken and the current username to the entity
that requests authentication. From there the token is forwarded together with the username to
the Home A4C for verification.

� Interfaces to A4C: The Mobile Terminal needs communication with the A4C Server for
receiving the IDToken. This is done via an A4CClient at the Access Router.

� Interfaces to Services and Policy Management Systems: For the use of services and for
authorization purposes the Mobile Terminal must have an interface to all services and their
Policy Management System.

A detailed description of the Mobile Terminal and its interfaces and functions can be found in
[D4.1.1] (Sections 2.3.4, 2.4.6, and 3).

Additionally, the Mobile Terminal is also responsible of the module called as the Identity
Selector. This module enables the user to select the identity profile used when using a service.
The Identity Selector interfaces with the A4C for receiving and sending information about
personalization of the identity profiles.

The Identity Selector provides mainly the functionality to:

� Create a new profile: This can occur under different circumstances, for instance, at VO
registration the user can create the desired profile for the VO or at any other situation that
the user wants another profile. The Identity Selector offers a simple and intuitive Graphical
User Interface to the user in order to make the creation as simple as possible.

D4.2.4, 1.0

© Akogrimo consortium members page 72 of 139

� Select the desired identity profile for the service: The user just clicks on the Identity Selector
GUI that appears at the Mobile Terminal when requesting a service.

Other possibilities can be chosen, like the selection of the default desired identity for the services
at one session.

4.3. Communication Schema

Figure 28 shows the communication that is needed for Federated Identity Management in
Akogrimo.

Service Provider

Service Provider

Domain

A4C

Network Provider

Network Provider

Domain

A4C

BVOManager
Participant

Registry

A4C

Check

membership

requirements

addParticipant

(Profile)

subscribeParticipant

(Profile)

ack / no ack

subscribeParticipant

(Profile)

storeProfile (Profile)

se
cu

re
 b

rid
ge

Administrator

secure bridge

 Figure 28 Architecture (A4C)

4.3.1. Authentication

There are two different types of authentication used in Akogrimo, the initial login and other
authentications afterwards.

Login

First the user sends his login-name and password to the A4C where it is checked. If the
credentials are valid the SAMLAuthority generates an IDToken for him, stores his login-
information in the SAML Database and sends a SAML Authentication Assertion to the A4C.
After the login-phase the user is provided with a list of possible VOs and usernames he may want

D4.2.4, 1.0

© Akogrimo consortium members page 73 of 139

to use within the domain. He selects one and is from that point on is only visible with this
username.

Authentication after login

If some authentication is needed after the login-phase, the user sends his current username and
his IDToken to the entity that needs his authentication from where it is forwarded to user’s
Home A4C Server. The A4C Server requests the SAMLAuthority to validate the token and
receives from the Authority user’s login-name. The A4C Server checks if the identity provided by
the user matches one of the possible identities that are composed with the login name.

4.3.2. VO Subscription

The VO subscription of a user is an offline process. The user is requested to generate a profile he
wants to use within that VO and the required data (e.g. username, personal preferences, VO
requirements, etc.) are committed to the Participant Registry where they are stored. To this data
any Service specific profile data can be added. The user may chose if he wants to build up a new
profile from scratch or if he uses parts of one already stored in his Home A4C.

4.3.3. Authorization

Following the concept of Distributed Federated Identity Management the main components
involved in authorization are the Participant Registry (where authorizations done in BVO are
stored) and the Home A4C of the user:

When a user needs to be authorized he first must validate his identity by sending the IDToken
and his current username to the entity that requires the authorization. There he is first
authenticated as described in Section 4.3.1. After that the Policy Management System requests
the user profile that is stored in the Participant Registry. Based on the provided profile
information the Policy Management System will decide if the user is authorized for the requested
action.

4.4. Key Management Infrastructure and

Certification Authority

With the use of encryption methods provided by public-key cryptography a communication
between partners is more secure. But this encryption method is not protected against malicious
acts whether steeling private keys or act as man in the middle during the setup of a
communication. To make sure that the holder of a key pair is the entity (user or service) he
claims to be, Akogrimo provides a Public Key Infrastructure (PKI).

The PKI consists of at least one Registration Authority (RA) and one Certification Authority
(CA). Whenever an entity needs a certificate (X.509) that claims its identity, a certificate request
has to be sent to the RA. The RA verifies the identity of the requester by given credentials and
forwards the request after a successful verification to the CA. The CA issues the certificate and
signs it – it is expected that each member trusts the CA, thus the CA-signature means
doubtlessness. To guarantee this doubtlessness it has to be assured that

� Each member trusts the CA

� A policy guarantees a reliable way of validating identities

� A policy guarantees a reliable way of issuing certificates

� The certificates can be removed in case of misuse

D4.2.4, 1.0

© Akogrimo consortium members page 74 of 139

Figure 29 Certificate Issuing

For the fist issue it is considered to provide a root CA that is certified by a worldwide accepted
CA (or self signed when each member has trust in this Authority without a certificate from a
trusted 3rd party). This Akogrimo-Root-CA will handle certificate requests for entities and
especially for other CAs that are intended to be used in Akogrimo. E.g. when each domain owner
wants to use his own CA, these CAs have to be certified by the Akogrimo-Root-CA, so that all
entities from other domains have the ability to trust the certificates of that CA too. In that way
the trust to each CA used in Akogrimo is ensured by inheritance:

D4.2.4, 1.0

© Akogrimo consortium members page 75 of 139

Figure 30 CA Hierarchy

If it is not feasible to establish a Root-CA that is trusted by each member, all CAs in different
domains (or in a larger scale if possible) must have certificates from other trusted CAs.

A revocation list is used to verify the status of certificates. When a user reports misuse (or it is
detected by other sources) the certificate is revoked and this revocation is issued. Due to constant
updates of the revocation list all Akogrimo members are aware that this certificate is not valid any
longer.

It is thought that the Home A4C Owner acts as RA for all users subscribed to that domain. The
RA function for the services in the VOs can be done by the Owner of the Participant Registry. In
that case, the entities that already deal with the identity verification have only another task to do
instead of setting-up a new component in the architecture.

For the use of certificates it is proposed that all user-certificates are stored at their Home A4C as
part of their profiles and thus transferred to the VO Participant Registry when the user
subscribes.

The service-certificates are stored initially at the Participant Registry but transferred to user’s
Home A4C as important VO information when he subscribes.

This approach guarantees that all certificate information is always up-to-date, since the A4C will
receive revocation information for user certificates and the Participant Registry for service
certificates.

D4.2.4, 1.0

© Akogrimo consortium members page 76 of 139

4.5. Building Confederations

Since the Akogrimo Identity Management is oriented towards the Shibboleth [Shib] approach, it
is possible to migrate a user to other federations. With respect to the eduGAIN [eduGAIN]
project, which will combine several national federations into one European confederation, the
need for Akogrimo to be compatible with these AAIs grows. Thus, the Akogrimo Identity
Management concept must allow an easy connection to one of the participating federations.

To show a possible scenario via a thought process, a connection to a Shibboleth federation will
be established. The requirements for the Akogrimo Identity Management are as follows:

� Use or provide the schema for the connected Shibboleth federation

� Provide an interface that allows the Akogrimo users a connection to the Shibboleth
federation

� Provide an interface that allows the Shibboleth federation users a connection to Akogrimo

The use of the accordant schema is required for the interaction with the SPs of the Shibboleth
federation. Thus, it is recommended that a user provides at least all attributes to his Home A4C
Server to fulfil the EduPerson [EduPerson] schema or provides them during the migrating
process to the Shibboleth federation at the gateway. Only this guarantees a seamless user-
migration into the international confederation.

The bridging element between the Akogrimo federation and a Shibboleth federation is split into
two parts: The incoming bridge (from Shibboleth to Akogrimo) and the outgoing bridge (from
Akogrimo to Shibboleth).

The outgoing bridge is a Shibboleth Identity Provider (SIdP) with a web based portal. The
Akogrimo user has to start his browser and to access the website. After providing his IDToken
to the bridge, which acts as a service, he will receive a Shibboleth browser artefact from the proxy
SIdP. The gateway stores only those attributes that are needed for the Shibboleth federation and
are not part of user’s Akogrimo–profile.

Figure 31 shows the message flow for an Akogrimo user, that already has a virtual account at the
bridge, i.e. the proxy IdP, for using the Shibboleth environment. He sends his Shibboleth
artefact, which he has got during the token-conversion from the bridge element, to the SP of that
resource he wants to access. The SP discovers by using a Where-Are-You-From (WAYF) the
proxy IdP as the user’s Home IdP and sends the request for attributes to the bridging element.
There the IDToken assigned with the artefact is used to get the user’s attributes from his Home
A4C-Server. The bridge converts the received Akogrimo assertion into Shibboleth format and
sends the attribute assertion to the SP.

D4.2.4, 1.0

© Akogrimo consortium members page 77 of 139

Akogrimo User

request Access (Shib.artifact)

Ako.Attribute_Assertion

assigning IDToken

generating Shib.Attribute_Assertion

Sib SP Proxy IdP Akogrimo A4C

request AuthN+Attributes (Shib.artifact)

request AuthN + Attributes (Ako.IDToken)

Shib.Attribute_Assertion

Figure 31 Message Flow for Akogrimo user accessing a Shibboleth resource with focus on attribute
transmission. The bridging element acts as Shibboleth Identity Provider and Attribute Authority.

For the incoming bridge, a proxy A4C Server has to be established. The Shibboleth user visits a
website provided at the bridge from where the Proxy A4C Server is contacted and the user’s
Identity Token is received for download. After storing this token on his device and starting the
Akogrimo middleware, the Shibboleth user is able to use all Akogrimo SPs. If in some cases
more attributes from the user are needed than provided by his Attribute Authority (AA), he has
to enter them into a form on the website. The proxy A4C server stores only those required
attributes, the user’s IdP is not aware of. All other attributes are provided by the user’s attribute
authority in his home federation. Figure 32 shows in brief the message flow for that constellation,
when a Shibboleth user wants to access an Akogrimo resource; the schema is an analogue to that
used in the other direction.

D4.2.4, 1.0

© Akogrimo consortium members page 78 of 139

Shibboleth User

request Access (Ako.IDToken)

Shib.Attribute_Assertion

generating Shib.artifact

generating Ako.Attribute_Assertion

Ako SP Proxy A4C Shib IdP + AA

request AuthN+Attributes (Ako.IDToken)

request AuthN + Attributes (Shib.artifact)

Ako.Attribute_Assertion

Figure 32 Message Flow for Shibboleth user accessing an Akogrimo resource with focus on attribute
transmission. The bridging element acts as Akogrimo A4C Server.

D4.2.4, 1.0

© Akogrimo consortium members page 79 of 139

5. Context Manager

This section describes the Context Manager (CM), part of the Akogrimo Architecture. The main
purpose of CM is to manage context for Akogrimo entities. In the current implementation an
entity is a person, but in a more general setting it could also be a place, a device, etc. In general,
context of an entity is any information that can be used to characterize the situation of the entity
[Dey99].

5.1. Introduction

This section contains a brief listing and description of requirements related to the Context
Manager. The objective is to emphasize what should (and what should not) be implemented, and
thereby focusing the scope of the development process. Moreover, requirements will be useful
during testing activities. The section also contains an implementation status overview to indicate
what is implemented and what is conceptually designed.

5.1.1. Requirements

Requirements are grouped as functional (what functions should the component provide) and
non-functional (how should functions be provided). For each requirement, a phase indication is
used to specify if a requirement should be realised in phase 1 (within PM 19) or in phase 2
(beyond PM 19). Compliance is stated as C (Concept, the topic has been investigated and a
solution proposed), I (Implementation, the proposed solution has been implemented), PC (partial
compliance), or N (No compliance)

Table 30 Context Manager – Fulfilment of functional requirements

Req. nr Description Phase 11 Phase 22

F 1 Gather context (end user information) C/I3 C/I

F 1.1 Presence C/I

F 1.2 Position C/I

F 1.2.1 Position – RFID based C/I

F 1.2.2 Position – based on e.g. GPS or WLAN C/I

F 1.2.3 Position – mapping from coordinates to area/building plan C/I

F 1.3 Terminal capabilities for users terminal C/I

F 1.4 Discover services in user’s proximity C/I

F 1.4.1 Terminal-based discovery (discovery performed by user’s
terminal)

 C/I

F 1.4.2 Centralised, directory-based discovery (match users position C/I

1 Within Project Month 19

2 Beyond Project Month 19

3 C: Concept, I: Implementation, P: Partial compliance, N: No compliance

D4.2.4, 1.0

© Akogrimo consortium members page 80 of 139

Req. nr Description Phase 11 Phase 22

with services for that position)

F 2 Distribute context (to context consumers) C/I

F 2.1 Offer subscription for user context C/I

F 2.1.1 Possibility to limit context scope (specify specific parts of
context to subscribe to, e.g. only location)

C C

F 2.2 Query (single response) for user context C/I C/I (P4)

F 2.2.1 Possibility to limit context scope (specify specific parts of
context to subscribe to, e.g. only location)

C C

F 2.3 Ontology-based queries P5

F 2.4 WS-based interface for context consumers C/I

F 2.4.1 Mechanism for returning context: Regular WS with callback C/I

F 2.4.2 Mechanism for returning context: WS Base Notification or WS
Pubscribe

 C/I

Table 31 Context Manager – Non-functional requirements

Req. nr Description Phase 1 Phase 2

N 1 Availability N

N 1.1 Process surveillance, automatic startup N

N 2 Performance N

N 3 Scalability N

N 4 Security C/I

N 4.1 Admission control: Authenticate context request C

N 4.2 Admission control: Authorize context request C/I

4 Compliance only for WS-based interface, not for WS-N interface

5 Parts of Concept has been elaborated

D4.2.4, 1.0

© Akogrimo consortium members page 81 of 139

5.1.2. Implementation status

In this section we specify the implementation status of the Context Manager. Table 32 shows the
implementation of context related aspects.

Table 32 Context Implementation status

Topic Concept Implementation

Context delivery (WS, WS-Notify) ok ok

Context sources:

SIP Presence
 SLP (Device overview)

 RFID (location)
 BT (BT Devices around user. GPS Pos)

ok
ok
ok
ok

ok
ok
ok

deprecated

Location handling
 Map pos -> area plan

ok

deprecated

Security (Access to context) Ok partly

Ontology support Partly -

Some of the requirements mentioned in Table 30 for phase 2 are not fully. GPS positioning
implementation was stopped for Linux support as it was not needed, Terminal-based Discovery
has not been needed, limitation of context scope has not been needed and ontology-based
queries were deemed to be a too big redesign for the remaining resources available.

Some work has been done to test the non-functional requirements, and is an ongoing work.

5.2. Interfaces

The interfaces listed in Table 33 are shown in the Context Engine design (Figure 44, Section
5.4.1.).

Table 33 Context Manager (CM) - interfaces

Server:

Component
(Layer) [Label]

Client:

Component
(Layer)

Purpose Protocol

A4C Client
(WP4.2)
[E-A4C-2.9]

CM - Obtain static user data (SIP address, RFID, …)

- Authorise

Java API

CM (WP 4.2)
[E-CM-1]

BP Enactment
(WP4.4)

- Queries for specified context data

- Specify domain specific context extensions

- Subscribe to notifications about changes in context
info

SOAP

SIP PA (WP 4.2) CM (WP4.2) - Obtain user presence SIP SIMPLE

D4.2.4, 1.0

© Akogrimo consortium members page 82 of 139

Server:

Component
(Layer) [Label]

Client:

Component
(Layer)

Purpose Protocol

LSDS (WP4.2)
[E-LSDS-1]

CM (WP4.2) - Search of Local Services (capabilities, location) SLP

CM (WP4.2) [E-
CM-2]

RFID SW
(WP4.2)

- Send position readings for RFID tags Proprietary

CM (WP4.2) [E-
CM-3)

CM (WP4.2) - Obtain Bluetooth devices near user

- Obtain GPS position from GPS Bluetooth device

Java API

The external interfaces the Context Manager has are listed in Table 33, it describes interfaces
both where CM acts as a client and where it acts as a server. This section specifies interfaces for
which Context Manager is the server. Interfaces where CM acts as a client are described in other
sections.

5.2.1. Context Manager – A4C

Server:

Component
(Layer)

Client:

Component
(Layer)

Purpose Protocol

A4C Client
(WP4.2)

CM - Obtain static user data (SIP address, RFID, …)

- Authorise context consumers (not implemented in
Phase 1)

Java API

Basic flows are included in Figure 33. See also Figure 43 for how it is used. The interface is
described more in section 3.4.4.

5.2.2. Context Manager – Context consumer

The Context Manager provides a Web Service interface to context consumers. Results are
returned over a so called call-back interface, i.e. the Context Consumer offers a Web Service
interface that the context manager may call to return results. An example of Basic flows are
shown in Figure 33, methods are shown in Table 34 and Table 35. The web service that the
context manager calls to return results needs the method(s) mentioned in Table 35.

D4.2.4, 1.0

© Akogrimo consortium members page 83 of 139

4.2 Context Manager
4.4 Context
Consumer

4.2 A4C

SUBSCRIBE(user, callback_uri, context spec, duration)

Subscribe to SIP Presence,
Search LSDS and GrSDS

for relevant context

Context changes for one
or more users NOTIFY

Optional:
Authorize VO Mgr / Ctxt consumer

Get user profiles (user)

SUBSCRIBE_RETURN

NOTIFY_RETURN

UNSUBSCRIBE(user)

UNSUBSCRIBE_RETURN

Figure 33 Context Manager – Context consumer interface

Table 34 Methods offered by the Context Manager

Parameters Server:

Component
(Layer)

Client:

Component
(Layer)

Protocol Method

Name Type Explanation

User AkogrimoID Mandatory

User to be
subscribed to

Callback_URI String Mandatory

URI for returning
NOTIFY

context_spec0
context_spec1
context_spec2
context_spec3

Integer
Integer
Integer
Integer

Optional

all (default)
Presence
Location
Devices (SLP)

Request context if
context_specX=1

Start Date dd.mm.yyyy
hhmm

End Date dd.mm.yyyy
hhmm

CM Context
Consumer
(WP4.4)

SOAP SUBSCRIBE

SUBSCRIBE_
REPLY__ACK

Return parameter Response to
successful
SUBSCRIBE

D4.2.4, 1.0

© Akogrimo consortium members page 84 of 139

Parameters Server:

Component
(Layer)

Client:

Component
(Layer)

Protocol Method

Name Type Explanation

SUBSCRIBE_
REPLY__
ERROR

Return parameter Response to
unsuccessful
SUBSCRIBE

User AkogrimoID Removes an
existing
subscription.
Ignored if the
subscription does
not exist

User = -1
removes all
subscriptions for
this consumer

UNSUBSCRIBE_
REPLY__ACK

Return parameter Response to
successful
UNSUBSCRIBE

CM Context
Consumer
(WP4.4)

SOAP UNSUBSCRIBE

UNSUBSCRIBE_
REPLY__
ERROR

Return parameter Response to
unsuccessful
UNSUBSCRIBE

User AkogrimoID UserID for the
one you want
EndpoitReference
for (EPR) CM

Context
Consumer
(WP4.4)

SOAP GETUSEREPR

EPR Return parameter
EnpointReferenceType

Respose to
GETUSEREPR

Table 35 Methods offered by the Context Consumer (callback interface)

Parameters Server:

Component
(Layer)

Client:

Component
(Layer)

Protocol Method

Name Type Explanation

User AkogrimoID Mandatory

User for which
context is provided

Context XML
schema

Contains requested
context

NOTIFY_
REPLY_
ACK

Return
parameter

Response to
successful NOTIFY

Context
Consumer
(WP4.4)

CM SOAP NOTIFY

NOTIFY_
REPLY_
ERROR

Return
parameter

Response to
unsuccessful
NOTIFY

D4.2.4, 1.0

© Akogrimo consortium members page 85 of 139

Since D4.2.2 we have also included WS-Notification based access to Akogrimo context
information. It is implemented using Globus Toolkit 4.0.2 Java WS Core. The WS-Notifications
family of specifications provides a set of standard interfaces for realising notification patterns
with Web Services, the interfaces remain the same compared to previously. For the client it
works in the same way, but with the benefit that once changes happen to context (which is a
resource the client is subscribing to), a notification will automatically be sent to the subscribing
entity. A resource is addressed by an EndPointReference (EPR). That is accessed by a new Web
Service method as shown in Figure 34.

Figure 34 Basic functionality of WS-Notification

D4.2.4, 1.0

© Akogrimo consortium members page 86 of 139

5.2.3. Context Manager – SIP Presence Agent

Server:

Component
(Layer)

Client:

Component
(Layer)

Purpose Protocol

SIP PA (WP 4.2) CM (WP4.2)

- Obtain user presence SIP SIMPLE

Protocol details are described in D4.2.2. Basic flows are shown in Figure 35.

MT – SIP PUA
4.2 SIP Presence

Agent
4.2 Context Manager

SUBSCRIBE

OK

NOTIFY

OK

PUBLISH

NOTIFY

OK

Presence change
(device on,

presence set

to busy, …)

Figure 35 Context Manager – SIP Presence Agent interface

5.2.4. Context Manager – LSDS (SLP Directory Agent)

Server:

Component
(Layer)

Client:

Component
(Layer)

Purpose Protocol

LSDS (WP4.2) CM (WP4.2) - Search of Local Services (capabilities, location) SLP

Protocol details, design and basic flows are described in 6.3.

D4.2.4, 1.0

© Akogrimo consortium members page 87 of 139

5.2.5. Context Manager – RFID SW

The method offered by the Context Manager is shown in Table 36. Please refer to Section 5.4.5
for basic flows and application logic.

Table 36 Methods offered by the Context Manager

Parameters Server:

Component
(Layer)

Client:

Component
(Layer)

Protocol Method

Name Type Explanation

TagID String Mandatory

RFID serial of the
RFID tag

CM RFID
Reader

Telenor
Proprietary

TagReading

Sensor Location Location
object

Mandatory

Location object
corresponding to
position DB

5.2.6. CM – Bluetooth Context Harvester interface

The Bluetooth context Web Service running on the Context manager receives a list of discovered
services and devices. If a GPS device is found a position is included. The akogrimoID is coupled
with the Bluetooth MAC address for user device listings.

Server:

Component
(Layer)

Client:

Component
(Layer)

Purpose Protocol

BT CA CM - Obtain Bluetooth devices near user

- Obtain GPS position from GPS Bluetooth device

Java API

5.3. Concepts

In this section we describe some concepts that serve as basis for design and implementation of
the context manager. This includes location handling, ontology and privacy/access control. The
latter explains in part of how security is addressed in Akogrimo.

5.3.1. Location handling

In this section we will specifically be dealing with location mapping and the Akogrimo Location
Model. Location mapping is the process of transferring one kind of location information to
another. A specific need is the mapping of location from coordinates to area(s). The Akogrimo
Location Model will be the definition of all available areas.

Location mapping is a special case of context mapping, where data is mapped from one
representation to another. As another example, consider the time of day "14:00 pm" mapped to

D4.2.4, 1.0

© Akogrimo consortium members page 88 of 139

"afternoon". The data is more or less the same after the mapping, but it may have different
significance for an application.

5.3.2. Location Mapping example

In Akogrimo scenarios there is a need for mapping the location coordinates to area descriptions.
The area descriptions may be in the form of "Meeting Room, 2nd floor, Building A, Will Smith
Street 5, Akogrimopolis, Akogrimoland", where we can abstract the level of the area if we don't
need to know what room the user is in, but rather what part of the city he/she is in. For an
ambulance driver in a medical emergency it will be sufficient at first to know the building a
critical patient is in. When the ambulance gets closer to the precise location, it may be necessary
to inform the driver what room the patient is in. The information of what building may be used
to retrieve a building overview. That overview together with a room description tells the medical
personnel where to locate the patient. All this may be derived from the raw data of a set of
coordinates.

5.3.3. Akogrimo Location Model

To make demos more realistic we have looked into using a location model to represent
coordinates. The model shows a fictional city called Akogrimopolis, divided in different areas.
Area types are listed in Table 37.

Table 37 List of Area types

Large regions Small regions Building level General
Continent
Country
Region
County

Municipality
Town
TownArea

Building
Floor
Room

GeneralPolygon

We do not assume any specific restrictions for the layout of areas. Each area may contain one or
more of the sub areas. Moreover, areas may be completely or partially overlapping. The
GeneralPolygon is to identify areas that do not fit into any of the other categories (it can be an
area of any size and form, most likely used for furniture). The corners for each area have defined
coordinates. For a given coordinate we can then check what areas of different types the
coordinate belongs to.

D4.2.4, 1.0

© Akogrimo consortium members page 89 of 139

Airport

4 km

N

Ferry

University

Stadium

WarehouseHarbour

Hospital

Akogrimopolis

Train station

Center

XXYYZZ

Airport Area
Airport Road

Airport Bridge

City West Crossroad City East CrossroadCity Center RoadCity Crossroad

North Road

South Road

Figure 36 Akogrimopolis areas

Figure 36 shows how the fictive city of Akogrimopolis may be divided into different TownAreas.

Figure 37 Akogrimopolis areas labelled

D4.2.4, 1.0

© Akogrimo consortium members page 90 of 139

Figure 37 shows the same areas as in Figure 36, but with coordinates for the south west corner
and values for how far the area stretches in north and east.

Figure 38 Hospital, Building A, 1st floor

Figure 38 shows a floor in a building belonging to the TownArea of the hospital of
Akogrimopolis. All areas are listed in Table 38.

Table 38 Area name and type

Area name Area type Included in
Akogrimopolis Town -
Airport Area TownArea Akogrimopolis
Train Station TownArea Akogrimopolis
University TownArea Akogrimopolis
Warehouse TownArea Akogrimopolis
Hospital TownArea Akogrimopolis
Staium TownArea Akogrimopolis
Harbour TownArea Akogrimopolis
Airport Road TownArea Akogrimopolis
Airport Bridge TownArea Akogrimopolis
North Road TownArea Akogrimopolis
Crossroad TownArea Akogrimopolis
South Road TownArea Akogrimopolis
City West Crossroad TownArea Akogrimopolis
City Center Road TownArea Akogrimopolis
City East Crossroad TownArea Akogrimopolis
Hospital Building A Building Hospital
Hospital Building A 1st floor Floor Hospital Building A
A100 Room Hospital Building A 1st floor
A101 Room Hospital Building A 1st floor
A102 Room Hospital Building A 1st floor
A103 Room Hospital Building A 1st floor
A104 Room Hospital Building A 1st floor
A105 Room Hospital Building A 1st floor

D4.2.4, 1.0

© Akogrimo consortium members page 91 of 139

5.3.3.1. CM – Location Model support

The location model is being defined in MySQL database that has spatial extensions. MySQL
supports a subset of the geometry types defined by the Open Geospatial Consortium (OGC) in
OpenGIS® Simple Features Specifications For SQL [OpenGIS]. Areas are defined with
coordinates as shown in Figure 37. Given the location coordinates of a user, it is possible to
query the database to retrieve the area(s) the person is within.

5.3.4. Semantics/Ontologies

Context information may be described in many different ways, e.g. depending on choice of
terms, refinement and presentation of information. The following examples will illustrate this
(here, “requestor” and “context consumer” are used interchangeably):

� Terms: When dealing with the property of presence, several expressions may be used. These
are some of the thesaurus for the word presence: attendance, existence, and availability. In
order for a requestor to identify that presence is the relevant piece of context information,
there are mainly two alternatives:

� The requestor must know exactly the terms used by the Context Manager, e.g. precisely
which term is used for “presence”

� The Context Manager can perform reasoning over the terms used by the requestor, and
associate e.g. a request for “availability” (or similar) with “presence”, which happens to be
part of the provided context information. This will however require the Context Manager
to understand and deal with thesaurus, and is considered as being too ambitious for the
current project scope.

� Refinement and presentation of information: Location information may be presented at
several levels: lower level such as coordinates (lat/lon), or more high level and user-friendly
presentation such as area type (country, town,…), or descriptive (on a beach, in the office,
…). The requestor need to indicate what representation of location information is needed

Semantics and ontologies may be used in different “steps”. Each step provides more
functionality, but will also add complexity and require more effort. This is depicted in Figure 39.

D4.2.4, 1.0

© Akogrimo consortium members page 92 of 139

Figure 39 Ontology – functionality, complexity, and OWL technology

In context management for Akogrimo, the use of ontologies has immediate value for the
following reasons:

1. It may be used to inform the context consumer of the possible selection of context
information, i.e. form a common taxonomy to describe context.

2. If semantic reasoning is employed by CM, it may be able to handle requests that are not
following the common context description.

In a first approach we shall address item 1 above. Item 2 will require more time and effort, and
might be addressed at later stages.

5.3.4.1. A context ontology for Akogrimo

There are many ways to model context information, and several of these are available on the
Internet [Wang04, Gu04, SIMLIE]. One might argue that reuse of one or several of these would
be beneficial. However, after review of a selection of existing ontologies, as well as discussions
with researchers in the field, we conclude that it is advantageous to establish a context ontology
for Akogrimo from scratch. This is due to the fact that every project has its special requirements
and properties, and adaptation of existing results often requires more effort than gain. The
context ontology, which is presented in Figure 40, is to some extent inspired by Mostéfaoui et al
[Mos03] and the SIMILE Location ontology [SIMLIE].

D4.2.4, 1.0

© Akogrimo consortium members page 93 of 139

Figure 40 Context ontology for Akogrimo

D4.2.4, 1.0

© Akogrimo consortium members page 94 of 139

5.3.5. Privacy and access control

This section describes privacy-related problems in context management, a general framework for
addressing these problems, and a system design that can face some of the Akogrimo specific
problems. Note that the design/realisation is fairly limited compared to the problem description.
This is due to time and resource constraints in the project.

User Context is an important enabler for pervasive services in general, and in particular for the
grid services developed within Akogrimo. However, as user context carries sensitive information
it may violate privacy rights if abused. This section describes a proposal for privacy handling
related to context management in Akogrimo. Basic context handling is as described in D4.2.2
[D4.2.2], and is depicted in Figure 41.

Context

manager
Context

sources

Contex

consumers

Figure 41 Basic infrastructure for context management

5.3.5.1. Problem statement

The use of context is a double-edged sword: On the one hand, large volumes of reliable user
information will improve the impact of context-aware services and hence be beneficial for users.
On the other hand, users will refrain from spreading sensitive information that may be used for
surveillance purposes (references to recent cases: surveillance for anti-terror purposes in USA,
GB and some other EU countries, US phone service: Parents watch teenager location based on
GPS+mobile phone, EU requires operators to store users activities based on electronic
communications).

IM clients such as Skype, Microsoft Messenger, Jabber, and ICQ feature presence management.
Regarding privacy these are usually based on a simple principle: The user allows or denies other
users to see his/her presence. In systems handling rich presence/context(reference), the trend is
the same: Allow others to see all or nothing.

We believe there is need for privacy management that opens for differentiated access to view user
context. This differentiation could be based on

� Who the requestor is: A user would probably opt to give family members access to more
information than distant colleagues at work.

� Level of detail: It would be convenient to provide trusted parties with more detailed
information than peripheral parties. E.g. presence and location information can be provided
in a precise or inaccurate manner.

� Situation of the related user: A user could be interested in restricting context distribution
depending on the current situation, i.e. his/her current context. Assume e.g. a taxi driver who
has to display his location at the taxi control centre while at work. When he/she is off work,
location should no longer be shown at the control centre.

In the same manner as for distribution of context information, one could be interested in
restricting collection of user data. Referring to Figure 41, even if an individual is assured that
collected data is not forwarded without permission, the level of privacy is increased if it is
collected only when necessary.

D4.2.4, 1.0

© Akogrimo consortium members page 95 of 139

5.3.5.2. General design

Structure

The main elements in the described privacy handling are

Table 39 Main elements in privacy handling

Context consumer A user or entity that queries context information about other entities
Context provider An entity that knows a given context and communicates this information

to a management system
Context owner The user or entity that has legal rights to the given user context^
User context Information describing the situation of a user
Context source The physical or logical source of information (sensors, IM clients, …)
Privacy
administrator

Third party acting on behalf of the context owner to manage access to
context

Figure 42 gives an overview of elements and associations. Note that “Provide Restriction” and
“Request Restriction” are association classes.

Figure 42 Main elements in privacy handling

Functionality

1. Specify privacy policy. The Privacy Administrator (or the context owner him/herself)
specifies a set of restrictions for provisioning and request of context information.

2. Enforce privacy policy. Under operation, restrictions are consulted when context is provided
or requested for.

5.3.5.3. Design applied in Akogrimo

In Akogrimo, only a subset of the structure and functionality described in Section 5.3.5.2 is
applied. In particular:

� Only the relation context consumer – context owner is addressed (i.e. not context owner –
context source)

D4.2.4, 1.0

© Akogrimo consortium members page 96 of 139

� The privacy policy is limited to indicating which context consumer may request context
information for which context owner.

� Specification of privacy policy is performed offline. A4C stores privacy restrictions and thus
it contains a registry indicating which context consumer (identified as application@domain)
may request context information for what user (identified as user@domain).

� Enforcement of privacy policy is carried out by CM and A4C

� Takes place for every context request CM receives from context consumer – MD (WP4.4
Montoring Daemon)

� CM authenticates MD

� CM queries A4C to authorize the context request

� Authentication of context consumer based on use of certificates. Management of certificates
is described in Section 3.4.4

Basic flow in privacy handling is shown in Figure 43. Note that if authentication or authorization
of context manager fails, SUBSCRIBE_RETURN(NOK) will be sent to the Context Consumer.

Authentication is carried out based on public keys, and works as follows: The context consumer
will send SUBSCRIBE with the following parameters:

1. certificate

2. applicationID, userID,  callback_uri, context spec, duration

3. K-(H(applicationID, userID, callback_uri, context spec, duration))6.

The certificate will contain the public key K+. CM will extract parameters in item 2 above and
apply the Hash function H, then compare the result to K+(parameter 3 in above list). Thus CM
can verify the validity of the context consumer’s identity and the integrity of the message in
parameter 2.

Authorization is carried out as follows: During offline setup, the Privacy Administrator
(sometimes the user him/herself) sets permissions for access to context. This permission is
stored in A4C as request restrictions. When CM has authenticated a context consumer, it will ask
A4C to verify that this specific consumer (applicationID = application@domain) can request
context for a specific user (userID = user@domain). If the outcome is positive, CM will proceed
to ask A4C for user profiles.

6 Here K-(msg) means “message msg encrypted with the private key K-“, and H(msg) means “Hash function applied
to message msg”.

D4.2.4, 1.0

© Akogrimo consortium members page 97 of 139

4.2 Context Manager
4.4 Context
Consumer

4.2 A4C

SUBSCRIBE(certificate, applicationID, userID,
callback_uri, context spec, duration,

K-(H(applicationID,userID, callback_uri, context spec, duration)))

Authorize Ctxt consumer request
(applicationID, userID)

Get user profiles (user)

SUBSCRIBE_RETURN(OK)

Registration Auth /
Certification Auth

Request certificate

Issue certificate

Privacy
Administrator

Establish privacy policy

Authenticate
Context Consumer

Subscribe to SIP Presence,

Search LSDS and GrSDS
for relevant context

D
u

ri
n

g
 o

ff
lin

e
 s

e
tu

p

Figure 43 Privacy handling – basic flow.

5.4. Design & Implementation

This section describes the various parts of the Context Manager. The core of the Context
Manager includes the engine, databases and gateways. Applications that are developed to provide
context are Bluetooth Context Harvester and RFID software. Context Viewer is an application
that subscribes to context in order to view context information, usable for various tests.

� Context Engine

� Databases

� Context

� Location Model

� Context Gateways

� SIP

� RFID

� SLP

� Bluetooth Context Aquirer

� RFID software

� Context Viewer

5.4.1. Context Engine

Context engine is the main component in the Context Manager. Its main functional parts are
shown in Figure 44. Major tasks are

� Keep overview over subscriptions received through the context consumer gateway

� When needed, request context through context gateways

D4.2.4, 1.0

© Akogrimo consortium members page 98 of 139

� Receive context from context gateways, store it in the context database

� When context change occurs, send context updates to appropriate context consumers

The functionality described here represents a simple approach to context handling; when context
for a user is requested, the context engine will gather all available context information for that
user.

C
o
n
te

x
t
M

a
n
a
g

e
r

Java runtime env

Legend

Context consumer

A4C Server

Context Consumer GW

(Tomcat

Axis 1.2.1) ContextManagerWS

(Webservice)

Engine (Tomcat – Axis 1.2 RC)

ContextManagerServer

(rmi server)

soap

(un)subscribe

NotifyGateway

(rmi)

soap

A4C API/A4C Client

(java api)

diameter

SubscriptionHandler (extends GT4.0.2 ResourceHomeImpl)

ContextHandler

Database

access

RFIDContext

Destination

(rmi server)

SipPresense

Destination

(rmi server)

SipPresence

Proxy

(rmi client)

RFIDGW

rmi rmi

SIP GW

rmi

SLPProxy

(rmi client)

SLP GW

rmi

rmi

Context

database

jdbc

E-A4C-2.9

A4C Components

Context Engine

components

rmi

Context consumer

SOAP (WSRF BN)

getUserEpr, (un)subscribe

UserContextService

SOAP (WSRF BN)

notify

Regular WS interface CC - CM WS interface CC-CM based on WSRF-BaseNotification

WS

interface

MT – BT

Discovery

SOAP

GT 4.0.2

RFID

Sensor(s)

propr.

SIP PA

SIP SIMPLE

SLP DA

OpenSLP

Direction of comm. intiation

Figure 44 Context Engine - design

Subscriptions from context consumers

When a subscription is received, the following is performed (see Figure 45 for the WS
BaseNotification method and Figure 46 for the regular WS Callback method):

� User profile is requested from A4C

� Request and profile is stored in persistent memory

� Request for SIP presence is sent to the SIP Presence GW

The context consumer has to know the EPR of the Subscription for the WS BaseNotification
method. A function to get the EPR of an Akogrimo user is shown in Figure 47.

D4.2.4, 1.0

© Akogrimo consortium members page 99 of 139

sd WS-BaseNotification Subscribe MSC

4.4 Context consumer

SubsbscriptionHandler A4CProxyUserContextServ ice ResourceContext User

Note that if the Context Consumer already knows

the EPR of the user (Resource), subscription can

be done without call ing getUserEPR.

ContextManagerDB

SubscriptionHandler extends

ResourceHomeImpl

User implements

Resource,

ResourceProperties,

TopicListAccessor,

ResourceLifetime,

and

ResourceIdenti fier Create returns the EPR (EndPoint

Reference) of the Subscription

(WS-Resource).

SubscribeResponse:= Subscribe(Subscribe)

ResourceContext:= getResourceContext

ResourceKey:= getUserEPR(userId)

userInitialize(userId)

User:= lookup(userId)

User:= getUserInstance(userId)

[user does not exist]: User:= createNewInstance()

[user does not exist]: ini tialize(userId)

[user does not exist]: add(key, user)

addUser(User)

User

addContext(Context)

User

ResourceKey

EndPointReferenceType

Figure 45 WS-Notification Subscribe sequence diagram

D4.2.4, 1.0

© Akogrimo consortium members page 100 of 139

sd WS Callback Subscribe MSC

4.4 Context consumer

SubsbscriptionHandler A4CProxy UserContextManagerWS ContextManagerDBContextManagerServ er NotifyGateway

Subscribe(callbackUrl, userId, fromDate, toDate , contextTypes)

subscribe(cal lbackUrl, userId, fromDate, toDate, contextTypes)

addSubscription(Subscription)

userInitialiser(userId)

addSusbcription(Subscription)

User:= lookup(userId)

User:= getInstance(userId)

[user does not exist]: User:= createNewInstance()

[user does not exist]: initial ize(userId)

[user does not exist]: add(key, user)

addUser(User)

User

addContext(Context)

User

insert into Subscription cache (mCache)

contextNoti fication(userID, callbackUrl)

notify(callbackUrl, userId, xmlString)

Noti fication

Figure 46 WS Callback subscribe sequence diagram

sd WS-BaseNotification GetUserEPR MSC

4.4 Context consumer

SubsbscriptionHandler A4CProxyUserContextServ ice ResourceContext

Create returns the EPR (EndPoint

Reference) of the User (WS-Resource).

User ContextManagerDB

EndpointReferenceType:= GetUserEPR(userId)

ResourceContext:= getResourceContext

ResourceKey:= getUserEPR(userId)

userInitialize(userId)

User:= lookup(userId)

User:= getUserInstance(userId)

[user does not exist]: User:= createNewInstance()

[user does not exist]: initial ize(userId)

[user does not exist]: add(key, user)

addUser(User)

User

addContext(Context)

User

ResourceKey

EndPointReferenceType

Figure 47 WS-Notifcation get EPR for User sequence diagram

D4.2.4, 1.0

© Akogrimo consortium members page 101 of 139

Receiving context

Reception of context updates triggers the following behaviour (see Figure 48 and Figure 49):

� When update on SIP Presence is received, the corresponding information (XML scheme) is
stored in the context database.

� On updates from RFID GW, Context engine will check if anyone has requested context for
the associated user. If this is the case, the following occurs
- Updated position is stored
- SLP GW is requested for services within range

� After updated context is stored, notification is sent to subscribing context consumers.

� Notifications are sent to subscribers on both WS callback and WS-Notification interfaces.

Idle

Notify (Presentity,

Presence)

N

Y

Context
format OK?

DB operation
- Store context

Notify (updated

context)

Context

Consumer GW

SIP Pres GW

Figure 48 Updated SIP presence

D4.2.4, 1.0

© Akogrimo consortium members page 102 of 139

sd RFID - Notify MSC

4.4 Context consumer

SubsbscriptionHandler ContextHandler

RFIDGW

(from Use Case Model)

NotifyGateway User (Resource) ContextManagerDB

SLPGW

Note that a User instance does not

contain context data that are up to

date at all times. Therefore,

SubscriptionHandler calls

RetrieveContext to update the

User's context data before sending

notification (both WS callback and

WS-Notification)

By setting a resource property

corresponding to a WS-topic of the

user, the GT4 SubscriptionManager

automatically sends notifications to all

Context Consumers that have

subscribed using WS-BaseNoti fication.

handleContext(Context)

updateContext(RfidContext)

Object[]:= retriveUsers(String ContextId)

List:= findService(utmPosition)

updateContext(user, slpService)

ContextNotification(user)

User:= RetrieveContext(String UserId)

setMessage(xmlString)

notify(callBackUrl, userId, XMLString)

noti fy(userId, xmlString)

Figure 49 Notification triggered by RFID update

The context engine is implemented in Java. The main components are shown in Figure 44. A
brief description follows:

� ContextManagerServer is a RMI server that handles requests from ContextManagerWS

� ContextConsumerProxy is a RMI client that sends responses to the context consumer

� SubscriptionHandler will store context requests, and is also responsible for handling context
notification sent back to the consumer

� ContextHandler is the main component. It is responsible for

� interactions with A4C

� requesting context when necessary

� handling context collected from the context sources,

� storing context in the database (using the component Database Access)

� notifying SubscriptionHandler when context changes occur

� RFIDContextDestination handles communications with RFID-related systems

� SipPresenceDestination sends requests to the SIP Presence GW via RMI

� SipPresenceProxy receives responses from the SIP Presence GW via RMI

� SLPProxy handles communications with SLP GW

� Database access provides an interface to available database operations

D4.2.4, 1.0

© Akogrimo consortium members page 103 of 139

5.4.2. Databases

This section shows the design of the databases used in the Context Manager.

5.4.2.1. Context Database

User context consist of

� Presence information in SIP SIMPLE format

� User location from both RFID technology or Bluetooth GPS device

� Device availability found with SLP and UAProf

The database is shown in Figure 50. It is centered around context where context for each user
can be of different types. The most important attributes and fields are described in Table 40,

Table 41, Table 42 and Table 43. The last tables are emphasized as they are new in the design.

user

PK user_id

name

rfid_device

PK,FK1,I2 rfid

FK1,I2 context_type

rfid_description

FK2,I1 position_id

rfid_sensor

PK,FK1 rfid_sensor_id

description

FK2,I1 position_id

sip_presence

PK,FK1,I1 sip_address

FK1,I1 context_type

ip_address

status

slp_service

PK,FK1,I2 slp_id

FK1,I2 context_type

service_type

service_description

FK2,I1 position_id

context

PK context_id

PK,FK2,I2 context_type

FK1,I1 user_id

last_updated

context_type

PK context_type

context_name

context_description

slp_service_attribute

PK,FK1 slp_id

PK attribute_name

attribute_value

position

PK position_id

utm_zone_number

utm_zone_letter

utm_northing

utm_easting

latitude

longitude

altitude

accuracy

location_technlogy

subscription

PK,FK1 user_id

PK callback_url

bt_service

PK,FK1,I1 user_device_mac_addr

FK1,I1 context_type

bt_service_mac_addr

bt_service_type

bt_service_descr

FK2 position_id

area

PK,FK1 position_id

PK area_type

PK area_name

gps_sensor

PK,FK1 position_id

confidence

Figure 50 Context Database

D4.2.4, 1.0

© Akogrimo consortium members page 104 of 139

Table 40 Main tables and fields in the Context Database

Table Attribute Description

subscription Callback_url Reference to context consumer

user user_id Akogrimo ID

context context_id Unique identifier, identical to sip_address, rfid, or slp_id

 context_type from table context_type

context_type context_type 1 = SIP Presence
2 = RFID
3 = SLP
4 = BT service

sip_presence sip_address SIP-address for the user

 status XML-form received from SIP PA

rfid_device rfid RFID Tag ID for the user

 position Refers to an item in the position table

slp_service slp_id Identical to serviceURL.

 service_type E.g. printer, display, ssh, …

 position Refers to an item in the position table

slp_service_attribute Collection of attributes for a SLP service

position position_id One ID per registered position

 <attribute> Coordinates and spatial location, Table 44

rfid_sensor Describes location of RFID sensors

Table 41 Bluetooth Harvester related fields

Field Description

bt_id_mac MAC address of the device that performs BlueTooth service discovery.
This needs to be the user’s personal device

bt_service_mac_addr MAC address of the machine hosting a BT service

bt_service_description Service description, e.g. “Headset”, “SerialPort”, and “Fax”

context_type Bluetooth is type 4

bt_service_uuid Universal(ly) Unique Identifier for the BT service. UUID is
standardized: “Headset” = 0x1108, “SerialPort” = 0x1101, and “Fax” =
0x1111

position_id Relates to a position if one of the BT services reports position from
GPS

Table 42 Position with extended location data from Location Model Database

Field Description

position_id Relates to a position in table “position”

area_type Type of area as defined in Table 44

area_name Name of the area, see Table 44

Table 43 Bluetooth GPS fields

Field Description

position_id Relates to a position in table “position”

confidence Used to indicate poor satellite connection

D4.2.4, 1.0

© Akogrimo consortium members page 105 of 139

5.4.2.2. Location Model database

The location model database is a single lookup table which can be individually maintained parallel
to the Context Database. It is not necessarily usable only for the Context Manager, but may have
future usage for other location oriented applications.

Table 44 Fields in Location Model Database

Field Description

area_id Unique id for an area

area_name The name of the area (not unique)

area_level The level of the area:
Continent
Country
Region
County
Municipality
Town
TownArea
Building
Floor
Room
GeneralPolygon

area_borders GEOMETRY object defining the borders of the area

It is also necessary to mention that a procedure has been designed to automatically update
locations with the new information in the Context Database. This is done in the database, and
not in the application.

5.4.3. Context Gateways

This section describes the various context gateways that serve as entry points for context data for
the Context Engine.

5.4.3.1. SLP

Local Service Discovery in Akogrimo is based on SLP [Gut99a] which is a service discovery
protocol designed for IP networks. SLP specifies three types of agents: User Agent (UA), Service
Agent (SA) and Directory Agent (DA). UAs search for services on behalf of an application or
user, SAs advertise service information while DAs store information received from SAs and
respond to requests from UAs. A service offer consists of a URL and values of descriptive
attributes.

In the Akogrimo infrastructure, it is required that one or more DA exists. The Context Manager
acts as a UA by sending service requests to this DA(s), that respond with service reply messages
containing one or several URLs. SLP offers attribute pattern matching expressions in the form of
LDAPv3 search filters, allowing the Context Manager to search for services at a certain physical
location. Furthermore, the Context Manager queries the DA for service attributes by sending a
service attribute request.

D4.2.4, 1.0

© Akogrimo consortium members page 106 of 139

Context Engine

SLPRMIClient.java

..

// Invoke RMI method

sg.findService(Pos);

..
RMI stub

SLPGatewayImpl.java

..

public List findService(Pos){

..

slp.findService()

}

RMI skeleton

OpenSLP.java

public native SLPRequest(..);

public List findService(Pos){

..

SLPRequest(..);

}

JNI implementation

OpenSLP.c

JNIEXPORT void JNICALL Java_OpenSLP_SLPRequest(..){

// Access OpenSLP programming API

SLPOpen(..);

}

OpenSLP v1.3

Java Native Interface

OpenSLP v1.3 programming API

RMI Interface

Figure 51 SLP Gateway design

The design of the SLPGateway is illustrated in Figure 51. The Context Engine interacts with the
SLPGateway using Remote Method Invocation (RMI). That is, a SLPRMIClient invokes the RMI
method offered by the SLPGateway.

The most promising SLP implementation, OpenSLP 1.3 [openslp], is only available in the C
programming language. As the Context Manager is implemented in Java, the SLPGateway uses
Java Native Interface (JNI) to interact with a native C program. The native C program uses the
OpenSLP 1.3 programming API to perform the actual interactions with the SLP DA.

Figure 52 illustrates the interactions required to request service information and corresponding
attributes. First, the Context Engine starts a SLPRMIClient (thread). The SLPRMIClient invokes
(RMI) findService method offered by the SLPGateway. Using Java Native Interface (JNI) the
SLPGateway retrieves service information (urls) from the DA for all services matching the search
parameters. Next, the SLPGateway requests the attributes for each service from the SLP DA.
Finally, service information, urls and attributes, are returned to the SLPRMIClient.

D4.2.4, 1.0

© Akogrimo consortium members page 107 of 139

sd SLP

ContextEngine SLPRMIClient SLPGateway SLP DA

start(pos) List:= findService(pos)

urls:= SrvRqst(LDAP fi l ter etc.)

Attributes:= SrvAttrRqst(url)

Attributes:= SrvAttrRqst(url)

Figure 52 Context Manager – SLP Directory Agent interface

The SLP GW implementation consists of the following parts:

� SLPGateway, a RMI server implemented in java that handles SLP requests made by the
ContextEngine.

� OpenSLP (java), a java implementation of the communication with the SLP DA. To be able
to access the C programming API offered by openslp 1.3, this class has a native function
(private native void SLPRequest). Callback functions are an integral part of the SLP. Such
callback functions will be called by the library when it is ready to report the status or result of
an operation API. OpenSLP (java) implements functions that are called by the corresponding
callback function in C.

� OpenSLP (C program), an implementation in C of the corresponding native function
(Java_org_akogrimo_wp42_contextmanager_slpgateway_jni_OpenSLP_SLPRequest). The C
program receives different SLP requests and invokes the proper method in the openslp API.
Finally, when openslp API invokes the callback function specified in C, the progam calls the
corresponding callback method in java to return results.

5.4.3.2. RFID

The RFID Gateway forwards the RFID readings via RMI interfaces. In addition to receive and
transmit tags and locations it also provides logging. See section 5.4.5 for more information about
RFID.

5.4.3.3. SIP

The SIP Presence GW is responsible for the communication between Context Manager and SIP
Presence Agent. This is realised through the following sub-components:

� SIP Communicator adapter, which works as a proxy between Context Engine and SIP
Communicator. It receives requests from context engine and invokes the corresponding java
classes in SIP Communicator.

� SIP Communicator [SIPComm] acts as a SIP Presence Watcher. It is a Java-based
implementation of a SIP User Agent. For further information on the functionality of a SIP
Presence Watcher see the specification of SIP SIMPLE [Ros04].

D4.2.4, 1.0

© Akogrimo consortium members page 108 of 139

Basic flows involving the SIP Presence GW is shown in Figure 54 and Figure 55.

Context Manager

SIP GW

SIP Communicator

SIMPLE

SIP Comm. adapter

SIP Stack

Context Sources

Context DBContext Engine

SIP PA

RMI

SIP SIMPLE

Figure 53 Structure of SIP Presence GW

sd SIP Presence GW - Request context

Context Engine

(from Context Manager - Internal view)

SIP
Communicator

Adapter

SIP
Communicator

SIP Presence Agent

(from Interactions)

Request context

Request context (use java class)

SUBSCRIBE

OK

Figure 54 Basic flow – requesting context through SIP Presence GW

D4.2.4, 1.0

© Akogrimo consortium members page 109 of 139

sd SIP Presence GW - Receiv e context

SIP Presence Agent

(from Interactions)

SIP

Communicator

SIP

Communicator

Adapter

Context Engine

(from Context Manager - Internal view)

NOT IFY

Presence Update (through handle)

Context Update

OK

Figure 55 Basic flow – context received from SIP PA

The SIP Presence GW is realised in Java. It mainly consists of two parts:

� SIP Communicator adapter, which implements interfaces to SIP Communicator. It also
implements an RMI interface to communicate with Context Engine.

� SIP Communicator, a Java-based implementation of a SIP User Agent. SIP Communicator
is developed on top of JAIN-SIP-RI and JMF (Java Media Framework).

5.4.3.4. Context consumer GW

The Context consumer GW handles the communication with Context consumers. Upon
receiving a subscription from a Context consumer, it forwards the request to the ContextEngine
and returns the status of the subscription.

The Context consumer design is illustrated in Figure 44.

� The Context consumer GW is realised as the ContextManagerWS, which is a web service that
receives subscriptions.

However, the following components also take part in the communication with a Context
Consumer (see Figure 44):

� ContextManagerServer, a RMI server used by ContextManagerWS to forward subscriptions
to the ContextEngine.

� ContextConsumerProxy, a RMI client that sends notifications to Context consumers when
context changes.

The Context consumer GW is implemented in java. The main components are the following:

� ContextManagerWS, a web service implemented in java on Tomcat/Axis that receives
subscribtions. SOAP services are deployed into a Tomcat server while Axis is essentially a
SOAP engine.

� ContextManagerServer, a RMI server that offers an interface to the ContextManagerWS to
interact with the ContextEngine.

� ContextConsumerProxy, a RMI client that sends notifications to Context consumers when
context changes.

D4.2.4, 1.0

© Akogrimo consortium members page 110 of 139

5.4.3.5. Context Harvester Web Service at Context Manager

This web services at the Context Manager will receive context updates from the Context
Harvester, see in Figure 58.

Context Manager (i.e. the Web service at CM) will receive SOAP messages with a body
containing a list of discovered services. This list may, if a GPS device was found, contain a
position specification on latitude/longitude-format. An example is shown in Figure 56. Location
values are set to zero here because the GPS device had no satellite contact since it was switched
on. This is also indicated with the gpsSignalweak-variable set to value true.

Figure 56 Computational and location context - example

In order to relate this information to the correct user, CM uses a link between user ID and MAC
address for the device used during Bluetooth service discovery. This association user ID – MAC
address is obtained from A4C along with information about SIP address and RFID tag.

5.4.4. BT Context Harvester

A Personal Area Network (PAN) may be described as a netwoek consisting of the connection of
personal devices, allowing information exchange over short ranges. This term is used on several
of today’s short range wireless technologies like Bluetooth (BT), ZigBee, Infrared etc. In this
section we look in to how Bluetooth, as a PAN technology, may be used to enrich the context
information related to a person.

In Akogrimo so far, SLP in combination with user location has been used to establish
computational context. Here we evaluate the capability of Bluetooth as a replacement or
supplement of this method. The novelty lies in the use of radio communication to discover
enabled devices in a persons immediate surrounding. The use of BlueTooth is intriguing because

� Bluetooth has become a fundamental standard for short-range communication, and many
devices (laptops, mobile phones, PDAs) are shipped with BT;

� BT has mechanisms for service discovery and may easily collect information about the
surrounding BT-enabled devices;

� The usual range is 10 meters allowing discovery of devices in immediate proximity;

� We assume that the BT radio on a users personal device is used, hence the range of discovery
will follow the person for whom we wish to gather computational context;

� Some GPS modules are equipped with Bluetooth for communication with e.g. PDAs and
mobile phones. This opens for retrieving GPS-based location information.

D4.2.4, 1.0

© Akogrimo consortium members page 111 of 139

5.4.4.1. Design

A conceptual overview of the system is given in Figure 57. The remainder of this section gives a
brief description of design and implementation. For details, please refer to [Dav06].

Figure 57 Using Bluetooth for acquisition of computational context

Mainly two components are required to realise the suggested system:

� A Context Harvester at the user’s Mobile Terminal (described in this section)

� A Web Service interface at the Context Manager for receiving context updates (described in
5.4.3.5)

Context Harvester (CH) will interact with the Java API to the Bluetooth Software. CH runs
cycles of device discovery. This process returns information of nearby Bluetooth devices of the
terminal. A webservice client is trigged by these discovery processes, enabling uploading of
context changes to the Context Manager, see Figure 58.

The cycles of device discovery is done every 5 second. If new devices are discovered, these
devices will be further investigated by performing service discovery. Any relevant device/service
information is stored as an array, acting as an out buffer for potential Web Service method
invocations. For every third cycle a check is done to see whether the device context profile of the
terminal has changed since the last WS-update. If there has been a change, due to new or no
longer available Bluetooth devices, this check will trigger a WS call, again causing a CM update.
Before the context is updated against the Web Service at CM, up to date location information
(provided by a GPS Bluetooth service) is included in the update message. If no changes appear,
no update will be made and CH continues its device and service discovery. Figure 59 gives a brief
overview of that while interactions and messages are shown in Figure 60.

D4.2.4, 1.0

© Akogrimo consortium members page 112 of 139

Figure 58 Context Harvester – Modules and external parts

Figure 59 Basic functionality of Context Harvester (CH)

D4.2.4, 1.0

© Akogrimo consortium members page 113 of 139

Figure 60 Message sequence chart for Context Harvester (CH)

5.4.4.2. Implementation

The system has been implemented and it is working, based on the Bluetooth API for Windows
XP.

5.4.5. RFID software

One way to get location in Akogrimo is by RFID readings. Different RFID sensors can be placed
around specific locations and connected to a RFID Server. The server knows the location of each
of the different attached sensors.

5.4.5.1. Design

When a RFID tag is read by a sensor the RFID Server sends a message to the RFID Gateway of
the Context Manager. RFID Servers are connected to the gateway by a RMI interface. A card
reading contains the RFID tag id, which is 16 bytes, sent as a 32 character long string
representing the hexadecimal value of the bytes. Information about the location is also sent as
string. The location contains a position object containing longitude, latitude, altitude, horizontal
accuracy and vertical accuracy as well as UTM coordinates.

An overview of the RFID gateway and RFID Reader is given in Figure 61. The different
components interacts using RMI interfaces. The role of the gateway is to act as a proxy for the
messages from RFID Readers and to maintain the connections from RFID Readers.

D4.2.4, 1.0

© Akogrimo consortium members page 114 of 139

Figure 61 Basic elements for provisioning of RFID position

Figure 62 shows how the different components could interact when a tag is read at a RFID
sensor. The Server is already connected to the gateway using RMI. When the tag is read it
transmits the serial of the RFID tag to the sensor. The Server parses this to a string and adds the
location for that reader in a message to the Gateway. The gateway then forwards this message to
the Context Engine.

sd RFID

Context Engine

(from SLP)

RFID GW

(from Context Manager - Internal view)

RFID Serv erRFID Sensor

RFID Tag

Al ive(Tag ID)

T agReading(T ag ID, Sensor ID)

Sensor Location:= GetSensorLocation(Sensor ID)

RFID TagReading(Tag ID, Sensor Location)

LocationUpdate(T ag ID, Location)

Figure 62 MSC for provisioning of RFID position

5.4.5.2. Implementation

An outline of the RFID system is shown in Figure 61. The implementation is based on

RFID Server

Context Manager

Context Engine

RFID GW

LocationUpdate(Tag ID, location)

RFID Server RFID Server

RFID
Tag

RFID TagReading(Tag ID, Sensor location)

…

RFID
Sensor

D4.2.4, 1.0

© Akogrimo consortium members page 115 of 139

� Hardware: RFID tags and RFID sensors from third party equipment providers

� Software:

� Drivers for communication with RFID sensors. Drivers exist both for Windows and
Linux platforms. Libraries used are JPSCS (0.8.0) from IBM for both platforms and PCSC
(PC Smart Cards) from [MUSCLE] for Linux platforms.

� RFID Server software: Java-based, Telenor proprietary software for handling signalling
conversion between RFID sensors and RFID GW.

5.4.5.3. TagReader

A simplified version of the RFID Server has been implemented in order to support local RFID
tag readings for other services locally. Instead of reporting a position and RFID reading to the
Context Manager it stores the RFID tag in a local file accessible by the local system and services.

5.4.6. Context Viewer

The Context Viewer is an application that retrieves and displays context information from the
Context Manager, see Figure 63.

The application subscribes to an akogrimo id in the Context Manager. Context Viewer uses the
CM-interface based on WS, see Table 34 in Section 5.2.2. The user may provide the akogrimo id
using a graphical interface. The application works as a Context Client, it subscribes by a call that
includes the akogrimo id and the IP of the client for a return address. Upon receipt of a
subscription the Context Manager notifies the client with current context data. If the akogrimo id
does not exist no context will be shown. If subscription succeeds, the Context Viewer will be
notified of any context.

The context can be viewed as the client wants to. The different entities of context can be parsed
in the context xml and be dealt with separately. A location can be parsed and presented by a
clickable button that opens up a map service like Google Maps to show the location. Other
parses can make graphical icons that are clickable, a monitor can be shown, and when selecting
that monitor show the properties for that monitor.

Currently the Context Viewer only views the context as textual data. The context is shown as a
complete xml received from the Context Manager. It is implemented in Python [Python].

D4.2.4, 1.0

© Akogrimo consortium members page 116 of 139

Figure 63 Context Viewer interface

5.5. Testing

Product testing is an important part of the overall task of Quality Assurance. Although Akogrimo
does not aim to produce industry level products for a business or consumer market, thorough
testing is necessary to ensure more efficient SW development, smoother integration of
components, and overall reduction of risks. This section gives a brief description of test tools,
testing environments, and test cases for Context Manager and related software.

5.5.1. Tools

By test tools we mean components and software that are designed with the purpose of testing the
Context Manager. The tools will not be used normally when running the Context Manager
service. This may include interface simulators and load generators. The following test tools have
been provided for the context manager:

� Context Viewer (CV) is an independent software component that acts as a context
consumer. CV will contact an instance of CM to subscribe to context for a specific user. CV
is GUI-based and the user’s context will be displayed in a window. It may hold several
subscriptions at the same time. CV contacts CM over a WS-based interface, hence will only
test this part of the CM - Context Consumer interface (i.e. not WS-N). However, the most
essential test purpose of CV is to verify the content of a user’s context information.

� GetUserEPR /SubscribeToUser are two command-line based applications that together
act as a context consumer. They are used for testing the WS-Notification interface to Context
Manager. GetUserEPR will retrieve the endpoint reference (EPR) for a specific user, while
SubscribeToUser will subscribe to notification updates for the same user. User context will be
printed to default system output, usually the terminal where the scripts are executed. The
most essential test purpose of this tool is to verify the content of a user’s context information.

� A4C Simulation Mode is useful when running CM in an environment where the A4C Server
cannot be reached. When in A4C Simulation mode, the CM simulates information from the
A4C Server, the data is retrieved from the local machine. Simulation mode is
activated/deactivated in the CM properties file.

ID for the user of which
context information is needed,
e.g. alice@akogrimo.org.

IP address and path to
ContextManager service

User context will appear here

List of users appear here.

D4.2.4, 1.0

© Akogrimo consortium members page 117 of 139

� Location Simulator is a command-line replacement for the regular RFID Server. It will also
replace use of RFID Smart Cards (SC) and SC readers, and hence is useful when such
equipment is unavailable. End user data (RFID Tags) and RFID SC locations may be easily
configured; hence Location Simulator offers a fully functional replacement of the regular
RFID Server.

5.5.2. Test environment

Suitable test environments are necessary for appropriate testing throughout the realization
process. For testing CM the following environments have been used:

� Programmer’s PC: CM is fully functional on a Linux machine, and nearly fully functional on
a Windows machine. The following components will not work in Windows:

� A4C interface. This may be compensated by using the A4C Simulation Mode

� SLP GW. This GW requires libraries that only work on Linux. As a compensation, the
GW may be run on Linux. Communication between the GW and CM is over RMI

� Telenor test lab: Augustus, a Linux PC with Ubuntu, is available in Telenor’s lab for testing
CM. It has the same configuration as machines in the Akogrimo test lab, and hence provides
a good test environment. Augustus also hosts processes that CM communicates with, such as
a SIP UA and a SLP DA. Due to firewall settings according to the Test Lab’s security profile,
it is not possible for all other Akogrimo partners to connect to Augustus.

� Akogrimo test lab. Akogrimo has two test labs; one in Madrid (hosted by partner UPM) and
one in Stuttgart (hosted by partner USTUTT). The Stuttgart lab has been fully configured for
running the entire Akogrimo architecture, and hence offers an complete environment for
verification of the various components.

5.5.3. Test data

This section suggests data sets that are sufficient for evaluating the test cases in Section 5.5.4.

Users and user profile are listed in Table 45. The column “MD Authorization” indicates if
Monitoring Daemon is authorized to view the context of a user.

Table 45 Users and authorization

User Profile MD Authoriz.

Alice <userID>alice@akogrimo.org</userID>
<RfidTag>D2C7F651B28804004659255641102102</RfidTag>
<SipUrl>alice@akogrimo.org</SipUrl>

1

Bob <userID>bob@akogrimo.org</userID>
<RfidTag>B278FA51618804004659255641102102</RfidTag>
<SipUrl>bob@akogrimo.org</SipUrl>

1

Carol <userID>carol@akogrimo.org</userID>
<RfidTag>7280F751548804004659255641102102</RfidTag>
<SipUrl>carol@akogrimo.org</SipUrl>

0

David Null 1

Enya Null 0

Relevant test locations are listed in Table 46. Locations must match in the settings for RFID
Readers (file /etc/rfidserver/reader.positions.config) and in the location of SLP Services (file
/etc/slp.reg). In addition it is possible to define locations as suggested in 5.3.2.

D4.2.4, 1.0

© Akogrimo consortium members page 118 of 139

Table 46 Locations

Trondheim

Stuttgart Loc 1, Universitat
Stuttgart, Allmandring 30,
Basement, Room U1.005

Stuttgart Loc 2, Universitat
Stuttgart, Allmandring 30,
Science Truck

reader.1.zone=32
reader.1.zoneLetter=V
reader.1.northing=7035380
reader.1.easting=569839
reader.1.latitude=63.44
reader.1.longitude=10.4
reader.1.altitude=0.0
reader.1.accuracy=0.0

reader.2.zone=32
reader.2.zoneLetter=U
reader.2.northing=5398567.68
reader.2.easting=506937.77
reader.2.latitude=48.74009
reader.2.longitude=9.094363
reader.2.altitude=449.0
reader.2.accuracy=0.0

reader.3.zone=32
reader.3.zoneLetter=U
reader.3.northing=5398548
reader.3.easting=506949
reader.3.latitude=48.7500
reader.3.longitude=9.084363
reader.3.altitude=450.0
reader.3.accuracy=0.0

Registration of local services are handled by SLP, and must match with what is desired in the
tests to be performed. Table 47 is an excerpt from /etc/slp.reg, where Stuttgart Location 1 has a
display accessible over the VNC protocol, and Stuttgart Location 2 has a display accessible via
the SIP protocol.

Table 47 Local services: Excerpt from /etc/slp.reg

##Register service

Printer 2 Trondheim

service:printer:lpr://129.241.219.163,en,65535

#use default scopes

#[attrid"="val1<newline>]

owner=bob3

description=Printer2 Trondheim

utmNorthing=7035370

utmEasting=569839

utmLetter=V

utmZone=32

##Register service

Display1 Stuttgart - Location 1

service:display:vnc://ksat97.ipv6.rus.uni-stuttgart.de,en,65535

#use default scopes

#[attrid"="val1<newline>]

owner=Brynjar

description=Display

utmNorthing=5398567

utmEasting=506937

utmLetter=U

utmZone=32

location=U1.005,lab

display=8

sipuri=display1_stuttgart@akogrimo.org

##Register service

Beamer Stuttgart - Location 2

service:display:sip://carol@ksat54.ipv6.rus.uni-stuttgart.de,en,65535

owner=EHealth_lab

description=Display

utmNorthing=5398548

utmEasting=506949

utmLetter=U

utmZone=32

location=science_truck

display=50

sipuri=carol@akogrimo.org

5.5.4. Test cases

Ideally, tests should be performed at several levels: during implementation, integration of
components, value chain tests for the entire platform, FAT (Factory Acceptance Test) and SAT

D4.2.4, 1.0

© Akogrimo consortium members page 119 of 139

(System Acceptance Test). The test cases described in this section aim at providing a passable set
of value chain tests for CM, i.e. are not exhaustive and not for all the above mentioned levels.

An example of test cases and results are described in Table 48. In the reminder of this section we
shall only describe test cases, the date, result and test status has been omitted.

Table 48 Sample test table

Test case # Test description Expected result Test run
date

Observed
result

Test F/P7

A4C 1 MD request
Alice’s context

Context returned (Profile
exists, MD is authorized)

11th Oct
2006

As expected P

5.5.4.1. A4C tests

Test Data: Table 45 Users and authorization

Test environment: USTUTT Lab. CM should contact A4C Server. See test results in CM logs.

Test scenario: Request from Context viewer, CM performs A4C lookup (context consumer
authorization, get user profile), observe that context is / is not returned to context viewer.

Table 49 A4C test cases

Test case Test description Expected result

A4C 1 MD request Alice’s context Context returned (Profile exists, MD is authorized)

A4C 2 MD request Bob’s context Context returned (Profile exists, MD is authorized)

A4C 3 MD request Carol’s context Context not returned (Profile exists, MD is not authorized)

A4C 4 MD request David’s context Context not returned (Profile dos not exist, MD is authorized)

A4C 5 MD request Enya’s context Context not returned (Profile does not exists, MD is not
authorized)

5.5.4.2. Location (RFID) and local services (SLP) tests

The objective of this test is to verify that users are located in the right places, and that the correct
local services are detected.

Test data: All data mentioned in Section 5.5.3.

Test environment: USTUTT Lab. RFID readers are connected to Windows machines. Observe
results in Context Viewer (CV).

Test Scenario: Bob, Alice and Carol move between USTUTT Location 1 and 2. Start location is
Trondheim.

Table 50 Location test cases

Test case Test description Expected result

RFID 1 Presumption: No location registered for Alice

 1. CV8 subscribes Gets default context from Context DB

 2. Alice registers at USTUTT location 1 (lab) Corresponding context is updated with CV:
Location, two SLP devices (display 1 and 2)

 3. Alice registers at USTUTT location 2 (truck) Corresponding context is updated with CV:
Location, one SLP device (Beamer)

RFID 2 Presumption: No location registered for Bob

 1. CV Gets default context from Context DB

7 F: Fail, P: Pass. Alternatives include NA: Not Applicable, Po: Postponed

8 Context Viewer

D4.2.4, 1.0

© Akogrimo consortium members page 120 of 139

Test case Test description Expected result

subscribes

 2. Alice registers at USTUTT location 1 (lab) Corresponding context is updated with CV:
Location, two SLP devices (display 1 and 2)

 3. Alice registers at USTUTT location 2 (truck) Corresponding context is updated with CV:
Location, one SLP device (Beamer)

5.5.4.3. Presence (SIP Presence) tests

The objective of this test is to verify that when presence is set by a user in the SIP UA, the same
presence information reaches a context consumer.

Test data: Table 45 Users and authorization

Test environment: USTUTT Lab. Observe results in Context Viewer (CV).

Test Scenario: Bob, Alice and Carol change between two presence settings. Initial state is “Not
registered” (i.e. the SIP UA has not been started).

Table 51 Location test cases

Test case Test description Expected result

Presence 1 Presumption: Alice’s SIP UA has not been
started

 1. CV9 subscribes Gets default context from Context DB

 2. Alice starts her SIP UA, and registers with
SIP server at USTUTT lab.

Alice’s new presence is updated with CV

 3. Alice changes presence Alice’s new presence is updated with CV

Presence 2 Repeat Case Presence 1 for user Bob As above

Presence 3 Repeat Case Presence 1 for user Carol As above

9 Context Viewer

D4.2.4, 1.0

© Akogrimo consortium members page 121 of 139

6. Service Discovery

Due to the importance of this subject, in this second circle of the project the Service Discovery
(SD) mechanism will be created to obtain a much more flexible and powerful architecture. In
order to achieve this, a quite profound redesign is needed.

The Service discovery mechanisms at network level are divided in four parts: Network Discovery
(ND), Device Discovery (DD), Local Service Discovery (LSDS) and Grid Service Discovery
(GrSDS), as represented in Figure 64.

The challenge of providing and using mobility and location specific information is a central part
in the project, however, practice shows that most of the times location changes are not
transparent for the users. This is because these changes often require some kind of re-
configuration at different levels. This reconfiguration should not place a burden to end users, and
therefore this process needs to be partially automated. SD tries to overcome and solve some of
these issues by providing an automatic look up of resources at different layers. These are the
mentioned Network Discovery, Device Discovery, Local Service Discovery and Grid Service
Discovery.

Figure 64 Service Discovery

This document mainly focuses on Local Service Discovery mechanisms, which arises once a
device is totally functional in the network. This layer deals with general types of services such as
printers, beamers, webcams, music sharing, video streaming, locally available Web Services, local
UDDI servers, file sharing, contacts sharing, bookmark sharing, file servers, games, pop3, cvs,
http, ssh, ftp servers, collaborative working tools, proxies, time servers and so on.

D4.2.4, 1.0

© Akogrimo consortium members page 122 of 139

6.1. Network Discovery

This layer of SD understands the network as the initial point other Akogrimo services can be
discovered and used. The process is divided in two stages: network discovery and network
configuration.

The first stage focuses on network discovery and happens before network configuration at IP
level. Depending on the concrete situation, maybe ten different networks can be accessed
through the different interfaces at that precise moment. Network selection takes place according
to information such as bandwidth, cost of use, signal quality or usable ports for that network.

Secondly, the network needs to be configured for the specific location. This implies: the
establishment of an IP address, routing configuration, local DNS to use, network security
configuration, discovery of local authentication authorities (for authentication to take place at IP
level), local SIP Proxies, etc.

In order to solve the problem of network discovery the first important thing to think about
would be at which level the information necessary for a user’s bootstrap can be transmitted to
him. It is clear the OSI Link Layer information can not be used as we strive to provide an IP
based media access independent architecture, therefore it needs to contain information from
upper OSI layers. The most reasonable possibilities would be:

� Router Advertisements: this information could be embedded in router advertisements sent by
access routers. The drawback would be that RAs are sent quite often and most of the times
this information would be send with no reason wasting valuable resources.

� DHCP: The dynamic host configuration protocol was firstly designed to provide the host
with an IP and some other information such as DNS server. This could be a reasonable
solution.

� Zeroconf: Taking into account that in IPv6 the address is already provided by the access
routers by means of RAs and that with DHCP the achievement of this information is
triggered by the client and not the network, Zeroconf can provide extra features such as the
retransmission to the user of changes occurred in the network or e.g. advertise that the AR is
not usable any more before it shuts down so that the client knows what is going on.

An example of the user of Zeroconf for this is shown in the following figure, where a router AR1
is discovered with information about available ports, cost, name and the location of the SIP
proxy and DNS. In addition to this it would be important to also transmit the location of the
Authentication authority that needs to be contacted to enter the network.

D4.2.4, 1.0

© Akogrimo consortium members page 123 of 139

6.2. Device Discovery

Perpendicular to the rest of types of service discovery, device discovery focuses on aggregating
information about the possible devices that are around the user’s environment and are not
necessarily part of the Akogrimo infrastructure. Examples of these devices could be Bluetooth
phones, or beamers, or even people with which the user interacts directly. The rational for
supporting non-Akogrimo devices would be the fact that for example, the Workflow would be
aware and therefore allow the user to use a non-Akogrimo beamer to visualize a certain
document as long as the policies related to this act allow the use of a public-non-related beamer,
instead of making the user move all the way to the other side of the building where an Akogrimo
beamer is located. This kind of discovery would integrate different types of mechanism, especially
ad-hoc, such as Bluetooth or UPnP.

6.3. Local Service Discovery

The experience gained on the usage of the Session Initiation Protocol (SIP) as an efficient
context propagation source and the study of classical service discovery mechanisms reveal that
these notification capabilities can also be used to implement a powerful service discovery
mechanism. This might sound like a forced approach at a first glance; however, it is needed to
keep in mind that the underlying procedures are very akin to each other. SIP was primarily
designed to negotiate any type of sessions between two or more participants. In this case the
participants happen to be a client that looks for a certain service and the server that provides it.
The mechanisms by which these two peers interrelate after they have been put in contact are
independent from this system. Distinctive features of this system not present in other SD
mechanisms would include the ability to make fine-tuned subscriptions to service changes or

D4.2.4, 1.0

© Akogrimo consortium members page 124 of 139

subscription to services even before they are available. In addition other interesting capabilities
could be its reduced chattiness, since users receive information just about services they are
subscribed to; bandwidth efficiency, considering that partial publications and notifications could
be used to only convey changes in the description of the services instead of complete documents;
and an xml-enhanced service description, which opens the door for the inclusion of semantic
description.

6.3.1. Description of the architecture

From a conceptual point of view, service discovery architecture usually comprises three main
actors: a Service Provider, or the entity which offers the service, a Service Requestor (the
inquiring entity) and a Repository or Directory Agent, which facilitates a requestor to select the
service provider that better matches its requirements.

The SD mechanism proposed in this document also matches this approach. The definition of the
main entities involved and its mapping with the usual SD actors is the following:

� Service Publication Agent (SPA): it is a SIP User Agent supporting SIP PUBLISH which
will be in charge of making public the service capabilities. It plays the role of the service
provider in a classic SD architecture.

� Service Discovery Subscriber (SDS): this is the consumer of the service discovery
information (i.e. the service requestor in the SD architecture); it could be an end user terminal,
some network entity or another service controlling a SIP UA with SIP SUBSCRIBE and SIP
NOTIFY support.

� Service Discovery Agent (SDA): it is the Directory Agent in the conceptual SD architecture.
This entity is primarily responsible for storing, aggregating and maintaining service
information from different SPAs and the corresponding subscriptions from SDSs.
Additionally, and due to the SIP mechanisms it is based on, it is also capable to inform the
subscribers if any change on the services capabilities they are interested in occurs. Note that
this is only a functional description: depending on the concrete implementation, and for
scalability purposes, the functionality of the SDA can be distributed among several machines,
instead of having a centralized server

This role mapping is depicted in Figure 65.

Figure 65 SIP Service Discovery role mapping

D4.2.4, 1.0

© Akogrimo consortium members page 125 of 139

6.3.2. Functional Description

The definition of a Service Discovery framework includes the description of the formal
mechanisms to enable the requestors to find required service providers. These mechanisms rely
on two basic functionalities:

� Service publication: this is the way in which one service provider registers and publishes its
services in the Directory Agent to be discovered by Service Requestors.

� Services search: this mechanism defines how a requestor can make a request to the
repository, indicating the services features it is interested in, and how the reply is delivered.

The proposed SIP SD mechanism (which is described in Figure 66) makes use of SIP PUBLISH
as a publication mechanism, while a specific-event based SIP SUBSCRIBE/NOTIFY framework
is used to implement queries and services searches.

Service Publication

Agent

Service Discovery

Agent

Service Discovery

 Subscriber

2: 200 OK

1: PUBLISH

8: 200 OK

7: PUBLISH

4: 200 OK

3: SUBSCRIBE

6: 200 OK

5: NOTIFY

10: 200 OK

9: NOTIFY

a) Some service makes

public its availability to

be discovered and used

b) Service Discovery

subcription and delivery of

the initial status

c) Service Discovery update

Figure 66 SIP Service Discovery data flow

When a service wants to make public some information related to itself, it uses its associated SPA
to send a SIP PUBLISH request containing all relevant resource information, which will be
included in a xml document named “Resource Description Document” (RDD) containing
some basic information like resource description, owner, location, IP address and how to access
it. This interaction is shown in the first box in the figure above.

The SIP URI to be used in the PUBLISH request will be shared by all entities or individual
resources associated to the service (e.g. all available beamers will register itself as beamer-
service@domain. This URI should be standardized to name services much in the way of other
SD protocols – like SLP or Zeroconf – do it). The PUBLISH message is sent to the SDA which
will store, maintain and aggregate the information provided by different SPAs corresponding to
the same service (e.g. the complete description of the “beamer service” will consist on the
composition of the individual information provided by each registered beamer, that is, the
aggregation of each individual RDD). This aggregated document that the SDA handles is the
“Service Description Document” (SDD).

When an entity (end users or other services) wants to find a service with specific characteristics, it
can subscribe to this information via SIP SUBSCRIBE (the dash-lined box in Figure 66). The SIP
SUBSCRIBE message can contain a body, the “Service Subscription Document” (SSD) which
will be used to implement searches, or restrict the scope of the information the SDS wants to

D4.2.4, 1.0

© Akogrimo consortium members page 126 of 139

receive (e.g. only a list of the available beamers located in a certain building must be provided).
This kind of filtering mechanism is envisaged in the general SIP-Specific Event Notification
Request for Comment (RFC 3265, section 4.4.3) and will be part of the event package
specification associated to the new kind of event it is described here. The format of the SSD also
still needs to de defined.

Immediately after a valid subscription is created, the requested information is sent via a SIP
NOTIFY message. This information, named the “filtered Service Description Document”
(fSDD), will typically consist on a subset of the SDD, containing only the RDD of the resources
matching the query. If the subscription document were empty, the whole SDD will be delivered.

Apart from services publications and searches, the usage of this mechanism provides an
additional functionality, as depicted in the dark box of Figure 66). Using SIP SD, any change on
the services properties or availability could be also notified during the period of time in which the
subscription is valid (e.g. if there is a valid subscription to the “beamer service” in certain area,
and then a new beamer appears, the corresponding subscriber will receive an update of the
RSDD containing the new beamer information; in a similar way, subscribers will be notified if
some resource is no longer available). This new functionality, combined for instance with the
advanced capabilities that NGN can provide, would allow very sophisticated versions of the SD
mechanisms.

6.3.3. Implementation

The logical entities that constitute the SIP SD architecture, i.e. SPA, SDS and SDA, use the
already present signalling capabilities. Therefore, it is needed to build them on top of previous
software pieces, making use of the available interfaces. Besides, it is also needed to carefully
define the interfaces of those entities that will interact with application software, as is the case for
the SPA and the SDS.

6.3.3.1. Service Publication Agent

As stated before, the SPA is the logical entity in charge of publishing service information. It has
been designed as a library that offers a signalling API. This API allows for other software
elements and applications to handle the signalling needed for service information publication.

In a way similar to that used for the presence infrastructure elements, the SPA is built on top of
the SIP Event Publication Agent (EPA) (see section 2.2.2).

Figure 67 SPA architecture

The SIP EPA is a generic event publication agent. Its functionality can be used to publish any
kind of information related with any kind of event. This approach provides a flexible architecture
in which adding support for new event packages only requires the creation of new classes that
make use of the signalling services provided by the EPA. The EPA uses the signalling handling

D4.2.4, 1.0

© Akogrimo consortium members page 127 of 139

capabilities of the SIP UA to send and receive the required messages. Thanks to the functionality
offered by the SIP EPA, the SPA only needs to take care of SIP SD-specific features.

Since the SPA is a library targeted to allow whichever service to publish its SIP SD information,
its JAVA API includes methods to manage the needed signalling: initial publication, publication
update, publication refresh and automatic publication expiration handling.

6.3.3.2. Service Discovery Subscriber

The SDS is in charge of handling subscription to service information obtained through the SIP
Service Discovery infrastructure. It also handles the notifications sent by the SDA when changes
in service information occur. The implementative approach used to create the SDS is the same
than that of the SPA. The SDS is also a library that offers the needed functionality as a JAVA
API.

The SDS relays on the functionality offered by the SIP Event Subscription Agent (ESA).

Figure 68 SDS architecture

In a way similar to that of the EPA to event information publication, the ESA provides the
methods needed to create generic subscriptions in an event server. It also handles the notification
messages that such a server would send when processing the subscription. Thanks to this
approach, the SDS just needs to handle SIP SD-specific issues.

The SDS is presented as a JAVA library. It can be used by any software entity willing to obtain
service information from the SIP SD infrastructure. Its API allows for the creation and
management (i.e. refreshment, update and expiration) of multiple simultaneous subscriptions, as
well as the associated notifications.

6.3.3.3. Service Discovery Agent

The Service Discovery Agent (SDA) is responsible for storing, aggregating and maintaining
service information from different SPAs and the corresponding subscriptions from SDSs., as
mentioned before. It also informs the subscribers if any change on the services capabilities they
are interested in takes place.

From an implementation perspective, it basically consists of a Java servlet implementing the
required functionality. This servlet is deployed in a services container (or Application Server,
following the IMS - IP Multimedia Subsystem - terminology) based on a modified Tomcat that
comprises a JAIN SIP-based SIP UA, being fully compliant with the SIP servlet API
specification [JSR116].

The main internal architecture of the application server is represented in the figure below:

D4.2.4, 1.0

© Akogrimo consortium members page 128 of 139

Application Server

SIP UA

Core Logic

SIP Servlets pool

SDA servlet

Query Engine

Query Engines pool

XPath
XPath

XPath

Figure 69 Application server and SDA internal structure

The underlying SIP UA is responsible for capturing the incoming SIP messages. The application
server decides what to do with each SIP request following the instructions of the
$CATALINA_HOME/conf/sip.xml file, which indicates the SIP servlet to be invoked. If the
SDA servlet is responsible for the request handling (this will occur for PUBLISH and
SUBSCRIBE requests whose ‘Event’ header field indicates “sipsd”), the SDA processing takes
place.

The SDA servlet maintains a list of RDDs containing the related information of each resource.
The most interesting process takes place when a SIP SUBSCRIBE request arrives, and it is
depicted in the following figure:

Figure 70 SD subscription processing

First, the SDA servlet examines the RequestURI in order to know to which resources the
subscriber is interested in (beamers, printers, cameras), and builds a raw or unfiltered list of all
related resources, the SDD; then, and using the information contained in the subscription (e.g. a
‘Content-Type’ header field with a value “application/sd-xpath+xml” indicates that the SDS
contains an XPath query), it decides which Query Engine should be applied to perform the
searching, or filtering, of the raw document. The output of this processing is the fSDD document
to be included as the body of a SIP NOTIFY to be sent to the subscriber.

The SDA has been designed to support multiple and different search mechanisms. This
functionality has been implemented by using java pluggins which are loaded and indexed

D4.2.4, 1.0

© Akogrimo consortium members page 129 of 139

automatically during the application servlet startup. A SD query engine pluggin consists on a java
jar file located at $CATALINA_HOME\ webapps\panther-examples\WEB-INF\lib\qe
including a manifest file containing a section like this:

Name: QueryEnginePlugin

QueryEngineType: related content type

QueryEngineClass: class implementing org.akogrimo.sip.sd.sda.qe.common.IQueryEngine
interface

The related content type is a string value that indicates to which kind of subscriptions this query
engine should be applied (e.g. application/sd-xpath+xml for xpath queries).

IQueryEngine implementation performs the query itself. The definition of this interface is
described in the table below:

Table 52 IQueryEngine interface definition

Method Description

String match(String strServiceDoc, String
strFilterDoc)

Filters the specified doc by using the filter
passed as parameter

@param strServiceDoc

@param strFilterDoc

Returns a String object containing the filtered
document

boolean validateFilter(String strFilterDoc) Return if the filter passed as parameter is valid

@param strFilterDoc

Returns true if the filter passed as parameter is
valid

This approach allows developers to easily develop a new type of filter mechanisms, since they
only are restricted to these few rules; then, they only have to put the jar file on the corresponding
folder and restart Tomcat. The SDA servlet automatically loads the new library and registers the
new search mechanisms, which is ready to be used. For the Akogrimo demonstrator, an XPath
query engine has been developed in this way.

Finally, the SDA servlet can be configured by modifying the file
$CATALINA_HOME\webapps\panther-examples\WEB-INF\web.xml Configurable
parameters are described in the table below:

Table 53 SDA servlet parameters

Parameter Purpose

minExpires Minimum allowed expiration time for publications and subscriptions 10

maxExpires Maximum allowed expiration time for publications and subscriptions 10

10 Inherited from Events servlet. The SDA servlet inherits most of its functionality from a generic Events servlet,
since more of the processes that must take place when a PUBLISH or SUBSCRIBE arrives are independent from
the type of event being handled.

D4.2.4, 1.0

© Akogrimo consortium members page 130 of 139

Parameter Purpose

defExpires Default allowed expiration time for publications and subscriptions 10

defaultEvent Type of event being handled 10

defaultContentType Type of content type being handled 10

logFile Output log file

plugginDir Absolute path to the folder from the query engine pluggins are loaded.

6.3.3.4. SIP Service Discovery test application

In order to demonstrate the capabilities of SIP SD in a way that is easy to see for an external
expectator a GUI was developed that uses the underlying java classes that call the SIP SD
methods. The proof of concept implementation used utilizes XML service descriptions and
XPath in order to perform queries. The GUI uses a browser and googlemaps to perform queries
in a certain area over a map. Whenever a camera is discovered a MM session can be triggered by
clicking on the corresponding camera. A Java applet is used to handle this and the
communication between the browser and the SDS implementation. Once a SDS subscribes to a
certain area for a certain period it will receive information of all cameras (SPA) appearing,
disappearing or moving in the corresponding area.

D4.2.4, 1.0

© Akogrimo consortium members page 131 of 139

Figure 71 SIP Service Discovery test application

6.4. Grid Service Discovery

Grid Service Discovery has been worked on, but information about it can be found in D 4.4.3,
Report on the implementation of the Application Support Services Layer [D4.4.3], delivered at
the same time as this deliverable.

D4.2.4, 1.0

© Akogrimo consortium members page 132 of 139

Annex A. References

 [Cal03] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko. “Diameter Base Protocol”,
IETF RFC 3588, September 2003. URL: http://www.ietf.org/rfc/rfc3588.txt Last
visited 19.12.2006

[D3.1.1] J. Jähnert et al: “Overall Architecture Definition and Layer Integration”. Akogrimo
Deliverable D3.1.1, v1.0. URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=36
URL last visited: 19.12.2006

[D3.1.2] J. Jähnert et al: “Detailed Overall Architecture”. Akogrimo deliverable D3.1.2, v1.0.
URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=73
URL last visited: 19.12.2006

[D3.1.3] J. Jähnert et al: “Overal Architecture Definition and Layer Integration”. Akogrimo
deliverable D3.1.3. Will be available at http://www.akogrimo.org

[D4.1.1] N. Inácio et al: “Consolidated Network Layer Architecture”. Akogrimo Deliverable
D4.1.1 07.11.2005, v1.0. URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=43
URL last visited 19.12.2006

[D4.1.3] N. Inácio et al: “Final Network Service Provisioning Concept”. Akogrimo
Deliverable D4.1.3. Scheduled for December 2006

[D4.2.1] J. Wedvik et al: “Overall Network Middleware Requirements Report”. Akogrimo
Deliverable D4.2.1. 01.09.2005, v 1.1. URL:
http://www.akogrimo.org/modules.php?name=UpDownload&req=getit&lid=39
Last visited 19.12.2006

[D4.2.2] Osland et al: “Final Integrated Services Design and Implementation Report.“
Akogrimo Deliverable D4.2.2. November 2005. URL:
http://www.akogrimo.org/modules.php?name=UpDownload&req=getit&lid=42
URL last visited 19.12.2006

[D4.2.3] Solsvik et al: “Final Integrated Services Design and Implementation Report.”
Akogrimo Deliverable D4.2.3 December 2006. URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=110
URL last visited 14.07.2007

[D4.4.1] G. Laria et al: “Architecture of the Application Support Service Layer”. Akogrimo
Deliverable D4.4.1, v1.0. URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=38
URL last visited: 19.12.2006

[D4.4.2] G. Laria et al: “Prototype Implementation of the Grid Application Support Service
layer”. Akogrimo deliverable D4.4.2 v1.0. URL:
http://www.mobilegrids.org/modules.php?name=UpDownload&req=getit&lid=74
URL last visited: 19.12.2006

D4.2.4, 1.0

© Akogrimo consortium members page 133 of 139

[D4.4.3] G.Laria et al: “Report on the Implementation of the Application Support Servies
Layer”. Akogrimo Deliverable D4.4.3. Scheduled for December 2006

[D5.1.2] Akogrimo: “Integrated Prototype”. Akogrimo Deliverable D5.1.2. URL:
http://www.akogrimo.org/modules.php?name=UpDownload&req=getit&lid=80
Last visited: 19.12.2006

[Dav06] H. Davidsen: “Bluetooth in context acquisition”. Master thesis, Dept of Telematics,
NTNU. July 17, 2006

[Dey99] A.K.Dey,G.D.Abowd,D.Salber; ”A Context-Based Infrastructure for Smart
Environments”. In Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE '99), 1999, pp. 114-128; URL:
www.cc.gatech.edu/fce/contexttoolkit/pubs/MANSE99.pdf; (online 19.12.2006)

[eduGAIN] D. Lopez et al: “DJ5.2.3,1: Best Practice Guide – AAI Cookbook – First Edititon”.
2006.
URL: http://www.geant2.net/upload/pdf/GN2-06-236v5-DJ5-2-3-
1_Best_Practice_Guide-AAI_Cookbook_First_Edition.pdf
URL last visited November 29th, 2006

[EduPerson] Internet2: "EduPerson Object Class Specification (200604)”. 2006. Internet2
Middleware Architecture Committee for Education, Directory Working Group
(MACE-Dir)
URL: http://www.educause.edu/eduperson/ URL last visited November 29th, 2006

[For05] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, A. Yegin. “Protocol for Carrying
Authentication for Network Access (PANA)”, IETF Draft, 16 July 2005. URL:
http://www.ietf.org/internet-drafts/draft-ietf-pana-pana-13.txt
Last visited 19.12.2006

[Gu04] Tao Gu, Xiao Hang Wang, Hung Keng Pung, Da Qing Zhang: “An Ontology-based
Context Model in Intelligent Environments”, In Proceedings of Communication
Networks and Distributed Systems Modeling and Simulation Conference, San Diego,
California, USA, January 2004

[Gut99a] E. Guttman et al: “Service Location Protocol, Version 2,” IETF, RFC 2608, June
1999. URL = http://www.rfc-editor.org/rfc/rfc2608.txt Last visited 19.12.2006

[JNI] Java Native Interface (JNI), http://java.sun.com/docs/books/tutorial/native1.1/
Last visited 19.12.2006

[JSR116] Java Specification Requests 116 “SIP Servlet API”,
http://jcp.org/en/jsr/detail?id=116 Last visited 19.12.2006

[Mos03] S. Kouadri Mostéfaoui, G. Kouadri Mostéfaoui, “Towards A Contextualisation of
Service Discovery and Composition for Pervasive Environments”, In Proc. of the
Workshop on Web-services and Agent-based Engineering (WSABE), 2003.

[MUSCLE] MUSCLE Webpage: URL http://musclecard.com/ Last visited 19.12.2006

[MySQL] MySQL Database. URL: http://www.mysql.com Last visited 19.12.2006

D4.2.4, 1.0

© Akogrimo consortium members page 134 of 139

[Nie04] A. Niemi, “Session Initiation Protocol (SIP) Extension for Event State Publication”,
RFC 3903, Internet Engineering Task Force, October 2004. URL:
http://www.ietf.org/rfc/rfc3903.txt Last visited 19.12.2006

[OpenGIS] Open GIS Consortium, Inc.: “OpenGIS® Simple Features Specification For SQL”.
Revision 1.1. May 5, 1999. URL: http://www.opengis.org/docs/99-049.pdf Last
visited 19.12.2006

[openslp] OpenSLP Webpage. URL www.openslp.org Last visited 19.12.2006

[Python] Python web page. URL: http://www.python.org/. URL last visited 07.12.2006

[Roa02] A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”, RFC
3265, Internet Engineering Task Force, June 2002. URL:
http://www.ietf.org/rfc/rfc3265.txt Last visited 19.12.2006

[Ros04] J. Rosenberg, “A Presence Event Package for the Session Initiation Protocol”, RFC
3856 Internet Engineering Task Force, August 2004. URL:
http://www.ietf.org/rfc/rfc3856.txt Last visited 19.12.2006

[Ros04-2] J. Rosenberg, “A Watcher Information Event Template-Package for the Session
Initiation Protocol”, RFC 3857 Internet Engineering Task Force, August 2004. URL:
http://www.ietf.org/rfc/rfc3857.txt Last visited 19.12.2006

[SAML] OASIS: “Security Assertion Markup Language, SAML”, October 2005.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security Last
visited 19.12.2006

[SAMLAssertion] P. Hallam-Baker et al. ”Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML)”, OASIS, November 2002. URL: http://www.oasis-
open.org/committees/download.php/%201371/oasis-sstc-saml-core-1.0.pdf Last
visited 19.12.2006

[Shib] M. Erdos, S. Cantor: “Shibboleth-Architecture Draft v04”. 2001.
URL: http://shibboleth.internet2.edu/docs/draft-internet2-shibboleth-arch-v04.pdf.
URL last visited November 29th, 2006

[SIMLIE] SIMLIE - Semantic Interoperability of Metadata and Information in unLike
Environments. SIMLIE Location Ontology:
http://simile.mit.edu/2005/05/ontologies/location. URL last visited 19.12.2006

[SIPComm] “SIP Communicator - a Java SIP User Agent built on top of the JAIN-SIP-RI and
JMF”. Software project at Network Research Team, Louis Pasteur University -
Strasbourg, France. URL: http://www.sip-communicator.org Last visited 19.12.2006

[Wang04] Xiao Hang Wang, Tao Gu, Da Qing Zhang, Hung Keng Pung: “Ontology Based
Context Modeling and Reasoning using OWL“. Context Modeling and Reasoning
Workshop at PerCom. 2004

[XML] Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 04
February 2004. URL: http://www.w3.org/TR/REC-xml/

D4.2.4, 1.0

© Akogrimo consortium members page 135 of 139

[xmlSchema] XML Schema Part 0: Primer Second Edition. W3C Recommendation 28 October
2004. URL: http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ Last
visited 19.12.2006

D4.2.4, 1.0

© Akogrimo consortium members page 136 of 139

Annex B. SIP Presence Handling

B.1. Presence User Agent

B.1.1. Test cases

In order to check the Presence Agent functionality, we propose several test cases, basically
oriented to verify the functional requirements. It should be convenient to enable the trace mode
of the Presence Agent library to track debug messages. To perform the test, both a Presence User
Agent and a presence watcher are needed.

Test Case Description Result

1
Check presence/context publication storage:
send an initial PUBLISH message from a PUA

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node created. PUA must
receive the corresponding reply (with the
corresponding entity-tag).

2
Check presence/context publication storage
update: send a PUBLISH refresh message from
a PUA (update expires)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node updated. PUA must
receive the corresponding reply.

3
Check presence/context publication storage
update: send a PUBLISH update message from
a PUA (new PIDF body)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node updated. PUA must
receive the corresponding reply.

4
Check presence/context publication storage
delete: send a PUBLISH remove message from a
PUA (expires field set to zero)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node deleted (if no active
subscriptions; updated, otherwise). PUA must
receive the corresponding reply.

5
Check presence/context publication expiration
control: send a PUBLISH message from a PUA
with a very short expires value and let it expires.

Traces should indicate that the PUBLISH
message have been received and the
corresponding action over the EPA node
performed; next PA timer iteration (if set to a
higher value than the expiration time) should
delete the EPA Node.

6

Check presence/context publication RFC
compliance: send several invalid PUBLISH
messages (no Event field included, try to refresh
an expired publication....)

Traces should indicate that the PUBLISH
message have been received, the problem
detected and the corresponding reply sent to the
PUA, which must receive the corresponding
reply.

7

Check presence/context subscriptions: send an
initial SUBSCRIBE message from a PUA to
request for the presence status of an
active/inactive presentity (active if the presentity
has already published its event state).

Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node created. PUA
must receive the corresponding reply and a
NOTIFY response including a body with the
published presentity status (empty/default if no
publications from that presentity stored).

D4.2.4, 1.0

© Akogrimo consortium members page 137 of 139

Test Case Description Result

8
Check presence/context subscriptions: send a
SUBSCRIBE refresh message from a PUA

Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node updated. PUA
must receive the corresponding reply and a
NOTIFY response including a body with the
published presentity status (empty/default if no
publications from that presentity stored).

9
Check presence/context subscriptions: send a
SUBSCRIBE remove message from a PUA
(expires field set to zero).

Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node removed. PUA
must receive the corresponding reply and a
NOTIFY response including a body with the
published presentity status (empty/default if no
publications from that presentity stored). If
presentity has expired its publications and it has
no more active subscriptions, EPA node should
be also removed.

10
Check presence/context subscriptions
expiration control: send a SUBSCRIBE message
from a PUA and let it expires.

Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding action over the subscription node
performed; next PA timer iteration (if set to a
higher value than the expiration time) should
delete the subscriber node. PUA should receive
a NOTIFY message with the adequate
parameters.

11
Check presence/context subscriptions RFC
compliance: send a invalid SUBSCRIBE
message from a PUA.

Traces should indicate that the SUBSCRIBE
message have been received, the problem
detected and the corresponding reply sent to the
PUA, which must receive also the corresponding
reply.

12

Check presence/context framework
authorisation control: send a SUBSCRIBE
request from a non-authorised PUA. PA must
be configured to admit subscriptions from a
certain SIP URI only.

Traces should indicate that the SUBSCRIBE
message have been received, the problem
detected and the corresponding reply sent to the
PUA, which must receive also the corresponding
reply.

13
Check PA memory leaks: abort SER process
having active publications and subscriptions

Traces should indicate that all memory has been
freed (no memory leaks).

B.1.2. Installation, configuration and usage

SIP Server (including embedded SIP PA) is currently installed, configured and running on
ksat115. The installation comprises two debian packages, the one corresponding to the standard
SER (named ser) and the one that installs the PA library (libsipserver), the configuration file
(ser.cfg) and the extended command utility (serctl). The Akogrimo forge server includes them
and the corresponding readme file indicates which version of the files correspond each other.

By default, the installation configures the SIP Server (and so, the embedded Presence Agent) to
show logs messages to the console from it were started. It can be also configured to redirect
these logs to a file. Log level can be changed by editing file /etc/ser/ser.cfg (find the line
debug = 3 and type a higher level of detail; 3 should be enough).

D4.2.4, 1.0

© Akogrimo consortium members page 138 of 139

SIP PA has their own debug system and traces level independent from the general log framework
of the SIP Server. To modify the, modify the line

modparam("esc", "trace_level", 1)

and type the desired level of detail.. Current values should be enough, so in principle you should
not to change this file at all.

In order to star the SIP server, type (from any directory):

sudo ser start

After starting, you should see general information (like aliases, the IP address and the port where
the SIP Server is listening, current debug level…) and some particular information regarding esc
module (Presence Agent) and a4c module (note that for the demo this module will not be used).
If no error messages SIP Server is running properly. You should see some logs regarding
registration, proxy transactions, presence publication and delivery of presence information.

To stop the SIP Server, type:

sudo pkill ser

There is a script utility useful to monitor how the component is running. From a console type:

sudo serctl [usage]

where [] indicates an optional command, and the serctl utility will show the usage menu. Some
useful commands are:

sudo serctl ul show [AoR]

if you want to see the Location Service status (users currently registered). Type yes when
requested. If you provide a SIP AoR, the information to be shown will be only related to the
corresponding AoR.

sudo serclt moni

to monitor ser activity. If ser is running, you should see some information about the status of the
SIP Server internal cycles (should be moving) and the requests and replies that the component
has handled.

sudo serclt esc show [AoR]

to check the status of the publications and subscriptions. If you provide a SIP AoR, the
information to be shown will be only related to the corresponding AoR.

D4.2.4, 1.0

© Akogrimo consortium members page 139 of 139

Annex C. A4C

C.1. QoS Profile Example

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="ANUP">

 <xs:annotation> <xs:documentation>Akogrimo Network User Profile</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="UID" type="xs:string">alice@akogrimo.org

 </xs:element>

 <xs:element name="PRIO" type="xs:short">2

 </xs:element>

 <xs:element name="MAC" type="xs:string">00-02-44-8E-3D-84

 </xs:element>

 <xs:element name="DSCP" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:unsignedInt">1

 </xs:element>

 <xs:element name="Macro">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="MaxUpBW" type="xs:unsignedLong">256

 </xs:element>

 <xs:element name="MaxDownBW" type="xs:unsignedLong">512

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Layout" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Filter">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FromAddr" type="xs:string">*

 </xs:element>

 <xs:element name="ToAddr" type="xs:string">*

 </xs:element>

 <xs:element name="FromPort" type="xs:unsignedInt">*

 </xs:element>

 <xs:element name="ToPort" type="xs:unsignedInt">*

 </xs:element>

 <xs:element name="Protocol" type="xs:string">UDP

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="QoSBundle" type="xs:unsignedLong">2

 </xs:element>

 <xs:element name="PeriodOfDay" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Start" type="xs:string">*

 </xs:element>

 <xs:element name="End" type="xs:string">*

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

