D4.2.2

Final Integrated Services _ .,
Design and Implementation | & KNOEFITIEE
Report

Version 1.0

WP 4.2 Mobile Network Middleware
Architecture, Design & Implementation

Dissemination Level: Public
Lead Editor: Per-Oddvar Osland, Telenor
31/10/2005

Status: Final

SIXTH FRAMEWORK PROGRAMME
PRIORITY IST-2002-2.3.1.18

|7v]=

Information Society

Grid for complex problem solving
Proposal/Contract no.: 004293

© Akogrimo consortium page 1 of 147

This is a public deliverable that is provided to the community under the license
Attribution-NoDerivs 2.5 defined by creative commons http://www.creativecommons.org

This license allows you to

e to copy, distribute, display, and perform the work
e to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that
this work originated from the IST—Akogrimo project and has
been partially funded by the European Commission under
contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build
upon this work without explicit permission of the consortium

e For any reuse or distribution, you must make clear to others the license terms of
this work.

e Any of these conditions can be waived if you get permission from the copyright
holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work'' means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,

musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,

condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a

Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the

Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image

("synching") will be considered a Derivative Work for the purpose of this License.

"Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

""Original Author' means the individual or entity who created the Work.

"Work"' means the copyrightable work of authorship offered under the terms of this License.

"You" means an individual or entity exercising rights under this License who has not previously violated the terms of this

License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License

despite a previous violation.

-0 a0

© Akogrimo consortium page 2 of 147

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. toreproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in
the Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio
transmission the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:

i Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually
or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital
performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or
via a music rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to
make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to
make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms
on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not
distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control
access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as
incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to
the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable,
remove from the Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep
intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another
party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service
or by other reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does
not refer to the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable
manner; provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other
comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE
LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop

© Akogrimo consortium page 3 of 147

distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be
reformed to the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

© Akogrimo consortium page 4 of 147

Context

Activity 4 Detailed Architecture, Design and Implementation

WP 4.2 Mobile Network Middleware Architecture, Design and Implementation

Task 4.2.1 Integrated service platform and middleware for NGG

Dependencies | Based on work from WP 3.1, WP 4.1, WP 4.3, WP 4.4

Integration work in WP 5.1 may depend on this deliverable

Contributors:

Reviewers:

Dirk Haage (UPM)

Vicente Olmedo (UPM)

Victor A. Villagra (UPM)

Jose 1. Moreno (UPM)

Per-Oddvar Osland (Telenor)

Brynjar Viken (Telenor)

Gaute Nygreen (Telenor)

Fredrik Solsvik (Telenor)

David Hausheer (University of Zurich)
Cristian Morariu (University of Zurich)
Peter Racz (University of Zurich)
Patric Mandic (USTUTT)

Ruth del Campo (USTUTT)

[sabel Alonso (TID)

Arantxa Toro (TID)

Internal review by WP4.2 participants.

Review by Akogrimo partners external to
WP 4.2:

Giuseppe Laria (CRMPA)

Francesco Verdino (CRMPA)

Brian Ritchie (CCLRC)

Nuno Inacio (IT Aveiro)

Victor A. Villagra — as 5.1 WPL (UPM)
Alfonso Sanchez—-Macian (UPM)

Approved by: QM

Version Date Authors

0.1 6/7/05 Per-0O Osland

0.2 12/9/05 Per-0O Osland

0.3 22/9/05 Peter Racz, Per-O

© Akogrimo consortium

Sections Affected
All (document created)

Section 2 Interfaces

Sect 5 Context Manager design

Included contributions on LSDS and

page b of 147

Version Date

0.4 27/9/05
0.5 21/10/05
0.6 28/10/05
1.0 31/10/05

© Akogrimo consortium

Authors

Osland, Patric Mandic,
Brynjar Viken, Cristian
Morariu

Vicente Olmedo, Victor
A. Villagra, Patric
Mandic, Isabel Alonso,
Arantxa Toro, Per—-O
Osland

All

All

Per—O Osland

Sections Affected

A4C
Included contributions on SIP and
GrSDS
Final wversion for review. Updated

description of components: Interfaces,
Design, Implementation. New template.
Checked spelling, cross references, etc.

Document updated after review by

Akogrimo partners

Status update (Draft —> Final), version
update (=> 1.0) after feedback from
project management

page 6 of 147

Executive summary

This document describes the functionality implemented as part of the network middleware
layer of the Akogrimo architecture. The network middleware layer provides a set of
functions to the upper layers, allowing Akogrimo to present several enhancements to the
standard GRID architecture (i.e. OGSA). Specifically, the network middleware layer offers:

e Cross layer A4C (Authentication, Authorization, Accounting, Auditing, and
Charging).

e Service registration and discovery for Grid services and local services (close to the
end user)

e Presence and context management.

The software implemented and described here is provided by Akogrimo Work Package 4.2,
Mobile Network Middleware Architecture, Design and Implementation. The software serves
as part of the integrated prototype to be produced in Phase 1 (within PM19) of the project
[D5.1.2].

The document has particular focus on the following aspects:

e Requirements
Functional (and to some extent also non—functional) requirements for the various
components have been defined. The purpose is to show the scope of
implementation, and to form a basis for testing

e Interface description
Interfaces are identified, labelled and described to a level of details adequate for
developers from other WPs

e Design and implementation
The objective is to show how the required functionality is designed and
implemented. State diagrams and Message sequence charts are widely used

e Testing
A set of test cases are proposed that verify fulfilment of functional requirements

© Akogrimo consortium page 7 of 147

Table of Contents

1.

2.
3.

TNELOAUCTION ..etiiieie et e ettt et e e e e e 20
1.1. Akogrimo Network MiddleWware Jayer......c.oeee it 20
LT aC S ettt 23
SIP Presence handling . ..o e 28
3.l ROQUITCIMOIIES . ittt 28
3.1.1. SIP Presence ANt ... i 28
3.1.2. SIP Presence User AZENT ..t 30
3.2. INEEITACES cevnei e 31
3.2.1. SIP PreSENCE ANt ittt e e e et 31
3.2.2. SIP Presence USEr AT cuuuiiiiiiiiiii ittt et e et eneeneens 34
R T T B <13 [y o E 36
3.3.1. SIP Presence ANt ... 36
3.3.2. SIP Presence User AZENT ..t 38
R S 11 0) 1<) 00 =) 0 1< 5 o) s P 39
3.4.1. Presence Agent Implementationo.iveeiiiiiiiiiieeeei e 39
3.4.2. SIP Presence User Agent Implementationcccoeuveviiiiiiiiiiininiiinennne. 50
RS T <11 1 o = 52
3.5.1. Presence Agent Testing ..o e 52
3.5.2. SIP Presence User Agent Testing ..o iiiiiiiii e 54
AAC et 95
S O = Te LU 1 =)0 1<) 0 AR 55
4.2, INEEITACES «oue i e o7
4.2.1. A4C Server Interface (E=A4C—1) ..ouuieiiiiiiiiieeeiiiiee e 59
4.2.2. A4C Client API (E=A4C=2) uuuuiieeeieeiiiiiiiieee e et 59
4.2.3. SAML Client API (ImFA4C=2.10) c.eeeeiiiiiiiiiiiieeee e ee e 63
4.2.4. SAML Authority Client APT (ImA4C=5.X) .uuuuriieeeeeeieiriiiiiiiieeeeeeeeeeeeeiinns 63
O T B 1= T3 T= o NN 64
4.3.1. SAML AULNOITEY cevneiiniiie e 65
4.3.2. Authentication and AUthorizationcoeeuveuiiiiiiiiiiiiiee e, 67
4.3.3. J N eTe o101 51 o= 70
4.3.4. AUAITING «.ennenii e e e eane 71

© Akogrimo consortium page 8 of 147

4.3.5. (O] 0 T=1 =11 o V<P 72
4.3.6. Database ...ccuiiiiiii e 72

T N 101) (=Y s <Y o L7 5 (o) s DU 74
4.1, AQC SOIVET ettt e e eane 74
4.4.2. AQC CHENT ettt e e eans 75
4.4.3. SAML AULNOTTEY evniiiiii e 76
4.4.4. SAML AUthOITEY CLENT . utntinitt ettt eeeanen 77
4.4.5. Authentication and AUthorizationcceeveuiiiiiiiiiiiiie e, 78
4.4.6. J N eTe o]0 0151 o 79
44T, AUAITING - ennenee ettt e e eane 80
4.4.8. (O] =1 =11 o VN 80
4.4.9. Database STrUCtUIec.oeuiiiiiiiiiiii e 84
4.4.10. Database INTerfacec.vuuiuiiiiiiiii e 89
4.4.11. Software Components and Librariesccoeiiiiiiiiiiiiiiiiiicieieeeene. 90
S T =1 T o V=N 91
4.5.1. Network Authenticationc.ccoeeiiiiiiiiiii e, 91
4.5.2. IDToken—based Authenticationccccuveuiiiiiiiiiiiiiiiiii e, 92
4.5.3. QO0S AUthOIIZAtION c.ueuniiiiii e 92
4.5.4. Generic Profile ReqUEeSTt ... 92
4.5.5. F NI eT0 YU N 15 o 93
4.5.6. AUAITING +evneiniin it aaee 93
4.5.7. (O] =1 =40 VTN 93
TR O70) 11).« LY F: 1 s LY=L= N 95
S B <Y | FI <) 10T<) 0 Lo 95
0.2, INEEITACES cerniiii e 96
5.2.1. Context Manager = AdC ... e 96
5.2.2. Context Manager — ConteXt CONSUMET ...uviriieiniieiniie e eeeeeeeeenenenen 97
5.2.3. Context Manager — SIP Presence Agentcooviviiiiiiiiiiiiiiiiiiiieeeenen 99
5.2.4. Context Manager — LSDS (SLP Directory Agent)......ceeeeeeeeeeeeeeeenaennne. 100
5.2.b. Context Manager — RFID SW ..o 100
TS T B =13 [y o E 100
5.3.1. Service Locator Protocol (SLLP) GateWayueeueeneeneeeeeeeeeeeeeeaeaennns 103
D.3.2. REID e 104

© Akogrimo consortium page 9 of 147

5.3.3. SIP Presence GW . .. e 106

5.3.4. Context ENGINEouuiiiiiii e 107
5.3.5. Context consumer GWoiiiiiiiii e 111
5.3.6. CM Client on MT ... 111
5.3.7. Context DB ouiiiiiii e 112
ST S 1 0) (<) 00 T=) 0 1t o) s U 118
5.4.1. Service Locator Protocol (SLP) GateWayccecevvvvueeeeriirieeeereriennnns. 118
D.4.2. REID e 119
5.4.3. SIP Presence GW. ..o 119
5.4.4. Context BNGINe c.voeiiiii e 119
5.4.5. Context consumer GW ... 120
5.4.6. CM Client on MT ...iiiiiiiii e 120
TR T K =T o Y= PP PP PP PPRPPO PPN 122
6. Grid Service DISCOVEIY ..ieuniiuiiiiiiiii e 124
6.1, INEITACES cetnet e e e e 124
0.2, ReQUITOIMOIES ottt et 124
T T B =13 [y o E 126
O N 1110 ()01 1) o1 <} 5 (o) s NS 128
0.0, TSI ceenei et 128
6.5.1. Testing for publiCation PrOCESS wuvuiiviie it 129
6.5.2. Testing for Searching PrOCESS cuuuiviv it 129

R e Y= 1 N T (e =B B T T0 1 =) o AP 130
7.1, LSDS INTEIrTACES wueuniieieiii e e e 130
T L L. O D A e 131
112, P D A e 131
113 M D A e 131
714, DATALC e 132
7.1.5. DA=Other SD .o e 132
T Yo | U0 1= 1 0T<) o L o 132
A T B 1= T3 < s L 134
7.3.1. Example of MeSSage SEQUEIICES .uvviriniiiiieietet e eeeeees 134
7.3.2. LLOCALION AWATEIIESS 1euueneenentenenetnenetnenetene e et e et enea e eaenetenetenaaenens 137
13,3, S P e 138

© Akogrimo consortium page 10 of 147

7.3.4. Service Description templates......vuie i 138

T4, LSDS IMpPlementation ..uie et et ettt e aeaeaens 140
7.5, LLODS TOSEING.u ettt ettt et e e e e e 140
ANNEX A, ReErENCES uuiiii i e 142
Annex B. Context Manager — detailS.. ..o 145
B.1. Context Consumer INEEIrfACE. . ..uu ittt 145
B.1.1. ContextManagerWS.wsdl.......c.oiuiiiiiiiiii e 145
B.1.2. ContextManagerWS.Javaeu e euiiiiiie e 146
B.2. TSt details euueunieeieie e 147
B.2.1. Context manager Client for mobile terminalccoooiiiiiiiiiiiiiiiie, 147

© Akogrimo consortium page 11 of 147

List of Figures

Figure 1, overview of ARKOZIIMO LaYEIS. .ouuniiin ittt eaaanes 20

Figure 2 Akogrimo architecture, indicating responsibilities, functional components, and

16 0] 0) (o) 721 T) s L AN 22
Figure 3 WP4.2 internal and external INnterfacesc.viviieiiiiiiiiii e 23
Figure 4 Grid Service Discovery Server (GrSDS) — INterfaces .eueeneeeneeeeeeneeeeeeeeeeennnnn. 26
Figure 5 Presence Agent external interfaces: publications and subscriptions.................. 33
Figure 6 Presence Agent external interfaces: publications and subscriptions (2) 34
Figure 7 Use of the different SIP PUA INterfaces ...oovivviriniiiiiiiiiiiiiiiieeeeeee e, 36
Figure 8 . Akogrimo SIP Server functional descriptiono.vuieieiiiiiiiiiiiiiiiieieeeenenen, 37
Figure 9 SIP Presence User Agent design in the MT ..coviiiiiiiiiiieeea, 38
Figure 10 Publications and subscription data model........ccoiiiiiiiiiiiiiiiieeeee 42
Figure 11 handle_publish () al@OTIthIM . e.ueeneeen et 43
Figure 12 handle_publish () algorithm: initial PUBLiSh «..eeeneeneee e 45
Figure 13 handle_publish () algorithm: refresh publiShc.ueeeeiieeieeieeeee e, 46
Figure 14 handle_publish () algorithm: modify publiSh......ceuveeeiieeeeeieeiee e, 47
Figure 15 handle_publish () algorithm: remove publish........ccuviuvieniiiiiieieeeeeeeeee, 48
Figure 16 handle_subscriptionh () algOrithmml. .. .eu.eenee e 49
Figure 17: Overview of A4C INTerfaCes. .o it 58
Figure 18: A4C view of the network architeCture......oovveieiiiiiiiiie e 64
Figure 19: SAML asSertion eXamPle.....ouueiuieininiiiiee e ans 67
Figure 20: NetWork L1ogIn MSC ...ttt ettt eaaanen 68
Figure 21: NetWork IoGOUL MSC ...ttt et eaaanes 69
Figure 22: IDToken based authentication MSC......ooiiiiiiiiiiiiiieeeeee e, 69
Figure 23: QoS authorization MSC ... e 70
Figure 24: Retrieve user profile MSC 70
Figure 25: AcCOUNTING MSC ..niiuiiii i e 71
Figure 26: AUITING MSC ..ottt ettt enaanes 72
Figure 27: Charging MSCttt et ettt eaaanen 72
Figure 28: Data Model for A4C Databaseouiviniiiiiiii e, 73
Figure 29: A4C Server Internal Architectureooooviiiiiii e 75
Figure 30: A4C Client Internal ArchiteCtureo.vuiiieiiiii e 76

© Akogrimo consortium page 12 of 147

Figure 31: SAML Authority Internal Architectureocvvuveiniiiiiiiiieeea, 77

Figure 32: SAML Authority Client Internal Architecture.......ococvvviviviiiiiiiiiiiiiiiennen, 78
Figure 33: Tariff speCIfiCAtIOn cuvveeieiiei it e e 81
Figure 34: Constant price SpeCiflCationiveieeiieiieiiii e 82
Figure 35: Variable price SpecifiCation ...o.i.ivuieiiiieiiii e 83
Figure 36: Variable price specification with ranges.........covvieeiiiiiiiiiiiiiiiiieeeeeeeeeaene 84
Figure 37: A4C database STIUCTUIE . .iuiniiiiiie it e ns 85
Figure 38 Context Manager — Context consumer interface........cocvevviiiiiiiiiiiiiiiininnnn.. 97
Figure 39 Context Manager — SIP Presence Agent interface.......ccoovviviiiiiiiiiiiiiniininnnn.. 99
Figure 40 Context Manager OVerVIBW .. .c.uiut ittt e eneenens 101
Figure 41 Context manager client at Mobile Terminal.........ccooiiiiiiiiiiiiiiiieee. 102
Figure 42 SLP GateWay eSI@ll. .ttt ittt ettt e eeteeneeneneanen 103
Figure 43 Context Manager — SLP Directory Agent interfaceccoovviviiiiiiinininnn.. 104
Figure 44 Basic elements for provisioning of RFID positioncccceiviviiiiiiiiiininn... 105
Figure 45 MSC for provisioning of RFID poSitioncoveiiiiiiiiiiiiiieeeeeeeeeas 105
Figure 46 Structure of SIP Presence GW ... 106
Figure 47 Basic flow — requesting context through SIP Presence GW........ccoovviviininn... 107
Figure 48 Basic flow — context received from SIP PA.. ... 107
Figure 49 Context Engine = oS cu ettt 108
Figure 50 Handling subscriptions — flowcChartcooviviviiniiiiiiiceeeeae, 109
Figure 51 Updated SIP PIreSEINCE ..uiuininiiiiieii et 110
Figure 52 Updated RFID position and availability of SLP servicesc.ccoovviviiiniininnnn.. 110
Figure 53 Message Sequence Chart for RFID updatesoooviiiiiiiiiiiiiiiciieeeen 111
Figure 54 Context DB .. e s 113
Figure 55 Relating user and device/service 10Cationeuvee e, 117

© Akogrimo consortium page 13 of 147

List of Tables

Table 1 SIP Presence Agent — INterfaces c.ouiiiiviiiiiiniiee e 23
Table 2 SIP PUA = INTEITACES euuiuniiiiiieie ettt e e e eanas 24
Table 3 A4C TNtEITaCES .euuuiun it eaee 25
Table 4 Context Manager (CM) — INTeITaACES . vuueen et 26
Table 5 Local Service Discovery Server (SDS) — INterfacesS. .. euneueueeueeeeeeeeeeeeeenaennns 27
Table 6 SIP PA — Functional reqUirementsS. ...t 29
Table 7 SIP PA — Non—functional requirementsS.......ouve i, 29
Table 8 SIP PUA — Functional reqUIreImMents ..oveveieieieiieeee e eaas 30
Table 9 SIP PUA — Non—functional requIrementsoovieiviveirininiiiieeeeneeeeeenans 31
Table 10 SIP PA = INTEITACES «euuiiniiiiii it 31
Table 11 SIP PUA = INterfaCes ..ucunieneiiieiei e e e e 35
Table 12 €5C.S0 eXPOrted fUNCIIONS . uui et e nenas 40
Table 13 esc.so configurable PArameters ... e 41
Table 14 PUBLISH transactionsc..euueuneuneeneieieiei e et et e e et et e e eieaeaneanas 43
Table 15 SUBSCRIBE transactionse.eeeuneeeiiiieieeie e e e e e e eanes 50
Table 16 A4C — Functional requirementsS......c.vii i iiieieiiiie e 55
Table 17 SAML Authority — Functional requirementsvevveiiieiiiiiiiieeeeeeeenenn, 57
Table 18 A4C — Non—functional reqUIrEIMENTS . ..uu.uiniieiiit et e eeaenenns 57
Table 19 Accounting parameters for NEtWOrk SEIVICESovuiiieiiieiiiiiiiieeeeeeenn, 79
Table 20 Akogrimo accounting parameters for network and grid services........cocvevevenennn. 79
Table 21 Data fields of the userDetails tablec.oeuiiiiiiiiiiiiii e 85
Table 22 Data fields of the customerDetails tableccoveuiiiiiiiiiiiiii e 86
Table 23 Data fields of the serviceDetails tablec.oouviiiiiiiiiiiniii e 86
Table 24 Data fields of the avpDetails table ..o, 86
Table 25 Data fields of the avpServiceMapping table ..o, 86
Table 26 Data fields of the serviceProfiles table..........cooeuiiiiiiiii 87
Table 27 Data fields of the sessionDetails tableccuviuviiiiiiiiiiiiii e 87
Table 28 Data fields of the authenticationRecords table...........cooeviiiiiiiiiiiiinns 87
Table 29 Data fields of the authorizationRecords tableccoeuviiviiiiiiiiiiiiiiiieans 88
Table 30 Data fields of the permissionDetails tablecoooiuiiiieiiiiii e, 88
Table 31 Data fields of the dataRecords table..........coiuiiiiiiii 88

© Akogrimo consortium page 14 of 147

Table 32 Data fields of the avpDataRecordsMapping table........ccovvvviviiiiiiiiiiiiiiiinnnnns 88

Table 33 Data fields of the AVP_X table......c.iuiiiiiiiii e 88
Table 34 Data fields of the avpGroups table....o.oiiiii e, 89
Table 35 Data fields of the userTariffs tablec.oouieiiiiiiii 89
Table 36 Data fields of the chargingRecords table........cooovuiiiiiiiiiieeee, 89
Table 37 Software components and lIDrarieso.ooiviiiiiiiiiiiiieeieeeeee e, 90
Table 38 Context Manager — Functional requirements ...o.ocvvveveieiniiiieeeeiieeeenens 95
Table 39 Context Manager — Non—functional requirements........ov.vvveiiiiiviviieinininiineennns 96
Table 40 Methods offered by the Context Manageroooveiiieiiieiiiieee e, 97
Table 41 Methods offered by the Context Consumer (callback interface)......cceeveeueeunenn.. 98
Table 42 Methods offered by the Context Managercovuiiiiiiiiiiiiiiiieieeeeeae 100
Table 43 Tables and selected attributesoeueuiiiiiiiiii e 113
Table 44 LLoCation PaAIaINETOIS . uuiu ettt ittt ettt ettt ereneneeeeeeteseneneneneneaeees 115
Table 45 Property desCriPtion ittt eeaas 117
Table 46 Property XamMPLeo 118
Table 47 Attributes relevant for AKOGIIMOuiuuinii i 118
Table 48 TESt CASES wuerntuniieiei ettt e et et et e et e e eaneas 122
Table 49 Grid Service Discovery Server (GrSDS) — INterfaces....ueeeeeeeeeeeeeeeeeeneennnns 124
Table 50 Local Service Discovery Server (LSDS) — INterfacesveuuveueeeneeeeeneeenennnns 130
Table 51 Service Discovery — Functional requirementsvovveveiniiiiiiviviiiiiiieenenens 132

© Akogrimo consortium page 15 of 147

Abbreviations

A table with used abbreviations is strongly recommended

Term Full text
3PCC 3" Party Call Control
A4C Authentication, Authorization, Accounting, Auditing and Charging
AA Authentication and Authorization
AAAC Authentication, Authorization, Accounting, and Charging
ACE Adaptive Communication Environment
ADSL Asynchronous Digital Subscriber Line
Akogrimo Access To Knowledge through the Grid in a Mobile World
API Application Programming interface
AR Access Router
AVP Attribute—Value—Pair
BVO Base Virtual Organization
CCPP Composite Capability/Preference Profiles
CM Context Manager
CPU Central Processing Unit
CRMPA Centro di Ricerca in Matematica Pura ed Applicata
DOW Description of Work
DSCP Differentiated Services Code Point
EAP Extensible Authentication Protocol
EMS Emergency Medical Service(s)
GrSDS Grid Service Discovery System
GSDS General Service Discovery System
[IANA Internet Assigned Numbers Authority
ID Identifier
IETF Internet Engineering Task Force
P Internet Protocol
ISDN Integrated Services Digital Network
JNI Java Native Interface
LSDS Local Service Discovery System or
Life Signs Detection System
MSC Message Sequence Chart
MT Mobile Terminal
NAI Network Access Identifier
NAS Network Access Server
NGG Next Generation Grid
NVUP Network View of the User Profile
OGSA Open Grid Services Architecture
OS Operating System
OWL Ontology Web Language
P2P Peer to Peer
PA Presence Agent
PAA PANA Authentication Agent
PaC PANA client
PANA Protocol for carrying Authentication for Network Access
PC Personal Computer
PIDF Presence Information Data Format
PS Presence Server
PUA Presence UA
QoS Quality of Service
RDF Resource Description Framework

© Akogrimo consortium page 16 of 147

Term Full text

RFC Request For Comment

RFID Radio Frequency ldentification

RPC Remote Procedure Call

RTCP Real Time Control Protocol

RTP Real Time Protocol

SAML Security Assertion Markup Language

SD Service Discovery

SDP Session Description Protocol (SIP) or
Service Discovery Protocol (Bluetooth)

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SLA Service Level Agreement

SLP Service Location Protocol

SOAP Simple Object Access Protocol

SP Service Provider

SQL Structured Query Language

SSL Secure Socket Layer

SSO Single Sign—On

SW Software

TID Telefonica I+D

TLS Transport Layer Security

TN Telenor

UA User Agent

UAC/UAS UA Client / UA Server

UAProf User Agent Profile

UDDI Universal Description, Discovery and Integration

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System

UNIZH University of Zurich

UPM Universidad Politecnica de Madrid

UpnP Universal Plug and Play (Microsoft)

URI Uniform Resource Identifier

USTUTT University of Stuttgart

UTF Unicode Transformation Format

VO Virtual Organization

WAP Wireless Access Protocol

WLAN Wireless Local Area Network

WP Work Package

WS Web Services

WSDL Web Services Description Language (XML format for describing network services)

WSMF Web Service Modeling Framework

WSMO Web Service Modeling Ontology

WSRF Web Services Resource Framework

XML Extensible Markup Language

For descriptions, please refer to www.wikopwdia.org,

www.mpirical.com/companion/mpirical_companion.html or www.howstuffworks.com/

© Akogrimo consortium

page 17 of 147

Definitions

Authentication
The authentication mechanism defines a process for verifying a user’s identity.
Authorization

Authorization is the process of decision on an entity’s allowance to perform a particular
action or not. The Authorization decision depends on service specific attributes (e.g.
service class for QoS service, device requirements) and user—specific attributes (e.g.,
name, affiliation to a certain group,

age, etc.).

Accounting

Accounting performs two main tasks. The first is collecting data on resource consumption
from the services via a metering component while the second task is retrieving stored
accounting data whenever this is requested by a legitimate entity.

Auditing

Auditing defines the process of storage and retrieval, when needed, of information on
events taking place in the system, history of the service usage, SLA (Service Level
Agreement) compliance, and customer charging and tariff schemes applied.

Charging

Charging is the task of calculating the price for a given service consumption based on
accounting information. Charging maps technical values in monetary units and then applies
a previously established contractual agreement between service provider and service
consumer upon a tariff.

Context

Context is any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves. In this document
context will be user—centric.

Context—aware system

A system is context—aware if it uses context to provide relevant information and/or
services to the user, where relevance depends on the user’s task

Presentity
Provider of SIP presence/context information.
Single Sign—On

Single sign—on (SSO) is the process whereby a single action of user authentication enables
to access different administrative domains with no need of re—authentication.

SAML assertion

© Akogrimo consortium page 18 of 147

A SAML assertion is a piece of data produced by a SAML Authority regarding either an
act of authentication performed on a user, attribute information about the user, or
authorization data applying to the user with respect to a specified resource.

© Akogrimo consortium page 19 of 147

1. Introduction

Scope

The purpose of this document is to describe functionality developed within Akogrimo WP
4.2, Mobile Network Middleware Architecture, Design and Implementation. This includes a
listing of components, interface description, design and implementation and suggested test
cases. The described functionality will serve as a part of D5.1.2, Integrated prototype.
This document is a continuation of the work presented in D4.2.1, Overall Network
Middleware Requirements Report [D4.2.1].

Intended audience
This document is primarily intended for
e Partners from WP 4.2 and other WP’ s involved in design and implementation

e Partners involved in developing Akogrimo Service (e.g. realization of eHealth,
elLearning, crisis management, etc)

e Partners involved in system integration

1.1. Akogrimo Network Middleware layer

Akogrimo

The 6th Framework program IP Akogrimo — Access to Knowledge through the Grid in a
mobile World — aims on the technology level at the integration of mobile communication
into the Open Grid Services Architecture (OGSA). On the application level Akogrimo aims
at validating the thesis that the vision of Grid-based computing and the future
development of Grid technologies as well as the development of Grid infrastructures can
and will substantially draw from the integration of a valid mobility perspective.

Domain and Application
Specific Services

Mobile Internet

Figure 1, overview of Akogrimo layers.

Figure 1 provides an overview of the Akogrimo architecture. The focus of the Akogrimo
project is on the following layers:

« Mobile Internet: This layer focuses on network-related issues such as QoS and
resource assignment, mobility, handover, call control and network management.

© Akogrimo consortium page 20 of 147

The Network Middleware layer: This layer provides a set of basic infrastructure
functions to the above layers, including cross—layer A4C, presence and context
management, and semantic service discovery. Implementation of functionality in this
layer is also the topic of this document.

« The Grid Infrastructure Layer: This layer provides the Grid services/Web services
infrastructure (as defined by WSRF/OGSA), execution management (allocating jobs to
available resources), data management (replication, fragmentation, unification of
heterogeneous storage), and Service Level Agreement (SLA) monitoring and
enforcement.

« The Generic Application Services Layer: This layer provides Virtual Organization (VO)
management and workflow management (orchestration).

A more detailed view of the Akogrimo architecture is given in Figure 2. The figure
indicates responsibilities, functional components, and deployment.

Mobile Network Middleware

The purpose of the Mobile Network Middleware layer is to provide a user—centred and
programmer—friendly service platform for Akogrimo offering new opportunities towards the
Grid layers. In this document we describe design and implementation for the Mobile
Network Middleware layer. This description focuses on the following parts:

e SIP for presence handling
Provisioning and maintenance of SIP Presence (SIP SIMPLE) for end users

o A4C
Addressing issues related to Authentication, Authorization, Accounting, Auditing
and Charging

e (Context Manager
Collection and distribution of end user context

e Service Discovery (LSDS - Local Service SD and GrSDS — Grid Service DS)
Registration of and search functionality for local (close to the user) and Grid
services

The actual implementation is placed both in the Mobile Network Middleware Architecture
(marked with clear blue in Figure 2) and on the Mobile Terminal.

© Akogrimo consortium page 21 of 147

L¥1 Jo gg o8ed WNI}I0SUOD OWLISOYY Q)

juswfo[dep pue ‘sjusuodwod [euorounj ‘senifiqisuodsat 3urjedipul ‘eIn}dsjIyoIe OWLIBoy 7 8InJ1]

1D "LIIN'JHSM :MS Xnui :s0 - Xnur :S0
(xnur sdeysad)) 17:S0 ona %
‘6002 J9AIBS SMOPUIM (SO or S99 I Xnur SO
1abeue)y lone ewjoeug dis %
ey ubIH V1S dg £

Y
Bunpep
. dis
H Josuo) E uonasjes

JuBWadI0jUT Buusieny Buoyuon _:mE«wm_onEm uossiwpy
VS SINEd -
1
By 6
juswieuy ‘_m>ow__mmu_§ SXE TR e
1abeuBp OA a8 m_m>m_ - eleq Anwnxoud
YbiH V18 y

x50 199018 500 e | |
ainjonsesqu] “ddy pun SIEM3IPPIA PUD gue) s01n108

Xnui :S0

o8sd|
uepuany
dl angon
Xxnuri :sO H I

dl 890N

Juewioeuy Jsbeuepy m:m,ﬂ.%s_ Bunyen
Japinoid d9 x8uoo S00 dis
ERIIVELY
E foa e

1abeUB 1X31U0D

Juaby sawoH
S19UIBIUON) BDINID

H M 10
uepuany
H E

BUBiEN +
JuBpUBRY

OH4 +
dl dllqon

S00

juepuspy
E E
19]N0Y SS900Y ?

Japinoid
ERISENY

rensiboy

£ Buuslow

dis
JLINTTSS
Jisxoig SO0 ovvy

O

Qouasald

o s[euIwla |

SlIqo0N

3IOM]IBN SS820Y

[T

2. Interfaces

This section identifies interfaces offered by WP 4.2 components:
e SIP Presence
e A4C
e (Context Manager
e Service Discovery (Local and Grid SD)

Interface protocols and labels are shown in Figure 3.

SOAP (alternative interface)
\ \ | v

Legend
4.1 Access 4.1 SIP 4.1 QoS 4.3 Metering 4.3 4.4V0 A4C SOAP Direction of
Router Proxy Broker Monitoring Manager GW communication initiation
=
E-A4C-2.4 E-A4C-2.2 E-A4C-2.3 E-A4C-2.7 E-A4C-2.8 E-A4C-2.5,2.6 E-A4C-2.x
A4C Client w/label
Diamet E-GrSDS-1 | 4.4 BP
= Enactment
| 4.4V0O
Manager
AAAC
Server
MT
Yoy
SIP Registrar / Presence Context Manager
&l &l Agent] 1 OpVégroker
Registrar
E-A4C-2.9
E-SIP-1 » Context Local
SIP Slghs Manager Services
MT
MT PUA
Service
4.4 BP Provider

Enactment

Figure 3 WP4.2 internal and external interfaces

Table 1 SIP Presence Agent — Interfaces

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)

[Interface Label]

© Akogrimo consortium page 23 of 147

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface Label]
PA SIP watcher in | SIP presence/context subscriptions (SIP | SIP
Context watcher interface, SUBSCRIBE and NOTIFY
WP4.2
’ Manager methods)
[E-SIP-5]
WP4.2 ~Input: UserlD (AoR, default SIP URI)
—Return: Presence Event State
PA PUA in MT SIP presence document upload (PUBLISH) SIP
WP4.2 WP4.2 —Input: UserlD, Presence Event State
[E-SIP-1] -Return: OK/Error
PA PUA in MT SIP presence/context subscriptions (SIP | SIP
WP4.2 WP4.2 watcher interface, SUBSCRIBE and NOTIFY
’ ’ methods)
E-SIP-5
[] —Input: UserID (AoR, default SIP URI)
—Return: Error: 403 “Forbidden” (I** phase),
Presence Event State (2 phase)
Table 2 SIP PUA - Interfaces
Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface Label]
SIP PA SIP PUA Publication of wuser presence and context | SIP
(SIP Server - (MT - WP4.2) information (PUBLISH).
WP4.2) ~Input: UserlD, Presence Data
[E-SIP-1] ..
—Return: Fublication Status
SIP PA PUA in MT SIP presence/context subscriptions (SIP | SIP
(SIP Server — (MT = WP4.2) watcher interface, SUBSCRIBE and NOTIFY
WP4)2 ’ methods)

[E-SIP-5] ~Input: UserlD (AoR, default SIP URI)
—Return: Error: 403 “Forbidden” (1st
phase), Presence FEvent State (Znd
phase)

SIP PUA CM Client Provide the PUA with context information. Java Interface

(MT - WP4.2) MT = WPA.2) | —/nput: Link to User Agent Profile

[E-SIP-7] (String)

—Return: Operation Result

© Akogrimo consortium

page 24 of 147

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface Label]
SIP PUA Applications Provide the PUA with user presence | Java Interface
(MT-WP4.2) | (MT-wpe) | Information.
[E-SIP-8] ~Input: Attributes (undefined for the

moment)

—Return: Operation Result

Table 3 A4C Interfaces

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface
Label]
A4C Server A4C Client Provide A4C tasks Diameter
(WP4.2) (WP4.2)
[I-A4C-1.1] -
[1-A4C-1.8]
A4C Server A4C Server Communicate with other A4C Servers or servers | Diameter
(WP4.2) (WP4.2) of other domains to perform A4C tasks.
[I-A4C-1.1] -
[1-A4C-1.8]
A4C Client Access Router | Accounting: C++ API
(WP4.2) (WP4.1) —Input: UserlD, sessionlD, servicelD, accounting
[E-A4C-2.4] data
-Return: OK/Error
A4C Client Access Router | Authentication of users: C++ API
(WP4.2) PAA ~Input: UserID, credentials, servicelD
[I-A4C-2.11] (WP4.2) —Return: IDToken or Deny
A4C Client QoS Broker QoS authorization and retrieve QoS profile: C++ API
(WP4.2) (WP4.1) ~Input: UserID, servicelD
[E-A4C-2.3] —Return: QoS profile, (parent sessionlD)
(QosS profile is defined in the scope of WP4.1)
A4C Client SIP Server AAA in case of SIP registration and invite. C++ API
(WP4.2) (WP4.1) Authentication, Authorization:
[E-A4C-2.2] ~Input: UserlD, [DToken, servicelD
—Return: OK/FError, new IDToken
A4C Client Context Retrieve generic user profile: Java API
(WP4.2) Manager ~Input: UserlD
[E-A4C-2.9] (WP4.2) —Return: generic user profile
A4C Client VO Manager Authentication based on IDToken: Java API
(WP4.2) (WP4.4) ~Input: UserlD, [DToken, servicelD
[E-A4C-2.5], —Return: OK/FError, new IDToken
[E-A4C-2.6] Retrieve generic user profile:
—Input: UserlD
—Return: generic user profile
A4C Client Metering Accounting: Java API

© Akogrimo consortium

page 25 of 147

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface
Label]
(WP4.2) (WP4.3) ~Input: UserlD, sessionID, servicelD, accounting
[E-A4C-2.7] data
-Return: OK/FError
A4C Client Monitoring Auditing of service events Java API
(WP4.2) (WP4.3) —Input: UserlD, sessionlD, servicelD, eventID,
[E-A4C-2.8] eventData
-Return: OK/FError
A4C Client A4C SOAP Provide a SOAP based interface for A4C tasks. Java API
(WP4.2) Gateway
[E-A4C-2.x]
A4C SOAP Akogrimo Access A4C services. SOAP
Gateway Component
(WP4.3,
WP4.4)
A4C Client LSDS Authorize User or SP C++ API
(WP4.2) (WP4.2)
[E-A4C-2.1]
Table 4 Context Manager (CM) — interfaces
Server: Client: Purpose Protocol
Component Component
(Layer) [Label] | (Layer)
A4C Client CM — Obtain static user data (SIP address, RFID, ---) | Java API
(WP4.2) — Authorise
[F-A4C-2.9]
CM (WP 4.2) BP Enactment - Queries for specified context data OWL over SOAP
[E-CM-1] (WP4.4) — Specify domain specific context extensions
- Subscribe to notifications about changes in
context info
SIP PA (WP CM (WP4.2) - Obtain user presence SIP SIMPLE
4.2)
LSDS (WP4.2) | CM (WP4.2) - Search of Local Services (capabilities, location) | SLP
[E-LSDS-1]
CM (WP4.2) RFID SW - Send position readings for RFID tags Proprietary
[E-CM-2] (WP4.2)

Figure 4 Grid Service Discovery Server (GrSDS) — Interfaces

© Akogrimo consortium

page 26 of 147

E-GrSDS- | GrSDS BPE (WP4.4) Search and Fetch a Grid Service. SOAP
1
E-GrSDS- | GrSDS BVO Manager | Publish/Deregister Service WSDL/SOAP
2 (WP4.4)
SLA Manager | GrSDS GrSDS interacts with the SLA-Access | SOAP
(WP4.4) to retireve the SLA from published
SLA-Template and associate them to
the interface of service published in
GrSDS
E-GrSDS- | GrSDS OpVOBroker Look for services to carry out a certain | SOAP
4 (WP4.4) WF

Table 5 Local Service Discovery Server (SDS) — Interfaces

E-LSDS- DA CM Search of Local Services for user Context | SLP

1.2

[E-A4C- A4C Client DA Authorize User or SP C++ APL /
2.1] Diameter

© Akogrimo consortium

page 27 of 147

3. SIP Presence handling

One of the chosen mechanisms to provide context information in Akogrimo is based on SIP.
The SIP presence/context framework, as part of the Akogrimo context management
infrastructures, will provide information regarding user terminal capabilities, user
availability and preferences regarding how to contact him/her, etc... This information is
gathered by the Context Manager and offered to the corresponding services which demand
it.

3.1. Requirements

RFC 3856 [Ros04] defines how SIP is able to provide presence/context information and
defines the needed components. This IETF Request for Comments represents a concrete

instantiation (for presence-related events) of the general event notification framework
defined in RFC 3265 [Roa02].

From the several alternatives we described in [D4.2.1] (i.e. regarding where to locate the
different components, the mechanism to upload presence documents), we have decided the
following configuration for Akogrimo:

A Presence User Agent (PUA) included in the MT SIP component. This element will
use the powerful PUBLISH method described in RFC 3903 [Nie04] as the publication
mechanism. The MT will not implement the presence watcher interface (at least in
phase one), so SIP presence/context information will be only available for services,
which will have to request for it to the Context Manager.

A Presence Agent (PA) located in the SIP Server, which handles subscriptions and
publications, and generates the corresponding notifications when the status of a
presentity changes. The co-location with the rest of the network infrastructures,
especially with the Registrar Server, enables the usage of software APIs instead of
having additional physical interfaces with other SIP components. Apart from that, it
takes advantage on the SIP handling capabilities framework that the chosen
implementation of the SIP Server natively offers.

The last decision imposes that the Context Manager will implement a SIP watcher
interface (a SIP User Agent with SUBSCRIBE and NOTIFY support) to get SIP-based
presence/context information from the Presence Agent.

Next subsections describe the functional requirements of both the PA and the PUA. The
SIP watcher component embedded on the Context Manager will be described in Section
5.3.3.

3.1.1. SIP Presence Agent

SIP Presence Agent has been build as a dynamic library embedded on SIP Server, which
will be implemented starting from the open source SIP Express Router and will run in a
Linux/Ubuntu machine. Implementation details are described in section 3.4.1.

© Akogrimo consortium page 28 of 147

The following table lists the functionalities that will be implemented in each phase of the
project. The main reason that explains the criteria we have adopted is to have an
operational component in Phase 1 covering the most relevant functionalities, and leave for
the second phase the most advances features.

Table 6 SIP PA — Functional requirements

Req. nr |Description Phase 1 |Phase 2
F1 Presence/Context document handling X X
F1.1 PUBLISH method support X
F1l.2 PIDF format support X
F1.3 RPID format support X
F 1.4 |Default event state (when no info. from the user) X
F1.5 Event State Compositor (aggregation from different sources) X
F 1.6 State deltas support (users provide only the information X
that changed, but the PA maintains the complete state)
F1.7 Permanent storage (database support) (X)
F2 Subscriptions handling X X
F 2.1 SUBSCRIBE method support X
F 2.2 NOTIFY method support X
F 2.3 Basic Presence Authorisation policy (only subscription from | X
Context Manager must be accepted in phase 1)
F 2.4 Full Presence Authorisation policies X
F3 Generic X X
F 3.1 Fully RFC compliance (all possible response codes for all X

possible “abnormal” situations)

(X) Optional requirement

Next table shows the most relevant non functional requirements of the Presence Agent.

Table 7 SIP PA — Non—functional requirements

Req. nr

Description Phase 1

Phase 2

© Akogrimo consortium

page 29 of 147

Req. nr Description Phase 1 Phase 2

N1 Running on Linux | X
(Ubuntu) on a PC
platform

N 2 Performance X
improvement

(efficiency, speed)

3.1.2. SIP Presence User Agent

The SIP PUA will run in the Mobile Terminal. As it is Java based, it will run in Java Virtual
Machine (JVM).

In the next table, F1 refers to the ability of the SIP PUA to get presence data in a
standardized format (PIDF/RPID, [Sug04] and [Schu05]) coming from the Context Manager
Client and the Applications, merge this information into a single document and send it to
the SIP PA which is running in the SIP Server.

F2 refers to phase 2 functionality that will allow a user to subscribe to other users’
presence data via the SIP PA.

Table 8 SIP PUA - Functional requirements

Req. nr |Description Phase 1 |Phase 2
F1 Presence/Context document handling X X
F1.1 PUBLISH method support X

F1l.2 PIDF format support X

F1.3 RPID format support X
F1l4 Event State Composition (aggregation from different | X

sources)

F 1.5 Publication expiration handling X
F2 Subscriptions handling X X
F2.1 SUBSCRIBE method support (sender) X
F 2.2 NOTIFY method support (receiver) X

© Akogrimo consortium page 30 of 147

Table 9 SIP PUA - Non—functional requirements

Req. nr |Description Phase 1 |Phase 2
N 1 Running on Linux (Ubuntu) on a PC platform X
N 2 Running on PDA platform. X (?)

3.2.
3.2.1.

Interfaces

SIP Presence Agent

The Presence Agent, as part of the SIP server, interacts with the rest of the SIP Server
components through the corresponding APIs. In fact, it will offer a couple of functions that
the Broker Engine will invoke when it receives a PUBLISH or SUBSCRIBE request (see
section 3.4.1.1). The Broker Engine exposes to the PA some functions from the SIP proxy
for sending outgoing responses and NOTIFY messages. Another APl for persistent

publication/subscription storage is offered to the PA by the Presence/Context Database.

The Presence Agent implements two external SIP-standard interfaces, a PUA interface
with the MT and a watcher interface with the Context Manager. In the second phase, the
interface with the MT will be extended, adding also mentioned presence watcher interface.

Table 10 SIP PA - Interfaces

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface Label]
PA Broker Engine Handling of incoming PUBLISH and | C API
WP4.2 WP4.2 SUBSCRIBE requests
[-SIP-1.7.1] —Input: incoming message
-Return: OK/Error

Presence/Context | PA Handling (storage, retrieval-**) of (persistent) | C API
Database WP4.2 publications and subscriptions.
WP4.2
[1-SIP-1.6.2]
SIP proxy Broker Engine Handling replies and notifications (SIP NOTIFY) | C API
WP 4.9 to the MT. This interface is exposed directly by

’ the Broker Engine to the PA.
[I-SIP-1.1.1]
PA SIP watcher in | SIP presence/context subscriptions (SIP | SIP
WP4.2 Context watcher interface, SUBSCRIBE and NOTIFY

’ Manager methods)
[E-SIP-5]

© Akogrimo consortium

page 31 of 147

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface Label]
WP4.2 ~Input: UserlD (AoR, default SIP URI)
—Return: Presence Event State
PA PUA in MT SIP presence document upload (PUBLISH) SIP
WP4.2 WP4.2 —Input: UserlD, Presence Event State
[E-SIP-1] —Return: OK/Error
PA PUA in MT SIP presence/context subscriptions (SIP | SIP
WP4.2 WP4.2 watcher interface, SUBSCRIBE and NOTIFY
methods)
[E-SIP-5]

—Input: UserID (AoR, default SIP URI)

—Return: Error: 403 “Forbidden” (I** phase),
Presence Event State (2 phase)

Next MSCs provides a clearer explanation on how this SIP interfaces works. Note that only
relevant actors (MT, SIP Server and Context Manager) and interactions from the point of
view of these SIP interfaces have been depicted. This means, for example, that we assume
that the Context Manager have been requested from the grid layers to get the context
information of certain user; and we assume also that the Context Manager has obtained
the default AoR (default SIP URI of the user) from the A4C. These necessary interactions
are part of the general process of getting context information and are described in detail in
the Context Manager section of this document, so have not been included in the following

figures.

© Akogrimo consortium

page 32 of 147

User MT IP Server n Manager

|
] 1. SUBSCRIBE (user AoR)

|
|
|
lfl>, handle_subscription () :
|
|

| 2.200 0K
| 3 NOTIFY (default status)

D Publish presence/context status : 4.2000K
frm—————————————

5. PUBLISH (Presence/Context status) |

6. 200 OK

7NOTIFY (current status)

8. 200 0K Subscription-State: ACTIVE

|

1

|

A

|

I

|

I

| I
T |
I

I 1
| |
it .
| change presence/context status))
I I
I I
|

I

I

|

I

|

1

|

A

I

I

I

1

I

I

9. PUBLISH (Presence/Context status)

10. 200 0K |
| 11. NOTIFY (current status)

Subscription-State: ACTIVE
12. 2000K

|
|
| 13.SUBSCRIBE (user AoR, expires = 0)

D handle_subscription ()

| 14. 200 OK |
r 15. NOTIFY (current status) _9: L

Subscription-State: TERMINATED
| 16. 200 OK 1 Reason: TIMEOUT
I |
Fm=—==——=——=——-—--- g

Figure 5 Presence Agent external interfaces: publications and subscriptions

Messages from 1 to 4 describe a typical successful subscription. The Context Manager
(CM) sends a SUBSCRIBE message to the Presence Agent (PA) indicating we wants to
know the presence/context status of certain user (1, 2). The PA does not have information
about the user, so it sends a NOTIFY (3, 4) containing the default user state and creates
the subscription. When the user publishes his/her presence status (5, 6), the PA detects
there is an active subscription and informs the CM accordingly (7, 8). Messages from 9 to
12 show how the CM is informed about a change on the user presence/context status.
Finally, the CM performs an unsubscription (from 13 to 16).

Other situations are described in the next figure

© Akogrimo consortium page 33 of 147

|
D Publish presence/context status

1. PUBLISH (Presence/Context status)

|
|
|
|
|
D handle_publish()

|
I
|
: 2. 200 0K]
ﬁ_ _________________
| | 3. SUBSCRIBE (user AoR)
|
| D handle_subscription ()
|
| | 4.200 0K
: | 5 NOTIFY (user presence status)
| Subscription-State: ACTIVE
| | 6. 200 OK
. frm===mmm——-mm-—o- .
| | |
: L>> publication expires :
: | 7.NOTIFY (default status) :
| I 2 Subscription-State: ACTIVE
| | |
| | 8.2000K '
| |) |
I f————————————————-— 1
| | |
| |
| |L>v subscribe expires |
| |
.NOTIFY (defaul
I I 9.NOTIFY (default status) | Subscription-State: TERMINATED
: : 10. 200 OK /: Reason: TIMEQUT
I (=== ————= 1
|
|
|
|
|
|
|
|
|

Figure 6 Presence Agent external interfaces: publications and subscriptions (2)

In this case, the user publishes his/her presence/context information (1, 2) prior to the
subscription from the CM (3, 4), which of course is notified accordingly (5, 6). If the
publication is not refreshed and expires, the CM receives a NOTIFY message indicating
that the presentity document previously stored is no longer valid, so the default status is
sent in the message body (7). Finally, the CM is also informed if the subscription expires
(9, 10). In this case, the NOTIFY message includes a “Subscription—State” header field set
to “TERMINATED” and a “reason” parameter set to “TIMEOUT”.

3.2.2. SIP Presence User Agent

The SIP PUA, residing in the user’s Mobile Terminal, provides simple logic to allow
applications and the Context Manager Client to publish desired presence/context
information about the user in the Akogrimo’s SIP infrastructure.

Thus, the SIP PUA has three interfaces which allow this communication. It provides two
internal Java interfaces, one to the CM Client and one to the applications. Although it was
first decided that CM Client and the applications would provide complete PIDF XML
documents, the interfaces have been redesigned to keep PIDEF XML construction
mechanisms centralized. This will ease the work on CM Client and the applications, since

© Akogrimo consortium page 34 of 147

there is no need to create any XML document now, but just to provide the attributes to be
published. For now, in order to keep things simple, a method for each attribute will be
provided. This approach does not lead to a scalable interface, since the addition of
attributes would require the addition of new methods to the interface, so a redesign to
provide a generic attribute publication interface will be done in phase 2.

Finally, the SIP PUA provides a third interface to the SIP PA in the SIP Server. This
interface is a common SIP interface based on the PUBLISH method defined in RFC 3903
that will be accomplished using the services provided by the SIP UA infrastructure in the

MT.

Table 11 SIP PUA - Interfaces

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
[Interface
Label]
SIP UA SIP PUA Sending and reception of SIP messages. Java Interface
(MT - WP4.1) (MT - WP4.2)
[1-SIP-3.1]
SIP PA Presence/Context | Conversion from application and CM Client | Java Interface
(MT - WP4.2) Description provided attributes to PIDF/RPID XML and
[1-SIP-3.2] Module vice versa.
(MT - WP4.2)
SIP PUA CM Client IF SIP PUA interface adaptation for CM Client (if | Java Interface
(MT - WP4.2) Module needed).
[I-SIP-3.3] (MT - WP4.2)
SIP PUA App IF Module SIP PUA interface adaptation for applications (if | Java Interface
(MT - WP4.2) (MT - WP4.2) | needed).
[1-SIP-3.4]
SIP PA SIP PUA Publication of user presence and context | SIP
(SIP Server — (MT - WP4.2) information (PUBLISH).
WP4.2)
[F=SIP-1] —Input: UserlD, Presence Data
—Return. Publication Status
SIP PA PUA in MT SIP presence/context subscriptions (SIP | SIP
(SIP Server — (MT - WP4.2) watcher interface, SUBSCRIBE and NOTIFY
WP4.)2 methods)
[E-SIP-5]
-Input: UserlD (AoR, default SIP URI)
—Return: Error: 403 “Forbidden” (Ist
phase), Presence FEvent State (Znd
phase)
SIP PUA CM Client Provide the PUA with context information. Java Interface
(MT — WP4.2) (MT - WP4.2) .
[E-SIP-7] —[nput: Link to User Agent Profile
(String)

© Akogrimo consortium

page 35 of 147

—Return: Operation Result

SIP PUA Applications Provide the PUA with user presence | Java Interface
(MT - WP4.2) (MT - WP?) information.
[E-SIP-8]

~Input: Attributes (undefined for the
moment)

—Return: Operation Result

The interactions between the SIP PUA, the SIP UA, the CM Client and future applications
is described in the next MSC.

CM Client Application SIP PUA SIP UA SIP PA

|

1
publishUAProfLink(UAProfLink)

]

|
|
|
|
|
|
PUBLISH |
N |
|
|
|

|

|

|

1

|

|

| true

< g D 4

| | |

| | |

| I | 200 0K

| | | | S, -l
| I | | I
| I | | I
| | | | |
| I | | I
| | publishUserStatus(status) | | |
| I N] | I
| | | publish (xmlIPidf) | |
| | ! N] |
| | true | | PUBLISH I
| 1 N
| | |
| | I
| | 200 0K |
| | <Ry gy, |
| |

|

|

|

T
|
|
:
|
|
:
|
l

Figure 7 Use of the different SIP PUA interfaces

As can be seen in the diagram, the SIP UA does not inform about the success of the
publication operation. Adding this functionality may be considered if needed.

At the moment, user status attributes remain undefined, since they depend on the
application. However, several attributes are expected, so a generic interface is desirable.

3.3. Design
3.3.1. SIP Presence Agent

As mentioned earlier, Presence Agent is part of the SIP Server. The following figure shows
the functional description of the whole component, with special focus on the subset of
components and interfaces directly involved in presence/context handling (the rest of them
have been blurred in the figure). Note that for simplicity, the WS-App IF and the Routing
IF subcomponents have been considered as part of the proxy submodule; in fact, the SIP
server only will act as a proxy in both cases.

© Akogrimo consortium page 36 of 147

1. SIP Server
: _QIp. E-SIP-5
1.5. Registrar I-SIP-1.6.1 148, (Lol I-SIP1.6.2 1.7. Presence Context
o « 5 Presence/Context Agent Manager
Database
A A
I-SIP-15.1 I-SIP-1.7.1
El-SIP-4]
4 N I-SIP-1.3.1 I-SIP-1.4.1 , E-SIP-6
A4C ¢ ;45 B.ACIF o~) «— » 4. PBNM ;’l—J} PBNMS
e e— 1.2. SIP Broker IF \
Engine L
I-SIP-1.1.1
stlspﬁpAp 4 EllP \| 1.1. SIP Proxy { ety) SIP Server in other
N 14 \ | 14 domain
‘ ‘ E-SIP-1
AN SIP proxy

Figure 8 . Akogrimo SIP Server functional description

The SIP Presence Agent provides SIP-related presence/context information delivered by
the users using the SIP method PUBLISH to the Context Manager through a presence
watcher interface (SIP SUBSCRIBE and NOTIFY). The presence/context status is stored
in a database, which can be associated to the Location Database if we consider that the
information it stores is part of the user context. In fact, the registration information could
be useful to provide a “default user context” when there is no more information available.
For example, if the presence information of a non-registered user is requested, the PA
could send and empty or neutral body to the Context Manager to indicate this
unavailability.

Location Database and Presence Agent are both exclusive WP4.2 components; however,
other SIP Server components, like the Broker Engine or the SIP embedded SIP proxy, play
some roles in the WP42 interactions

The SIP Broker Engine is the core part of the SIP Server. It implements the
interconnection logic between the different SIP entities as well as the interfaces with other
network entities. Acting as the “brain” of the SIP Server, it takes decisions based on the
nature and the content of all incoming requests, previously pre—processed by the SIP
proxy. This means that the SIP proxy acts a listener of the available SIP ports of the SIP
Server (typically the 5060 port) and first it decides if the SIP Server should process the
corresponding incoming message. If yes, it passes it to the Broker Engine, which depending
on the receive message, routes it to the corresponding subcomponent (i.e. REGISTER
messages to Registrar Server, PUBLISH messages to Presence Agent, incoming INVITE to
the A4C IF submodule for first authentication:--). From the perspective of the SIP
Presence handling, both the Broker Engine and the embedded SIP proxy should include
some logic to deliver incoming SUBSCRIBE and PUBLISH requests to the PA module.

© Akogrimo consortium page 37 of 147

3.3.2. SIP Presence User Agent

The SIP Presence User Agent is part of the SIP infrastructure in the MT. The next figure
shows the functional entities that provide needed logic and interfaces.

E-SIP-8

2.3 App IF Module

2
I-SIP-3.4

\

3.2 Presence/
Context (ISIP—32>
Description
glactle 3.1 Presence/Context Logic
E-SIP-7 - .
L N\ | 3.3CMClientIF JSIPJ)
u Module

2
I-SIP-3.1

y

2.2SIP UA

2
I-SIP-2.1

y

E-SIP-1
< 2.1 SIP Stack

Figure 9 SIP Presence User Agent design in the MT
As can be seen in the figure, the SIP PUA is composed by four main components:

¢ Presence/Context Logic: This is the central component. It gathers presence
and context data from the CM Client and the applications. From this data, a
PIDF XML document will be created and sent via the SIP UA.

e Presence/Context Description Module: This module is targeted at the
creation of presence documents in various formats. It encapsulates XML
creation functionality and future XML parsing capabilities.

e Application Interface Module: This module will be used to provide an
appropriate interface to the application in case the Java interface is not
enough or any transformation is needed. As applications are to be decided,
so it is this interface.

e Context Interface Module: If any adaptation of the Java interface provided
by the Presence/Context Logic to the CM Client is to be done, it will be
done in this component. For the moment, the Java interface is enough, so
this component will not be materialized in implementation.

© Akogrimo consortium page 38 of 147

3.4. Implementation

3.4.1. Presence Agent Implementation

The whole SIP Server will be build based on SIP Express Router (SER) implementation
[SER], which is a powerful, easily configurable, C-written and free SIP server
implementation. It can act as a proxy, registrar or redirect server. Most relevant
characteristics of SER are:

Speed: SER is able to process thousands of calls per second even on low—cost
platforms.

Extensibility: using SER it is possible to link new C code to redefine, or extend, current
logic. New code, which can be developed independently on SER core, is linked to it in
run time. In this way, the best way to proceed is to add new functionality as SER
modules (*.so libraries) keeping the SER core really fast and compact.

+ Flexibility: administrators may write textual scripts, which determine routing decisions,
SIP method processing...By modifying the main script (named ser.cfg) administrators
can control and modify lot of parameters and introduce new logic (loading new modules,
and invoking exported functions when necessary).

« Portability: written in ANSI C, and deeply tested on PC/Linux, Sun/Solaris platforms.

« Interoperability: SER is based in open SIP standards (SER core implements basically
RFC 3261).

Small size: core footprint is 300K, add—on modules take up to 630K.

SER already includes a Presence Agent module, but it is an experimental version and
seems not to work properly, so a new one was developed from scratch. Next sections
describe the main features of the library we have developed. As mentioned earlier, SER is
written in C, so the design and implementation can not be object oriented; however, we
will describe most significant C structs we have defined.

SER has been built to be configured using a configuration file, ser.cfg. It is a C—Shell script
which defines how incoming SIP requests should be processed. During the server startup,
this file is translated into an internal binary representation (basically because the direct
interpretation of this file would make SER very slow). Considering the functional
description provided in section 3.3.1, the main configuration file and the main part of the
SER core implements the so called ”SIP Proxy” and the “SIP Broker Engine” modules. We
can modify that file in order to deliver incoming SIP request to the specific module that
implements a more concrete functionality, like the Registrar or the A4C interface.

The Akogrimo PA has been built as a SER module (*.so dynamic library), that we will
describe in next section. It implements the Presence Agent itself.

3.4.1.1. Akogrimo Presence Agent SER module

The library that implements the Akogrimo Presence Agent functionality is named esc.so
(ESC: event state compositor, which is a generalisation of the Presence Agent for any kind

© Akogrimo consortium page 39 of 147

of event as defined in RFC 3903 [Nie04]). The basic functionality of this module is to
maintain a list of valid presence/context documents from users and the corresponding
subscriptions from the Context Manager, which must be notified if the presence/context
status of an observed user changes. So the library must provide functions to process
incoming PUBLISH and SUBSCRIBE SIP methods, in parallel with the maintenance of some
data structs to store both subscriptions and publications.

This library exports two main methods, named handle_publish() and handle_subscription(),
responsible for processing incoming PUBLISH or SUBSCRIBE methods, respectively. This
implies that the following lines should be added to the ser.cfg configuration file:

if (method = PUBLISH)
{
Next if statement is needed if module involves transaction creation
if (!t_newtran())
{
log(l, "newtran error\n”);
sl_reply_error();
}
handle_publish{();
break;

}

if (method = SUBSCRIBE)
{

Next if statement is needed if module involves transaction creation
if (!t_newtran())

{
log(l, "newtran error\n”);
sl_reply_error();

handle_subscription () ;
break;

Next table summarises exported functions.

Table 12 esc.so exported functions

Function Description Parameters

handle bublish This function handles incoming None when invoked from
- PUBLISH request ser.cfg file

handle subscrivtion This function handles incoming None when invoked from
- P SUBSCRIBE request ser.cfg file @

(1) The SER framework passes implicitly the incoming SIP message structure to the
function.

The library also offers several configurable parameters to control some default or maximum
values such the maximum permissible values for the expired fields of incoming PUBLISH or
SUBSCRIBE requests. This implies that, after module initialisation, the following line — one
line per parameter — should be added to the ser.cfg config file:

mod_param (”esc”, "parameter_name”, value);

© Akogrimo consortium page 40 of 147

Next tables summarises the proposal of available library parameters:

Table 13 esc.so configurable parameters

Name Description

For debugging purposes a traces mechanism (independent
from the SER traces framework) has been included. 5
levels of traces (from lower to higher level detail) have
trace_level been included. This allows to debug the library without
“interferences” from the rest of the SER code, if we
configure the SER debug level to its minimum level of
detail. Default is 0 (minimum).

The library includes a timer which periodically checks the
check_expires_timer_interval validity of both publications and subscriptions. Timeout is
configurable using this parameter (default is 60 seconds).

Maximum subscription validity. If the “expires” field of an
incoming subscription is greater than this value, it is
automatically adjusted to this figure. It is also the default
value if no “expires” field is present.

max_subscription_expired_value

Maximum publication validity. If the “expires” field of an
incoming presence publication is greater than this value,
it is automatically adjusted to this figure. It is also the
default value if no “expires” field is present

max_publish_expired_value

To maintain presence documents and subscriptions, two C structs have been defined, the
subscriber node (which contains all relevant information associated to a subscription) and
the EPA node (EPA: event publication agent, a generalisation of the concept presentity,
valid for any kind of events). The module maintains in shared memory a double linked list
of EPA nodes, containing the presence/context document of the users who have published
their presence/context status. Each EPA node, apart from the necessary presentity
information (URI, pidf document, expiration time-:-) has associated a linked list of watchers
with active subscriptions to its presence/context information. Note that for the first phase
only subscriptions from Context Manager will be accepted, but in order to consider
multiple watchers in the future we have designed a data model that supports it.

© Akogrimo consortium page 41 of 147

EPA Node Info EPA Node Info EPA Node Info

Figure 10 Publications and subscription data model

Periodically, a timer checks the validity of both publications and subscriptions, comparing
the current time with the “expires” field of these structures. Expired subscriptions are
simply removed (the corresponding NOTIFY messages are sent before, as the RFC 3265
indicates). The same applies for expired publications without active subscriptions; however,
if there are still active subscriptions when the timeout reaches, the EPA node is not
removed; only its presence document is set to the neutral state.

The timer timeout can be set through the parameter “check_expires_timer_interval”.
Apart from the timer, incoming messages PUBLISH and SUBSCRIBE also modify this data,

as described in the following sections.

3.4.1.2. Processing PUBLISH requests

The method handle publish() is intended to provide full PUBLISH message processing
support. Following the algorithm described in RFC 3903 [Nie04], the main algorithm is
depicted in the following figure.

© Akogrimo consortium page 42 of 147

handle_publish ()

ERROR
check req. uri 404 Not Found
OK
ERROR
check event 489 Bad Event
OK
heck ERROR
oo 400 Bad Request
transaction
OK
initial_publish refresh_publish modify_publish remove_publish

Figure 11 handle_publish () algorithm

First step is to check if request URI concerns to an EPA which the PA is responsible for; if
not (for example, a user from another domain) a 404 Not Found response is delivered and
the process finished. Then, the “Event” field of the PUBLISH message is checked; only
presence events will be accepted; otherwise, a 489 Bad Event before finish. If everything is
ok, next step is to check the type of PUBLISH transaction based on the presence/absence
and/or the content of the header fields “SIP-If~-Match”, “Expires” and if the message
includes or not a body, as defined in RFC 3903. If the incoming message does not match
with any of the situations described in the next table, a 400 OK Bad Request is delivered
and the process finishes.

Table 14 PUBLISH transactions

Operation Body? SIP-If-Match? Expires

Initial publish Yes No Optional, >0
Refresh No Yes Mandatory, >0
Modify Yes Yes Optional, >0
Remove No Yes 0

Depending of the result of this checking, a different algorithm is invoked. If an internal
error occurs before processing is complete (i.e. unavailability to allocate the necessary
memory to store some information) the publication process is aborted and a 500 “Internal

© Akogrimo consortium page 43 of 147

Error” response is sent. This is valid for the whole process and has not been included in
the figures for simplicity purposes.

3.4.1.2.1. Initial publish

An initial publish takes place when the incoming PUBLISH includes a non empty body and
there is no “SIP-If~Match” header field. Optionally, it can include a nonzero “Expires”
header field. Basic algorithm is described below:

First step is to check the content of the body field. If not valid pidf/rpid xml field is
presented, the process finishes by sending a 415 “Unsupported Media Type” response. If
there is a valid body, the ESC generates an entity tag that will be stored in the presence
document and sent in the corresponding reply. For Akogrimo, this entity tag is a random
sequence in the form abcXYZxyz, where a, b, ¢, X, y and z are random characters in the
interval a---z and X, Y, Z are random numbers in the interval 0---9. This is the tag that
PUAs have to include as “SIP-If-Mach” header fields for the other PUBLISH-related
transactions.

[t could be possible that there is an EPA node created for that presentity. This can happen
if the subscription from the Context Manager arrives to the PA before the PUA performs
the initial subscription. In this case, the EPA node is modified (the presence document and
the expires value), the response to the PUA is sent and the watchers (only the Context
Manager for first phase) are notified (delivery of a NOTIFY message containing the
presence document); if the EPA node for that presentity does not exist, it is created and
added to the linked list, at the same time that the PUA is notified on the process success
(200 OK response). No notifications are needed in this case, because the publication
arrived before the subscription.

© Akogrimo consortium page 44 of 147

initial _publish

No
valid body? 415 Unsupported Media Type

Yes

generate ETag

create doc
No . Yes
EPA exist
create/add EPA modify EPA
send 200 OK send 200 OK
notify watchers
END

Figure 12 handle_publish () algorithm: initial publish
3.4.1.2.2. Refresh publish

PUAs can refresh the validity of their publications at any time before the presence/context
document expiration. To achieve this, they have to send a PUBLISH request including a
“SIP-1f-Match” header field which contains the SIP-ETag delivered in the response of the
initial transaction. It may contain also an “Expires” header field (the default value will be
used if not) and it must not contain a body. If all of these conditions are satisfied, the
refresh publish algorithm (described in the following figure) is executed.

© Akogrimo consortium page 45 of 147

refresh_publish

No
valid ETAg? 412 Conditional Request Failed

Yes

Generate new
ETag

modify EPA

send 200 OK

END

Figure 13 handle_publish (algorithm: refresh publish

This process only modifies the “Expires” field of the EPA node and generates a new entity
tag, which replaces the old one and is sent to the PUA in the 200 OK reply, and also
stored in the presence/context document. Note that watchers are not notified (this
operation do not affect the presence/context status). Note that if the “SIP-If-Match”
content of the incoming PUBLISH request do not match with any SIP-Etag stored for the
target presentity, a 412 “Conditional Request Failed” response is sent and the process
finishes.

3.4.1.2.3. Modify publish

Presentities can modify their presence/context status using a SIP PUBLISH request which
contain a valid “SIP-If~-Match” header field, a body with a valid pidf-rpid xm! document
and optionally, one single “Expires” header field. The algorithm to modify the
presence/context status of a presentity is depicted in the next figure.

© Akogrimo consortium page 46 of 147

modify_publish

No
valid body ? 415 Unsupported Media Type
Yes

No
valid ETAg? 412 Conditional Request Failed

Yes

Generate new
ETag

modify EPA

send 200 OK

notify watchers

END

Figure 14 handle_publish () algorithm: modify publish

The process starts checking the integrity of the body content and the validity of the “SIP-
[f-Match” header field content. If everything is ok, the EPA node is modified (update of the
presence/context document, including the new generated ETag and update of the EPA
node “Expired” field) and a success response is sent. Subscribers (if any) are notified.

3.4.1.2.4. Remove publish

To request the immediate removal of the event state, an EPA has to create a PUBLISH
request with an “Expires” header field set to value “0” and the “SIP-If-Match” header
field containing the entity—tag of the publication to be removed. No body must be included.
If all of these conditions are satisfied, the process described below takes place.

© Akogrimo consortium page 47 of 147

remove_publish

No
valid ETAg? 412 Conditional Request Failed

Yes
active
subscriptions ?

Yes No
Tl remove EPA
(neutral doc)
send 200 OK send 200 OK

notify watchers
END

Figure 15 handle_publish () algorithm: remove publish

After checking the validity of the entity—tag value included in the SIP-If-Match header
field, the EPA node is removed before sending the response if there are no active
subscriptions associated to that presentity; otherwise, EPA structure is modified (presence
document and Expires field are set to its neutral values). Then the 200 OK response and
the corresponding notifications are sent.

3.4.1.3. Processing SUBSCRIBE requests

The algorithm which describe the behaviour of the Presence Agent when a SUBSCRIBE
request arrives is described in RFC 3265 [Roa02] and concretised in RFC 3856 [Ros04].
The following figure depicts the corresponding flow chart.

© Akogrimo consortium page 48 of 147

handle_subscription ()

ERROR
check event 489 Bad Event
OK
ERROR
check auth. 403 Forbidden
OK
. ERROR 423 Interval too
check expires Brief
OK
ERROR
check © 481 Transaction
transaction does not exist
OK
initial_subscribe refresh_subscribe remove_subscribe state_fetching
create EPA No EPA exists ? modify remove send 200 OK
(neutral state) TS subscription subscription
Yes
SEEEEE send NOTIFY
subscription send 200 OK send 200 OK TERMINATED
Timeout
send NOTIFY
send 200 OK SETC“}?\/T o TERMINATED
(B Timeout
send NOTIFY
(ACTIVE)
END

Figure 16 handle_subscriptionh () algorithm

The complete algorithm is described at follows:

1. First step is to check the “Event” field of the incoming SUBSCRIBE request; only
presence events will be accepted; otherwise, a 489 Bad Event before finish.

2. Then the authorisation policy is applied. For the Akogrimo first phase, only
subscriptions from the Context Manager will be accepted, so if the subscriber is not
this component, a 403 “Forbidden” response will be delivered.

3. The process continues by checking the “Expires” header field of the incoming request,
which must be 0 or greater than a minimum value, if lower than an hour.

© Akogrimo consortium page 49 of 147

4. Before adjusting this value, transaction type is determined. As indicated in RFC 3265,
subscription requests create a dialog, which is fully determined by three parameters: a
call identificator, a local tag (tag parameter in the “From” header field) and remote tag
(tag parameter in the “To” header field). There are four alternatives for valid
SUBSCRIBE transactions, depending on the existence of a previous dialog and the
content of the “Expires” header field. Next table shows these alternatives.

Table 15 SUBSCRIBE transactions

Type of subscription | Call ID? | From Tag? To Tag? Expires?

Initial Yes Yes No Optional, >0

Refresh Yes Yes Yes Optional, >0

Remove Yes Yes Yes 0

Fetch Yes Yes No 0

If the request is trying to modify a subscription within a non existing dialog, a 481

“Transaction does not exist” is sent and the process finishes. In the same way, if “Call-

ID” or “From” tag parameters are not present, a 400 “Bad Request” reply is sent.

5.

Initial subscription involves the creation of an EPA node in a “default” status if the
targeted resource does not exist. This can occur if the subscription arrives before the
presentity publishes its status. Then subscription is created and added to the EPA
subscription lists. Finally a 200 OK is sent prior to the corresponding NOTIFY with a
“Subscription—State” header field set to ACTIVE.

A subscription request modifies only the field “Expires” of a subscription node. The
rest of the process is the same than initial subscriptions.

A subscription remove involves the sending of a 200 OK reply and a NOTIFY response
with a “Subscription—State” header field set to TERMINATED and including a “reason”
parameter set to TIMEOUT. Previously, the subscription node is removed from the
EPA subscription list and deleted.

There is a particular situation when a SUBSCRIBE request is received, no previous
dialog was established and the “Expires” header field was set to cero. The effect of this
is an immediate fetch of the presentity status, without creating a persistent
subscription. In this way the subscription node is created but immediately destroyed
(not added to the corresponding EPA subscription list) after sending the corresponding
replay and notification.

3.4.2. SIP Presence User Agent Implementation

For the first phase, Presence/Context Logic will be kept simple. Since there is no

information available about what the applications will be publishing as user state, only the
UAProf link provided by the CM Client will be included in the presence document of the
user.

© Akogrimo consortium page 50 of 147

Two preconfigured or even hard—-coded PIDF XML documents will be wused for
demonstration purposes. One of this documents will contain presence data saying that the
user is online, while the other will say he is offline. A little demonstration application will
be implemented to allow the user to switch between the two documents.

Everytime the user switches between one document and the other, a PUBLISH message
will be sent to the SIP PA, which will in turn inform the Context Manager. That way, basic
presence functionality can be demonstrated.

This is the document that will be used to show that the user is online:

<?xml version="1.0" encoding="UTF-8"7?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
entity="sip:server@dit.upm.es">
<tuple id="sg89gt4">
<status>
<basic>open</basic>
</status>
<contact priority="1.0">sip:server@138.4.7.148</contact>
<UAProfLink>http://link.to/uaProfile</UAProfLink>
</tuple>
</presence>

And this is the one that shows the user as being offline:

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
entity="sip:server@dit.upm.es">
<tuple id="b51jto6s">
<status>
<basic>closed</basic>
</status>
<contact priority="1.0">sip:server@138.4.7.148</contact>
<UAProfLink>http://link.to/uaProfile</UAProfLink>
</tuple>
</presence>

Only the status element changes its value.

The two of them carry the UAProf link provided by the CM Client. The exact name of the
element carrying the UAProf link has to be decided and adapted to the conventions stated
in the PIDF specification, RFC 3863 [Sug04].

For the first phase, SIP PUA will also be capable of deleting the user’s presence
information from the Presence Database, by sending an empty PUBLISH message with an
expiration time of 0. That way, Context Manager will be aware of users leaving the system.

For second phase, complete XML handling features are envisaged.

© Akogrimo consortium page b1 of 147

3.5.
3.5.1.

Testing

Presence Agent Testing

In order to check the Presence Agent functionality, we propose several test cases,
basically oriented to verify the functional requirements related to phase [described in
section 3.1.1. It should be convenient to enable the trace mode of the Presence Agent
library to track debug messages. To perform the test, both a Presence User Agent and a
presence watcher are needed.

Check presence/context publication storage:
send an initial PUBLISH message from a PUA

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node created. PUA must
receive the corresponding reply (with the
corresponding entity—tag).

Check presence/context publication storage
update: send a PUBLISH refresh message
from a PUA (update expires)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node updated. PUA must
receive the corresponding reply.

Check presence/context publication storage
update: send a PUBLISH update message
from a PUA (new PIDF body)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node updated. PUA must
receive the corresponding reply.

Check presence/context publication storage
delete: send a PUBLISH remove message
from a PUA (expires field set to zero)

Traces should indicate that the PUBLISH
message have been received and the
corresponding EPA node deleted (if no active
subscriptions; updated, otherwise). PUA must
receive the corresponding reply.

Check presence/context publication
expiration control: send a PUBLISH message
from a PUA with a very short expires value
and let it expires.

Traces should indicate that the PUBLISH
message have been received and the
corresponding action over the EPA node
performed; next PA timer iteration (if set to a
higher value than the expiration time) should
delete the EPA Node.

Check presence/context publication RFC
compliance: send several invalid PUBLISH
messages (no Event field included, try to
refresh an expired publication....)

Traces should indicate that the PUBLISH
message have been received, the problem
detected and the corresponding reply sent to
the PUA, which must receive the
corresponding reply.

Check presence/context subscriptions: send
an initial SUBSCRIBE message from a PUA to
request for the presence status of an
active/inactive presentity (active if the
presentity has already published its event

Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node created.
PUA must receive the corresponding reply
and a NOTIFY response including a body
with the published presentity status

© Akogrimo consortium

page b2 of 147

state). (empty/default if no publications from that
presentity stored).
Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node updated.
8 Check presence/context subscriptions: send PUA must receive the corresponding reply
a SUBSCRIBE refresh message from a PUA and a NOTIFY response including a body
with the published presentity status
(empty/default if no publications from that
presentity stored).
Traces should indicate that the SUBSCRIBE
message have been received and the
corresponding subscription node removed.
PUA must receive the corresponding reply
Check presence/context subscriptions: send and a NOTIFY response including a body
9 a SUBSCRIBE remove message from a PUA with the published presentity status
(expires field set to zero). (empty/default if no publications from that
presentity stored). If presentity has expired
its publications and it has no more active
subscriptions, EPA node should be also
removed.
Traces should indicate that the SUBSCRIBE
message have been received and the
Lo corresponding action over the subscription
Check presence/context subscriptions
10 expiration control: send a SUBSCRIBE node perf?rmed; next PA timer 1te.rat1.on (i
message from a PUA and let it expires. s.et to a higher value than the .explratlon
time) should delete the subscriber node. PUA
should receive a NOTIFY message with the
adequate parameters.
Traces should indicate that the SUBSCRIBE
Check presence/context subscriptions RFC message have been received, the problem
11 compliance: send a invalid SUBSCRIBE detected and the corresponding reply sent to
message from a PUA. the PUA, which must receive also the
corresponding reply.
Check presence/context framework Traces should indicate that the SUBSCRIBE
authorisation control: send a SUBSCRIBE message have been received, the problem
12 request from a non—authorised PUA. PA must | detected and the corresponding reply sent to
be configured to admit subscriptions from a the PUA, which must receive also the
certain SIP URI only. corresponding reply.
13 Check PA memory leaks: abort SER process Traces should indicate that all memory has
having active publications and subscriptions been freed (no memory leaks).

© Akogrimo consortium

page b3 of 147

3.5.2.

SIP Presence User Agent Testing

Test cases will check SIP PUA functionality on presence publication, update and
cancellation:

Initial presence information publication will be
performed when CM Client provides UAProf
link.

SIP PUA will create a new PIDF XML
document and will send it in a PUBLISH
message. Publication will reach the SIP PA
and the Context Manager will be notified.
The Context Manager will receive the
presence information of the user and will be
able to retrieve the UAProf link successfully.

Publication update to reflect changes in
user’s presence status.

Updated presence information will be
included in PUBLISH messages, which will be
sent to the SIP PA to inform about the
change in the user’s presence status.
Updates to the user’s presence information
will reach the SIP PA, which will notify the
Context Manager about the changes. The
Context Manager will update the user’s
presence information accordingly.

Publication will be cancelled on application
shutdown to show the user is leaving the
system.

Correctly formatted PUBLISH message will
be sent to the SIP PA. The PUBLISH
message will reach the PA and the user’s
presence information will be deleted from the
Presence Database. The Context Manager
will be notified.

© Akogrimo consortium

page b4 of 147

4.

A4C

The A4C system provides the necessary functionality for authenticating users, authorizing

access to services, accounting and charging for service usage, as well as auditing within

Akogrimo. It provides an interface to other components which allows them to access and
store key information about users and their usage of services, this data is stored within a
central database that is maintained by the A4C Server. Important components that access
A4C include Base VO manager, SIP server, context manager, access router, and QoS

broker.

4.1.

Requirements

Table 16 provides an overview on the key requirements that the A4C system has to meet.

Table 16 A4C — Functional requirements

Req. nr |Description Phase 1 |Phase 2
F1 Authentication X X
F1.1 Authentication of users based on PANA | X
(username/password) for network access.
F1.2 Authentication of users based on SAML (IDToken) for grid | X
services and network services (e.g. SIP). Verification of the
authentication based on the IDToken.
F1.3 Single—sign—on support based on SAML (IDToken). X
F1l.4 IDToken management, generation and verification. X
F 1.5 | Additional authentication mechanisms. X)
F1.6 Private Authentication generation X)
F2 Authorization X X
F 2.1 Authorization of network services (i.e. type of access, QoS) | X
F 2.2 Provide QoS Profile to the QoS Broker X
F 2.3 Provide the generic user profile X
F24 Provide anonymous/pseudonymous access to different (X)
services
F 2.5 | Authorize User or SP X)

© Akogrimo consortium

page bb of 147

Req. nr |Description Phase 1 |Phase 2

F3 Accounting X X

F 3.1 Accounting for network services usage (e.g. volume, QoS) |X

F 3.2 Support of accounting during handover and roaming X

F 3.3 Accounting for grid services usage, support of grid (X) X
accounting parameters

F 3.4 Accounting for compound services, support of service X
hierarchy

F 3.5 Multi—-domain support, correlation of accounting records X
from different domains related to the same service

F4 Auditing X

F 4.1 Manage, record and store auditing events (e.g. SLA X
violation) from grid services (e.g. Monitoring component)

F 4.2 Non-repudiation of service usage X)

F 4.3 Auditing of A4C messages exchanged between domains X

F5 Charging X) X

F 5.1 Charge calculation for service consumption based on |(X) X
accounting records and tariff profiles

F 5.2 Support of service—specific and user—specific tariff profiles | (X) X

F 5.3 Charging for compound services, support of service |(X) X
hierarchy

F 5.4 Multi—-domain support for the charge calculation X

F 5.5 Charging record exchange between domains X

F 5.6 Single bill support, create bills for users X

F 6 Generic X X

F 6.1 Manage and store user profiles X

F 6.2 Manage and store tariff profiles X

© Akogrimo consortium

page 56 of 147

Req. nr |Description Phase 1 |Phase 2
F 6.3 Manage and store accounting records X
F 6.4 Manage and store charging records X
F 6.5 Session support, binding A4C tasks together (X) X
F 6.6 Secure communication (IPSec, TLS), protect inter—domain X)
communication
(X) Optional requirement
Table 17 SAML Authority — Functional requirements
Req. nr |Description Phase 1 |Phase 2
F1 IDToken Management X X
F1.1 IDToken generation X
F1.2 Verification of the [IDToken and provision of the SAML | X
authentication assertion
F1.3 SAML attribute assertion generation X) X
F1l.4 Signature and encryption of IDToken X
F 1.5 Signature and encryption of SAML Assertions X
F 1.6 Provision of a token with delegation support (X)
Table 18 A4C - Non—functional requirements
Req. nr |Description Phase 1 |Phase 2
N 1 Running on Linux (Ubuntu) on a PC platform X
N 2 Database support X
N 3 Provide A4C Client C++ and Java API X
N 4 Performance improvement (efficiency, speed) X

4.2.

Interfaces

Figure 17 provides an overview on the main external and internal interfaces of the A4C
component. The A4C Server is a central entity providing A4C functions. Akogrimo
network components requiring A4C functions use the A4C Client Library to communicate

© Akogrimo consortium page b7 of 147

with the A4C Server via the Diameter protocol [Cal03]. Grid components can either
include the A4C Client Library or the Library can be used to create an A4C SOAP
Gateway, which provides a SOAP interface for Grid components. Both alternatives are
shown in Figure 17. The SAML Authority assists the A4C Server in the authentication
process and provides the IDToken management and verification. Section 4.3 provides
additional details on the A4C deployment in a network environment.

The API of the A4C Client Library used by Akogrimo components to integrate the A4C
Client is described in Section 4.2.2. The internal interfaces of the A4C infrastructure not
visible for external components are described in Section 4.2.3 and Section 4.4.

=== ———————————————- SOAP-= == m e e mm e e m e e :
| {
LSDS VO Manager Metering Monitoring A4C SOAP
Gateway
API API API API API
A4C Client A4C Client A4C Client A4C Client A4C Client
Library Library Library Library Library
Mobile Terminal
U (e e Access Router QoS Broker SIP Server Context Manager
EAP API API API API
Client
PAA A4C Client A4C Client A4C Client A4C Client
PaC Library Library Library Library
i
PANA |
8
|5}
£
8
i
SAML A4C ' A4C
Authority SOAP Server Diameter Server

——» Direction of communication initiation
Figure 17: Overview of A4C interfaces

Akogrimo uses the Security Assertion Markup Language (SAML) [SAML] to send security
information in the form of authentication and attribute assertions to the Akogrimo
components. Akogrimo is provided with a SAML infrastructure through a SAML Authority
component. This SAML component generates SAML messages and provides them to the
A4C Server. The SAML Authority interfaces directly with the A4C Server in the form of
request and response messages.

In order to have a complete SAML infrastructure, all Akogrimo components that require
authentication and/or attribute information from the user via the A4C Server, need to
have a SAML Client. The SAML Client consists of an API that provides the methods
needed to understand SAML assertions. The SAML Client will be a module of the A4C
Client.

© Akogrimo consortium page b8 of 147

4.2.1. A4C Server Interface (E-A4C-1)

The A4C Server interface comprises a single management interface used for A4C Server
configuration and maintenance.

4.2.1.1. Management Interface (E-A4C-1.1)

[t provides an interface for the management and configuration of the A4C Server for the
network administrator. In phase 2 it can be extended to support the communication with
external components in order to send configuration parameters to the A4C Server, e.g.
configuration according to a negotiated SLA.

4.2.2. AA4C Client API (E-A4C-2)

The A4C Client API comprises several sub—interfaces:

e Authentication and Authorization API
e Accounting API
o Auditing API

4.2.2.1. Authentication and Authorization Interface (E-A4C-
2.x, I-A4C-2.x)

The authentication interface will be mainly used by the Access Router, for the initial user
authentication, and by the Base VO manager for verification of a user’ s IDToken. The SIP
Proxy can also use this interface if it needs to validate a user’s token.

The authorization interface deals mainly with profile management in the A4C, mainly the
QoS profile of a user, which will be requested by the QoS Broker, and the Generic User
Profile, which will be requested by the Base VO Manager.

The following methods are provided by the Authentication and Authorization API:
o AuthnContainer userAuthenticationRequest(UserName, Password)

The userAuthenticationRequest() method is used to trigger the initial user
authentication, based on a username and a password. After this authentication the
user should receive an IDToken to be used for further service requests and the A4C
SessionlD for binding further A4C sessions to the initial authentication session.

The following is the list of parameters and return values of this method:

» AuthnContainer: is a helper class provided by the AA API that is used to
store the authentication result received from the A4C Server. The main
attributes of this container are:

= FErrCode: is an integer specifying whether the authentication was
successful or not.

» [D7oken: Contains the token generated by the SAML Authority of
the A4C Server for the user during the authentication process. This
token needs to be passed to any service that is requested by the

© Akogrimo consortium page 59 of 147

user in order to assure that the service can verify that the user was
authenticated before accessing the service.
= A4C SessionlD: is the String identifier of the A4C Authentication
session. This ID will be provided whenever a service will be started,
in order to allow the binding of future service accounting sessions to
the initial authentication session.
= [ifeTime: is an integer representing when this authentication will
expire
= [UserName: is a String, representing the full username of the user who
wants to authenticate, in the NAI format (username@domain)
= Password. is a String containing the password provided for authentication

o AuthnContainer authenticationVerificationRequest(UserName, IDToken,
ServicelD)

The authenticationVerificationRequest() method is used to verify a user’s
authentication, based on an I[DToken that he provides. The result of the
authentication verification will be stored in the AuthnContainer object. This method
will be used by the VO Manager during a user’s VO Login and by the SIP Proxy for
performing a SIP Registration for a user.

o QoSProfile gosProfileRequest(UserName)

The qosProfileRequest() is used by the QoS Broker for retrieving the QoS profile of a
user. (also called the Network View of the User Profile or NVUP).

= QoSProfile: An XML document containing a QoS Profile. The XML format
of this document will be defined in the scope of WP4.1.

o GenericProfile userGenericProfileRequest(UserName)

The userGenericProfileRequest() method is used for retrieving the Generic User
Profile of a user. This method will be primarily used by the VO Manager for retrieving
a user profile upon a VO Login, and by the Context Manager for getting the SIP URI
and user’ s RFID from the profile.

» GenericProfile: An XML document containing a generic user profile.

4.2.2.2. Accounting Interface (E-A4C-2.x)

The accounting interface is divided into the following two sub—interfaces:

o AccountingClient — manages the communication with the A4C Server, manages
different accounting sessions from the same client

o AccountingRecord —serves as a container for the accounting data to be sent to
the A4C Server

© Akogrimo consortium page 60 of 147

o AccountingResponse —is a helper class and serves as a container for the answers
received from the A4C Server

The AccountingClient interface offers the following methods:
o bool accountingClientStart(ConfigFilename)

The accountingClientStart() method is used for starting the A4C accounting client.

o AccountingResponse accountingSessionStart(UserName, ServicelD,
ParentSessionID)

The accountingSessionStart() method is used for creating a new A4C accounting
session for a given user and service instance. Whenever a user starts a service
session, an accounting session is created and all accounting records created during
the service session will be sent in this accounting session.

The following is the list of parameters and return values of this method:

= ParentSessionlD: is a String containing the A4C session id of the process
that started the service. Can be the A4C session ID of the authentication
session or the A4C session ID of the accounting session of the parent

process.
» AccountingResponse: is a container that stores the answer received from
the A4C Server and has the following attributes:

» Session/D: is a String containing the A4C session id of the newly
created A4C accounting session. This parameter will be further
used to map accounting records to accounting session.

= Accountinglnterval: is an integer and specifies the interval to be
used between two consecutive accounting records

o boolean sendAccountingRecord(SessionlD, AccountingRecord)

The sendAccountingRecord() method is used to send an accounting record to the A4C
Server. The accounting record needs first to be created, filled with the required AVPs
and then sent. The following is the list of parameters and return values of this method:

» Session/D: The A4C accounting session ID to which the accounting record
belongs to
= hoolean: True, if the request was successful

o AccountingRecord createAccountingRecord(SessionID)

The createAccountingRecord() method is used to create an accounting record. The
accounting record will be automatically filled with some required AVPs like username,
serviceld, etc..

The following is the list of parameters and return values of this method:

© Akogrimo consortium page 61 of 147

= Session/D: contains the session ID of the accounting session to which the
accounting record belongs

» AccountingKecord: is an object that will act as a container for the metrics
that need to be included in the accounting record

The AccountingRecord sub—interface offers the following methods:
o ResultCode addAVP(AvplD, Value)

The addAVP() method is used for adding an Attribute—Value—Pair to an existing
AccountingRecord object. It will be used whenever a metering component needs to
add a metered parameter to an accounting record.

The following is the list of parameters and return values of this method:

= AVPID: is the identifier of the parameter to be included in the accounting
record, as defined in the Diameter dictionary

» Value: parameter’ s value

= ResultCodespecifies if the operation was successful or not.

o ResultCode removeAVP(AvpID)

The removeAVP() method is used for removing an Attribute-Value—Pair from an
existing AccountingRecord object.

The following is the list of parameters and return values of this method:

= AVPID: is the identifier of the parameter to be included in the accounting
record, as defined in the Diameter dictionary

» Value: parameter’ s value

= ResultCodespecifies if the operation was successful or not.

4.2.2.3. Auditing Interface (E-A4C-2.x)

The auditing interface will be used by components monitoring service sessions for informing
the A4C on detected SLA violations during service provisioning. The auditing API provides
the following methods:

o ResultCode reportEvent(EventID, EventBody)

The reportEvent() method is used for reporting an SLA violation event during service
provisioning. The following is the list of input parameters and return values of this
method:

= FEvent/D: is an integer identifying the event type. The event types for a
service need to be specified in the SLA negotiated before the service start

= FventBody: can be a decimal value or a string.

© Akogrimo consortium page 62 of 147

4.2.3. SAML Client API (I-A4C-2.10)

The SAML Client is a module of the A4C Client. The SAML Client consists of the SAML
Library and the SAML Client API. The following methods will be provided by the SAML
Client:

o boolean checkAssertionlsValid (SAMLAssertion)

When the SAML assertion is received from the A4C Server, the receiver must check
the validity of this assertion. This implies e.g. checking the signature of the A4C,
checking that the date of issuance of the SAML assertion is previous to the reception
of the message etc.

o True: If the validation checks resulted as expected.
o False: If an error was found during the process of the validation.
o time obtainTimeOutFromAssertion (SAMLAssertion)

When the SAML assertion is received, the time of validity of the assertion must be
checked. . The result of the request is the timeout of the assertion. After the timeout,
the assertion is no more valid, and a new authentication request must be issued.

o arrayList obtainUserProfileFromAttributeAssertion (SAMLAttributeAssertion)

This method will extract the attributes from the SAML assertion. It will provide a list of
arrays with the name and value of the attributes of the users. It will provide an error
instead, if no attributes match.

o string obtainSubjectFromAuthenticationAssertion (SAMLAuthenticationAssertion)

The result of this is a string with the username of the SAML assertion. It can be used
for attribute and authentication assertions.

o string obtainAuthenticationMethodFromAuthenticationAssertion
(SAMLAuthenticationAssertion)

The result of this is a string with the authentication method that was used by the user
to authenticate at the A4C Server.

4.2.4. SAML Authority Client API (I-A4C-5.x)

The A4C Server provides requests to the SAML Authority. The SAML Authority, when
receiving the requests, generates the responses based on the A4C Server information
request. The communication protocol between them will be SOAP [SOAP]. The A4C
Server will make SOAP Requests, acting as a SOAP Client. The SAML Authority acts as a
SOAP Server, and will generate the response, and send them back within the body of a
SOAP message.

The following requests are expected from the A4C Server:
o String generatelDToken (username, authenticationMethod)

The SAML Authority receives this request from the A4C Server. The result of the
method will be the IDToken as a string.

© Akogrimo consortium page 63 of 147

o String validatelDToken(IDToken, ServicelD, username)

The output of this method is the SAML authentication assertion. An example of a
SAML assertion can be found in the design section.

o String generateSAMLA(ttributeAssertion(List of Attributes, ServicelD, username)

The output of this method is a SAML attribute assertion, with a list of the attributes of
the user profile that the component is allowed to show.

4.3. Design

The A4C infrastructure of Akogrimo is responsible for the authentication of users,
authorization of service access, accounting and charging for service usage, and the auditing
of service provisioning. Figure 18 shows the components of the A4C infrastructure and the
interfacing components within network architecture (the A4C SOAP Gateway is
represented by the Grid components in the figure).

The A4C infrastructure consists of the following components:

A4C Server: it performs and manages the A4C tasks and communicates with other
servers within and across domains.

A4C Client: it supports the communication and message exchange with the A4C Server
and is needed within each network component requiring A4C support.

« SAML Authority: It is responsible for the generation and verification of SAML
IDTokens and SAML Assertions.

/ Domain A \ /[DomainB

Network layer Grid
components components

A4C Client A4C Client

o o
6@
N
SAML A4C — _ A4C
Authority | SOAP Server Diameter Server

Figure 18: A4C view of the network architecture

The A4C infrastructure and the communication between A4C Client and Server are based
on the Diameter protocol [Cal03]. According to Figure 18 each domain has its own A4C
Server (Domain B is only represented by one A4C Server in the figure). Within a domain
there can be more than one A4C Server, each of which being responsible for a separate
group of users. This provides better load distribution, scalability, and redundancy. The
communication between different domains is performed via the A4C Servers. The A4C
Server is coupled with the SAML Authority, which provides the generation and verification
of IDTokens for user authentication. The interface between A4C Server and SAML
Authority is based on the SOAP protocol.

© Akogrimo consortium page 64 of 147

In order to enable communication between A4C Servers belonging to different domains, a
trust relationship is required to exist between these domains. The trust relationship is
established at the A4C level by specifying in the configuration file of the A4C Server the
neighbouring domains that it may trust and the A4C applications (authentication,
authorization, accounting, etc---) that are allowed to exchange information with the trusted
domain.

Every component which needs to communicate with the A4C Server in order to make use
of the server’s A4C functions needs to integrate its own A4C Client. Several A4C Clients
can be connected to one A4C Server, e.g. Access Routers in an access network. The A4C
Client provides the means for the Diameter based communication and message handling,
but it does not provide the component—specific functionality on the client side. Each
component is responsible to implement its desired functionality and to make use of the
A4C Client Library according to the required application logic, e.g. authentication. This
means that in the case of the Access Router component for example, the A4C Client allows
for the transmission of Diameter messages and the communication with the A4C Server,
but it does not provide the means to perform access control or to meter network resource
usage.

Akogrimo components requiring A4C functions integrate the A4C Client by using the A4C
Client Library and communicate with the A4C Client via a C++ or Java interface described
in Section 4.2. This enables a direct communication with the A4C Server over the
Diameter protocol. The A4C Client Library enables the creation of an A4C SOAP
Gateway, which translates between the SOAP and Diameter protocols by providing a SOAP
interface. The A4C SOAP Gateway can be used if the Akogrimo component cannot
integrate and use the A4C Client Library directly. The A4C SOAP Gateway is deployed on
a separate physical component. Several Akogrimo components can use the same A4C
SOAP Gateway.

The Diameter base protocol enables the transfer of authentication, authorization and
accounting messages. To support the requirements of Akogrimo, the Diameter protocol has
to be extended with new messages and AVPs (Attribute—Value—Pair), supporting the
transmission of new parameters. Diameter agents, i.e. relay, proxy, redirect and translation
agents, provide message forwarding and translation services. The A4C infrastructure of
Akogrimo supports the client and server functionality in the first phase.

4.3.1. SAML Authority

Akogrimo uses the Security Assertion Markup Language (SAML) to send security
information in the form of authentication and attribute assertions to the Akogrimo
components. SAML provides an additional security block concerning high confidential
information (like authentication and attribute information of a user) in the Akogrimo
architecture. SAML is a secure interoperable language used to share user’s information
from the A4C Server to other components in order to provide Single Sign-On (SSO)
capability to the user and to offer attribute sharing of the user to other components. In
order to provide SAML messages, a SAML Engine is needed in Akogrimo. This is the
SAML Authority. The SAML Authority is part of the security infrastructure in Akogrimo.

© Akogrimo consortium page 65 of 147

[t generates XML messages based on the SAML standard to send authentication and
attribute information. The SAML Authority is an internal subcomponent of the A4C
Server. It aims at supplying IDTokens and SAML assertions to the A4C Server. The A4C
Server contacts the SAML Authority when it requires to generate IDTokens and to verify
such tokens presented by different components.

4.3.1.1. IDToken

The SAML Authority is in charge of the generation of the IDToken. The IDToken is a
credential that can be reused several times with different entities in Akogrimo for
authentication purposes. It is generated by the SAML Authority and it is used by the
Mobile Terminal to request access to different components. The IDToken in Akogrimo is
designed as an enhanced SAML artefact [SAMLProfile]. The SAML artefact, as defined in
the SAML standard, is a random—generated number that acts as a pointer of the SAML
assertions of a user at the SAML Server. It can only be used once. Since Akogrimo
requires a reusable artefact, it uses an enhanced token based on the Daidalos European
Project [DaidalosIDToken]. This token will include the following parameters:

+ SAML Artefact: This parameter is a random—generated number. It is the pointer of the
SAML assertions in the SAML Authority. This number remains the same at each usage
of the token.

Serial Number: This parameter is a counter. It will be increased by 1 each time the
[DToken is used, in order to avoid replay attacks.

Random Number: This parameter is a random—generated number and it is changed each
time the MT uses the token. It is used to avoid security attacks.

« Signature: The signature of the issuer of the token. The IDToken will be signed from
the A4C Server, the first time it issues the IDToken and sends it to the MT. It will be
signed the MT when it is sent from the MT to request access to a service.

4.3.1.2. Verification of IDToken and Generation of the SAML
authentication assertion

When a components receives an access request from the MT, it receives appended the
IDToken. In order to know if the user is authenticated, it requests the A4C Server for
information of the token. The A4C Server then, contacts the SAML Authority to validate
the token and obtain the authentication information in the form of a SAML assertion. The
validation of the IDToken consists of verification of the sequence number and signature of
the IDToken. When the token is valid, a SAML assertion is issued in order to provide the
authentication information of the user. The SAML assertion [SAMLAssertion] will contain
the name of the user and the authentication method proceeded. An example of a SAML
assertion is shown in Figure 19. The XML elements <Name Identifier> and
{AuthenticationMethod> contain the userID and the authentication method which was
performed, respectively. The <Conditions> element shows also relevant information like
the time the assertion is valid or the recipient of the SAML assertion.

© Akogrimo consortium page 66 of 147

1 <Assertion AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"

2 IssueInstant="2005-10-17T00:46:02Z"

3 Issuer="https://samlauth.a4cserver.uni-stuttgart.de"

4 MajorVersion="1" MinorVersion="1"

5 xmlns="urn:oasis:names:tc:SAML:1.0:assertion">

6 <Conditions

7 NotBefore="2005-10-17T00:46:022"

8 NotOnOrAfter="2005-10-17T01:46:02Z">

9 <AudienceRestrictionCondition>

10 <Audience>http://vomanager.ehealth.com

11 </Audience>

12 </AudienceRestrictionCondition>

13 </Conditions>

14 <AuthenticationStatement

15 AuthenticationInstant="2005-04-17T00:46:002"

16 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
17 <Subject>

18 <NameIdentifier

19 Format="urn:oasis:names:tc:SAML:1.1l:nameid-format:emailAddress"
20 NameQualifier=" https://samlauth.adcserver.uni-stuttgart.de">
21 ernestosanchez@akogrimo.org

22 </NameIdentifier>

23 <SubjectConfirmation>...</SubjectConfirmation>

24 </Subject>

25 <SubjectLocality IPAddress="127.0.0.1"/>

26 </AuthenticationStatement>

27 </Assertion>

Figure 19: SAML assertion example

4.3.1.3. User Profile Generation

The user profile is a set of attributes that define several characteristics of a user. As the
authentication, this information is confidential and must be securely sent to the receiver.
The user profile information will be sent in a SAML attribute assertion. When the A4C
Server receives a user profile request, it forwards the request to the SAML Authority. The
SAML Authority will receive an attribute request together with the list of attributes from
the A4C Server. Then, the SAML Authority will generate a SAML attribute assertion with
the information of the user and it will send it back to the A4C Server.

4.3.2. Authentication and Authorization

There are different kinds of authentication and authorization sequences supported by the
A4C Server. It supports authentication based on username and password for network login,
authentication based on the IDToken for Grid services, QoS authorization for network
services, and the retrieval of the generic user profile.

Network login

© Akogrimo consortium page 67 of 147

Network login is the first task that needs to be performed before using any Akogrimo
service. During this phase the user is authenticated by the A4C Server of his provider and
an ID Token is issued for him. The authentication performed during network login is based
on username and password. The authentication messages will be encapsulated in EAP
(Extensible Authentication Protocol) [Blu98] message and will be transported over PANA
(Protocol for Carrying Authentication Information) [For05] between the Mobile Terminal
and the Network Authentication Server (NAS), and over Diameter between NAS and the
A4C Server. Figure 20 shows the messages exchanged during the network authentication.
There are 4 phases that can be distinguished during the network authentication:

1. Handshaking — the components involved in the authentication prepare for the
authentication process

2. Credential verification — there can be several messages transporting authentication
information between the MT and A4C. At the end of this phase the A4C finally
makes the authentication decision

3. Token generation — after a successful authentication an ID Token is generated for
the new authenticated user

4. Authentication termination — the new generated ID Token is delivered to the user
and the access router is informed that the user was authenticated. From this point
the user can request any service using the ID Token provided and the access router
can start an accounting session for the user.

ser MT AR A4C Server SAML Authority
I;ogin(username, passworc:l) : : :
A) | | |
	PANA-PAA-Discover)		
	PANA-Start-Req		
	PANA-Start-Ans		
===			
I I	DER I I		
)		
I I] DEA 12 I			
]] F———————— 15]			
	PANA-Auth-Req	10	
	PANA-Auth-Ans		5
- DER 15			
		1S	
—			
: 1 1 1 Generate-Token-Req(username, ...) :			
: : : : Generate-Token-Ans(IDToken) /:			
! ! ! DEA(IDToken) R====== a			
I] fm=======- 1 I			
	PANABind-Req		
	PANA-Bind-Ans		
! Login success r ! !			
lﬁ-			
------- a			
1 1 ACR(Start)			
] ACA() I		
]] fm======== 1]			

Figure 20: Network login MSC

© Akogrimo consortium page 68 of 147

Network Logout

After the user logs out, the AR stops accounting and sends the last accounting record to
the A4C Server in the Accounting-Request (ACR) message. The AR also terminates the
running session by sending a Session-Termination—Request (STR) to the A4C Server. The
[DToken of the user will be removed in the SAML Authority.

User MT AR A4C Server SAML Authority
: Logout : : : :
lﬁ\! - |
: |PANA-Termination-Reqy : :
| |PANA-Termination-Ans) : :
: Logout success F- ------- _: ACR(Stop) : :

———————— | S ——
F- B ! ACA() : :
: f---gTE()----| !
| |
| I El |
: | [1
|
|
: |

]
3
=

Figure 21: Network logout MSC
IDToken based authentication

The A4C Server supports authentication based on the SAML IDToken. An Akogrimo
Component can request authentication by sending an AA-Request (AAR) to the A4C
Server. The message includes the username, the SAML [IDToken, and the servicelD. The
A4C Server requests the verification of the IDToken from the SAML Authority. After
verifying the IDToken, the SAML Authority sends back the result to the A4C Server. The
A4C Server responds with a AA-Answer (AAA) to the Akogrimo Component. Akogrimo
Components requiring the IDToken based authentication are the SIP Registrar, the SIP
Server, the Base VO Manager, and WS Applications for 3PCC.

Akogrimo Component A4l rver SAML Authority

AAR(username, IDToken, servicelD)

Verify-Token-Req(IDToken)

Verify-Token-Ans()

AN

Figure 22: IDToken based authentication MSC
QoS authorization

The A4C Server stores the network QoS profile of every user, which specifies the QoS
parameters the user is allowed to request. The QoS Broker in the access network is
responsible for the management of the network QoS. The QoS Broker can retrieve the QoS
profile from the A4C Server by sending a QoS—Authorization-Request (QAR) as shown in
Figure 23. The request contains the username and the servicelD. The servicelD specifies
the requested service and it can refer to the access type, e.g. WLAN. The A4C Server

© Akogrimo consortium page 69 of 147

replies with a QoS—Authorization-Answer (QAA) to the QoS Broker. The answer contains
the QoS profile, based on which the QoS Broker can grant or deny the requested QoS.

T T
| |
: QAR(username, servicelD) :
I A
| |

QAA(QoS profile)

Figure 23: QoS authorization MSC
Retrieve generic user profile

The A4C Server stores the generic user profile of every user, which specifies user details.
Akogrimo Components, e.g. Base VO Manager or Context Manager, can retrieve the user
profile from the A4C Server by sending a User—Profile-Request (UPR) as shown in Figure
24. The request contains the username as a reference of the user. The A4C Server gets
the user profile from the A4C Database and sends it to the SAML Authority in a SAML-
Profile-Request. The SAML Authority includes the attributes of the profile into SAML and
sends back the profile containing SAML attributes to the A4C Server in the SAML-
Profile-Answer message. The A4C Server forwards the profile in SAML in the User—
Profile-Answer (UPA) message.

Akogrimo Component A4C Server AML Authori

UPR(username)

|

|

|

|

SAML-Profile-Req(user profile)]
N

A

SAML-Profile-Ans(user profile in SAML) |

T.._)é___.

UPA(user profile in SAML)

T
[
|
[
[
[
[
[
[
[
[
[
[
[

1

Figure 24: Retrieve user profile MSC

4.3.3. Accounting

The A4C Server controls and manages the accounting process. It collects and stores
accounting records, which describe the usage data for a certain session. An accounting
session is related to the service usage of the user. Usage data is gathered on different
components by metering network traffic and user activities. The Akogrimo components
which participate in the accounting process and are responsible for metering service usage
are the Access Router (AR) and the Grid Metering Component.

The messages related to accounting are shown in Figure 25. The figure only shows the AR
but the same applies for the Grid Metering Component. The Accounting-Request (ACR)
Diameter message is used to send accounting records to the A4C Server. The Accounting—
Answer (ACA) message contains the response of the A4C Server.

© Akogrimo consortium page 70 of 147

Two different kind of accounting types can be differentiated. If the service has a
measurable length, the AR has to send a Start Record at session start in the first
Accounting—Request and a Stop Record on session termination in the last Accounting—
Request. The Start Record is used to initiate an accounting session. The Stop Record is
sent to terminate an accounting session and contains the cumulative accounting data
relevant to the session. The A4C Server determines whether to send additional Interim
Records. In this case the AR has to send Interim Records periodically in a certain interval
specified by the A4C Server. The Interim Record contains cumulative accounting data for
an existing accounting session. If the service is a one—time event, meaning that the start
and stop of the event are simultaneous, then the AR sends Event Records to the A4C
Server. The Event Record contains all accounting data relevant to the service.

AR AA4C Server
: ACR(Start, ... :
: ACA() ’:
f—_--KC-R(EErEL__y-__-:
: ACA() ’:
f'""AEFIsEE o7 :
: ACA() ql
T !

— :— _______ :— -
: ACR(Event, ...) :
: ACA() /:
f———— |

Figure 25: Accounting MSC

4.3.4. Auditing

Auditing can be defined as an examination of Audit Trails to ensure compliance with pre—
established procedures, agreements, policies, contracts. In the first phase of the Akogrimo
Project, the auditing function offered by the A4C will be used by service monitoring
components to report SLA violation events during service provisioning. Later, during
charging calculation, these violations will be checked and penalties will be applied
according to the negotiated SLA for the service that was monitored. Whenever an SLA
violation is detected by a monitoring component a Violation—Report—-Request (VRR)
message is sent to the A4C Server in order to report the violation. Included in the
message is the type of violation that was detected and the service session for which this
violation was reported. Possible violation types for a service are stored in the A4C Server.
The A4C Server responds with a Violation—-Report-Answer (VRA).

© Akogrimo consortium page 71 of 147

Figure 26: Auditing MSC

4.3.5. Charging

The A4C Server is responsible for the charge calculation of resource and service usage.
Based on the accounting records collected and the charging specification stored in the
A4C Server it calculates the charge for each service access and creates charging records.
A charging record contains the result of the charge calculation and it includes attributes
like the username, accessed service, domain where the service was provided, currency
used, and the charge for the service.

To support service provisioning in a multi-domain environment where users receive a
single bill from their home provider, the exchange of charging records between providers is
required. Charging records are used both for the transfer of end user charges and for the
exchange of settlement data between providers. Charging records are sent by A4C Servers
between different domains as shown in Figure 27. The Charging—Transfer—Request (CTR)
Diameter message is used to send a charging record to an A4C Server. The Charging—
Transfer-Answer (CTA) message informs the originating A4C Server about the result of
the charging record transfer.

Figure 27: Charging MSC

4.3.6. Database

The A4C Server includes a database to store configuration data required for the A4C task,
to manage authentication information, and to store the output of accounting and charging.
The database contains user profiles, customer profiles, authentication information,
accounting records, charging records, tariftf information, and session details.

Within the A4C infrastructure users and customers are separated. Users are the entities
which use the services, while customers are the entities which pay the bill. This separation
of the usage and commercial aspects allows for a split between corporate users and non
corporate users. In case of the personal user, the customer details are the same as the
user details but for a corporate user the customer details would have the details of the
company which pays for the services.

© Akogrimo consortium page 72 of 147

1 Service
1
1 Sessi
1
1
0.* 0.+ 0.1
Auditing Event Accounting Record Charging Record

Figure 28: Data Model for A4C Database

Figure 28 shows the main objects that need to be stored in the database and their relation.
For a complete list of object attributes and their data types please refer to Section 4.4.9.

The following is a short description of the objects in the data model and their usage in the
A4C component:

e User
Any user having a contract with a service provider needs to be present in the A4C
database together with some extra information that identifies this user.

e (Customer
Any customer having a contract with a service provider needs to be present in the A4C
database together with customer details and associated users.

e Service
Every service provided by the service provider needs to be mapped in the A4C
database and identified by a set of measurable parameters.

e Session
The central object in the A4C data model is the A4C session, which is the mapping of a
service session in the A4C database. Every session needs to be linked to the service
that created this session and to the user for which the service session was started. The
A4C sessions are represented in a hierarchical manner, fully showing the hierarchical
relation between different service sessions.

e Accounting_Record
An Accounting Record stores a number of parameters that define the service usage
during a service session. Every accounting record needs to be linked to an A4C
session, so that mapping between a service session and service usage parameters
metered during that session will be possible during the charging process.

¢ Auditing Event
Any SLA violation detected by monitoring components will be stored in the A4C Server
database for integration in the charge calculation of a service consumption

© Akogrimo consortium page 73 of 147

e Charging_Records
Charging records store charging details related to a specific service session.

4.4, Implementation

The implementation description of the A4C infrastructure provides the internal
architecture of the A4C Server, A4C Client, SAML Authority, and SAML Authority
Client. Additionally, the implementation details of A4C tasks, structure of the A4C
database, required software components and libraries are described.

4.4.1. A4C Server

The internal architecture of the A4C Server depicts the fine design of the A4C
implementation prototype. The internal A4C Server architecture is shown in Figure 29. It
consists of the following components:

« Diameter Library: It is responsible for the handling of the Diameter protocol. It acts as
a message dispatcher and sends and receives Diameter messages. It is based on the
OpenDiameter library [OPENDIAM].

AA Component: It is responsible for authentication and authorization. It includes
several subcomponents, i.e. NET Authn Handler, SIP Authn Handler, VO Authn
Handler, User Profile Handler, SD AA Handler, and QoS Profile Handler, which provide
various AA functions. It also includes the SAML Authority Client which enables a
SOAP based communication with the SAML Authority.

Accounting Component: It controls and manages the accounting process.
Auditing Component: It is responsible for the handling of auditing event messages.

Charging Component: It is responsible for charging and it supports post—paid charging
based on a service—dependent and flexible tariff specification.

« A4C Database: It stores user profiles, authentication information, accounting and
charging related configuration data, and accounting and charging records. It is a
MySQL database [MySQLJ.

Database Interface: It provides the communication with the A4C Database.

Management Interface: It provides an interface for the management and configuration of
the A4C Server for the network administrator.

« SAML Authority: It generates and manages SAML IDTokens required for the
authentication process. It is a separate component but highly related to the A4C
Server.

© Akogrimo consortium page 74 of 147

A4C Server

Management Interface 1.7 ‘

1-A4C-1.9
‘ Database Interface 1.2 *—- L = | A4C Databa
AA Component 1.3 Jj il
— 1-A4C-5.1
SAML Authority Client
= 5 = 5
& S 0 T
8 Q o %
= 3 g N _ . - T
S o g gile 3| |2||s = SAML 5-1
= 2 > S| |S||&| |8||2 2 Authority
£ £ £ T T T a5]
= S| > = = c o T 2]
5 e g £1£| 2] |3 S
< o I3 > =] 2 = g
< < =3 < o a
O||a I g| | o
> 1%} = 3
15 1.4 1.6 1.33] |132 [131] |1.35 [1-36] 1.3.4
A4C
Client / Server
‘ Diameter Library ‘
I-A4C-1.7 d I-A4C-1.6 d I-A4C-18 d raachi2 9 1-A4d 15 o/
C/ (/ 1-A4C-1.11 /
1{A4C-1.3 1-A4Q-1.1 I-A4C-1.4

Figure 29: A4C Server Internal Architecture

4.4.2. AA4C Client

The internal architecture of the A4C Client depicts the fine design of the A4C
implementation prototype. The internal architecture of the A4C Client is shown in Figure
30. The A4C Client consists of the following components:

Diameter Library: It is responsible for the handling of the Diameter protocol. It acts as
a message dispatcher and sends and receives Diameter messages. It is based on the
OpenDiameter library [OPENDIAM].

« AA Component: It is responsible for authentication and authorization. It includes
several subcomponents, i.e. NET Authn Handler, SIP Authn Handler, VO Authn
Handler, User Profile Handler, SD AA Handler, and QoS Profile Handler, which provide
various AA functions. It communicates with the AA Component in the A4C Server.

+ Accounting Component: It supports the accounting process and enables to send
accounting records. It communicates with the Accounting Component in the A4C

Server.

Auditing Component: It supports the auditing process and enables to send auditing
events. It communicates with the Auditing Component in the A4C Server.

SAML Client: It provides the SAML assertion handling, e.g. the verification of its
validity.

+ A4C Client API: It provides the interface of the A4C Client library both in C++ and
Java using JNI [JNI].

© Akogrimo consortium page 75 of 147

I-A4C-4.1 o

5.2

Access
Router

vo 58
Manager

5.6 5.7
Metering Monitoring

Context 5
Manager

| o E-aiC24 [0 Enaces o E-A4C28

EAIG23 o FA4C211 q|

E-A4C-2.9 Q| | o E-A4C2.6
E-AC2.1 / A4C Client
‘ A4C Client Java AP| 243 ‘
T T T T T
‘ JNI 242 ‘
1 I | | | |
A4C Client G++ API |
I_‘—|'_
1-A4C-2.10
AA Component | 21
H -
. 3 5 3 o) 3 = ®
= k) 2 ° 12 2 el =3 I
= = © =4 E] & £ a
2 5 T T T ac St S £
O T Qo = S o c 8
= < 5 £ = S & 2
= < 2 5] < =) = (=2
< = o < < o < S =
2 e 18] |5 i 8 S 8 S
<] ® z = g <
2.4 214 R1.4 2.1.2) 2141 2.1.5) 2.1.3] 22 23
T | |
| | | | | A4C Server
‘ Diameter Library 25
I-A4C-1.4 d I-A4C-1.1 d I-A4C-13 d / I-A4C1.7 d
/ / ItA4C-1.6
AUC-1.2 4C-1.5

-A

I-A4C-1.11 C/

Figure 30: A4C Client Internal Architecture

4.4.3. SAML Authority

The SAML Authority is responsible for the creation of SAML-based authentication,
authorization and attribute assertions and provides the functionality of creating, storing
and managing SAML assertions and ID-Tokens. Figure 31 represents the internal
architecture of the SAML Authority and the communication with the A4C Server.

© Akogrimo consortium page 76 of 147

SAML Authority 5.1

Database Interface ’—‘

A4CToken Generator

A4C Server

SAML
Authority
Client

SAML

Authentication Assertion Generator A
Authority DB

SAML Engine

i I-A4C-5.1

Attribute Assertion Generator

‘ SOAP Library ‘

‘ SAML Library ‘

Figure 31: SAML Authority Internal Architecture

The components depicted in the SAML Authority are the following:

SAML Engine: This is the main element in the SAML Authority. It is an application
server that receives requests in the form of SOAP messages from the SAML Authority
Client at the A4C Server. It understands the requests, resolves the result internally
with the other components, and generates the SOAP Response with the result included
at the body.

IDToken Generator: This element creates the IDToken. It is initiated from the SAML
Engine, when it receives an issue request for a user token.

Authentication Assertion Generator: This element generates the authentication
assertion when it is invoked from the SAML Engine.

Attribute Assertion Generator: This element generates the attribute assertion when it
is invoked from the SAML Engine.

Database Interface: This is an interface used by the SAML Engine and also by the
generators to access the database of the SAML Authority.

SAML Authority DB: This element stores the [IDToken and assertions of the users
when requested by the SAML Engine or the generator entities.

SOAP Library: This library is used for the understanding of SOAP Requests and the
generation of the SOAP response. It is used by the SAML Engine.

SAML Library: This library is used by the SAML Engine and the generator entities, in
order to create SAML messages.

4.4.4. SAML Authority Client

The SAML Authority Client, a component inside the A4C Server, provides the
communication with the SAML Authority and the A4C Server. Since the SAML Authority
is a SOAP Server, the SAML Authority Client needs to provide requests in the SOAP
protocol. This is the basic functionality of this client. The internal architecture of the
SAML Authority Client at the A4C Server is depicted in Figure 32.

© Akogrimo consortium page 77 of 147

A4C Server
SAML Authority Client

IDToken Request '—

Validation Request '—
Attribute Request '—

i I-A4C-5.2

5.1
SAML
Authority

l I-A4C-5.

[
SOAP Library

‘ SOAP Client Factory

‘ A4C Server Components ‘

(L 1-A4C-5.4

Figure 32: SAML Authority Client Internal Architecture
The SAML Authority Client at the A4C includes the following components:

+ SOAP Client Factory: This element is a factory of SOAP Requests. It is the main
element in the SAML Authority Client.

IDToken Request: This element supports the creation of a SOAP Request to ask for an
IDToken.

« Validation Request: This element supports the creation of a SOAP Request to ask for
validation and authentication assertion issuance.

« Attribute Request: This element supports the creation of a SOAP Request to ask for
attribute assertion issuance.

SOAP Library: This library provides the support for building SOAP Messages.

4.4.5. Authentication and Authorization

The authentication and authorization function of the A4C Server consists of several
independent tasks. It provides means for network authentication, for the IDToken based
authentication, for QoS authorization, and for user profile transfer.

Network authentication

The network authentication of A4C infrastructure is implemented based on the libeap and
libpana libraries of the Opendiameter implementation. The Diameter-EAP-Request (DER),
Diameter-EAP-Answer (DEA), and PANA messages are extended to carry the IDToken in
the response of the A4C Server (cf. Figure 20). The network authentication function is
implemented as a separate Diameter application.

IDToken based authentication

The IDToken based authentication is implemented using the AA-Request (AAR) and AA-
Answer (AAA) Diameter messages. The messages are extended to carry the identifier of
the requested service and the IDToken.

QoS authorization

For the QoS authorization the QoS—Authorization-Request (QAR) and QoS-
Authorization—Answer (QAA) Diameter messages are newly defined. The answer carries
the QoS profile. The QoS authorization is implemented as a separate Diameter application.

Retrieve generic user profile

© Akogrimo consortium page 78 of 147

To retrieve the generic user profile the User—Profile-Request (UPR) and User—-Answer—
Profile (UPA) Diameter messages are newly defined. This function is implemented as a
separate Diameter application. The profile is transmitted as a SAML assertion.

4.4.6. Accounting

For the accounting of network services and grid applications the Accounting—Request
(ACR) and Accounting-Answer (ACA) Diameter messages are used. The messages are
extended with additional AVPs to carry accounting parameters for grid services. The
specified accounting AVP are summarized in Section 4.4.6.1.

To support grid and compound services an extended session model is implemented to
enable the definition of a session hierarchy. The accounting messages are extended with
the parent—session—ID parameter to specify the parent session within the hierarchy.

4.4.6.1. Accounting Parameters

Accounting parameters describing the service usage are specified by AVPs in the Diameter
protocol. For network services the AVPs defined for the Diameter network access
application [Cal05] are used. Table 19 summarizes the most important parameters.

Table 19 Accounting parameters for network services

AVP Data type Description
Accounting-Input-Octets Unsigned64 | Contains the number of octets received from the user.
Accounting-Output-Octets Unsigned64 | Contains the number of packets received from the user.
Accounting-Input-Packets Unsigned64 | Contains the number of packets received from the user.
Accounting-Output-Packets Unsigned64 | Contains the number of packets sent to the user.
Acct-Session-Time Unsigned32 | Defines the length of the current session in seconds.
Event-Timestamp Time Indicates the time the reported event occurred.
NAS-Port-Type Enumerated | Defines the type of the network access provided to the
user. Possible values include ISDN, ADSL, Ethernet,
Wireless 802.11, and UMTS. The complete list can be
found in [TANAO5].

There are also additional AVPs specified according to the requirements of Akogrimo.
These AVPs enable to account for grid services and extends the attributes for network
service accounting. Table 20 summarizes the additional AVPs defined.

Table 20 Akogrimo accounting parameters for network and grid services

AVP

Data type

Description

CPU-Time

Unsigned32

Defines the duration of CPU usage in seconds.

CPU-Type

Enumerated

Indicates the CPU type used. The following values are
defined for this AVP:

0 —x86 32 bit

1 —x86 64 bit

2 -PPC 32 bit

3 - PPC 64 bit

4 - SPARC 32 bit

5 - SPARC 64 bit

CPU-Cycles

Unsigned64

Indicates the number of CPU cycles used by the
process. The measurement unit is 1000 cycles, thus
each number n in the AVP stands for n*1000 cycles.

© Akogrimo consortium

page 79 of 147

AVP Data type Description
CPU-Count Unsigned32 | Specifies the number of CPUs used.
Node-Count Unsigned32 | Specifies the number of nodes used.
Memory-Size Unsigned64 | Specifies the size of the main memory of the node in
bytes.
Memory-Usage-Average Unsigned64 | Specifies the average size of memory used in bytes.
Memory-Usage-Maximum Unsigned64 | Specifies the maximum size of memory used in bytes.
Disk-Usage-Average Unsigned64 | Specifies the average size of disk storage used in bytes.
Disk-Usage-Maximum Unsigned64 | Specifies the average size of disk storage used in bytes.
Host-Name UTF8String | Specifies the hostname of the node.
Job-Name UTF8String | Specifies the name of the job executed.
Process-ID Unsigned32 | Specifies the process identifier.
Process-Status Enumerated | Specifies the status of a job. The following values are
defined for this AVP:
0 —aborted
1 - completed
2 —failed
3 —held
4 — queued
5 — started
6 —suspended
QoS-Bandwidth Unsigned64 | Specifies the transmission speed provided in bit/s.
QoS-Delay Unsigned32 | Specifies the delay guarantee provided in ms.
QoS-Jitter Unsigned32 | Specifies the jitter guarantee provided in ms.
QoS-Priority Unsigned32 | Specifies the priority class of the traffic.
QoS-DSCP Unsigned32 | Specifies the DiffServ Code Point used.
QoS-Score Unsigned32 | Specifies a relative value for the QoS provided.
Accounting-Dropped-Octets Unsigned64 | Contains the number of octets dropped by the access
network.
Accounting-Dropped-Packets | Unsigned64 | Contains the number of packets dropped by the access
network.
Request-Count Unsigned32 | Number of requests
Successful-Request-Count Unsigned32 | Number of successful requests
Failed-Request-Count Unsigned32 | Number of failed requests

4.4.7. Auditing

To transfer auditing events the Violation—Report—Request (VRR) and Violation—Report—
Answer (VRA) Diameter messages are newly defined. The auditing function is implemented
as a separate Diameter application. For the description of auditing events new AVPs are
defined.

The auditing function will be implemented in phase 2.

4.4.8. Charging

To transfer charging records the Charging—Transfer-Request (CRT) and Charging—-
Transfer—Answer (CTA) Diameter messages are newly defined. Additional AVP are defined
for the charging purpose. Charging is implemented as a separate Diameter application.

The charging component of the A4C Server supports post—paid charging, and calculates
charges per service based on the accounting data collected by the accounting component

© Akogrimo consortium page 80 of 147

and stored in the database according to the charging specification defined in Section
4.4.8.1.

4.4.8.1. Charging Specification Format

The charging specification defines the rules and prices to be applied for charging and it
enables to specify user, service, and domain—specific tariffs. This means that the charging
specification defines how a certain user in a given domain will be charged for a particular
service. Different services have different charging specifications according to the charging
requirements of the service. Different users can have different charging specifications, but
users can be also mapped to the same specification, enabling to define groups of users and
to apply the same charging for them. Different domains will have most probably different
pricing specifications but the same specification might be also applied. The mapping for the
charging specification is stored in the userTariffs table in the A4C database specified in
Section 4.4.9.

‘ CHARGING-SPECIFICATION }L

i{ SPECIFICATION-ID ‘

L{ SPECIFICATION-DESCRIPTION ‘

L{ SERVICE-DESCRIPTION ‘

i{ CURRENCY ‘

i{ SUBSCRIPTION-FEE ‘

i{ SESSION-FEE

Figure 33: Tariff specification

The charging specification is defined in a file in XML format. The basic structure of the
XML file is shown in Figure 33 and it consists of the following elements:

SPECIFICATION-ID tag: It defines the unique identifier of the charging specification.

SPECIFICATION-DESCRIPTION tag: It allows for a description of the charging
specification.

« SERVICE-DESCRIPTION tag: It allows for a description of the service that the
charging is applied for.

+ CURRENCY tag: It specifies the currency to be used for billing.

SUBSCRIPTION-FEE tag: It specifies a fixed subscription fee for the particular
service.

SESSION-FEE tag: It specifies the charging rules and prices to be applied for a service
session. It consist of one service price and one or more terms.

+ SERVICE-PRICE tag: It specifies a fix price to be applied for every usage of the
particular service.

TERM tag: It specifies one element of the charge calculation.

© Akogrimo consortium page 81 of 147

The subscription fee defines a monthly fee for the service. During the charging process for
every service session a charge (Cg) is calculated as the sum of the service price (P;) and
the sum of all terms (T)):

Ci=P+> T,

A term specifies an element of the charge calculation, depending on some accounting
attributes and a price. The accounting attributes are specified as Diameter AVPs. The
AVPs defined in Section 4.4.6.1 can be used to specify the accounting parameter to be
taken for the charge calculation. The price can be constant, i.e. a fixed price for every unit
consumed, or variable depending on some conditions, e.g. the amount of consumption or
the time of the consumption (time—of-day). A term is in general the product of one or more
AVPs (AVP,) and a price (P):

T,=]JAVP,-P
k

The structure of a term applying a constant price is shown in Figure 34. It consists of the
following elements:

AVP tag: It refers to the accounting attribute (AVP) relevant for charging. This tag can
be included several times.

« AVP-ID tag: It defines the identifier of the AVP.
« AVP-NAME tag: It defines the name of the AVP.

+ CONSTANT-PRICE tag: It defines a constant price per unit applied for charging in this
term.

As an example, if Acct—Session—Time AVP is defined in the AVP tag, the price is
calculated according to the time the service was used. The CONSTANT-PRICE tag
specifies the price for a second in this case.

AVP-NAME

CONSTANT-PRICE

Figure 34: Constant price specification

If the price to be applied is variable, it depends on the value of a particular AVP. Two
cases can be differentiated. In the first case, the price is on the basis of a certain value of
the AVP. In the second case, the price is on the basis of the value of the AVP being in
numerical range.

The charging specification for variable prices is shown in Figure 35. It consists of the
following elements:

AVP tag: It has the same meaning as in the constant price case. It can be included
several times.

+ VARIABLE-PRICE tag: It defines the condition and the charging rule in case of a
variable price.

© Akogrimo consortium page 82 of 147

BASIS-AVP tag: It defines the AVP that is used to determine the price to be
applied.

CASE tag: It groups the condition and the price together.

AVP-VALUE tag: It defines a certain value of the AVP. If the AVP has this
value, the price defined in the CONSTANT-PRICE tag will be applied. If the tag
is empty, it represents the default value.

CONSTANT-PRICE tag: It defines the price to be applied.
DESCRIPTION tag: It contains an optional description for the condition.

As an example, if the BASIS-AVP is specified as the CPU-Type AVPF, different prices can
be defined for each CPU type. The AVP-VALUE could be e.g. x86 32 bit or x86 64 bit.

AVP-ID

AVP-NAME

AVP-VALUE

1/ CONSTANT-PRICE

11 DESCRIPTION

Figure 35: Variable price specification

The charging specification for variable prices defined by ranges is shown in Figure 36. It
consists of the following elements:

AVP tag: It has the same meaning as in the constant price case. It can be included
several times.

VARIABLE-PRICE tag: It defines the condition and the charging rule in case of a
variable price.

BASIS-AVP tag: It defines the AVP that is used to determine the price to be
applied.
RANGE tag: It groups the condition and the price together in case of a range.

AVP-VALUE-MIN tag: It defines the minimum value of the AVP. If the value of
the AVP is between AVP-VALUE-MIN and AVP-VALUE-MAX, the price
defined in the CONSTANT-PRICE tag will be applied. It the tag is empty, the
range has no lower limit.

AVP-VALUE-MAX tag: It defines the maximum value of the AVP. If the value
of the AVP is between AVP-VALUE-MIN and AVP-VALUE-MAX, the price
defined in the CONSTANT-PRICE tag will be applied. It the tag is empty, the
range has no upper limit.

CONSTANT-PRICE tag: It defines the price to be applied.
DESCRIPTION tag: It contains an optional description for the condition.

© Akogrimo consortium page 83 of 147

As an example, the BASIS-AVP might be Accounting—Input—Octets AVP and the ranges
defines different prices for the amount of data transferred, e.g. below 100MB, between
100MB and 1GB, and above 1GB.

AVP-ID

AVP-NAME

AVP-VALUE-MIN
AVP-VALUE-MAX

1/ CONSTANT-PRICE

11 DESCRIPTION

Figure 36: Variable price specification with ranges

The charging component enables a generic charging specification to be linked to the user’s
subscription, which is also stored in a XML file similar to the service related fees. The
subscription file specifies a subscription fee, which is applied for every bill, i.e. every
month, and it can also contain some special discounts for the final bill. The mapping is also
stored in the userTariffs table with serviceld=0.

As for every service a separate charging specification can be applied, also the charging for
compound services, consisting of several sub—services, can be specified. In this case each
sub—service has an own charging specification, which is applied for the sub—service, and
finally all charges for the sub—services are added up, resulting in the final charge for the
service. The charging specification can be defined also per domain, allowing charging for
compound services executed in different domains.

4.4.9. Database Structure

The database structure with the tables specified is summarized in Figure 37. In the
following the database tables and their fields are explained in detail.

© Akogrimo consortium page 84 of 147

authenti

cationRecords

% recordid: INTEGER(11)

% sessiol
@ authn
@ authe
@ samiT

@ Timestamp: TIMESTAMP(14)
< wvalidity: TIMESTAMP(14)

nid: VARCHAR(255) (FK)
Server: VARCHAR(45)

nticationType: INTEGER(11
oken: VARCHAR(255)

authorizationRecords

% recordid: INTEGER(11)

@ sessionld: VARCHAR(255) (FK))
@ authzServer: VARCHAR(45)

@ accessLevel: VARCHAR(45)

@ timestamp: TIMESTAMP(14)
@ validity: TIMESTAMP(14)

Rel 11

userDetails i customerDetails i
¥ userld: INTEGER(11) % customerld: INTEGER{11)
@ userName: VARCHAR(45) @ lastName! VARCHAR(45)
@ password: VARCHAR(20) < firstName: VARCHAR(45)
@ customerld: INTEGER(11) (FK)[Rel 04 @ organization: VARCHAR(45
@ lastName: VARCHAR(45) & & street: VARCHAR(45)
@ firstName! VARCHAR(45) -|@ city: VARCHAR(45)
street: VARCHAR(45) @ zip: VARCHAR(20)
city: VARCHAR(45) @ country: VARCHAR(45)
zip: VARCHAR(20) @ email: VARCHAR(45)
country: VARCHAR(45) @ phene: VARCHAR(45)
email: VARCHAR(45) CEIRTA] @ billcurrency: CHAR(3)
phoneOffice: VARCHAR(45) = @ flags: INTEGER(11)

phoneRes: YARCHAR(45)
phoneMobile: VARCHAR(45)
sipURI: VARCHAR(45)
rfidTag: VARCHAR(45)
bvoManager: VARCHAR(45)

COOCOCOOCCOCOCOC O

Rel_14|

< flags: INTEGER(11)

Rel_14

—>

Rel_0€g

<

serviceProfiles

W userld: INTEGER(11) (FK) -
serviceld: VARCHAR(255) (FK)!

@ profile: VARCHAR(45)

userTariff

=

% userld: INTEGER(11) (FK)

sessionDetails

serviceld: VARCHAR(255) (FK)

% sessionld: VARCHAR(255)

% domainName: VARCHAR(45)

) | tarifffile: VARCHAR(45)

Rel_15

permissionsDetails

@ userld: INTEGER(11) (FK)
@ serviceld: VARCHAR(255) (FK)|
% accessLevel; VARCHAR(45)

Rel 12

Rel_15

@ parentSessionld: VARCHAR(255 - =
z 5 = @ serviceld: VARCHAR(255) (FK) Rel 0% — %EN‘CEDE?"S 3551
cl arqwangcnr s % userld: INTEGER(11) (FK) ‘> IS sem!cel ‘VAFl!CHAR 255,
% recordid: INTEGER(11) hel_074 homeDomain: VARCHAR(45) senviceName: VARCHAR(45
@ sessionld: VARCHAR(255) (FK) & providerDomain: VARCHAR(45) Rel_13 & description: VARCHAR(255)
z charge DOUBLE @ startTime: TIMESTAMP(14) &
currency: CHAR(3) % endTime: TIMESTAMP(14) .
@ timestamp: TIMESTAMP(14) % flags: INTEGER(11) avpServiceMapping -
- @ avpCode: INTEGER (FK)
Rel_1€ @ serviceld: VARCHAR(255) (FK)| Rel_12
0 O avpDetails i
% avpCode: INTEGER
dataRecords Rel 17 |avpDataRecordsMapping ~ Rel_2¢ @ avpMame: VARCHAR(45)
recordld: INTEGER{11) = |@ aupld: INTEGER (FK) ‘> @ description: VARCHAR(255)
< recordType: INTEGER | recordid: INTEGER(LL) (FK) @ dataType: VARCHAR(45)
@ sessionld: VARCHAR(255) (FK) @ avpCode: INTEGER (FK) & avpTableNarme: VARCHAR(45|
@ i
timestamp: TIMESTAMP(14) Rel 16
AP x -] Rel_zc |avpGroups ik
+ | # groupid: INTEGER(11)
A avpidiiNTEGER P avpld: INTEGER (FK]
< avpVvalue: VARCHAR(255 % avpCods: INTEGER

Figure 37: A4C database structure
User and customer details

The data fields of the userDetails and customerDetails tables are shown in Table 21 and
Table 22 respectively. They include generic attributes like username, password, and
personal details.

Table 21 Data fields of the userDetails table

Data Field Data Type Description

userld Integer Database internal identifier of the user
username Varchar(45) Username in user@domain (NAI) format
password Varchar(20) Password of the user

customerld Integer The customer identifier of the user
lastName Varchar(45) Last name

firstName Varchar(45) First name

street Varchar(45) Street

city Varchar(45) City

Zip Varchar(20) Zip code

country Varchar(45) Country

email Varchar(45) Email address

phoneOffice Varchar(45) Phone number office

phoneRes Varchar(45) Phone number residence
phoneMobile Varchar(45) Phone number mobile

sipURI Varchar(45) Default SIP address of the user
rfidTag Varchar(45) RFID tag associated to the user

© Akogrimo consortium page 85 of 147

Data Field Data Type Description

bvoManager Varchar(45) Reference to the BVO Manager

flags Integer Internal flags for management purposes
Table 22 Data fields of the customerDetails table

Data Field Data Type Description

customerld Integer Database internal identifier of the customer
lastName Varchar(45) Last name

firstName Varchar(45) First name

organization Varchar(45) Organization

street Varchar(45) Street

city Varchar(45) City

Zip Varchar(20) Zip code

country Varchar(45) Country

email Varchar(45) Email address

phone Varchar(45) Phone Number

billCurrency Char(3) Currency used for billing

flags Integer Internal flags for management purposes

Service details and profiles

The serviceDetails table shown in Table 23 stores available services, specified by a service
identifier. Additionally, each service has a name and an optional description.

Available AVPs used in Diameter messages are listed in the avpDetails table (Table 24).
Each AVP is defined with its Diameter AVP code, AVP name, and the data type of the
AVP. Each type of AVP is stored in a separate table (cf. Table 33), which is specified by
the avpTableName field.

The relation between services and AVPs are defined in the avpServiceMapping table (Table
25), which specifies the AVPs used for a particular service. The serviceProfiles table (Table
26) lists for every user the enabled services with the service profile. The profile defines the
network QoS parameters enabled for the user.

Table 23 Data fields of the serviceDetails table

Data Field Data Type Description

serviceld Varchar(255) | Identifier of the service
serviceName Varchar(45) Name of the service
description Varchar(255) | Description of the service

Table 24 Data fields of the avpDetails table

Data Field Data Type Description

avpCode Integer Diameter AVP code

avpName Varchar(45) Name of the AVP

description Varchar(255) | Description of the AVP

dataType Varchar(45) Data type of the AVP

avpTableName Varchar(45) Name of the database table storing this type of
AVP

Table 25 Data fields of the avpServiceMapping table

Data Field Data Type Description

avpCode Integer Reference to the AVP

© Akogrimo consortium

page 86 of 147

Data Field

Data Type

Description

serviceld

Varchar(255)

Reference to the service

Table 26 Data fields of the serviceProfiles table

Data Field Data Type Description

userld Integer Reference to the user
serviceld Varchar(255) | Reference to the service
profile Varchar(45) File name of the profile

Session details

The sessionDetails table (Table 27) is used to store all A4C session related information.
An A4C session is created for authentication, authorization, accounting, auditing and
charging tasks. The session is identified with a globally unique session identifier, specified
by the Diameter protocol. The session might have a parent session if it is part of a
compound service with a session hierarchy. The session is associated to a user, a service
and to a provider domain. It has a start and an end time. The flags field is used for internal
tasks, like specifying the session type.

Table 27 Data fields of the sessionDetails table

Data Field Data Type Description

sessionld Varchar(255) | Session identifier

parentSessionld Varchar(255) | Session identifier of the parent session

serviceld Varchar(255) | Reference to the service

userld Integer Reference to the user

homeDomain Varchar(45) Home domain of the user

providerDomain Varchar(45) Domain of the service provider

startTime Timestamp Start time of the session

endTime Timestamp End time of the session

flags Integer Internal flags, e.g. type of the session
(authentication, accounting etc.)

Authentication records

The authenticationRecords table (Table 28) stores authentication events associated to a
session. It specifies the server authenticated the user and the type of authentication. It
also has a timestamp and a validity field.

Table 28 Data fields of the authenticationRecords table

Data Field Data Type Description

recordld Integer Identifier of the record

sessionld Varchar(255) | Reference to the session

authnServer Varchar(45) | Diameter identity of the server authenticating the
user

authenticationType Integer Type of the authentication, e.g. password based,
certificate based

samlToken Varchar(255) | The SAML IDToken

timestamp Timestamp Timestamp of the record

validity Timestamp Validity of the authentication

© Akogrimo consortium page 87 of 147

Authorization records

The authorizationRecords table (Table 29) stores authorization events associated to a
session. It specifies the server authorized the user and the access permissions granted for
the user. It also has a timestamp and a validity field. The permissionDetails table (Table
30) specifies possible access rights per user and service.

Table 29 Data fields of the authorizationRecords table

Data Field Data Type Description

recordld Integer Identifier of the record

sessionld Varchar(255) | Reference to the session

authzServer Varchar(45) Diameter identity of the server authorizing the
user

accessLevel Varchar(45) | Applied access permission

timestamp Timestamp Timestamp of the record

validity Timestamp Validity of the authorization

Table 30 Data fields of the permissionDetails table

Data Field Data Type Description

userld Integer Reference to the user

serviceld Varchar(255) | Reference to the service

accessLevel Varchar(45) Access permission

Accounting and auditing records

Accounting and auditing records are mapped to several tables in the database. The
dataRecords table (Table 31) stores the records with the record identifier, the type of the
record, the reference to the related session, and the timestamp. The content of the
records, i.e. the AVPs, are stored in the AVP_x tables. Every AVP has a separate AVP_x
table, where x is the Diameter code of the AVP. The mapping between records and AVPs
is realized by the avpDataRecordsMapping table (Table 32), which associates the recordld
with avpld and avpCode. The avpGroups table (Table 34) is used to map grouped AVPs.

Table 31 Data fields of the dataRecords table

Data Field Data Type Description

recordld Integer Identifier of the record

recordType Integer Type of the record, 0 = accounting, 1 = auditing
sessionld Varchar(255) | Reference to the session

Timestamp Timestamp Timestamp of the record

Table 32 Data fields of the avpDataRecordsMapping table

Data Field Data Type Description
recordld Integer Reference to the record
avpld Integer AVP index in AVP_x table
avpCode Integer Diameter AVP code
Table 33 Data fields of the AVP _x table
Data Field Data Type Description
avpld Integer Database internal index
avpValue According to | Value in the AVP

the AVP type

© Akogrimo consortium

page 88 of 147

Table 34 Data fields of the avpGroups table

Data Field Data Type Description

groupld Integer Identifier of the group
avpld Integer Database internal index
avpCode Integer Reference to the AVP

Tariffs and Charging records

The userTariffs table (Table 35) specifies the tariff file associated to a certain user, service
and domain. The tariff file contains the charging specification as specified in Section
4.4.8.1. The chargingRecords table (Table 36) stores data related to charging records.

Table 35 Data fields of the userTariffs table

Data Field Data Type Description

userld Integer Reference to the user

serviceld Varchar(255) | Reference to the service

domainName Varchar(45) Name of the domain providing the service
tariffFile Varchar(45) File name of the tariff specification

Table 36 Data fields of the chargingRecords t

able

Data Field Data Type Description

recordld Integer Identifier of the record
sessionld Varchar(255) | Reference of the session
Charge Float Charge for the session
Currency Char(3) Currency used for the record
timestamp Timestamp Timestamp of the record

4.4.10. Database Interface

The database interface provides access and control over the information stored in the
database. The interface is used as an internal interface in the A4C Server. The interface
specifies basic functions that can be combined to provide more sophisticated and complete
functionality. The database interface provides
administrative purposes, like adding new users, and it also enables internal components of
the A4C Server to get or store information in the database. The following main functions of

access to an administrator for

the interface are identified and specified:

+ Connect to the database.

+ Add a new user, deactivate a user, and manage user details.

+ Add a new customer, deactivate a customer, and manage customer details.
+ Add, remove, and manage tariff profiles.

+ Add a new session and manage session details.

+ Add a new authentication and authorization record and manage details.

+ Add a new accounting record and manage accounting parameters.

+ Add a new charging record and manage accounting parameters.

* Add a new auditing record and manage auditing parameters.

© Akogrimo consortium page 89 of 147

« Retrieve the list of users and user details.

+ Retrieve customer details.

* Retrieve sessions of a particular user.

* Retrieve details of a particular session.

* Retrieve the charging specification for a particular user for a service in a particular

domain.

+ Retrieve accounting records for a particular session.
+ Retrieve charging records.
* Retrieve auditing records.

+ Manage accounting parameters and details for a service.

+ Manage AVP details.

4.4.11. Software Components and Libraries

Table 37 summarizes the software components and libraries required for the A4C and the

SAML Authority.

Table 37 Software components and libraries

Software components
and libraries

Version

Purpose

Remark

Opendiameter

v1.0.7-f

Diameter protocol handler

Provides the following libraries:
libdiamparser, libdiameter, libeap,
libeaparchie, libpana,
libdiametereap,
libdiameternasreq,
libdiametermip4, libodutl.

Xerces C++

2.6.0

XML parser

Required by Opendiameter and
the charging component.

ACE library

>5.4.1

Adaptive Communication
Environment

Required by Opendiameter.
Compiled with IPv6 and SSL
support

Boost library

1.0.3

Parser

Required by Opendiameter.

OpenSSL

SSL functionality

Required by Opendiameter.

OpenSAML

1.1

Build SAML messages

OpenSAML is an open source
library that is fully consistent with
the SAML 1.1 specifications. It lets
an application use SAML
messages or SAML application
profiles to carry security
Information.

Axis

1.2

Build SOAP messages

Axis is an opens source library
fully consistent with the SOAP
protocol specification of W3C.

XMLsec

1.1

XML Security support

It supports implementation of
major XML security standards,
such as XML Signature and XML
Encryption. They provide security
functionality for XML data.

© Akogrimo consortium

page 90 of 147

Software components Version Purpose Remark

and libraries

MySQL 4.0 Database of the A4C Server

and SAML Authority

mysql-connector-java |3.0.15 Database connector This library is a connector for java
programmers to mysql database.
It is used to write and read from
the database.

MySQL++ 2.05 MySQL C++ API The library is used by the A4C

Server to access the database.

4.5. Testing

Several test cases have been developed to test the functionality provided by the A4C
components, as described in the following.

4.5.1. Network Authentication

The network authentication test case is used to test the initial user authentication function
of the Akogrimo platform. The initial network authentication test is performed using a
sample PANA authentication, the Client (PaC) receives a username and a password and
then asks the A4C Server to perform authentication based on the received credentials.

4.5.1.1. Successful Authentication

Initial conditions:

o User AkogrimoUser is registered in the A4C database with the password AkoPass

e There is IP-based communication between the mobile terminal and the A4C Server

Input data:

e Username: AkogrimoUser@akogrimo.org;, password: AkoFass

Expected results:

e A result code saying the user was authenticated

e A new file on the mobile terminal (/etc/7DToken) containing the generated IDToken

for the user

4.5.1.2. Authentication Failure

[nitial conditions:

o User AkogrimoUser is registered in the A4C database with the password AkoPass

o There is [P-based communication between the mobile terminal and the A4C Server

Input data:

e Username: AkogrimoUser@akogrimo.org; invalid password

Expected results:

© Akogrimo consortium

page 91 of 147

e A result code saying the user was not authenticated

4.5.2. IDToken-based Authentication

The IDToken verification test case is used to test the capabilities of confirming an
authentication based on an IDToken. A sample A4C Client uses the IDToken stored in
Jetc/IDToken and asks the A4C Server to check the validity of the token.

Initial conditions:
o User AkogrimoUser is registered in the A4C database
o User AkogrimoUser was authenticated using the network authentication mechanism
e The IDToken generated during network authentication is stored in /etc/IDToken
Input data:
o Username: AkogrimoUser@akogrimo.org, IDToken from /etc/IDToken
Expected results:

e A result code saying the user was authenticated

4.5.3. QoS Authorization

The QoS authorization test case is used to test the capabilities of the A4C infrastructure
to deliver the QoS profile of a user to the QoS Broker.

Initial conditions:

o User AkogrimoUser is registered in the A4C database and has a QoS Profile stored
in the database.

Input data:
e Username: AkogrimoUser@akogrimo.org
Expected results:

e An XML document containing the user’s QoS Profile

4.5.4, Generic Profile Request

The generic profile request test case is used to test the capabilities of the A4C
infrastructure to deliver the generic user profile of a given user.

[nitial conditions:

o User AkogrimoUser is registered in the A4C database and has his generic user
profile stored in the database

Input data:
e Username: AkogrimoUser@akogrimo.org

Expected results:

© Akogrimo consortium page 92 of 147

e An XML document containing the user’s generic profile

4.5.5. Accounting

The accounting test—case is used to test the capabilities of the A4C infrastructure to
deliver accounting messages. The test is performed by using a sample accounting client
that initiates an accounting session with an A4C Server and then sends a custom
accounting record to the A4C Server.

Initial conditions:
o User AkogrimoUser is registered in the A4C database
Input data:
e Username: AkogrimoUser@akogrimo.org, ServicelD: Network Transfer
e [nput—-Octets: 7100000, Output—Octets: 50000
Expected results:
e A result code saying the transfer of the accounting data was successful

e The accounting record is stored in the database

4.5.6. Auditing

The auditing test case is used to test the auditing functionality of A4C, i.e. the capability
to transport and store auditing records. A sample application that simulates an SLA
violation called “End-to—End-Delay—Violation” uses an A4C Client to send an auditing
record about this violation.

[nitial conditions:

e The EventlD End-to-End-Delay—Violation is present is declared in the Diameter
dictionary

Input data:
e FBvent ID: End-to—End-Delay—Violation
e FEvent body: 800 ms

e Accounting session: a string identifying an accounting session to which the auditing
record belongs

Expected results:
e A result code saying whether the auditing record was successfully received.

e The auditing record is stored in the database.

4.5.7. Charging

The charging test cases are used to test the charging functionality of A4C.

© Akogrimo consortium page 93 of 147

4.5.7.1. Charge Calculation

The charge calculation test case is used to test the charge calculation for a service based
on accounting records.

Initial conditions:

e A service has been offered by a service provider to a service user. Accounting
records have been sent and stored by the A4C Server.

Input data:
e Accounting records: 25 x 10 kB data download, 14 x 10 kB data upload
o Tarift: 7 * per 10 kB data download, 2 * per 10 kB data upload
Expected results:

e The charge resulting from applying the tariff to the accounting records.

4.5.7.2. Charging Record Transfer

The charging record transfer test case is used to test the charging record exchange
between A4C Servers.

Initial conditions:
e (Charging records are created and stored in the foreign A4C Server.
Input data:
e Username: AkogrimoUser@akogrimo.org
e (Charging record ID
Expected results:
e The charging record is successfully transferred to the home A4C Server of the user.

e The charging record is stored in the database.

© Akogrimo consortium page 94 of 147

5.
5.1.

Context Manager

Requirements

This section contains a brief listing and description of requirements related to the Context

Manager. The objective is to emphasize what should (and what should not) be

implemented, and thereby focusing the scope of the development process. Moreover,
requirements will be useful during testing activities.

Requirements are grouped as functional (what functions should the component provide) and

non—functional (how should functions be provided). For each requirement, a phase
indication is used to specify if a requirement should be realised in phase 1 (within PM 16)
or in phase 2 (PM n, beyond PM 19).

Table 38 Context Manager — Functional requirements

Req. nr |Description Phase 1 |Phase 2

F1 Gather context (end user information) X X

F1.1 Presence X

F 1.2 Position X

F 1.2.1 |Position — RFID based X

F 1.2.2 |Position — based on e.g. GPS or WLAN X)

F1.3 Terminal capabilities for users terminal X

F1l.4 Discover services in user’ s proximity X

F 1.4.1 |Terminal-based discovery (discovery performed by user’s X)
terminal)

F 1.4.2 |Centralised, directory-based discovery (match users|X
position with services for that position)

F 2 Distribute context (to context consumers) X

F 2.1 Offer subscription for user context X

F 2.1.1 |Possibility to limit context scope (specify specific parts of|(X) X
context to subscribe to, e.g. only location)

F2.2 Query (single response) for user context X) X

F 2.2.1 |Possibility to limit context scope (specify specific parts of|(X) X

© Akogrimo consortium

page 95 of 147

Req. nr |Description Phase 1 |Phase 2

context to subscribe to, e.g. only location)

F 2.3 Ontology—based queries X

F24 WS-based interface for context consumers X

F 2.4.1 |Mechanism for returning context: Regular WS with callback |X

F 2.4.2 |Mechanism for returning context: WS Base Notification or |(X) X
WS Pubscribe

(X) Optional requirement

Table 39 Context Manager — Non—functional requirements

Req. nr Description Phase 1 Phase 2
N1 Availability X

N 2 Performance X

N3 Scalability X
5.2. Interfaces

Context Manager has external interfaces as listed in Table 4. This section specifies
interfaces for which Context Manager is the server. Interfaces where CM acts as a client
are described in other sections.

5.2.1. Context Manager - A4C

Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
A4C Client CM - Obtain static user data (SIP address, RFID, ---) | Java API
(WP4.2) - Authorise context consumers (not implemented

in Phase 1)

Protocol details are described in Section 4.2. Basic flows are included in Figure 38.

© Akogrimo consortium page 96 of 147

5.2.2.

Context Manager — Context consumer

The Context Manager provides a Web Service interface to context consumers. Results are
returned as over a so called call-back interface, i.e. the Context Consumer offers a Web
Service interface that context manager may call to return results. Basic flows are shown in
Figure 38, methods are shown in Table 40 and Table 41. The WSDL (Web Service
Definition Language) file that defines the interfaces is rendered in Appendix B.1.

4.2 Context Manager

Subscribe to SIP Presence,
Search LSDS and GrSDS |
for relevant context s

Optional:
Authorize VO Mgr / Ctxt consumer

Get user profiles (usery——— =

Context changes for one |
or more users

4.2 A4C

SUBSCRIBE_RETURN———————— P>

NOTIFY:

4.4 Context
Consumer

~4—SUBSCRIBE(user, callback_uri, context spec, duration)

4————————NOTIFY_RETURN

4————UNSUBSCRIBE(user)
|

UNSUBSCRIBE_RETURN—————

Figure 38 Context Manager — Context consumer interface

Table 40 Methods offered by the Context Manager

Server: Client: Protocol | Method Parameters
C t|C t

e e Name Type Explanation
(Layer) (Layer)
CM Context SOAP SUBSCRIBE User AkogrimolD | Mandatory

(Cvsgzuger User to be
: subscribed to
Callback_URI String Mandatory

URI for returning
NOTIFY

© Akogrimo consortium

page 97 of 147

Server: Client: Protocol | Method Parameters
(t|C t

e e Name Type Explanation
(Layer) (Layer)

Optional
context_specQ Integer all (default)
context_specl Integer Presence
context_spec?2 Integer Location
context_spec3 Integer Devices (SLP)

Request context if

context_specX=1
Start Date dd.mm.yyyy hhmm
End Date dd.mm.yyyy hhmm
SUBSCRIBE_ Return Response to
REPLY_ACK parameter successful

SUBSCRIBE
SUBSCRIBE_ Return Response to
REPLY_ parameter unsuccessful
ERROR SUBSCRIBE

CM Context SOAP UNSUBSCRIBE User AkogrimolD | Removes an
Consumer existing
(WP4.4) subscription.

Ignored if the

subscription does

not exist

User = -1

removes all

subscriptions for

this consumer
UNSUBSCRIBE_ | Return Response to
REPLY_ACK parameter successful

UNSUBSCRIBE
UNSUBSCRIBE_ | Return Response to
REPLY_ parameter unsuccessful
ERROR UNSUBSCRIBE

Table 41 Methods offered by the Context Consumer (callback interface)
Server: Client: Protocol | Method Parameters
t t
Componen | Comeis Name Type Explanation
(Layer) (Layer)

© Akogrimo consortium

page 98 of 147

Server: Client: Protocol | Method Parameters
(t|C t
e e Name Type Explanation
(Layer) (Layer)
Context CM SOAP NOTIFY User AkogrimoID | Mandatory
(Cvsgzuger User for which
’ context is provided
Context XML Contains requested
schema context
NOTIFY_ Return Response to
REPLY_ parameter successful NOTIFY
ACK
NOTIFY_ Return Response to
REPLY_ parameter unsuccessful
ERROR NOTIFY

5.2.3.

Context Manager - SIP Presence Agent

Server: Client: Purpose Protocol
Component Component

(Layer) (Layer)

SIP PA (WP CM (WP4.2) — Obtain user presence SIP SIMPLE
4.2)

Protocol details are described in Section 3.2.1. Basic flows are shown in Figure 39.

MT - SIP PUA

Presence change
(device on,
presence set- al
to busy, ..)

PUBLISH———®

4.2 SIP Presence
Agent

4.2 Context Manager

4—OK

4—OK

~4——SUBSCRIBE
OK——
NOTIFY——|

NOTIFY——»|

Figure 39 Context Manager — SIP Presence Agent interface

© Akogrimo consortium

page 99 of 147

5.2.4. Context Manager — LSDS (SLP Directory Agent)
Server: Client: Purpose Protocol
Component Component

(Layer) (Layer)

L.SDS (WP4.2) CM (WP4.2) — Search of Local Services (capabilities, location) | SLP

Protocol details are described in Section 7.1. Also refer to Section 5.3.1 for design and

basic flows.

5.2.5.

The method offered by the Context Manager is shown in Table 42.

Context Manager — RFID SW

5.3.2 for basic flows and application logic.

Table 42 Methods offered by the Context Manager

Please refer to Section

Server: Client: Protocol Method Parameters
t t
Component | Componen Name Type Explanation
(Layer) (Layer)
CM RFID Telenor TagReading TagID String Mandatory
Reader Proprietary RFID serial of the
RFID tag
Sensor Location Mandatory
Location object Location object
corresponding to
position DB table
(see Section
5.3.7.1)
5.3. Design

In this section we describe the various parts of the Context Manager:

e Applications/processes:

o Context Engine

o Context consumer Gateway (GW)

o SIP Presence GW

o SLP GW

© Akogrimo consortium

page 100 of 147

o RFID GW and RFID Software

o Context Manager client at the mobile terminal

e Databases

o Context DB

Figure 40 and Figure 41 give an

overview of these parts as well as their interfaces.

4.4 Context Consumers

Context Consumer

Interface labeling [E|l]] - CM.z[.z.z]
E - External
| - Internal

z.z.z — sequential numbering

Context Manager

14

Context
Consumer
GW

I-CM.1

Context Engine — lcM.2
I-CM.3 I-CM.4 I-CM.5 E-A4C-2.9
/ i AAC A
SIP Pres. RFID A4C
LP GW
Gw SLPG GW Client
E-SIP 5
E-LSDS .x
(EIF5) E-CM.2
|
Context Sources Y y ‘ Y
RFID A4C
SIP PA SLP DA Reader Server

© Akogrimo consortium

Figure 40 Context Manager overview

page 101 of 147

Mobile Terminal
A4C SIP
PANA client capabilities

Proprietary
g?rv'ce Context
iscovery Manager
- Immediate q
L Client
proximity
(bluetooth
etc..) ID Manager
- general
AR
Interface Sl
Context EMS
Manager
OS: Linux

Figure 41 Context manager client at Mobile Terminal

© Akogrimo consortium page 102 of 147

5.3.1. Service Locator Protocol (SLP) Gateway

Local Service Discovery in Akogrimo is based on SLP [Gut99a] which is a service
discovery protocol designed for IP networks. SLP specifies three types of agents: User
Agent (UA), Service Agent (SA) and Directory Agent (DA). UAs search for services on
behalf of an application or user, SAs advertise service information while DAs store
information received from SAs and respond to requests from UAs. A service offer consists
of a URL and values of descriptive attributes.

In the Akogrimo infrastructure, it is required that one or more DA exists. The Context
Manager acts as a UA by sending service requests to this DA(s), which respond with
service reply messages containing one or several URLs. SLP offers attribute pattern
matching expressions in the form of LDAPv3 search filters, allowing the Context Manager
to search for services at a certain physical location. Furthermore, the Context Manager
queries the DA for service attributes by sending a service attribute request.

Context Engine

v

SLPRMIClient.java

// Invoke RMI method
sg.findService(Pos);

| RMI stub |
————————————————— -¢-————————————————— RMI Interface

| RMI skeleton |

SLPGatewayImpl.java
public List findService(Pos){

slp.findService()
}

v

OpenSLP.java
public native SLPRequest(..);
public List findService(Pos){

SLPRequest(..);
}

| JNI implementation |

Java Native Interface

OpenSLP.c
INIEXPORT void INICALL Java_OpenSLP_SLPRequest(..){
/I Access OpenSLP programming API
SLPOpen(..);

—————————————————————————————————— OpenSLP v1.3 programming API

OpenSLP v1.3

Figure 42 SLP Gateway design

The design of the SLPGateway is illustrated in Figure 42. The Context Engine interacts
with the SLPGateway using Remote Method Invocation (RMI). That is, a SLPRMIClient
invokes the RMI method offered by the SLPGateway.

© Akogrimo consortium page 103 of 147

The most promising SLP implementation, OpenSLP 1.3 [openslp], is only available in the C
programming language. As the Context Manager is implemented in Java, the SLPGateway
uses Java Native Interface (JNI) to interact with a native C program. The native C program
uses the OpenSLP 1.3 programming API to perform the actual interactions with the SLP
DA.

Figure 43 illustrates the interactions required to request service information and
corresponding attributes. First, the Context Engine starts a SLPRMIClient (thread). The
SLPRMIClient invokes (RMI) findService method offered by the SLPGateway. Using Java
Native Interface (JNI) the SLPGateway retrieves service information (urls) from the DA for
all services matching the search parameters. Next, the SLPGateway requests the attributes
for each service from the SLP DA. Finally, service information, urls and attributes, are
returned to the SLPRMIClient.

sd SLP

X X X X

ContextEngine SLPRMIClient SLPGateway SLP DA
1

List:= findService(pos‘ '

start(pos)

urls:= SrvRqst(LDAP filter etc.)

Attributes:= SrvAttqust(urIa i
1
]

Attributes:= SrvAttqust(urIa !

Figure 43 Context Manager — SLP Directory Agent interface

5.3.2. RFID

One way to get location in Akogrimo is by RFID readings. Different RFID sensors can be
placed around at specific locations and connected to a RFID Reader. The reader knows the
location of each of the different attached sensors. When a RFID tag is read at a sensor the
RFID Reader sends a message to the RFID Gateway of the Context Manager.

The RFID Reader is connected to the gateway by a RMI interface. A card reading contains
the RFID tag id, which is 16 bytes, sent as a 32 character long string representing the
hexadecimal value of the bytes. Information about the location is also sent as string. The
location contains longitude, latitude, altitude, horizontal accuracy and vertical accuracy.

An overview of the RFID gateway and RFID Reader is given in Figure 44. The different
components interacts using RMI interfaces. The role of the gateway is to act as a proxy for
the messages from RFID Readers and to maintain the connections from RFID Readers.

© Akogrimo consortium page 104 of 147

RFID TagReading(Tag ID, Sensor location)

Figure 44 Basic elements for provisioning of RFID position

Figure 45 shows how the different components could interact when a tag is read at a RFID
sensor. The Reader is already connected to the gateway using RMI. When the tag is read it
transmits the serial of the RFID tag to the sensor. The Reader parses this to a string and
adds the location for that reader in a message to the Gateway. The gateway then forwards
this message to the Context Engine.

sd RFID

% RFID Sensor RFID Server RFID GW Context Engine

RFID Tag

) T
i (from Context Manager - Internal view)
1
1

Alive(Tag ID)

TagReading(Tag ID, Sensor ID:)

Sensor Location:= GetSensorLocati:on(Senscr ID)
1

] ;
RFID TagReading(Tag ID, Sensor Location)

LocationUpdate(Tag ID, Location)

n

N

cmmmmeeeee

(from SLP)

Figure 45 MSC for provisioning of RFID position

© Akogrimo consortium page 105 of 147

5.3.3. SIP Presence GW

The SIP Presence GW is responsible for the communication between Context Manager and
SIP Presence Agent. This is realised through the following sub—components:

e SIP Communicator adapter, which works as a proxy between Context Engine and
SIP Communicator. It receives requests from context engine, and invokes the
corresponding java classes in SIP Communicator.

e SIP Communicator [SIPComm] acts as a SIP Presence Watcher. It is a Java—based
implementation of a SIP User Agent. For further information on the functionality of
a SIP Presence Watcher, see the specification of SIP SIMPLE [Ros04].

Basic flows involving the SIP Presence GW is shown in Figure 47 and Figure 48.

Context Manager

Context Engine Context DB

RMI

SIP GW /

SIP Comm. adapter ‘

y

SIMPLE
SIP Stack

SIP Communicator

SIP SIMPLE

Context Sources y

Figure 46 Structure of SIP Presence GW

© Akogrimo consortium page 106 of 147

sd SIP Presence GW - Request context/

SIP SIP Context Engine
Communicator Communicator
Adapter
SIP Presence Agent

1 1 (from Context Mangger - Internal view)
1 1 1

| d oo Requestcontext 4

i

1

Request context (use java class)

SUBSCRIBE

-]
-]

(from Interactions)

Figure 47 Basic flow — requesting context through SIP Presence GW

sd SIP Presence GW - Receive context/

SIP SIP Context Engine
Communicator Communicator
Adapter
SIP Presence Agent

(from Context Mandger - Internal view)

NOTIFY

Presence Update (through handle)

L
\\ Context Update

A

(from Interactions)

Figure 48 Basic flow — context received from SIP PA

5.3.4. Context Engine
Context engine is the main component in the Context Manager. It’s main functional parts
are shown in Figure 49. Major tasks are
e Keep overview over subscriptions received through the context consumer gateway
e When needed, request context through context gateways
e Receive context from context gateways, store it in the context database

e When context change occurs, send context updates to appropriate context
consumers

The functionality describe here represents a simple approach to context handling; when
context for a user is requested, the context engine will request all available context for
that user.

© Akogrimo consortium page 107 of 147

Context consumer

Legend

Context Engine
components

A4C Components

»
soap
Context Consumer GW/
(Tomcat)
soap
ContextManagerWs
(Webservice)

[

T

L

rmi

I

Engine + \
ContextManagerServer ContextConsumerProxy

(rmi server)

(rmi client)

SubscriptionHandler Database =
access
ContextHandler
E-A4C-2.9
-
RFIDContextDestination SipPresenseDestination SipPresenceProxy SLPProxy A4C API/A4C Client
(rmi server) (rmi server) (rmi client) (rmi client) (java api)
T T
N L
rmi rmi rmi rmi
diameter
RFIDGW SIP GW SLP GW
A4C Server

Figure 49 Context Engine — design

Subscriptions from context consumers

e User profile is requested from A4C

e Request and profile is stored in persistent memory

e Request for SIP presence is sent to the SIP Presence GW

© Akogrimo consortium

jdb

Context
database

When a subscription is received, the following is performed (see Figure 50):

page 108 of 147

-]

Subscribe Context
(userlD, duration) Consumer GW
A4C GW User Profile

Request (userlD)

v ,

User Profile Reply
TO/Error (SIP address, RFID A4C GW
Tag)

Y

3 L
Error: User profile DB operation
Consunr?eorntee\;(\lt [not found - Store User profile
(userlID) - Store context request
Subscribe
SIP GW (SIP address)

Context

Consumer GW o1

Figure 50 Handling subscriptions — flowchart
Receiving context

Reception of context updates triggers the following behaviour (see Figure 51, Figure 52,
and Figure 53):

e When update on SIP Presence is received, the corresponding information (XML
scheme) is stored in the context database.

e On updates from RFID GW, Context engine will check if anyone requests context
for the associated user. If this is the case, the following occurs
— Updated position is stored
— SLP GW is requested for services within range

e After updated context is stored, notification is sent to subscribing context
consumers.

© Akogrimo consortium page 109 of 147

Idle

Notify (Presentity,
Presence)

SIP Pres GW

Context
format OK?

Y
v

DB operation
- Store context

Context
Consumer GW

Notify (updated
context)

&

Figure 51 Updated SIP presence

Idle

RFID Update
(rfid tag, rfid sensor)

RFID GW

DB operation
- Get user ID
- Get RFID
sensor position

Get context for
this user?

Y

v

SLP GW

SLP Query
(position, radius)

1

TO

SLP Result
(list of devices)

SLP GW

Context
format OK?

DB operation
- Store context

Context

Consumer GW

Notify (updated
context)

Figure 52 Updated RFID position and availability of SLP services

© Akogrimo consortium

page 110 of 147

REID GW REIDContextDestination ContextHandler Database access SubscriptionHandler SLPProxy ContextConsumerProxy

report()

updateRFIDContext()

UpdateContext()

RetrieveUsersFromRfid()

LocateServices()

UpdateSLPServices()

notify()

notifyCansumer()

Figure 53 Message Sequence Chart for RFID updates

5.3.5. Context consumer GW

The Context consumer GW handles the communication with Context consumers. Upon
receiving a subscription from a Context consumer, it forwards the request to the
ContextEngine and returns the status of the subscription. The Context consumer design is
illustrated in Figure 49.

e The Context consumer GW is realised as the ContextManagerWS, which is a web
service that receives subscriptions.

However, the following components also take part in the communication with a Context
Consumer (see Figure 49):

+ ContextManagerServer, a RMI server used by ContextManagerWS to forward
subscriptions to the ContextEngine.

« ContextConsumerProxy, a RMI client that sends notifications to Context consumers
when context changes.

5.3.6. CM Client on MT

The scope of the CM Client on the MT is, in implementation Phase 1, to get the User
Agent Profile [UAProf] for the terminal. A method for publishing the UAProf of the
terminal will be provided by the SIP PUA implementation. So the part on the mobile
terminal is only for making the link to the UAProf available as SIP Presence information.

The information about the UAProf must be utilised by the Context Manager on the
network side. When the link is read from the XML document received by the Context
Manager a lookup is made to see if the terminal characteristics are in the data storage. If
not the UAProf XML document is downloaded and parsed for relevant information.

© Akogrimo consortium page 111 of 147

The following two objects were designed to help with the handling of UAProf information
(at the moment in package org.akogrimo.WP42.ContextManager.UAProf):

UAProfInformation
This object holds the following information from a User Agent Profile.
e Vendor
e Model
e UAPrfoURL
e (ColorCapable
e ScreenSize
e ImageCapable
e Keyboard
e ScreenSizeChar
e SoundOutputCapable
e TextlnputCapable

e VoicelnputCapable

And allows for setting and getting of each value, in addition to getting a string and a XML
string version of the information.

UAProfXMLReader

This object utilises the SAX parser and collects the information from a UAProf document.
A URL for the document is sent as input and a method allows for collection of a
UAProflnformation object containing the relevant information.

5.3.7. Context DB

In Akogrimo, user context will (wrt implementation in Phase 1) consist of
e Presence realized with SIP SIMPLE, described in terms of RPID

e User location realized with RFID technology, described in terms of on UTM
(Universal Transverse Mercator)

e Device availability realized with SLP and UAProf, Device properties are described
in terms of key—value pairs.

Format: A RPID scheme (see example in Section 5.3.7.2) will be created to include user
location and properties for available devices.

© Akogrimo consortium page 112 of 147

5.3.7.1.

Database model

subscription
PK,FK1 |user_id
PK 1l k_url
A
user context_type
PK |user_id PK | context_type
name context_name
y context_description
A
context
PK ntext_i
- PK,FK2,12 | context_type
FK1,11 user_id <
last_updated
A
sip_presence rfid_device slp_service
PK,FK1,l1 | sip_address PK,FK1,12 | rfid PK,FK1,12 | slp_id
FK1,11 context_type FK1,12 context_type FK1,12 context_type
ip_address rfid_description service_type
status FK2,11 position_id service_description
FK2,11 position_id
y
A
position slp_service_attribute
PK' | position_id PK,FK1 |slp_id
PK attribute_name
utm_zone_number
utm_zone_letter attribute_value
utm_northing

utm_easting
latitude
longitude
altitude
accuracy

A

rfid_sensor

PK,FK1 |rfid sensor_id

description

FK2,I1 position_id

Figure 54 Context DB

Briefly, a useris related to his/her context through the context table. RFID tags and SLP
services are given a position in the position table. The tables and the most important

attributes are described in Table 43. Description of the context and its values is described
in the subsequent sections.

Table 43 Tables and selected attributes

Table Attribute Description

subscription Callback url Reference to context consumer

user user_id Akogrimo 1D

context context_id Unique identifier, identical to sip_address, rfid, or

slp_id

© Akogrimo consortium

page 113 of 147

Table Attribute Description

context_type from table context_type

context_type context_type 1 = SIP Presence
2 = RFID
3=SLP
sip_presence sip_address SIP-address for the user
status XML—-form received from SIP PA
rfid_device rfid RFID Tag ID for the user
position Refers to an item in the position table
slp_service slp_id Identical to serviceURL, see Table 45 below
service_type E.g. printer, display, ssh, ---
position Refers to an item in the position table
slp_service_attribute Collection of attributes for a SLP service
position position_id One ID per registered position
<attribute> See description in Section 5.3.7.3.
rfid_sensor Describes location of RFID sensors

5.3.7.2. Presence

The below example of SIP presence taken from RPID: Rich Presence Extensions to the
Presence Information Data Format (PIDF) [Schu05].

The example below describes the presentity 'pres:someone@example.com', which has a SIP
contact, 'sip:someone@example.com', representing a service. It also has a device contact, as
an email box. The presentity is in a meeting, in a public office setting. The 'until'
information indicates that he will be there until 5.30 pm GMT. The presentity also has an
assistant, sip:secretary@example.com, who happens to be available for communications.
<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:p="urn:ietf:params:xml:ns:pidf:person"
xmlns:d="urn:ietf:params:xml:ns:pidf:device"
xmlns:rs="urn:ietf:params:xml:ns:pidf:status:rpid-status"
xmlns:rt="urn:ietf:params:xml:ns:pidf:rpid-tuple"
xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid-person”
xmlns:rd="urn:ietf:params:xml:ns:pidf:rpid-device"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
entity="pres:someonelexample.com"
xsi:schemalocation="urn:ietf:params:xml:ns:pidf pidf.xsd
urn:ietf:params:xml:ns:pidf:status:rpid-device rpid-device.xsd
urn:ietf:params:xml:ns:pidf:status:rpid-tuple rpid-tuple.xsd
urn:ietf:params:xml:ns:pidf:status:rpid-person rpid-person.xsd
urn:ietf:params:xml:ns:pidf:status:rpid-status rpid-status.xsd
urn:ietf:params:xml:ns:pidf:rpid-tuple rpid-tuple.xsd">
<tuple id="t0O">
<status>
<basic>open</basic>
</status>
<et:class>assistant</et:class>
<et:relationship>assistant</et:relationship>
<contact>sip:secretary@example.com</contact>
<note>My secretary</note>
</tuple>
<tuple id="t1">
<status>
<basic>open</basic>
<rs:privacy>
<audio/>
</rs:privacy>
<rs:idle since="2003-01-27T10:43:002"/>
</status>
<et:class>sip</et:class>

© Akogrimo consortium page 114 of 147

<contact priority="0.8">sip:someone@example.com</contact>
<timestamp>2001-10-27T16:49:297</timestamp>

</tuple>

<tuple id="t2">

<status>

<basic>open</basic>
<e:privacy>

<text/>

</e:privacy>
<e:timeoffset>300</e:timeoffset>

</status>

<contact priority="0.8">im:someone@mobilecarrier.net</contact>
<timestamp>2001-10-27T16:49:29Z</timestamp>

</tuple>

<tuple id="t3">

<status>

<basic>open</basic>

</status>

<et:class>mail</et:class>
<contact priority="1.0">mailto:someone@example.com</contact>
<note>I'm in a boring meeting</note>

</tuple>

<tuple id="t4">

<status>

<basic>closed</basic>

</status>

<et:service-class>in-person</et:class>
<note>Closed-door meeting</note>

</tuple>
<p:person>
<p:status>

<rp:activities>

<rp:meeting/>
</rp:activities>
<rp:class>composed</rp:class>

<rp:mood>

<rp:happy/>
<rp:text>I got my paycheck!</rp:text>

</rp:mood>

<rp:place-type until="2003-01-27T17:30:00Z2">
<rp:office/>
</rp:place-type>

</person>
</presence>

5.3.7.3. Location

Location description is based on UTM (Universal Transverse Mercator) [MLP], which
basically is a point in a 2D coordinate system called a zone. The world has been divided
into several zones on which one may assume properties of a 2D coordinate system. Read
more here: http://www.dmap.co.uk/utmworld.htm. For converting from longitude/latitude

to UTM, see this page: http://www.ngs.noaa.gov/cgi—bin/utm_getut.prl

Table 44 Location parameters

Parameter

Explanation

utm_zone_number

utm_zone letter
utm_northing

utm_easting

A UTM zone is indicated by letter and number. This is the
number indicator

UTM zone, number indicator

Unit: Meters. For the northings in the northern hemisphere,
the origin is defined as the equator. For the northings in the
southern hemisphere, the origin is defined as a point
10,000,000 metres south of the equator

Unit: Meters. For the eastings, the origin is defined as a point

© Akogrimo consortium

page 115 of 147

Parameter Explanation

500,000 metres west of the central meridian of each
longitudinal zone, giving an easting of 500,000 metres at the
central meridian

Altitude Above sea level. Unit: Meters

Accuracy Radius indicating how accurate the measuring is. RFID is
accurate, and has low radius (usually set to 5). GSM position
would typically have accuracy = 200. Unit: Meters

Example 1: Trondheim, Norway

Parameter Value

utm_zone_number 32
utm_zone letter V
utm_northing 7035377

utm_easting 569838
altitude 0
accuracy N/A

Example 2: London, UK

Parameter Value

utm_zone_number 30
utm_zone_letter U
utm_northing 5709345

utm_easting 699459
Altitude 20
accuracy N/A

Example 3: Stuttgart, Germany

Parameter Value

utm_zone_number 32
utm_zone letter U
utm_northing 5404492

utm_easting 513500
altitude 300
accuracy N/A

5.3.7.4. Device availability and description

Devices/localizable services become available to users in two ways:

© Akogrimo consortium page 116 of 147

Directly via logging on: By logging on to a SIP UA installed on a device, we assume
that the user has direct access to and control over that device.

Indirectly via location: Assuming that stationary devices/services may be registered
with a particular position, one may infer device availability for a user based on the

user’ s position.

Description of device attributes is realised in terms of key—value pairs. See examples in

sections below.

User logged on UA on device

For description of attributes, see Section 5.3.6.

Devices/services available in user surrounding

Devices and services are managed using Service Location Protocol (SLP), where attributes
are registered by a system administrator. Location will be included in the set of properties.
User location, which is obtained by means of RFID positioning technology, may in turn be
used when searching SLP for devices in the surrounding (see Figure 55).

Device availability (Phase 1)

akugrmu;z

Device

Attribute: Pos

Beamer

(x1,y1,21)

Scanner

(x2,y2,22)

Plasma screen

(x3,y3,23)

Device list

SLP —

Directory |«
Agent

(x4,y4,24)
has devices
within d meters?

Context
Manager

User context:
- Presence Context
- Location Consumer

Get user context (all)

Sensor

[Yx4,y4,z4

Sensor
x5,y5,z5

i
o

Akogrimo GA, Salerno 3-5. October 2005

Sensor
x6,y6,26

NI

Figure 55 Relating user and device/service location

Table 45 Property description

Field

Description

serviceURL Where to localize the service.

Service
Type
Lang
Scope

“service:”<srvtype>”://”<addrspec>”

A Service URL may be of the form

Each type of service has a unique Service Type string.

Services MAY be registered in multiple languages.
A set of services, typically making up a logical administrative group.

© Akogrimo consortium

page 117 of 147

Attributes <List of key—value pairs>
(attrl=vaulel), (attr2=value2), ---

Table 46 Property example

Field Sample values
URL service:printer:lpr://igore.wco.ftp.com/draft
scope-list Development

Lang. Tag en

Attributes (Name=Igore),(Description=For developers only), (Protocol=LPR),(location-
description=12th floor), (Operator=James Dornan ¥3cdornan@monster¥3e),
(media—size=na—letter),(resolution=res—600),x—OK

Table 47 Attributes relevant for Akogrimo

Attribute Comment

Resolution Exact description (1024x768, 1280x1024) or indicative
description (high, medium, low)

Bandwidth Max bandwidth, i.e. not a network status indicator. Exact

description (128kb, 384kb, 1Mb, 10Mb) or indicative
description (high, medium, low)

utmNorthing, utmEasting, Physical location

altitude, utmZonelLetter,

utmZoneNumber

SIP address For using a device in a SIP sessions. Value may be
plasmal @trondheim.telenor.com

5.4. Implementation

This section gives a brief description of implementation matters. At the time of writing the
software described has not reached a mature state, hence it is not appropriate to give a
detailed description here.

5.4.1. Service Locator Protocol (SLP) Gateway

The SLP GW implementation consists of the following parts:

SLPGateway, a RMI server implemented in java that handles SLP requests made by the
ContextEngine.

OpenSLP (java), a java implementation of the communication with the SLP DA. To be
able to access the C programming API offered by openslp 1.3, this class has a native
function (private native void SLPRequest). Callback functions are an integral part of the
SLP. Such callback functions will be called by the library when it is ready to report the

© Akogrimo consortium page 118 of 147

status or results of an operation API. OpenSLP (java) implements functions that are
called by the corresponding callback function in C.

* OpenSLP (C program), an implementation in C of the corresponding native function
(Java_org akogrimo_wp42_contextmanager_slpgateway_jni_OpenSLP_SLPRequest). The C
program receives different SLP requests and invokes the proper method in the openslp
API. Finally, when openslp API invokes the callback function specified in C, the progam
calls the corresponding callback method in java to return results.

5.4.2. RFID

An outline of the RFID system is shown in Figure 44. The implementation is based on

Hardware: RFID tags and RFID sensors from third party equipment providers
Software:

o Drivers for communication with RFID sensors. Drivers exist both for
Windows and Linux platforms

o RFID Server software: Java—based, Telenor proprietary software for handling
signalling conversion between RFID sensors and RFID GW.

o RFID GW: Java—based software developed for the Akogrimo project.
Handles the communication between RFID Server and Context Engine

5.4.3. SIP Presence GW

The SIP Presence GW is realised in Java. It mainly consists of two parts:

SIP Communicator adapter, which implements interfaces to SIP Communicator. It
also implements an RMI interface to communicate with Context Engine.

SIP Communicator, a Java—based implementation of a SIP User Agent. SIP
Communicator is developed on top of JAIN-SIP-RI and JMF (Java Media
Framework).

5.4.4. Context Engine

The context engine is implemented in Java. The main components are shown in Figure 49.

A brief description follows:

ContextManagerServer is a RMI server that handles requests from
ContextManagerWs

ContextConsumerProxy is a RMI client that sends responses to the context
consumer

SubscriptionHandler will store context requests, and is also responsible for handling
context notification sent back to the consumer

ContextHandler is the main component. It is responsible for

© Akogrimo consortium page 119 of 147

o interactions with A4C
o requesting context when necessary
o handling context collected from the context sources,
o storing context in the database (using the component Database Access)
o notifying SubscriptionHandler when context changes occur
e RFIDContextDestination handles communications with RFID-related systems
e SipPresenceDestination sends requests to the SIP Presence GW via RMI
e SipPresenceProxy receives responses from the SIP Presence GW via RMI
e SLPProxy handles communications with SLP GW

e Database access provides an interface to available database operations

5.4.5. Context consumer GW

The Context consumer GW is implemented in java. The main components are the following:

ContextManagerWs, a web service implemented in java on Tomcat/Axis that receives
subscribtions. SOAP services are deployed into a Tomcat server while Axis is
essentially a SOAP engine.

+ ContextManagerServer, a RMI server that offers an interface to the
ContextManagerWs to interact with the ContextEngine.

« ContextConsumerProxy, a RMI client that sends notifications to Context consumers
when context changes.

5.4.6. CM Client on MT
5.4.6.1. Package UAProfHandler - Data definition

Enumeration Capablelnfo (inner class of UAProflnformation)

Used to show if a capability is present on the terminal, Boolean can not be used because
the possibility that the information is not available in the UAProf XML document.

Enumeration Description

Value

Yes The capability is present

No The capability is not present

NotDescribed There is no description of the capability in the UAProf

© Akogrimo consortium page 120 of 147

Class UAProflnformation

Used to store information parsed from a UAProf XML document. The structure can be
enhanced in the future if we need more information.

Element Name Element Type |Description

Vendor String The vendor for the terminal

Model String The Model of the terminal

UAProfURL String Link to the UAProf for the terminal
ColorCapable Capablelnfo In the terminal has a colour capable screen
ScreenSize String The size of the screen in pixels (i.e. 240x320)
ImageCapable Capablelnfo If the terminal can display images

Keyboard String The type of keyboard on the terminal
ScreenSizeChar String The size of the screen in characters (i.e. 20x15)
SoundOutputCapable | Capablelnfo If the terminal can play sound
TextInputCapable Capablelnfo If the terminal can receive text input
VoicelnputCapable | Capablelnfo If the terminal can receive voice input

Method descriptions:

The main usage from UAProflnformation will be the two methods:
String toString() returning a string representation

String toXMLString() returning a XML formatted string representation
class UAProfXMLReader extends DefaultHandler

This class extends the DefaultHandler from SAX and utilises methods from it to pars a
XML document.

The constructor receives the URL for the XML document to be parsed.
Method descriptions:

The main method for use is the following:

UAProfInformation GetUAProfInformation (UAProfDocument)

The Get UAProflnformation parses the UAProf XML file and collects information that can
be used by the Context Manager. This information is stored in a UAProf structure.

© Akogrimo consortium page 121 of 147

For the first implementation it is considered that the input document is well formed without
errors. The parsing will pick one and one element to gather and populate the
UAProflnformation Structure. If a element is not present the value will be “N/A” String
and NotDescribed Capablelnfo.

5.5. Testing

This section defines a limited set of tests for verification of basic functionality. The tests
relate to requirements to be implemented in phase 1 (i.e. by PM 19).

Table 48 Test cases

Test nr. Req. nr Description Phase 1 Phase 2
F1 Gather context (end user information) X X
F 1.1 Presence X
F1.2 Position X
F1.2.1 Position = RFID based X
T F1.2.1 Presumptions:

e Proper RFID Tag data resides within A4C
e There are two RFID Sensors with different
positions
e Proper RFID Sensor data resides within CM
Test and verification steps:
1. Swipe RFID Tag over RFID Sensor 1
2. Verify that User position is updated in the
context database
3. Verify that corresponding context update is
received by the context consumer
4. Swipe RFID Tag over RFID Sensor 2. Repeat
steps 2. and 3.

F1.2.2 Position — based on e.g. GPS or WLAN X)
F 1.3 Terminal capabilities for users terminal X
T F1.3 Presumptions:

e Mobhile terminal is switched off
Test and verification steps:

1. MT is switched on, SIP UA starts

2. Verify that correct information is received by CM
in SIP Presence

3. Verify that information provides sufficient basis to
describe MT attributes

Additional details may be found in Appendix

F1.4 Discover services in user’ s proximity
F1.4.1 Terminal-based discovery (discovery performed by
user’ s terminal)
F1.4.2 Centralised, directory-based discovery (match users
position with services for that position)
T F1.4.2 Presumptions:

e Three services are registered with SLP
e User passes RFID Sensor within range of two
of the services
Test and verification steps:
e Verify that RFID update propagates to CM and
triggers SLP request

© Akogrimo consortium page 122 of 147

Test nr. Req. nr Description Phase 1 Phase 2

e Verify that CM receives attributes for the two
services

e Verify that corresponding context update is
received by the context consumer

T F1.4.2

F2 Distribute context (to context consumers) X

F2.1 Offer subscription for user context X

F2.1.1 Possibility to limit context scope (specify specific parts | (X) X
of context to subscribe to, e.g. only location)

F 2.2 Query (single response) for user context X) X

F2.2.1 Possibility to limit context scope (specify specific parts | (X) X
of context to subscribe to, e.g. only location)

F 2.3 Ontology—based queries X

F2.4 WS—based interface for context consumers X

F2.4.1 Mechanism for returning context: Regular WS with | X
callback

F 2.4.2 Mechanism for returning context: WS Base Notification | (X) X

or WS Pubscribe

© Akogrimo consortium page 123 of 147

6.
6.1.

Grid Service Discovery

Interfaces

Table 49 Grid Service Discovery Server (GrSDS) — Interfaces

Interface Server: Client: Purpose Protocol
Component Component
(Layer) (Layer)
E-GrSDS—- | GrSDS BPE (WP4.4) Search and Fetch a Grid Service. SOAP
1
E-GrSDS- | GrSDS BVO Manager | Publish/Deregister Service WSDL/SOAP
2 (WP4.4)
SLA Manager | GrSDS GrSDS interacts with the SLA-Access | SOAP
(WP4.4) to retrieve the SLA from published
SLA-Template and associate them to
the interface of service published in
GrSDS
E-GrSDS- | GrSDS OpVOBroker Look for services to carry out a certain | SOAP
4 (WP4.4) WF
6.2. Requirements
Grid Service Discovery — Functional requirements
Req. nr |Description Phase 1 Phase 2
F 6 Gather Service information X X
F 6.1 Grid Service Description X
F 6.1.1 |Service provider description X
F 6.1.2 |SLA description X
F6.1.3 | Other parameters description X
F7 Service publishing X
F7.1 Grid Service Publishing by Service Provider X
F7.1.1 |Publishing without SLA information X

© Akogrimo consortium

page 124 of 147

Req. nr |Description Phase 1 Phase 2

F7.1.2 |Publishing with SLA information X
F7.2 Grid Service Publishing by BVO Manager X
F7.2.1 |Publishing without SLA information X
F7.2.2 |Publishing with SLA information X
F8 Query Service Information X X
F 8.1 Look up services by pattern matching X
F 8.2 Look up services by service type X
F 8.3 Look up services within attribute ranges X
F 8.4 Look up services by “semantic matching” and ontology X

based queries

F8.5 Look up services by specific SLA parameters X

F9 Security X

F9.1 Permits and authentication X

F9.1.1 |]Just allow authenticated Services to publish information X

F9.1.2 |Just allow users to query for services inside their VO or X
open VOs

F9.1.3 | Complex permission system (just allowed to query at a give X)

time, or when something else occurred, etc:-*)

F9.2 Secure communications (e.g. [Psec) X)
F10 Deregister Services X
F10.1 By Service Provider X
F10.2 By BVO Manager X
F11 Updating Services X
F 11.1 |By Service Provider X
F11.2 By BVO Manager X

© Akogrimo consortium page 125 of 147

Req. nr |Description Phase 1 Phase 2

F12 Robustness in front of Service Provider Mobility X

(X) Optional requirement

6.3. Design

The GrSDS represents a “static” discovery registry with semantics capabilities where the
static description of services (i.e. WSDL description) is stored. Then GrSDS stores the
description of Grid Services, i.e., WS—Resources. From now on those terms will be
considered equivalent. The two basic process involving GrSDS are the publication and the
search of Grid Services (WS—-Resources). In both processes the GrSDS interacts with are:

- Publication of Grid Services (WS—-Resources)
- Search of Grid Services (WS—-Resources)

The publication of Grid services consists mainly on the store of the description of services
in the same way as WSDL document are stored in a standard UDDI registry. Furthermore,
the publication of Grid Services implies also the process of storing information to the
corresponding SLA Template stored physically in the SLA Repository.

The components involved on the publication process can be seen in the following sequence

Ok

chart:

SR BYO Manager GrsDs SLA-Accass
| | | |
| | | [
| PublishService | | [
I = | [
| | Publish | [
| | 3 [
| | | retrleveinfoMetadata |
| | L 3
| | | [
| | | [
: : L Infoletadata :

-
| | Ok | I
I ke I I
| | | [
[| | [
) I | I
| | | [
I | I [

The Service provider (SP) will publish its service through the BVO Manager once it has
been subscribed and registered as a participant in the Base Virtual Organisation (BVO).
The SP has to provide a contract template (i.e. SLA template, where are collected QoS
info, charging policies and service requirements) associated to each service and published
against a SLA-Template repository previously to the proper publication of the Grid
Service.

© Akogrimo consortium page 126 of 147

Hence, the SLA Template associated to the service should be inserted within the SLA
Template Repository before the publication process has started regarding the GrSDS.
Together with the WSDL document adapted to Grid Services, a reference to the
corresponding SLA Template has to be supplied in order to let the GrSDS request to the
SLA-Access for some basic information/parameters enclosed in the SLA Template. This
approach has been chosen in order to avoid massive searches from GrSDS to SLA-Access
during searching process of Grid Services. So GrSDS should also stored this basic SLA
information together with the Grid Service description already stored.

Regarding the process of Grid Service search, two different components can look up for
services within the GrSDS in the process of acquiring the service. Those components are
the WorkFlowManager (WFManager) and the Operational Virtual Organisation Broker
(OpVOBroker).

The corresponding simple sequence diagrams are:

SearchBusinessSenvice{Qos metadala)

[|
[|
[|
[N |
| |
[|
[|
[|
[service provider D I
= |
[|
[|
[|
[|
[|
[|
[|
[|
[I
QOpVOBroker Greps

| |

| |

| Searchisarvice|D, QoS Matadata) |

l A |

| l

| |

| |

| |

| ServiceProviderList |

e e e e e e |

© Akogrimo consortium page 127 of 147

This description represents an overall view of how other components of the architecture
interact with GrSDS component. Some important features like semantics have not been
addressed yet at this stage, since the design and implementation phase will be mainly
concentrated on next development phase.

6.4. Implementation

The implementation of this component will be based on the well-known and established
UDDI specifications. UDDI can be considered as the start point especially regarding the
registry part of the GrSDS component. In addition a more fitted publication component has
to be developed over UDDI in order to be able to store Grid Services (not just stateless
Web Services). Moreover, semantic functionality should also be added, especially in the
WS—-Resource search process.

Regarding technologies, good candidates are WSRF .NET for both the publication and
searching components, since up to now it seems to be the technology better developed.
However, a java approach is not fully discarded. It would mainly depend on the state of the
art at the moment of initiating developments.

The sequence of developments will be as follows:

- Publication module of Grid Services without semantics and without considering SLA
information.

- Searching module of Grid Services without semantics and SLA information.

A second iteration will be done in order to include SLA information within both processes.
Finally some semantics capabilities might be implemented depending on the project
requirements.

After each iteration tests and integration effort will have to be done | order to validate and
improve all the developments carried out.

6.5. Testing

Up to now, no specific testing cases have been described due to that the design and
implementation phase has been delayed to next iteration. Nevertheless, it can be said that
testing for GrSDS can be split out in two set of tests whether they correspond to the
Publication or to the Searching process.

© Akogrimo consortium page 128 of 147

6.5.1. Testing for publication process

Next, we include a general list of tests that have to be carried out in order to verify the
component.

Test. nr | Description Phase 1 |Phase 2

T1 Publication process X

T1.1 Request of a standard stateless web Service (standard X
WSDL)

T1.2 Request of a WS—Resource (WSDL) X

T1.3 Request to SLA Access of SLA specific data X

T1.4 Storing process of the Grid Service Description. X

T1.5 Storing process of the SLA data X

T1.6 Integration of the SLA info into the WS—Resource X
Description.

6.5.2. Testing for searching process

Test. nr | Description Phase 1 |Phase 2
T2 Searching process X

T2.1 Generic Search of a standard web Service. X

T2.2 Generic Search of a Grid Service without SLA information. X

T2.3 Parametric search of standard stateless Web Services. X

T2.4 Parametric search of Grid Service. X

T2.5 Parametric search of Grid Service with SLA information X

T2.6 Semantic Search

© Akogrimo consortium page 129 of 147

7. Local Service Discovery
7.1. LSDS Interfaces

Table 50 Local Service Discovery Server (LSDS) — Interfaces

Interface Server: Client: Purpose Protocol
et Component Component

(Layer) (Layer)
[-L.SDS— DA MT Direct search of Services SLP
1.1
E-LSDS- DA CM Search of Local Services for user Context | SLP
1.2

A4C DA Authorize User or SP Diameter
[-L.SDS-2 | SP DA Publish/Deregister/Update Service SLP
[-LSDS-5 DA DA Communicate with other DA mSLP

5- Foreign
DAs

i

CM ——» 11— Directory Agent 4- A4C
(DA)
>
2— SP .
1.1- Security
4¢—» 4- Interface to

——p 1.2- OWL
3- MT (GUD other SD
protocols

© Akogrimo consortium page 130 of 147

7.1.1. CM-DA

This interface will help the Context Manager aggregate context information for a certain
user. The Context Manager will then be able to look for services in a certain area
surrounding the user. Filters will be used so that the CM can look up certain kinds of
services and restricting the network traffic produced by this activity to a minimum. A
function call that should be supported could be e.g.:

— SLPFindSrvsU:
Function: Find services and their descriptions restricted to a certain user and area.

Parameters: (scope, filter, user_identifier, area)

7.1.2, SP-DA

Service Providers (SP) will have to be able to advertise their services and their concrete
location. In addition to this a security mechanism must exist that restricts the access to
the Directory Agent (DA) to all SPs that have not been authenticated. To this end a SAML
token will have to be provided by the SP in order to be authorized to use the DA.
Lifetimes are suggested to be adjusted reasonably depending on the type of service used.
That is, static services will have longer lifetimes than services that are on the move.
Examples of function calls for this interface are:

— SLPReg

Function: Registration of a service, or update of a service description.
Parameters: url, lifetime, srvtype, attrs, location, SAML token

— SrvDeReg

Function: Deregistration of a service

Parameters: url, (SAML token)

7.1.3. MT-DA

An interface will be providing a user or modules inside the MT, with means to localize
services by their own. Probably a GUI and an API can be provided with functions such as:
— SLPFindSrvsTypes

Function: Show services Types available

Parameters: SAML token

- SLPFindSrvs —>

Function: Query service in a certain area

Parameters: attrs, area, scope, SAML token

- SLPFindAttrs

© Akogrimo consortium page 131 of 147

Function: Query characteristics of a certain service

7.1.4. DA-A4C

In order for the LSDS to authorize a SP or a user to make use of its services the DA will
contact the A4C to confirm that they are authenticated.

— Authorize

Function: Check if a user is authenticated.

Parameters: SAML token

7.1.5. DA-Other SD

The LSDS will aggregate other SD technologies such Zeroconf or the Bluetooth SDP. By
doing this, a much wider spectrum of devices can be tackled. To this end, an interface will
have to be provided.

7.2. Requirements

Table 51 Service Discovery — Functional requirements

Req. nr |Description Phase 1 |Phase 2
F1 Gather Service information X X
F1.1 Service Description X

F 1.1.1 |Service provider description X

F 1.1.2 |Location description X

F 1.1.3 |Service description: Extended Characteristics (X)
F 1.1.4 |Description of how to access each service X

F1.2 Directory based publishing X

F1.3 Ad-hoc publishing (No directory) X)
F1l.4 Service publishing X

F 1.4.1 |Service Publishing by Service Provider X

F 1.4.2 |Service Publishing by External User

F2 Query Service Information X X

© Akogrimo consortium page 132 of 147

Req. nr |Description Phase 1 |Phase 2

F 2.1 Look up services by pattern matching X

F 2.2 Look up services by service type X

F 2.2 Look up services within attribute ranges X

F 23 Look up services by location, location range (X) X

F2.4 Look up services by “semantic matching” and ontology X
based queries

F 2.5 Look up services by service provider context X)

F 2.6 Look up services using filtering with user context X)

F 2.7 Look up service by current availability to users (CM query | X X
for the services a user can reach)

F3 Security X

F 3.1 Permits and authentication X

F 3.1.1 |Just allow authenticated Services to publish information X

F 3.1.2 |Just allow users to query for services inside their VO or X
open VOs

F 3.1.3 |Complex permission system (just allowed to query at a give (X)
time, or when something else occurred, etc:--)

F 3.2 Secure communications (e.g. IPsec) X)

F 4 Deregister Services X

F 4.1 By Service Provider X

F 4.2 By Directory X

Fb Robustness in front of Service Provider Mobility X X

(X) Optional requirement

© Akogrimo consortium

page 133 of 147

7.3.
7.3.1.

Design

Example of Message sequences

In the following example of the message interchange that can take place in the field of
LSDS and its relation with other components are shown. These examples show a few
different cases in which the utilization of the LSDS could be useful but are not exhaustive

whatsoever.

1a) Service Publication (no location aware)

SP 4.2 RFID Reader

Publishserv

4.2 Context Manager

4.2 Local Service
Discovery system

4.2 MC

ice (Service & SP info, SAML token/artifact, No |

ocation aware)—————|

—O0K

Database
update

OK (timeout, etc..)

+—Verify SAML token—p»{

Sending a SAML token and contacting the A4C is skipped once a security association
between SP and LSDS is created.

1b) Publish service taking into account position

Purpose: Handle Service positioning based on various technologies.

— Location manager centric: the SP is not directly aware of its position. E.g. RFID. This
kind of location is not expected to be implemented for now in services. In principle we will
be using RFID just to localize people whereas services that require the use of location
information are supposed to be aware of their own location by technologies such as GPS.

© Akogrimo consortium

page 134 of 147

SP

4.2 RFID Reader

A

Power
on—, |

OK (timeout, etc..)

4.2 Context Manager

4.2 Local Service
Discovery system

4.2 A4C

———Connect to positioning service——m»—

—————Publish Service (Service & SP characteristics, SAML token/artifact, location aware)}——m

-

—_Service Init.
Load positioning

" model: Mapping
RFID reader ID -
Physical position

Look up position of
service]

Update Position in

Description of service

— Updating RFID position

SP

44— —Read RFID TAG

4.2 RFID Reader

—Position update (RFID TAG, Reader ID)—

| Check SAML token/

——OK

artifact

4.2 Context Manager

4.2 Local Service
Discovery system

~—IDto

— SP centric: The SP is aware of its position. E.g. GPS

Map reader

e Physical
location

—Update Service Positionm

‘ ‘ 4.2 RFID Reader 4.2 Context Manager

—Publish Service (Service & SP characteristics, SAML token/artifact, loca

‘ 4.2L

Discovery system

ocal Service ‘ ‘

4.2 AdC

tion information (E.g. X,y))m

| Check SAML token/
artifact

—OK:-

Update
databas

OK (timeout, etc..)

— Update position

© Akogrimo consortium

Update position of
[~— service in context—

Manager

OK———

page 135 of 147

4.2 AdC

SP ‘ ‘ 4.2 RFID Reader 4.2 Context Manager ‘ 4'_2 Local Service ‘ ‘
Discovery system

Update Service Characteristics (SAML token/artifact, location information (E.g. x,y))————#

| Check SAML token/
artifact

—OK-

Update
databas

- OK (timeout, etc..)
Update position of
[~— service in context—

Manager
OK——
2Za)Service Query by a User:
MT 4.2 Local Service 42 AC sp

Discovery system

| Service Query (service type, location area, query filter) + SAML>

Token/Artifact
——Check SAML token/artifact—m-
-+ OK———
-4——List of services/Service Description
Select
Service
. Use Service -

The SAML token and the connection to the A4C is skipped when a security association
between MT and A4C already exists.

2b) Service Query by the CM

4.2 Local Service

4.2 Context Manager Discovery system

—Services Query (Taking into account user Location information)m-

~-4——List of services/Service descritpion

3) Update Service

© Akogrimo consortium page 136 of 147

4.2 Local Service

SP ‘ Discovery system

4.2 RFID Reader 4.2 Context Manager

‘ 4.2 A4C

——Update Service Characteristics (Service & SP characteristics to Update, SAML token/artifact)—m

| Check SAML token/
artifact

4—OK

Update
databas

- OK (timeout, etc..)

4) Delete Service

4.2 Local Service

‘ SP ‘ Discovery system

4.2 RFID Reader 4.2 Context Manager

‘ 4.2 A4C

Deregister Service (Service, SAML token/artifacty———————

| Check SA_«ML 1oken/+
artifact

4—OK

Update
databas

A

OK (timeout, etc..)

7.3.2. Location awareness

Mobility implies a bunch of new possibilities in the area of network communications. While
it may imply some difficulties such as a need for constant reconfiguration, different signal
quality, etc--- the benefits obtained from it can be overwhelming. In order to obtain the
most of these, position awareness can be highly beneficial. Being or not being location
aware can be like a boat following its route in the map or going adrift. To this end, it was
decided that not only users would be location aware but also services. A user may then be
able to localize services in its proximity that best suit his needs.

Several techniques are available in order to provide location information. A location can be
described as a room, street and number, town, as coordinates in a map or global
coordinates such latitude and longitude — such as the ones given by GPSs — among others.
[t was decided that we would provide absolute coordinates in the Globe for all the services
in Akogrimo for which it makes sense to take profit of localization. We do not rule out the
use of other location methods such as relative locations or e.g. room numbers on a building
and so forth, since they can be compatible, however a location system based on
coordinates is the best way to locate services in a certain area.

Latitude and longitude are quite extensively used by some devices to show a position in
the Globe. However this system is not the handiest to calculate areas surrounding a
location or calculating distances between two points, as it is based on Polar coordinates.
Taking this into account, the Universal Transverse Mercator (UTM) system was developed
making the calculation of the distance between two points as easy as applying the

© Akogrimo consortium page 137 of 147

Pythagorean Theorem. By using this system direct area queries can be performed using
SLP (cf. Sec. 3.3.3) with standard LDAP filters [How97].

7.3.3. SLP

The Service Location Protocol (SLP) designed by the IETF [Gut99a, Gut99b] has shown to
be very suitable to build the core of the LSDS. SLP can work either as distributed system
or make use of a Directory Agent (DA) where information about all the services available is
stored. The latter configuration is preferred as it is very scalable. In addition, DAs are also
able to communicate thanks to an extension of the protocol called mSLP, which makes it
very suitable when networks are split or across different administration areas.

7.3.4. Service Description templates

- Templates examples for a beamer (with location awareness) [Gut99].
beamer.0.1.en

Name of submitters: P. Mandic <patrick.mandic@rus.uni—stuttgart.de>
Others...

Language of service template: en

Security Considerations

TO BE COMPLETED

Abstract

7 template begins here
Beamer / screen

template—type = beamer

template—version= 0. 1

template—description = The abstract service:beamer provides advertisements for clients
searching for screens with adequate characteristics. Concrete types will specialize the
service:beamer type for each particular protocol (e.g. vnc)

template—url-syntax= ; Depends on the concrete service type

; To be defined on each concrete template

Resolution = STRING m

© Akogrimo consortium page 138 of 147

Indicates resolution types supported by the beamer. Posible values are: high, medium,
low

width = STRING O
high = STRING O

Indicate the size of the screen in inches. Optional attribute

Bandwidth = STRING o m

Indicate which bundles the bandwidth supports. high, medium, low

utm-northing = INTEGER O
utm—easting = INTEGER O
utm—zone—number = STRING O
utm—zone—letter = STRING O

sip—address = STRING

sip contact address

Non Akogrimo specific attributes will follow here
End of Template

beamer—sip.0.1.en
Name of submitters: P. Mandic <patrick.mandic@rus.uni—stuttgart.de>
COMPLETE WITH THE CONTRIBUTORS LIST

Language of service template: en

Security Considerations

70 BE COMPLETED

Abstract

© Akogrimo consortium page 139 of 147

PROVIDE A SUMMARY OF THIS DOCUMENT HERE

SIP-controlled beamer Concrete Service Type

7 template begins here
template—type = beamer:sip
template—version = 0. 1

template—description = The service:beamer:sip type provides advertisements for clents
seeking SIP-controlled beamers

; Example of a posible definition of template—url-syntax (to be defined by the SIP people ;)
)

; template—url-syntax= "request=""action
raction = “handover” /" “remotecontrol”

; service:beamer:sip.//beamerl23@akogrimo.org/request=remotecontrol

All attributes are inherited from the abstract type
End of template

7.4. LSDS Implementation

The implementation will take place taking as a base the OpenSLP. OpenSLP is a free
implementation of the SLP protocol. The current development version (1.3) is the first
version with IPv6 support and therefore is the chosen version to work with.

Since OpenSLP 1.3 is written in C, this language is the programming language used for the
LSDS.

7.5. LSDS Testing

Corresponding Test—cases will be developed to validate the correct functionality of the
software. In addition to that, some of the scenarios defined by the MSCs from Section

© Akogrimo consortium page 140 of 147

3.3.2 can be corroborated. A test—bed will be build to physically test the interaction with
other components.

© Akogrimo consortium page 141 of 147

Annex A.

[Blu9s]

[Cal03]

[Cal05]

[D4.2.1]

[D5.1.2]

[DaidalosIDToken]

[For05]

[Gut99a]

[Gut99b] (former
[Per99])

[How97]

[TANAO5]

References

L. Blunk, J. Vollbrecht. ,PPP Extensible Authentication Protocol (EAP)”,
I[ETF RFC 2284, March 1998. URL: http://www.ietf.org/rfc/rfc2284.txt
Last visited 27.10.2005

P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko. “Diameter Base
Protocol”, IETF RFC 3588, September 2003. URL:
http://www.ietf.org/rfc/rfc3588.txt Last visited 27.10.2005

P. Calhoun, G. Zorn, D. Spence, D. Mitton. “Diameter Network Access
Server Application”, IETF RFC 4005, August 2005. URL:
http://www.ietf.org/rfc/rfc4005.txt Last visited 27.10.2005

J. Wedvik et al: “Overall Network Middleware Requirements Report”.
Akogrimo Deliverable D4.2.1. 01.09.2005, v 1.1. URL:
http://www.akogrimo.org/modules.php?name=UpDownload&req=getit&lid=39
Last visited 21.10.2005

Akogrimo: “Integrated Prototype”. Akogrimo Deliverable D5.1.2. Scheduled
for January 2005.

B. Weyl et al. ” Protecting Privacy of Identities in Federated Operator
Environments”, Proceedings of the 14th IST Mobile & Wireless
Communications Summit, Dresden, 2005. URL: http://www.ikr.uni-
stuttgart.de/Content/Publications/View/Frame/FullRecord.html?36435
Last visited 27.10.2005

D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, A. Yegin. “Protocol for
Carrying Authentication for Network Access (PANA)”, IETF Draft, 16 July
2005. URL: http://www.ietf.org/internet—drafts/draft—ietf-pana—pana—10.txt
Last visited 27.10.2005

E. Guttman et al: “Service Location Protocol, Version 2,” IETF, RFC 2608,
June 1999. URL = http://www.rfc—editor.org/rfc/rfc2608.txt Last visited
27.10.2005

E. Guttman et al, “Service Templates and Service: Schemes” IETF RFC
2609. URL: http://www.letf.org/rfc/rfc2609.txt Last visited 27.10.2005

T. Howes: “The String Representation of LDAP Filters”, IETF RFC 2254.
December 1997. URL: http://www.ietf.org/rfc/rfc2254.txt Last visited
27.10.2005

[IANA, RADIUS Types, 20 September 2005. URL:
http://www.iana.org/assignments/radius—types Last visited 28.10.2005

© Akogrimo consortium page 142 of 147

[JNI]

[MLP]

[MySQL]

[Nie04]

[OPENDIAM]

lopenslp]

[Roa02]

[Ros04]

[SAML]

[SAMLAssertion]

[SAML.Profile]

[Schu05]

Java Native Interface (JNI),
http://java.sun.com/docs/books/tutorial/nativel.1/ Last visited
28.10.2005

Open Mobile Alliance (OMA): “Mobile Location Protocol (MLP)”. OMA
Specification no OMA-LIF-MLP-V3_1-20040316-C. 16.03.2004, ver 3.1.
URL:
http://www.openmobilealliance.org/release_program/docs/MLP/OMA-LIF-
MLP-V3_1-20040316—C.pdf Last visited 21.10.2005

MySQL Database. URL: http://www.mysqgl.com Last visited 28.10.2005

A. Niemi, “Session Initiation Protocol (SIP) Extension for Event State
Publication”, RFC 3903, Internet Engineering Task Force, October 2004.
URL: http://www.ietf.org/rfc/rfc3903.txt Last visited 28.10.2005

Open Diameter Webpage. URL: http://www.opendiameter.org Last visited
28.10.2005

OpenSLP Webpage. URL www.openslp.org Last visited 21.10.2005

A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”,
RFC 3265 Internet Engineering Task Force, June 2002. URL:
http://www.ietf.org/rfc/rfc3265.txt Last visited 28.10.2005

J. Rosenberg, “A Presence Event Package for the Session Initiation
Protocol”, RFC 3856 Internet Engineering Task Force, August 2004. URL:
http://www.ietf.org/rfc/rfc3856.txt Last visited 28.10.2005

OASIS: “Security Assertion Markup Language, SAML”, October 2005.
http://www.oasis—open.org/committees/tc_home.php?wg abbrev=security
Last visited 28.10.2005

P. Hallam-Baker et al. ”Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML)”, OASIS, November 2002. URL:

http://www.oasis—open.org/committees/download.php/ 1371/0asis—sstc—
saml—core—1.0.pdf Last visited 28.10.2005

E. Maler et al. ”Bindings and Profiles for the OASIS Security Assertion
Markup Language”, OASIS, September 2003. URL: http://www.oasis—
open.org/committees/download.php/3405/0asis—sstc—saml-bindings—1.1.pdf
Last visited 28.10.2005

H. Schulzrinne, V. Gurbani, “RPID: Rich Presence Extensions to the
Presence Information Data Format (PIDF)”. IETF Draft, September 2005.
URL: http://www.ietf.org/internet—drafts/draft—ietf-simple-rpid—09.txt Last
visited 28.10.2005

© Akogrimo consortium page 143 of 147

[SER]

[SIPComm]

[SOAP]

[Sug04]

[UAProf]

SIP Express Router homepage. URL: http://www.iptel.org/ser/ Last visited
28.10.2005

“SIP Communicator — a Java SIP User Agent built on top of the JAIN-SIP-RI
and JMF”. Software project at Network Research Team, Louis Pasteur

University — Strasbourg, France. URL: http://www.sip—communicator.org
Last visited 19/10/2005

D. Box et al., “Simple Object Access Protocol (SOAP) 1.1”, World Wide
Web Consortium Note, May 2000. URL: http://www.w3.org/TR/SOAP Last
visited 28.10.2005

H. Sugano, S. Fujimoto, “Presence Information Data Format (PIDF)”. IETF
RFC 3863, August 2004. URL: http://www.ietf.org/rfc/rfc3863.txt Last
visited 28.10.2005

Open Mobile Alliance (OMA): “WAG UAProf — Wireless Application
Protocol”. OMA Specification no WAP-248—-UAPROF-20011020-a.
20.10.2001. URL:
http://www.openmobilealliance.org/tech/affiliates/wap/wap—248—uaprof—
20011020-a.pdf Last visited 21.10.2005

© Akogrimo consortium page 144 of 147

Annex B. Context Manager - details

B.1. Context Consumer interface
B.1.1. ContextManagerWS.wsdl

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://ws.contextmanager.wp42.akogrimo.org"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://ws.contextmanager.wp42.akogrimo.org"
xmlns:intf="http://ws.contextmanager.wp42.akogrimo.org"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.2.1
Built on Jun 14, 2005 (09:15:57 EDT)-->
<wsdl:types>
<schema targetNamespace="http://ws.contextmanager.wp42.akogrimo.org"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="ArrayOf_xsd_int">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>
</restriction>
</complexContent>
</complexType>
</schema>
</wsdl:types>
<wsdl:message name="unsubscribeRequest">
<wsdl:part name="callbackUrl" type="xsd:string"/>
<wsdl:part name="userId" type="xsd:int"/>
</wsdl:message>
<wsdl:message name="subscribeResponse">
<wsdl:part name="subscribeReturn" type="xsd:int"/>
</wsdl:message>
<wsdl:message name="subscribeRequest">
<wsdl:part name="callbackUrl" type="xsd:string"/>
<wsdl:part name="userId" type="xsd:int"/>
<wsdl:part name="fromDate" type="xsd:dateTime"/>
<wsdl:part name="toDate" type="xsd:dateTime"/>
<wsdl:part name="contextTypes" type="impl:ArrayOf_xsd_int"/>
</wsdl:message>
<wsdl:message name="unsubscribeResponse">
<wsdl:part name="unsubscribeReturn" type="xsd:int"/>
</wsdl:message>
<wsdl:portType name="ContextManagerWsS">
<wsdl:operation name="subscribe" parameterOrder="callbackUrl wuserId fromDate toDate
contextTypes">
<wsdl:input message="impl:subscribeRequest" name="subscribeRequest"/>
<wsdl:output message="impl:subscribeResponse" name="subscribeResponse"/>
</wsdl:operation>
<wsdl:operation name="unsubscribe" parameterOrder="callbackUrl userId">
<wsdl:input message="impl:unsubscribeRequest" name="unsubscribeRequest"/>
<wsdl:output message="impl:unsubscribeResponse" name="unsubscribeResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ContextManagerWSSoapBinding" type="impl:ContextManagerWs">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="subscribe">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="subscribeRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.contextmanager.wp42.akogrimo.org" use="encoded"/>
</wsdl:input>
<wsdl:output name="subscribeResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.contextmanager.wp42.akogrimo.org" use="encoded"/>
</wsdl:output>
</wsdl:operation>

© Akogrimo consortium page 145 of 147

<wsdl:operation name="unsubscribe">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="unsubscribeRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.contextmanager.wp42.akogrimo.org" use="encoded"/>
</wsdl:input>
<wsdl:output name="unsubscribeResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.contextmanager.wp42.akogrimo.org" use="encoded"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ContextManagerWSService">
<wsdl:port binding="impl:ContextManagerWSSoapBinding" name="ContextManagerWS">
<wsdlsoap:address
location="http://localhost:8080/ContextManagerWS/services/ContextManagerWs"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

B.1.2. ContextManagerWS.java

package org.akogrimo.wp42.contextmanager.ws;

import java.net.MalformedURLException;
import java.rmi.Naming;

import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.util.Calendar;

import java.text.*;

import org.akogrimo.wp42.contextmanager.rmi.ContextManagerServer;

public class ContextManagerWsS {
private DateFormat mDateFormat;

public ContextManagerWS () {
mDateFormat = new SimpleDateFormat ("MM-dd-yyyy HH:mm:ss");
}

public int subscribe(String callbackUrl, int wuserId, Calendar fromDate, Calendar
toDate, int[] contextTypes) {

System.out.println ("subscribeUser:\n\tcallbackUrl="+callbackUrl+"\n\tuserId="+userId);
System.out.println ("\tfromDate="+mDateFormat.format (fromDate.getTime()));
System.out.println ("\tfromDate="+mDateFormat.format (toDate.getTime ()));
for (int i=0; i<contextTypes.length;i++) {

System.out.println("\tContextType="+contextTypes[i]);
}
try {
// Look up the remote object
ContextManagerServer contextManager = (ContextManagerServer)
Naming.lookup ("//localhost/ContextManagerServer") ;

contextManager.subscribe (userId, callbackUrl);
return 0;

} catch (MalformedURLException e) {
System.out.println(e);

} catch (java.rmi.UnknownHostException e) {
System.out.println(e);

} catch (NotBoundException e) {
System.out.println(e);

} catch (RemoteException e) {
System.out.println(e);

return 1;
public int unsubscribe (String callbackUrl, int userId) {
System.out.println ("unsubscribe: callbackUrl="+callbackUrl+", userId="+userId);

try f{
// Look up the remote object

© Akogrimo consortium page 146 of 147

ContextManagerServer contextManager = (ContextManagerServer)
Naming.lookup ("//localhost/ContextManagerServer") ;

contextManager.unsubscribe (callbackUrl);
return O;

} catch (MalformedURLException e) {
System.out.println(e);

} catch (java.rmi.UnknownHostException e) {
System.out.println(e);

} catch (NotBoundException e) {
System.out.println(e);

} catch (RemoteException e) {
System.out.println(e);

return 1;

B.2. Test details

B.2.1. Context manager Client for mobile terminal

The initial testing may be done against the UAProf of the Sony Ericsson P900 UAProf. A
small test program utilising the UAProfHandler package. The information in
UAProflnformation is displayed on screen if the document is available.

The first test gives the correct UAProf URL and the following shows the information
expected in the test. Note test against a local copy of the profile.

Element Name Expected result Result
Vendor Sony Ericsson Mobile Communications
Model P900R101

UAProfURL http://localhost:8080/P900R101.xml
ColorCapable Yes

ScreenSize 208x320

ImageCapable Yes

Keyboard OnScreenQwerty

ScreenSizeChar 20x15

SoundOutputCapable | Yes

TextInputCapable Yes

VoicelnputCapable Yes

The second test gives a wrong URL and an error message should be shown and no
information should be displayed about the UAProflnfo

© Akogrimo consortium page 147 of 147

