

Toward the Mobile Grid: Service Provisioning in a Mobile Dynamic Virtual Organization

<u>Martin Waldburger,</u> Burkhard Stiller

The 4th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA-06)

March 9, 2006

Key Issues & Outline

- Move from fixed & research-oriented grid systems to mobile grids with a commercial focus.
 - → Potential functional extensions needed?
 - Consequences on business models?
- Outline
 - Nature of a mobile grid
 - Related concepts
 - Organizational view
 - Business scenario
 - Travel insurance
 - Economic potential

Nature of a Mobile Grid: Related Concepts (1)

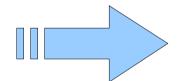
- Grid Systems
 - Grid computing (HPC, traditional)
 - Service grids (virtualization, current)
 - Mobile grid (knowledge grid, next-generation)
- Service-oriented Architecture (SOA)
 - Interoperability of heterogeneous nodes by means of standardized interfaces
- Peer-to-peer Systems (P2P)
 - Resource sharing among peers in the most decentralized form

Nature of a Mobile Grid: Related Concepts (2) Technical Comparison

	Category	CPU (1)	Decentralization as Design Goal (2)	End-to-end Connectivity (3)	Interoperability (4)	Location Transparency (5)	Robustness (6)	Standards (7)	Storage (8)
Systems	Grid Computing								
I	Service Grid								
Grid	Mobile Grid								
SO	4								
P2F	^o Systems								

Metric							
1	Computational power exploitable by offered services						
2	Fully decentralized system architecture envisaged						
3	Direct peer communicate, irrespective of nodes in between						
4	Nodes of heterogeneous nature						
5	Location information not bound to services						
6	Prone to failure and system attacks						
7	Rely on open or widely accepted standards and protocols						
8	Storage capacity exploitable by offered services						

Legend:

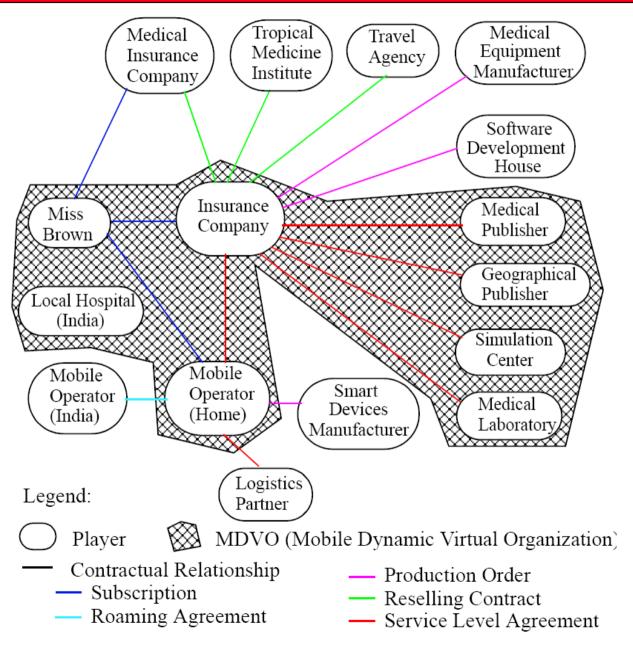

- Green: relevant and existent
- Grey: not relevant
- Orange: relevant, however, not existent in current designs or implementations

Nature of a Mobile Grid: Organizational View

- Transition from VO to Mobile Dynamic Virtual Organization (MDVO)
 - Due to mobile grid's functional extensions
 - Support various forms of mobility
 - Dynamics, mainly imposed by mobility

VO:

- Resource coordination
 - IT-supported
- Across administrative domains
- Economic Environment
 - Grid middleware for A4C


MDVO:

- Services remain available
 - Temporary hand-off
- Adaptive workflows
 - According to context information
- Dynamic organizational composition

Business Scenario: Travel Insurance

- E-health & tourism domains → match requirements
 - Field of application
 - Mobile or nomadic users
 - Knowledge-intensive tasks
 - Business model
 - Legally independent companies → MDVO
 - VO managing entity as service aggregator
- Motivation for travelers & insurance company
 - To know whether consultation of medical facilities is required
 - Early diagnosis

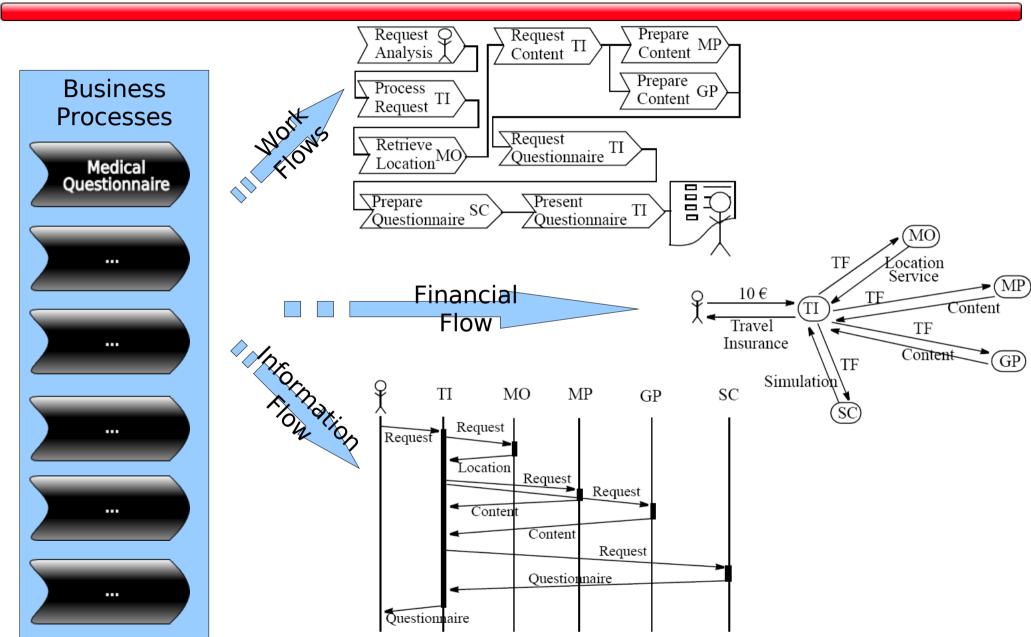
Business Scenario: Organizational Alignment

Economic Potential: Scenario-specific Issues

- Insurance company
 - Understandable product
 - Differentiation
- Travelers
 - Individual needs reflected (customization)
 - Medical advice in a home-like manner
- Mobile Network Operators
 - Network access
 - Further services (customer management, billing)
- Content Providers
 - Expose content in pieces only (keep control)

Conclusions

- Integration of context (user & device)
 - → Adaptive workflows
- Accounting (on network, grid, and content level)
 - Allow for subtle charging schemes
 - QoS-bundles
- Distributed value chain
 - Focus on core competencies (specialization)
 - Potential for economies of scale (offer similar service in different VOs)


Thank you

for your attention!

Backup

Business Scenario: Business Flows Analysis

Grid vs. P2P vs. SOA

- Related concepts compared by means of 8 technical and 9 business metrics
 - Both categories may show overlappings

Technical Metrics:

- CPU
- Decentralization as Design Goal
- End-to-end Connectivity
- Interoperability
- Location Transparency
- Robustness
- Standards
- Storage

Business Metrics:

- Ad-hoc Formation
- Commercial Usage
- Efficiency
- Inter-domain Service Provision
- Quality-of-Service (QoS)
- Resource Coordination
- Resource Sharing
- Scalability
- Service Aggregation

Technical Metrics Explained

Metric	Explanation					
CPU	Computational power exploitable by offered services					
	Typically fully decentralized system architecture					
Decentralization as Design Goal	envisaged					
	Peers communicate directly, irrespective of nodes in					
End-to-end Connectivity	between					
Interoperability	Nodes of heterogeneous nature					
Location Transparency	Location information not bound to services					
Robustness	Prone to failure and system attacks					
	Rely on open or widely accepted standards and					
Standards	protocols					

Business Metrics Explained

Metric	Explanation					
	Administrative or financial agreements					
	taken before system becomes					
Ad-hoc Formation	operational					
	Typically system used in commercial					
	environment, implementing respective					
Commercial Usage	business models					
	Mechanisms for optimized usage of					
Efficiency	available resources					
Inter-domain Service Provision	Support of Virtual Organizations (VO)					
Quality-of-Service (QoS)	Support of QoS-related parameters					
	Involve multiple resources in a					
Resource Coordination	structured way in a business process					
	Conjoint access to resources, such as					
Resource Sharing	computation or storage					
Scalability	Correct behavior under high system load					
	Combine basic services into composite					
Service Aggregation	advanced services					

Business Comparison

	Category	Ad-hoc Formation	Commercial Usage	Efficiency	Inter-domain Service Provision	Quality-of- Service	Resource Coordination	Resource Sharing	Scalability	Service Aggregation
rid Syste	Grid Computing									
	Service Grid									
	Mobile Grid (Knowledge Grid)									
SO	SOA									
P2P Systems										

Legend:

- green marks an attribute that is relevant and exists in the system in question
- grey is considered as not being relevant for a system
- orange denotes an aspect being relevant, however, not existent in current designs or implementations