

WP 4.1 Mobile Network Architecture,
Design & Implementation

Dissemination Level: Public

Lead Editor: Nuno Inácio, IT-Aveiro

19/01/2007

Status: Approved by QM

D4.1.3
Final Network Service
Provisioning Concept
Version 1.1

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

P
ro
je
c
ts
it
e
:
w
w
w
.m

o
b
il
e
g
ri
d
s
.o
rg

D4.1.3, 1.1

© Akogrimo consortium members page 2 of 92

This is a public deliverable that is provided to the community under the license Attribution-NoDerivs 2.5
defined by creative commons http://www.creativecommons.org

This license allows you to
• to copy, distribute, display, and perform the work
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that this work originated from the
IST-Akogrimo project and has been partially funded by the European Commission under
contract number IST-2002-004293

No Derivative Works. You may not alter, transform, or build upon this work without
explicit permission of the consortium

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE

("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE

WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS

OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR

ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are

assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined

below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,

musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,

condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a

Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the

Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image

("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License

with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a

previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other

limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,

perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the

Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio

transmission the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually or via a

performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g.

webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or via a music

rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover

version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the

equivalent in other jurisdictions).

D4.1.3, 1.1

© Akogrimo consortium members page 3 of 92

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives the

exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public

digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright

Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to

make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License,

and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work

You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work

that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the

Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly

display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the

Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a

Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this

License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the

Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep intact

all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties

(e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other

reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the

Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the

copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided,

however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit

appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer. UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING

THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES

OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF

LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH

EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE

LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR

EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses

terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive

any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the

Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing

the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has

been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless

terminated as stated above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the same

terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the

remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to

the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in

writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings,

agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions

that may appear in any communication from You. This License may not be modified without the mutual written agreement of the

Licensor and You.

D4.1.3, 1.1

© Akogrimo consortium members page 4 of 92

Context

Activity 4 Detailed Architecture, Design & Implementation

WP 4.1 Mobile Network Architecture, Design & Implementation

Dependencies This deliverable depends on and has influence on (to some extent) work carried
out in WP 3.1, 3.2, 4.2, 4.3, 4.4, 5.1, 5.2

Approved by: QM

Contributors: Reviewers

Nuno Inácio (IT-Aveiro)

Vicente Olmedo (UPM)

Juan Enrique Burgos (TID)

Antonio Cuevas Casado (UPM)

Patrick Mandic (USTUTT)

Internal review by WP4.1 Participants.

Review by Akogrimo partners external to
WP 4.1:

Cristian Morariu (UniZh)

Fredrik Solsvik (Telenor)

David Lutz (UStutt)

Version Date Authors Sections Affected

0.1 05.12.06 All Document Created – largely based on existing
ID4.1.3

0.2 20.12.06 All Updates for all chapters

0.3 28.12.06 Nuno Inácio First draft for revision

0.4 17.01.07 All Second draft, with corrections from external review

0.5 19.01.07 Nuno Inácio,
Patrick Mandic

Transition to new template

Updates to security section

D4.1.3, 1.1

© Akogrimo consortium members page 5 of 92

Executive summary
This document presents the evolution of the Network Layer Architecture described in D4.1.1.
The latter depicted the fundamentals and architecture of this particular view of Next Generation
Networks (NGN), in which collaboration and integration with Grid infrastructures is considered
a must. After laying the basis for this architecture and corroborating the design by means of a
first implementation while taking into account the feedback of the commission on the previous
work, a redesign to polish some aspects of the architecture was undertaken and summarized in
this document focusing on the changes performed in the architecture and paying special attention
to the most innovative issues such the interaction between Grids and Networks – Grid using
Network QoS, SIP with SOAP, etc. In addition to these topics, security is also strongly
prioritized and focused on the following fields:

- Security aligned to the research done in the project i.e. security issues arisen within the
context of the new functionalities developed (e.g. SIP with SOAP interactivity).

- Security as a whole, in order to provide guidelines for the security of the complete
platform developed. (e.g. provide authentication and Single Sign On (SSO)).

- Security for the tools used for implementation - e.g. Java stubs. (This one given the least
importance in favour of the other two)

D4.1.3, 1.1

© Akogrimo consortium members page 6 of 92

Table of Contents
Executive summary..5

Table of Contents...6

List of Figures ...9

List of Tables ..11

Abbreviations..12

1. Introduction ...16

2. Architecture..17

3. Mobility...18

3.1. Introduction ..18

3.2. User Mobility ..18

3.3. Session Mobility..18

3.3.1. Architecture ...18

3.3.2. Interaction with other subsystems..20

3.3.3. Signalling ..21

3.4. Terminal Mobility...23

3.4.1. Architecture ...23

3.4.2. Interaction with other subsystems..24

3.4.3. Signalling ..24

3.4.4. Security ...26

4. Quality of Service ..27

4.1. Introduction ..27

4.2. QoS Architecture ...27

4.2.1. Overview ..27

4.2.2. Components involved in QoS subsystem ...28

4.2.3. QoS Bundles ..28

4.3. QoS subsystems and interactions ..29

4.3.1. QoS Broker ..29

4.3.2. Access Router ..30

4.3.3. Mobile Terminal..32

4.3.4. Policies/PBNM interactions ...32

4.3.5. User profiles/A4C interactions...33

4.4. Signalling..33

4.4.1. QoS Broker <-> Access Router ...33

4.4.2. Access Router <-> Mobile Terminal...33

4.5. QoS and EMS interoperation...35

D4.1.3, 1.1

© Akogrimo consortium members page 7 of 92

4.5.1. Architecture ...36

4.5.2. EMS Interface..36

4.5.3. Monitoring Interface ..37

4.6. Security...37

5. The Akogrimo SIP framework..38

5.1. Introduction ..38

5.2. SIP Architecture ...38

5.2.1. Mobile Terminal: SIP Module...38

5.2.2. Network components...40

5.3. SIP-SOAP synergies ..41

5.3.1. Services SIPification framework ...42

5.4. Implementation ..45

5.4.1. MT SIP Module...45

5.4.2. SIP Server...49

5.4.3. SIP Broker..51

6. PBNM...53

6.1. Introduction ..53

6.2. Architecture...53

6.3. Sample scenarios ..54

6.4. Documents, standards, protocols & interfaces..55

6.4.1. Example: mapping policies to CIM..56

6.5. Implementation ..57

7. Security..60

7.1. Introduction ..60

7.2. Attack model...60

7.3. Network substrate attack scenarios ...61

7.3.1. Mobility/MIPv6 ..61

7.3.2. Attacks to Access Router...61

7.3.3. QoS Broker ..62

7.3.4. PBNM...63

7.3.5. Attacks to SIP signalling ..63

7.4. Defences..67

7.4.1. Assumptions ..67

7.4.2. Perimeter security..68

7.4.3. Mobility/MIPv6 ..70

7.4.4. PBNM Defence...70

D4.1.3, 1.1

© Akogrimo consortium members page 8 of 92

7.4.5. SIP Defence ...70

7.5. Security Architecture Overview ...73

References ...75

Annex A. Access security at L3 example ...77

Annex B. SER (SIP Express Router) configuration file (ser.cfg)...79

Annex C. Network User Profile..83

Annex D. gSDP formats...85

D.1. gSDP session...85

D.2. gSDP notification...85

Annex E. SIP security mechanisms ..87

E.1. Transport and Network Layer Security ..87

E.1.1. IPSec..87

E.1.2. TLS ..88

E.2. SIP URI Scheme...88

E.3. HTTP Digest ..89

E.4. S/MIME..90

D4.1.3, 1.1

© Akogrimo consortium members page 9 of 92

List of Figures
Figure 1 – General architecture..17

Figure 2 – User-triggered Session Transfer ..19

Figure 3 – Grid-triggered Session Transfer ..20

Figure 4 – SIP Session Mobility (session handoff mode). User triggered ...22

Figure 5 – SIP Session Mobility (session handoff mode). Grid triggered ...23

Figure 6 – Fast Handover ...25

Figure 7 – QoS subsystem components ...27

Figure 8 – Akogrimo QoS Broker ...29

Figure 9 – Akogrimo Access Router ...31

Figure 10 – Implicit QoS request...34

Figure 11 – explicit QoS request using RSVP..35

Figure 12 – QoSB Grid Gateway...36

Figure 13 – Old MT SIP module architecture ...38

Figure 14 – Revised MT SIP module architecture ..39

Figure 15 – SIP Server architecture ...40

Figure 16 – AN SIP proxy architecture ..40

Figure 17 – SIP Broker architecture ..41

Figure 18 – Intermediaries and interfaces setup ..43

Figure 19 – SIPification session establishment and service invocation ...43

Figure 20 – User disconnection and reconnection from another location..44

Figure 21 – Change on services information ...45

Figure 22 – gSDP session termination (from EMS) ...45

Figure 23 – Akogrimo MT SIP application’s preconditions..47

Figure 24 – Akogrimo MT SIP application. Main function structure ..48

Figure 25 – PBM Architecture. Relation with other components ..54

Figure 26 – A declaration of a QoS policy in CIM ...56

Figure 27 – Representation of a CIM class in XML ...56

Figure 28 – Representation of a CIM class in MOF...57

Figure 29 – Communication between the PBNM Server and a PDP..58

Figure 30 – CIM Remote Providers ..58

Figure 31 – GUI for the CIMOM (PBNM Server)...59

Figure 32 – QoSBroker Policy database ...59

Figure 33 – “SIP with SOAP” possible attacks ...64

Figure 34 – Network Authentication ..70

Figure 35 – General architecture..74

D4.1.3, 1.1

© Akogrimo consortium members page 10 of 92

Figure 36 – HTTP Digest security mechanism..89

Figure 37 – S/MIME encryption and decryption ...91

Figure 38 – S/MIME signature..92

D4.1.3, 1.1

© Akogrimo consortium members page 11 of 92

List of Tables
Table 1 – QoS bundles and usage. Values are in kilobytes per second..28

Table 2 – QoS-EMS interface methods..36

Table 3 – Changes in the external interfaces of the MT SIP module...40

Table 4 – MT SIP module implementation: libraries and packages ...46

Table 5 – MT SIP module implementation: location of the main classes ...48

Table 6 – gSDP application 1st prototype vs. final version ..49

Table 7 – MT gSDP application implementation: libraries and packages ...49

Table 8 – a4c.so exported functions..50

Table 9 – SIP Broker implementation: libraries and packages ..52

Table 10 – Illustration of a process of mapping a policy from system level to instance level........57

Table 11 – Attack model ...60

Table 12 – opVO member’s token content ...72

Table 13 – Encrypted headers with S/MIME ...90

D4.1.3, 1.1

© Akogrimo consortium members page 12 of 92

Abbreviations

A4C Authentication, Authorisation, Accounting, Auditing and Charging

AA Authentication and Authorisation

AAA Authentication, Authorisation and Accounting

Akogrimo Access To Knowledge through the Grid in a Mobile World

AN Access Network

AoR Address of Record

API Application Programming Interface

AR Access Router

BA Binding Acknowledgement

BE Best Effort

BU Binding Update

CIM Common Information Model

CIMOM CIM Object Manager

CM Context Manager

COPS Common Open Policy Service Protocol

CPU Central Processing Unit

DiffServ Differentiated Services

DoS Denial of Service

DDoS Distributed Denial of Service

DSCP Differentiated Service Code Point

EMS Execution Management Service

EPR End Point Reference

FHO Fast Handover

FBU Fast Binding Update

FNA Fast Neighbour Advertisement

gSDP Grid Session Description Protocol

D4.1.3, 1.1

© Akogrimo consortium members page 13 of 92

GUI Graphical User Interface

GUP Generic User Profile

HA Home Agent

HoA Home Address

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

IntServ Integrated Services

IP Internet Protocol

IPSec IP Security Protocol

IPv6 Internet Protocol version 6

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MIPv6 Mobile IPv6

MN Mobile Node

MOF Managed Object Format

MT Mobile Terminal

MTIHO Mobile Terminal Initiated Handover

nAR New Access Router

NIHO Network Initiated Handover

oAR Old Access Router

OpVO Operational Virtual Organization

PANA Protocol for carrying Authentication for Network Access

PDP Policy Decision Point

PEP Policy Enforcement Point

PBNM Policy Based Network Management

PBNMS Policy Based Network Management System

PDA Personal Digital Assistant

D4.1.3, 1.1

© Akogrimo consortium members page 14 of 92

PGP Pretty Good Privacy

QoS Quality of Service

QoSB Quality of Service Broker

QoSGGw Quality of Service Grid Gateway

RSVP Resource-Reservation Protocol

RTP Real-Time Protocol

RTSP Real Time Streaming Protocol

SDP Service Discovery Protocol

SER SIP Express Router

SIP Session Initiation Protocol

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

SSO Single Sign On

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

URL Uniform Resource Locator

VO Virtual Organization

WBEM Web Based Enterprise Management

WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

WP Work Package

D4.1.3, 1.1

© Akogrimo consortium members page 15 of 92

WPA Wi-Fi Protected Access

WS Web Service

XML Extensible Markup Language

D4.1.3, 1.1

© Akogrimo consortium members page 16 of 92

1. Introduction

As already described in previous documents, the Network layer provides means to keep the
transport of information up and optimized at all times always taking into account the context and
the nature of the communication, the parties involved and external factors such as saturation or
breakdown.

This document provides a refined architecture of the different components and services provided
by the Network and takes special interest in concepts that are based on interactions between
Network and Grid such as the integration of SIP and SOAP, or the possibility of having network
QoS requests from grid services in chapters 3 to 6.

It is worth mentioning the role of PBNM, described in chapter 6, which has also suffered a
notable development with respect of what was related in previous documents.

In addition to this, Security also takes a central role in this document. Chapter 7 makes a survey
of possible attacks and their importance and describes the most appropriate solutions according
to impact, probability and interest to the project’s goals.

D4.1.3, 1.1

© Akogrimo consortium members page 17 of 92

2. Architecture

The following picture describes the general architecture inside WP4.1 (inside the blue box) and
its relations to components in different WPs, the arrows among them indicating the existent
interfaces. The protocol utilized for each interface to communicate is also indicated.

Figure 1 – General architecture

Regarding network quality of service, the main components involved are the Access Router (AR),
QoS Broker (QoSB) and PBNM. The QoSB is the equivalent to a Policy Decision Point (PDP),
which receives general network policies from the PBNM, and also user profile information from
the A4C Server.

The AR is the equivalent to a Policy Enforcement Point (PEP). It controls all network flows that
originate or are destined to mobile terminals connected to that AR. When a new flow is detected,
the AR sends a message to the QoSB questioning if that flow is allowed or not. The QoSB, based
upon the information it gathered from the PBNM and A4C Server, makes a decision and
responds to the AR.

The SIP Server provides advanced support for multimedia sessions, session mobility, user
presence and context and also support for interactions with web services. Web services may use
the SIP Server to enable grid sessions with session management and mobility, session transfer or
3rd party grid session control.

Both the SIP Server and the QoS Broker have web services interfaces for providing some of their
functionality to higher layers.

Security issues have also been taken into account in the architecture. They have however not
been represented in the description of the architecture at module level since security needs to be
handled in much broader sense. Therefore, this issue is treated separately in chapter 7.

D4.1.3, 1.1

© Akogrimo consortium members page 18 of 92

3. Mobility

3.1. Introduction

Different types of mobility may be considered; in this chapter we present the three most
important in the Akogrimo project.

3.2. User Mobility

As defined in [D411], User Mobility enables the user access to network services or resources
independently of the user’s terminal. A user-oriented security and authentication framework
(described in WP42 deliverables) is responsible for this. For more details see [D422].

3.3. Session Mobility

Session Mobility is the ability, supported by the underlying infrastructure, to transfer an ongoing
session from the device the user is currently using (the source Mobile Terminal) to another
device (the target Mobile Terminal). Of course, this must be done without the session being
interrupted.

Such ability could be used to continue a session in a more suitable device when it is discovered,
or when the source device becomes unavailable, e.g. running out of battery. In Akogrimo’s
eHealth scenario, session mobility is used to transfer an already established media session to a
larger display, which is more suitable for media visualisation than the small, low resolution screen
of a wearable computer.

Session transfers are usually initiated by the user when needed, e.g. need to switch from a fixed to
a mobile terminal (user triggered session transfer). However, many of the times the need of a session
transfer can be anticipated by analysing user context. Taking this into account, and taking
advantage of Akogrimo’s infrastructure support for context, session transfers can be initiated on
behalf to the user (Grid triggered session transfer), suggesting more suitable target MT’s in the user
surroundings. This functionality is demonstrated in the eHealth scenario, where a doctor is
warned about the availability of a better display and the session transfer is initiated by the
platform. This operation, of course, requires new entities to be defined in the platform to
perform the needed behaviour, as well as to offering these services as suitable interfaces to upper
layers.

In Akogrimo, session mobility support will be provided by the SIP infrastructures. The following
subsections, the architecture will be presented and the involved components described, as well as
their interactions with other subsystems in the platform. Finally, some MSCs are analyzed to
clarify the different roles and to give an overview of the signalling involved.

3.3.1. Architecture

As D4.1.1 mentions [D411], there are two main methods to perform the session transfer using
SIP:

� Mobile Node Control mode, based on SIP 3PCC (Third-Party Call Control).

� Session Handoff mode, based on SIP REFER.

After analysing the pros and cons of each method, it was decided the second one is more
appropriated to the Akogrimo project. For example, it does not involve the terminal which

D4.1.3, 1.1

© Akogrimo consortium members page 19 of 92

initiated the transfer after it takes place, so a MT could transfer an ongoing session to another
device if its battery is running out. For a more detailed explanation, please refer to [D411].

As mentioned in the previous section, session mobility in Akogrimo can take place in two
scenarios:

� A user decides to move an ongoing session from one terminal to another (user-triggered
session transfer).

� Some workflow decides, based on user context and other parameters from the workflow
execution, to inform a user about the convenience of transferring an ongoing session to
another device (grid-triggered session transfer). This situation typically can take place if a
context-change occurs after a grid-initiated SIP call (e.g. in an eHealth environment, there is a
grid-initiated SIP call between a user and a doctor. The doctor is using some device not
capable to visualise a medical application, but he/she is moving and now there is a reachable
beamer near him/her).

The following drawing shows the user-triggered session transfer, in the way it was implemented
for the prototype in the first project phase.

Figure 2 – User-triggered Session Transfer

In this scenario two users (Source MT and Remote MT) have established one SIP session, and
one of them (Source MT) wishes to transfer his session to another device (Target MT). So, the
Source MT sends a REFER SIP message to the Remote MT, including the Target MT SIP URI
in this message. After the Remote MT receives this message, it can start a standard SIP session
setup process with the Target MT, and the session will continue now from the Remote MT to
the Target MT.

Basically the difference regarding to the scenario described at D4.1.1 (pg 67), is where the
REFER message is sent. Sending it to the remote MT being involved in the communication
(instead of the target MT, as described in D411) avoids the inclusion of the “Replaces” header
field in the SIP request and simplifies the process. Section 3.3.3 describes the message sequence
in detail.

The other scenario refers to the grid-initiated session transfer. In this context, there is a SIP
session established between two users (Source MT and Remote MT), when the Workflow
Manager (based on the user context information and some workflow execution parameters)
decides to inform to the SIP architecture (SIP Broker) about the convenience to perform a
session transfer, from the device being used (source MT, e.g a PDA) to a more suitable device
(target MT, e.g. a beamer).

D4.1.3, 1.1

© Akogrimo consortium members page 20 of 92

Figure 3 – Grid-triggered Session Transfer

As shows the figure above the components involved in this scenario are the following:

� Workflow Manager: this component is in charge of sending the SOAP request (1) to the
SIP Broker, in order to indicate it that one session transfer should be started from Source MT
to Target MT. The SOAP request (1) includes three parameters: the user identity of the
participants of the ongoing session and the target MT’s SIP AoR).

� SIP Broker: once it receives the SOAP request (1) from the Workflow Manager, it retrieves
the SIP URIs of the participants from the A4C (i.e. concerning the source and remote MTs
being used), then it builds the REFER SIP message and sends it to the SIP Server.

� SIP Server: it receives the REFER message from the SIP Broker and forwards it to the SIP
Proxy which is supporting to the Source MT.

� SIP Proxy: it is placed in the Access Network, and is in charge of forwarding the REFER
message to the Source MT.

� MT: it is the end user device. Once the Source MT receives the SIP REFER message , in
order to transfer its current session to another device (more suitable), it starts the Session
Transfer process described before (Figure 2)

3.3.2. Interaction with other subsystems

The SIP module offers a Java interface, which enables the communication from/to the end user
application running on top. Considering the point of view of the application running on top, this
interface can be divided in two main parts:

� The public interface that the SIP Module component offers to the application in order to
initiate different SIP requests.

D4.1.3, 1.1

© Akogrimo consortium members page 21 of 92

� A Java interface that the applications have to implement in order to receive notifications
from the SIP UA. These notifications can be a response to a process initiated by the
application, an incoming request from another SIP entity, or intermediate notifications on the
status of a transaction in progress.

So as part of the middleware offered to the MT SIP-aware applications, the SIP module offers a
set of functions to initiate, accept, reject, and so on, a SIP session transfer, even if not initiated by
another MT. In fact, the SIP Broker WS interface includes a method to notify a user on the
availability of a more suitable device for an ongoing session. This method can be invoked from a
grid entity (typically the Workflow Manager) to induce a session transfer.

3.3.3. Signalling

SIP signalling for session transfer in Akogrimo is based on the concepts and scenarios presented
in [SHACH03]. The proposed mechanisms have been adapted to Akogrimo platform specific
requirements. In the draft, two possibilities to perform session transfer are presented: Mobile
Node Control Mode and Session Handoff (SH) Mode. The main difference between them is that
the Mobile Node Control Mode allows the Source MT to retrieve a previously transferred
session. Session Handoff Mode is not as flexible as Mobile Node Control Mode, but it simplifies
signalling and implementation. SH Mode is the approach selected in Akogrimo, because its
capabilities satisfy session transfer requirements for Akogrimo scenarios, so there is no real
advantage in making signalling and implementation more complex.

In the Session Handoff Mode, the session is completely transferred to the Target MT. The
Source MT is no longer related with the session being held. As stated before, this is how sessions
are transferred in Akogrimo.

Figure 4 shows the signalling involved in a user-triggered session transfer. In the MSC, the
Source MT has established a session with the Remote MT. Then, the user decides to transfer the
session to a Target MT for any reason. Session transfer is started with a REFER message, which
tells the Remote MT to transfer the session to the Target MT. The REFER message also creates
a subscription relationship between the Remote MT and the Source MT. This subscription is
used by the Remote MT to inform the Source MT about the progress of the transference by
means of NOTIFY messages. The Remote MT then establishes a new session with the Target
MT according to a standard SIP session setup. Once the new session is established, the Remote
MT informs the Source MT, which sends a BYE message to the Remote MT to tear down the
previous session.

D4.1.3, 1.1

© Akogrimo consortium members page 22 of 92

Source MT Remote MT Target MT AR QoSB SIP Server A4C

1. REFER (target MT)

2. REFER (target MT)

DATA

17. BYE

18. BYE

19. Free resources (assigned to session with Source MT)

5. NOTIFY (100 Trying)

6. NOTIFY (100 Trying)

10. ACK

11. ACK

13. NOTIFY (200 OK)

14. NOTIFY (200 OK)

3. 202 Accepted

4. 202 Accepted

9. INVITE (target MT)

Session Setup between remote MT and target MT; source MT is informed about the progress via SIP NOTIFY

DATA

20. 200 OK

21. 200 OK

22. Free resources

15. 200 0K

16. 200 OK

7. 200 0K

8. 200 OK

Figure 4 – SIP Session Mobility (session handoff mode). User triggered

Note that the signalling presented in the last figure is a bit different from the one proposed in
[SHACH03], where the Source MT sends the REFER message to the Target MT instead of the
Remote MT. The Target MT then contacts the Remote MT and establishes a session with it. As
the Remote MT does not maintain an ongoing session with the Target MT, some mechanism to
distinguish the session transfer from an independent new session is needed. This is achieved via
the Replaces header, defined in [RFC3891]. This header is included by the Source MT in the first
REFER and copied by the Target MT in the INVITE it sends to the Remote MT. Its presence in
the INVITE message indicates a session transfer, and the header contains the needed data for the
Remote MT to know which session is actually being replaced.

The signalling proposed in Figure 4 for Akogrimo simplifies the messages exchanging and UA
behaviour, its drawback being that the Target MT does not know it is engaged in a session
transfer, as it receives a standard INVITE from the Remote MT. Whether this is important or
not depends on each application. In the Akogrimo’s eHealth scenario, session transfer is used for
a multimedia videoconference application, and when the session is transferred the application
running on the remote MT just continues sending audio and video coming from the microphone
and the webcam, but to another device. Target MT does not need to be aware of a session being
transferred. This issue should be taken into account for future Akogrimo applications using SIP.
If these applications need remote party awareness of session transfer, more complex signalling
should be implemented.

D4.1.3, 1.1

© Akogrimo consortium members page 23 of 92

Figure 5 shows the signalling needed to perform a Grid-triggered session transfer. In this
scenario, the SIP Broker makes use of the REFER message to ask the Source MT to transfer the
session. This should not be strange, as the REFER method can be used to make a remote UA
send any other method, not only INVITE. In this case, it is use to cause another REFER, and
this is why this mechanism is known as Nested REFER.

Apart from this, the signalling involved is the same as in the previous scenario. The REFER sent
by the SIP Broker also creates a subscription in the Source MT, which will inform the SIP Broker
about the progress of the transfer via NOTIFY messages.

Remote MT Target MT AR QoSB SIP Server

4. REFER (source, move to 'target')

5. REFER (source, move to 'target')

8. NOTIFY (100 Trying)

9. NOTIFY (100 Trying)

15. NOTIFY (200 OK)

16. NOTIFY (200 OK)

6. 202 Accepted

7. 202 Accepted

12. REFER (target MT)

18. 200 0K

19. 200 OK

10. 200 0K

11. 200 OK

A4C SIP Broker. Workflow Manager

1. SIP transfer request (source, remote, target AoR)

2.GUP request (source)

3. GUP (source): source AoR

Accept transfer

17. SIP transfer request finishes (OK)

Source MT

Map AoRs to current URIs

13. REFER (target MT)

DATA

14. Free resources (remote MT session)

Session Transfer between Source MT, Remote MT and Target MT; SIP Grid Gw is informed about the process progress via SIP NOTIFY

Figure 5 – SIP Session Mobility (session handoff mode). Grid triggered

3.4. Terminal Mobility

Terminal mobility refers to the ability of a terminal to remain connected to the network even if it
changes access point or access technologies.

SIP alone is not enough to guarantee seamless terminal mobility, for if a non-Mobile IPv6
capable terminal changes access point, it loses connection to its previous network and gains a
new IP address in the new network. In practice, that means that all its ongoing communications
before the change, are stopped and have to be restarted.

3.4.1. Architecture

Terminal mobility in Akogrimo is achieved with the usage of Mobile IPv6 [MIPv6]. The Mobile
IPv6 protocol enables mobility at layer 3 in a transparent manner, i.e. higher layers don’t need to
know, and in fact are not aware if the terminal they are communicating with is using mobile IPv6
or not.

D4.1.3, 1.1

© Akogrimo consortium members page 24 of 92

For implementing Mobile IPv6 in a network, one new entity has to be added to the network:

� Home agent (HA): A node that resides at the MT’s home network, which is in charge of
forwarding traffic directed to the MT while it is away from its home network so that it looks
as though the MT is virtually at his home network. To this end, the HA must be aware of the
MT’s current binding.

Additionally, mobile terminals have to be modified in order to have support for Mobile IPv6.
The Mobile IPv6-enabled terminal may described as

� Mobile terminal (MT): A node with the ability to change its point of attachment to the
network keeping connections alive.

Any entity communicating with the MT is called the correspondent node.

� Correspondent node (CN): Any peer node which a MT is communicating with. A CN does
not necessarily have to implement mobility i.e., a CN may be either mobile or stationary, with
or without mobile IPv6 support.

When the MT is away from his home network the HA will act on behalf of it forwarding all the
packets addressed to the MT at its Home Address (HoA) to its current Care of Address (CoA) by
means of a tunnel. The CN is not aware that the MT is roaming unless it too supports Mobile
IPv6. If this is the case, the CN will realize that its traffic is being tunnelled by the HA and may
perform a route optimisation by directly communicating with the MT by means of the MT’s CoA
instead of using the tunnel provided by the HA. This should be the standard mechanism because
it notably increases the performance. In order for the MT to communicate its position to the HA
and all the CNs it is communicating with, a procedure is launched in which a packet called
Binding Update (BU) is sent with the address currently used and a packet called Binding
Acknowledgement (BA) is received by the MT as a confirmation.

3.4.2. Interaction with other subsystems

Mobile IPv6 is transparent for higher layers. However, in some situations the QoS Broker must
know whether or not a terminal is outside its home network. For that purpose, Akogrimo’s
Home Agent includes a module which will communicate with the QoS Broker.

That module’s function is solely to translate any HoA into CoA, and vice-versa. The results of
that translation will allow the QoS Broker to better perform its decisions.

3.4.3. Signalling

3.4.3.1. Fast Handover

The goal of Mobile IPv6 is to achieve seamless mobility of devices. Due to its movement, the
MT may have to change its point of attachment to the network by using a new access router that
is closer to its current position. This change of point of attachment to the network is called
handover and involves acquiring a new CoA and communicating the HA and CNs its new
location before it can be fully operative again and the communication can be re-established.
Voice applications, for example, are very sensitive to delays and need the handover to be fast
enough in order to for it to be seamless.

Fast Handover [FHO] reduces handover latency by anticipating the handover by means of the
link layer. It allows the MT to start sending packets on a new network link as soon as it is
detected, and also allows the MT to receive packets as soon as its attachment to the new link is
detected. This way, while maintaining the previous connection intact and sending packets
through it, the MT also sends packets through the new network link (effectively duplicating the

D4.1.3, 1.1

© Akogrimo consortium members page 25 of 92

packets). This process, also known as bicasting, avoids the loss of packets during the handover
process and consequent degrading of quality in applications that are making use of the network.

3.4.3.1.1. Mobile Terminal Initiated Handover

Figure 6 depicts a scenario in which a Mobile Terminal is moving from the Old Access Router
(oAR) to the New Access Router (nAR). Numbered messages show how the FHO is executed.
The explanation of the messages is given below.

Figure 6 – Fast Handover

The Mobile Terminal detects a new access network and decides that it should move there. The
reason may be related to better signal in the new network or user preferences. The MT begins the
FHO process by sending a HandoverRequest message to the current AR (1). Upon receiving this
message the AR sends a request for approval of the handover to the QoS Broker (2). The QoSB,
after verifying that the requested access network has available resources to match the user’s
requirements, sends a HandoverDecision message to both the oAR and nAR (3,4).

The oAR informs the MT that it can move to the new access network by sending it a
HandoverResponse message (5). When the MT receives that message, it performs some internal
checks and sends a FastBindingUpdate to the oAR (6) which is subsequently reported to the QoSB
(7). The MT then configures its layer 2 connection to the new link and sends a
FastNeighbourAdvertisement message in order to populate the nARs neighbour cache (8).

Having received the FNA, the nAR notifies the QoSB that the handover was successful (9) and
the QoSB informs the oAR of the handover’s success (10). Finally, the oAR informs the QoSB
that information about this MT has been deleted and that MT’s control has been handed to the
nAR (11).

D4.1.3, 1.1

© Akogrimo consortium members page 26 of 92

3.4.3.1.2. Network Initiated Handover

In this scenario, it is the network which decides that the MT must perform a handover to a new
access network. The QoSB sends the oAR a HandoverDecision unsolicited message specifying that
the MT must roam to the new access network. The oAR sends a HandoverResponse to the MT,
which upon its reception must perform the necessary steps to make the handover to the nAR.

In case the new access network is no longer available to the MT, it can request aborting the
procedure by sending a FBU with a negative acknowledge.

The steps of the NIHO are the same as the MTIHO, except the former does not include steps 1
and 2.

3.4.4. Security

The use of Mobile IPv6 should not make the network less secure. In order to do that, MIPv6 has
already some security mechanisms. Others mechanisms are also used to further improve security.

Binding Update protection is necessary for preventing an attacker from disrupting or hijacking
the communication between two nodes.

The use of IPSec extension headers allows the protection of messages exchanged between the
MT and the HA. It also protects the authenticity and integrity of Mobile Prefix Solicitations and
Advertisements.

Protection of messages between MT and the correspondent node is achieved through a
procedure called Return Routability.

Security is developed further in chapter 7 of this deliverable.

D4.1.3, 1.1

© Akogrimo consortium members page 27 of 92

4. Quality of Service

4.1. Introduction

Quality of service can be defined in a very basic sense as the consistent and predictable delivery
of data. The Akogrimo network must be able to provide such diverse services as interactive audio
(e.g. a SIP audio session) or large data transfers (e.g. some Grid service which requires large
portions of data to be transferred among different machines for computation). These diverse
services have completely different requirements on a network level. The former requires a
relatively small amount of bandwidth (e.g. 64Kbps) but very strict latency requirements, in order
to allow a normal conversation without interruptions. The latter requires large amounts of
bandwidth (e.g. 512Kbps or more) but is tolerant when it comes to latency, since a delay does not
affect the computation of the data. Quality of service is used in this case to accommodate the
different network flows according to their requirements and at the same time optimize the use of
the network resources. QoS also has an impact on the reduction of network infrastructure costs.

This section will present the functioning of the QoS system and the interactions among the major
components involved in QoS.

4.2. QoS Architecture

4.2.1. Overview

Figure 7 shows the 4.1 work package components which are responsible for managing QoS in
the Akogrimo network. All other components, including possible QoS clients which can make
QoS requests but are not involved in managing it, are dimmed.

Figure 7 – QoS subsystem components

D4.1.3, 1.1

© Akogrimo consortium members page 28 of 92

4.2.2. Components involved in QoS subsystem

The PBNM system is responsible for distributing policies to the QoS Broker. It is discussed in
chapter 5.1.

The QoS Broker manages all network resources that belong to the network(s) it is responsible
for. It knows at every moment the usage level of the network resources and the users; with that
knowledge combined with the policies it receives from the PBNM, it is able to make informed
decisions whenever a request from a user arrives. Additionally, the QoS Broker can receive
requests from the Execution Management Service (EMS) through the QoS Grid Gateway. The
QoS Broker is described in chapter 4.3.1.

The Access Router, besides providing access to users of either wireless or wired technology, will
enforce the QoS rules it gets from the QoS Broker. Whenever a user starts a network flow with a
determined QoS level, the AR checks if the user is allowed that QoS level or otherwise and
correspondingly allows or blocks the network flow. The Access Router is described in chapter
4.3.2.

4.2.3. QoS Bundles

To make an effective use of network resources and to assure that a user can utilize the services he
is entitled to without disruptions, the Mobile Network Layer will implement end-to-end Quality
of Service, for all types of mobility. The QoS system allows fine-grained QoS reservations at the
access networks, but aggregates different flows with the same QoS requirements in the core
network.

For implementation and scalability reasons, the network supports well defined QoS bundles,
strongly influenced by the existing models for mobile technologies (UMTS). Each of the three
defined bundles is designed for a specific usage profile, audio, video and data. A QoS Bundle is
comprised of several well defined services, which the user may choose from when using the
Akogrimo network. Table 1 presents these bundles.

Bundle 1 Bundle 2 Bundle 3

Mix audio + data High data + video Mostly voice

10 – Interactive 20 – Interactive 10 – Interactive

100 – Data 1000 – Data 1 – Priority

1 – Priority 200 – Priority 1 – Signalling

1 – Signalling 1 – Signalling 250 – Best Effort

250 – Best Effort

Table 1 – QoS bundles and usage. Values are in kilobytes per second

Signalling: This is traffic needed so as to maintain and support the network infrastructure;
therefore it is the highest priority. It is time-critical and, in fact, essential to network operations as
a whole. Typically its bandwidth requirements are very low.

Interactive real-time: This is time-critical traffic that will be used mainly for video conferencing
or audio communications. Interactive multimedia applications are very sensitive in regards to
delays. The delays allowing for optimal functioning of interactive applications are less than
100ms. Latency, jitter and out-of-order packets also affect adversely voice communications.

Priority: This type of traffic is not time-critical, but it is important, such as multimedia streaming,
or some grid application data exchange. It is higher priority than Data Transfer, but has lower
bandwidth available typically.

Data Transfer: Data transfer is somewhere in between Priority and Best Effort (BE). This type
of traffic is not time-critical but may be loss-sensitive. Furthermore, out of order packets are
typically not a concern for applications that use Data Transfer.

D4.1.3, 1.1

© Akogrimo consortium members page 29 of 92

Best Effort: As the name implies this service offers best effort. If the network conditions are
good, this should be fine for most applications. If the network is heavily loaded, BE will be the
most affected. This is basically what Internet provides.

4.3. QoS subsystems and interactions

4.3.1. QoS Broker

The QoS Broker is the network component which effectively manages all network resources. It
receives global network policies from the PBNM system. Requests for QoS from access routers
have to be approved by the QoS Broker which then sends appropriate configurations to the ARs.
It also exchanges information with other QoS Brokers.

Mobility is also dependent on the QoS Broker, since a user may not change Access Network
(AN) if, for example, the new AN has all its resources already occupied. When a user moves
from an access network to another then both brokers are involved in the process, assuming that
the different access networks are supported by distinct QoS Brokers.

Figure 8 shows the QoS Broker functional architecture:

Figure 8 – Akogrimo QoS Broker

The QoS Broker has a Policy Attendant which communicates with the PBNMS and stores the
policies it receives in a policy database. It is also possible for the QoS Broker to request policies
by itself.

The COPS Attendant module allows it to communicate with the AR using the COPS protocol
[COPS]. It is through this interface that the QoS Broker will receive QoS requests and other
information from the Access Routers. It will also be used to send appropriate configurations to
the ARs.

The A4C Client module allows the QoS Broker to retrieve user profiles from the A4C Server.
Those profiles are then cached in the Profile database for efficiency reasons. This eliminates the

D4.1.3, 1.1

© Akogrimo consortium members page 30 of 92

need to do a request to the A4C Server each time the QoS Broker needs information from the
user’s profile. The A4C Client module is also used to communicate metering data, received from
the Access Routers, to the A4C Server after having been processed by the QoS Broker. For a
sample user profile, see Annex C.

A COPS Attendant module is responsible for receiving QoS requests from the QoS Web Service.
This module also sends QoS status notifications, for SLA monitoring purposes. These messages
are transmitted to the QoS WS which then communicates with the SLA Monitor.

The Topology, Network Status and Sessions databases are used for QoS Broker internal
operation:

� Topology DB – holds information about routers and respective interfaces. It allows the
QoSB to find an actual route for a data flow.

� Network Status – allows the evaluation of whether there are available network resources for
establishing a new session.

� Sessions DB – holds information about ongoing sessions.

4.3.1.1. Differences to previous version

There are two main differences between the present architecture and the previous version which
was presented in deliverable D4.1.1.

� Accounting: in the previous version accounting was only present in the Access Router.
Upon the implementation of the actual software it was realised that it would be beneficial to
move the accounting module to the QoS Broker. Having the AR do all the accounting work
would imply added communications between the AR and the QoS Broker for retrieving user
information which is necessary to correlate the network flows and the users responsible for
them. It would also mean that it would be necessary to add logic to do that operation. The
present architecture is simpler, albeit introducing an extra step in the accounting
communications.

� QoS Grid Gateway: while in the previous version a web service interface was presented as a
solution for communicating with the EMS, that interface has evolved into a separate
component. This component has a web service based interface to the EMS. That interface is
in fact not limited to the EMS – it can also be used by any other service that wishes to do so.
For communicating with the QoS Broker it uses a COPS interfaces, much like the Access
Router.

4.3.2. Access Router

4.3.2.1. Overview

The Access Router acts as an interface between wired/wireless terminals and the core network. A
single AR may support different access technologies. The rest of the network will be able to
communicate with different mobile terminals in the same way, regardless of the technology they
are using for network access.

The Access Router also provides network management components (such as QoS Broker, for
example) with a uniform way of managing a heterogeneous network environment such as the one
which will form the Akogrimo network.

The AR resides on an Access Network at the edge of the Akogrimo network, and thus, any
attempt to unlawfully use network resources without proper permission will be halted at the AR.

D4.1.3, 1.1

© Akogrimo consortium members page 31 of 92

A user is required to authenticate himself to the provider before he can use any resource of a
provider’s network. User authentication requests are intercepted by the AR and then forwarded
to the A4C Server.

A user is immediately authorised once he has successfully authenticated. That authorisation
allows him to use basic network resources such as moving between different ANs.

Figure 9 shows a functional view of the AR.

Figure 9 – Akogrimo Access Router

The Access Router is comprised of the AR engine which provides most of its functionalities. It
also incorporates an A4C Client module which communicates, using the Diameter protocol, with
the A4C Server for authenticating users. The AR engine is, in its turn, formed by the following
modules:

� COPS Attendant: The COPS Attendant is the main interface of the AR. It is through this
interface that the AR communicates with the QoS Broker. QoS requests from the mobile
terminal will be translated into COPS messages and then delivered to the QoS Broker. QoS
requests may come in the form of explicit RSVP messages or DSCP packet marking;
whatever the case, and assuming that the AR is properly configured to handle those options,
the AR will process them and deliver the appropriate COPS message to the QoS Broker.

� QoS Manager: The QoS Manager module is responsible for managing per-user flows
established in the AN, as well as the per-hop behaviour of the AR.

� Metering: The metering module is able to do per-flow metering. Its results are
communicated to the QoS Broker, which then does some processing for relating flows with
users and finally delivers the results to the A4C Server.

� Mobility+FHO: The Mobility and FHO module will deal with users’ mobility requests.

� Advanced Functions: Advanced Functions is a group of modules that implement certain
advanced mechanisms which may be used by the AR:

� QoS Trans-signalling: The translation of external QoS signalling into internal DiffServ
signalling, appropriate for the CN, is done by the QoS Manager module. This translation
is then sent to the QoS Broker, where it is validated and communicated to the rest of the

D4.1.3, 1.1

© Akogrimo consortium members page 32 of 92

network. Having the AR do the translations and the QoSB the validations and
communications allows the distribution of processing effort among ARs and QoSB’s.

� Advanced Signalling Processing: This module is capable of processing signalling messages
from layers above layer 3, such as SIP. It can inspect packets and retrieve QoS related
information, such as session bandwidth from SDP packets. With this information, the AR
may setup a temporary resource allocation which would then be used in case the session
setup is successful, thus diminishing the time necessary compared with normal setup.

� Legacy QoS: This module provides support to legacy applications that are unaware of the
Akogrimo network QoS framework.

� User Equipment Interface: The User Equipment Interface is in fact a group of modules
that deal with communications to and from the mobile terminal. These communications can
be done through a signalling mechanism, be it explicit or implicit. Alternatively, a mechanism
such as connection tracking can be used. The modules that compose the UEI are:

� DSCP: The DSCP module is capable of recognizing and controlling network flows
marked with a specific DSCP code. It is also capable of re-marking the packets, should
the need arise.

� RSVP: This module extracts information from RSVP requests and passes that
information to other modules.

� SIP: If required, SIP requests are intercepted by the ARs Advanced Functions module
and they are processed, else they are simply forwarded to the SIP Proxy. Processing of
SIP messages is done to allow the extraction of relevant QoS information or even change
the messages themselves.

� Connection Tracking: This module is capable of tracking TCP sessions. Other transport
protocols may also be tracked, allowing customised services on a per-flow/session basis.

4.3.2.2. Differences to previous version

There is one significant difference between the present architecture and the previous version
presented in deliverable D4.1.1.

� Accounting: as stated in the previous chapter, the AR is no longer responsible for sending
accounting information to the A4C Server. Its responsibilities in that matter are limited to
gathering metering data and providing it to the QoS Broker, which will handle them
appropriately.

4.3.3. Mobile Terminal

The mobile terminal runs a Linux kernel patched with Mobile IPv6 and Netfilter. The MIPv6
patch obviously enables Mobile IP functionality. The Netfilter patch is necessary for implicit
signalling to work. It permits

� the marking of packets with a specific DSCP

� the matching of packets with a specific DSCP

4.3.4. Policies/PBNM interactions

The network components must be configured according to the network operator’s requirements.
Since configuring large networks can be tedious and error-prone, Akogrimo will use Policy Based
Network Management system, which will allow network administrators to use a simple interface
for configuring global network policies that will be propagated to the rest of the network.

D4.1.3, 1.1

© Akogrimo consortium members page 33 of 92

The PBNM system is responsible for providing network policies and configurations to the QoS
Brokers, which will then configure the Access Routers. For more information on PBNM, see
chapter 5.1.

4.3.5. User profiles/A4C interactions

The user profile is stored in the A4C Server. When a user connects to the network, the QoS
Broker will request the user’s profile to the A4C Server, and will cache it during the user’s session
in order to avoid repeating requests for the user profile.

The user profile holds information about the services which the user has at his/her disposal.
With that information, the QoSB is able to perform the decisions on whether or not the user is
allowed access to a specific service.

A sample skeleton of a user profile is available in Annex C.

4.4. Signalling

This section will present the signalling mechanisms which QoSB, AR and MT use to
communicate with one another.

4.4.1. QoS Broker <-> Access Router

Signalling between the QoS Broker and the Access Router is done with the COPS protocol
which provides all necessary functionality as well as the possibility of being extended to
accommodate new functionalities.

The Common Open Policy Service protocol (COPS) is a client/server policy exchange protocol.
The clients (Policy Enforcement Point or PEP) send requests to the server (Policy Decision
Point or PDP). The PDP then makes a decision and sends it to the PEP. The COPS protocol is
extensible; it can recognize new self-identifying objects and supports client specific information
without changes to the protocol. It uses TCP for transport, provides message level security for
authentication, replay protection and message integrity. It can also use IPSec [IPSEC] or TLS
[TLS] for authorisation and securing communications between the PDP and PEP.

4.4.2. Access Router <-> Mobile Terminal

The signalling between the Mobile Terminal and the Access Router may be handled in different
ways. The functionality provided by the multiple different ways is, however, equivalent. The next
sections present the different signalling schemes which can be adopted.

4.4.2.1. Implicit signalling

4.4.2.1.1. Overview

Implicit signalling is done by having the Mobile Terminal mark its packets according to the QoS
class required, or by having the AR automatically mark the packets of a flow for which a given
policy exists.

Implicit signalling is closely tied to the notion of well-known services. Akogrimo well known
services that require a specific QoS may be used without requiring any signalling from the part of
the MT.

Implicit signalling is also used for support of legacy applications, which are unaware of the
Akogrimo QoS-enabled network.

D4.1.3, 1.1

© Akogrimo consortium members page 34 of 92

In any case, two distinct possibilities exist for implicit signalling usage:

� The MT marks the packets that applications send. In this case the MT is pre-configured for
handling application specific packets and marking them accordingly.

� The AR recognizes a particular flow for which appropriate policies exist which require that
flow to be treated with a particular QoS level. In this case the AR re-marks the packets from
the default value to the desired value, thus enabling QoS on that flow.

4.4.2.1.2. Packet Marking

Packet marking means setting the Traffic Class field of an IPv6 packet to a specific value. The
Traffic Class field is composed by eight bits; the six most significant bits are used for the value of
the DSCP (Differentiated Services Code Point), while the remaining two bits are used for ECN
(Explicit Congestion Notification). In Akogrimo the ECN bits are also used as part of the DSCP.

The Access Router analyses each and every packet that is sent by the Mobile Terminal. Knowing
the DSCP of a packet, the AR then matches it with its internal rules, which have been previously
setup by the QoS Broker. If a packet does not match to a rule, it is dropped. Else the packet is
sent to its destination through the core network and using the appropriate QoS.

4.4.2.1.3. Message sequence

The following picture shows a message sequence depicting two mobile terminals communicating
with each other using network QoS.

Figure 10 – Implicit QoS request

MT1 initiates the communication with a ping packet which was marked in the mobile terminal
(1). AR1 analyses the packet and recognises by its DSCP that it requires a determined QoS level.
Since it does not know if the user is allowed that QoS or not, it contacts the QoS Broker (2). The
QoS Broker finds out that MT1 is indeed allowed to use that QoS for that flow, as is MT2.

D4.1.3, 1.1

© Akogrimo consortium members page 35 of 92

Before responding to the AR1, however, it will inform AR2 that MT1 and MT2 will be having a
QoS session and that it must reserve resources for that (3). AR2 then receives the configuration
and sends a report stating that all went OK (4, 5, 6). Only then does AR1 receive its
configuration for the flow (7, 8). The ping packet then traverses the core network and is delivered
by AR2 to MT2 (9, 10). The ping reply will trigger the equivalent message sequence, but in the
inverse direction.

It is worth pointing out that all this signalling occurs only for the first packet of a given flow.
Other packets will be processed according to the configuration that was received before and
require no signalling overhead.

4.4.2.2. RSVP signalling

It is possible to use RSVP [RSVP] for QoS requests thanks to the QoS trans-signalling
capabilities of the AR. Figure 11 shows an RSVP request message sequence.

Figure 11 – explicit QoS request using RSVP

In this scenario MT1 issues an RSVP Path request that is detected by AR1 (1). AR1 extracts
relevant information and requests the QoS Broker an appropriate configuration and mapping of
that RSVP reservation into DiffServ Class of Service (CoS) (2). The QoS Broker then responds
to AR1 (3) with appropriate configurations and filters. AR1 then sends a RSVP Resv message to
MT1. At the same time, the QoS Broker sends a COPS provision message to AR2 (4) with
information that will be used to build a new RSVP Path message and also for configuring AR2.
The RSVP message built by AR2 is then sent to MT2 (6) which will respond accordingly (7) with
a RSVP Resv message. Finally AR2 responds to the QoSB provisioning message (8).

4.5. QoS and EMS interoperation

The interoperation between QoS Broker (QoSB) and Execution Management Services (EMS) is
provided by the QoSB Grid Gateway. This component exposes some of the QoSB’s
functionality as Web Services, enabling the EMS to interact with the QoSB.

D4.1.3, 1.1

© Akogrimo consortium members page 36 of 92

4.5.1. Architecture

Figure 12 – QoSB Grid Gateway

Figure 12 presents a functional view of the QoSB Grid Gateway. It is composed of three
software modules.

� The WS Interface is responsible for communication with other Web Services, namely the
EMS and the Monitoring service. It is a web service developed with the Globus Toolkit.

� The Gateway Engine is where most of the logic resides and is developed with the C++
programming language. It communicates with the WS Interface via standard internet sockets,
using a simple purpose-specific protocol that allows the Gateway Engine to receive QoS
requests and to send the responses to the WS Interface.

� The COPS Attendant is responsible for communicating with the QoS Broker. It is a C++
program that makes reuse of some of the software classes already developed for the AR and
the QoS Broker. Communication between COPS Attendant and the Gateway engine is done
through normal function calls.

4.5.2. EMS Interface

The QoSB Grid Gateway exposes the methods described below. Note that the interface is not
limited to the EMS - its use in the methods description is just for simplicity.

Method Arguments Purpose

check_qos_availability user
qos_bundle
qos_service

This method is used by the EMS to check if the
network is able to accommodate the new flow required
by the EMS.

Note that no reservation is performed by this method.

set_qos user
SLAid
qos_bundle
qos_service

This method is used by the EMS to perform the actual
QoS reservation.

Table 2 – QoS-EMS interface methods

The set_qos method allows the EMS to select not only the qos_service (real-time, data, etc.) but also
to request the QoS Broker to permit the user access to a better QoS Bundle. This particular

D4.1.3, 1.1

© Akogrimo consortium members page 37 of 92

function is not yet implemented as some issues such as who is to be charged for that are still not
clear.

4.5.3. Monitoring Interface

The QoSB Grid Gateway also has an interface to the Monitoring Service. The QoSB Grid
Gateway will be the information producer and the monitoring service is the information
consumer.

An appropriate notification will be sent if an SLA is not being complied with by the network
infrastructure. Since the QoSB will always check the status of the networks, this situation only
arises when the network is at or near full load and a high priority network flow, such as a request
from a doctor for patient data, arrives at the QoSB.

4.6. Security

Security at the network level involves a wide array of problems, most of which are not Akogrimo
specific. As such our focus has been in matters more relevant to Akogrimo.

One of the major concerns is user’s safety and data confidentiality. For this reason, IPSec will be
used between MT and AR to provide data integrity and confidentiality. It is not possible to use
end-to-end tunnel mode, since that would prevent the AR from inspecting packets sent by the
MT.

Network entities may use IPSec for communication among themselves. This will prevent an
intruder who gains access to the core network from posing as a given machine.

More details can be found in chapter 7.

D4.1.3, 1.1

© Akogrimo consortium members page 38 of 92

5. The Akogrimo SIP framework

5.1. Introduction

The Session Initiation Protocol (SIP) is an application-layer protocol that provides mechanisms
to establish, modify and terminate sessions. In conjunction with other IETF protocols it can
provide advanced support for multimedia sessions, although it is not restricted to multimedia.
These protocols are SDP, Session Description Protocol for describing multimedia sessions; RTP,
Real-time Transport Protocol for transporting real time traffic and RTSP, Real Time Streaming
Protocol for controlling delivery of streaming data. It can provide also user and session mobility.
This section is intended to describe how SIP infrastructures cooperate with the rest of the
network infrastructures to provide such kind of services.
The Akogrimo SIP-related components are the Mobile Terminal (MT) SIP Module, the SIP
Server and the SIP Broker (the old SIP Grid Gateway). A detailed description of them can be
found in D4.1.1 [D411]; however, since the architecture of each one has been evolving, an
analysis of this evolution will be performed, both at architecture and implementation levels.

5.2. SIP Architecture

5.2.1. Mobile Terminal: SIP Module

The internal architecture of the MT SIP Module (which was described in D411 [D411]) has been
slightly modified to avoid dependencies with the type of session being handled. Figure 13 shows
the old version of the component (focussed only on the session control part; subcomponents
related to the SIP presence handling has not been depicted). The modified elements and
interfaces have been highlighted.

Figure 13 – Old MT SIP module architecture

Session data handling is an attribute very close to the meaning of “session” within the context of
each type of application. For example, for a classic multimedia application a “session” means the
exchange of RTP traffic, so “session data handling” will consist on the control of the ports being

D4.1.3, 1.1

© Akogrimo consortium members page 39 of 92

used to exchange this kind of information. But for other applications (like the gSDP application
described in section 5.3.1) it can have an absolutely different meaning.

In the old architecture, there was a specific component that was responsible for interfacing the
Media Control module (which was responsible for the RTP traffic handling). Considering that
media control is something particular for multimedia applications, this subcomponent introduced
a strong dependency with some specific type of application (in this case, a multimedia
application), so one of the potentials of the SIP protocol (its independency from the type of
session or application) was lost.

The proposed architecture is depicted in Figure 14. In the new version, the Media Control IF
module has been removed; additionally, a clear differentiation between session control (i.e.
signalling) and session data handling (i.e. data exchange) has been introduced. The control plane
comprises all subcomponents related only to signalling, which are independent from the type of
application being handled. The core part of this subset of components is the Session Control
Logic. This component interacts with the data plane core part trough a dedicated internal
interface (I-SIP-2.7.1) which is used, for example, to inform that a problem with the data
exchange has occurred, or to stop this data transmission if the user ordered it.

In order to consider the application-dependant nature of the session handling, in the new
architecture each application will be responsible for the definition of its specific session data
handlers, which have to be registered in the MT SIP Module. All registered session handlers are
managed by a single component named Session Data Manager, which substitutes the old Media
Manager IF module and offers a generic interface to the signalling core part.

Figure 14 – Revised MT SIP module architecture

This change in the architecture introduces also a modification on the nature of the E-SIP-10
external interface, while the old E-SIP-13 (RTP interface between the Media Manager of the
MTs) becomes unnecessary. This is described in the table below.

D4.1.3, 1.1

© Akogrimo consortium members page 40 of 92

External interface Old architecture New architecture

E-SIP-10 MT SIP module – Media Manager
(Java interface between MT
components)

MT SIP module – MT SIP module
(session-specific interface between
different MTs– e.g. RTP for
multimedia sessions)

E-SIP-13 MT Media Manager – MT Media
Manager (RTP for multimedia
sessions)

Not necessary

Table 3 – Changes in the external interfaces of the MT SIP module

5.2.2. Network components

5.2.2.1. SIP Server

No significant changes from the architecture described in D4.1.1 [D411].

Figure 15 – SIP Server architecture

Figure 16 – AN SIP proxy architecture

D4.1.3, 1.1

© Akogrimo consortium members page 41 of 92

5.2.2.2. SIP Broker

The SIP Broker can be understood as an application server (following the IMS terminology)
which offers SIP-based services (e.g. grid initiated SIP calls and session transfers, gSDP session
establishment and termination…) to the upper layers, exposing them as web services.

3. SIP Broker

3.2. Broker Engine

3.3. SOAP IF

3.1. SIP UA

E-SIP-2

E-SIP-7

I-SIP.3.1.1

I-SIP-3.2.1

SIP Server

Workflow

Manager

3.4. A4C IF

E-SIP-8

A4C

I-SIP-3.4.1

Figure 17 – SIP Broker architecture

5.3. SIP-SOAP synergies

As it has been defined in the updated architecture documents, it is necessary to address the
integration of the GRID environment in a ubiquitous and mobile context where the different
actors (users and services) can move to a different terminal (with a different network address), or
appear/disappear suddenly.

The agreed approach is to integrate SOAP-based Web Services with SIP signalling protocols in a
framework for addressing this mobility and ubiquity feature in non-multimedia sessions like Grid
sessions, problem also known as the “SIP with SOAP interaction” where the main protocols
(SIP for ubiquity and SOAP for Web Services) have to interact.

In the proposed approach, GRID applications will be able to:

� Establish a GRID session with a mobile/ubiquitous service without a prior knowledge of its
current location.

� Use the SIP mechanisms to manage sessions, like transfer a session, or control a Grid session
by a 3rd party.

� Using the presence and context management mechanisms established by the SIP SIMPLE
infrastructure.

From a service provisioning point of view, it is needed to provide an interface to support the
functionality needed by Grid applications, which includes the following:

� At start up phase, mobile/ubiquitous services will be associated to a certain SIP URI, which
has been registered in the SIP registrar with the SIP REGISTER method. This SIP URI can
be simply the URI of the user that started the MT where the services are running, or an URI

D4.1.3, 1.1

© Akogrimo consortium members page 42 of 92

representing the services. Within the context of the SIP-SOAP synergies, from now on we
will refer to it as “service URI”.

� The applications, instead of using EPRs (End Point References, as stated in WS-Addressing)
for identifying resources, should use in the establishment phase SIP URIs for identifying
mobile/ubiquitous services, so they will send a SIP INVITE to the service URI.

� In the SIP answer, by means of a specific “Grid Session Description Protocol” (from now
on, gSDP), the Grid application will get the needed Grid session information to start the Grid
invocations (i.e. the current service EPR).

Additionally, Grid applications could include the adequate logic needed to:

� Use further session management features provided by SIP like session save/load/restore,
useful also for session transfer. There are already some proposals for this feature (Web
Services Continuity), like the approach presented in [WS CONT].

� React to context changes which are notified via SIP.

This service provisioning can be done in two ways:

� Provide a SIP API to the Grid applications. Grid applications will handle SIP interactions by
themselves, managing registrations and invitations. This is the cleanest approach in terms of
architecture, but implies that Grid applications have to be modified in order to use the
interfaces offered by the SIP UA or the Session Control Logic for SIP protocol handling.

� Provide some intermediate modules, which will be invoked by the Grid applications and
manage the needed SIP interactions on behalf of the Grid applications, even establishing a
“Grid session” on behalf of them. These modules will offer their capabilities through
standard Web Service interfaces. This approach will ease the implementation of the Grid
applications, since they will need to use just SOAP messages even for SIP-related methods.
Thanks to these modules, SIP information such as the current location as well as notifications
about the status of mobile services running at registered MTs on the SIP Server, are
propagated to the Grid layer and vice-versa. In this way, the Grid layer can keep track of the
mobile users and readjust itself to changes on the fly.

Finally the second approach (the usage of intermediate modules) was adopted in order to
minimise the changes of the grid applications; however, the first option has not been discarded
for a next stage of the project.

Next section describes how the chosen solution (named “Services SIPification” works within the
Akogrimo context.

5.3.1. Services SIPification framework

As mentioned before, the adopted solution involves some intermediaries in which the grid
applications delegates in order to handle all the underlying SIP interactions. Depending on the
role and the nature of the involved Grid services, two types of intermediaries are envisaged:

� For the mobile/ubiquitous grid services running at MTs, considering that these MTs already
have a SIP module, the simplest solution is to have a specialised application handling the
gSDP sessions. This MT gSDP application should be active in the MTs where the service to
be invoked is running and it will offer some API to the services in order to modify the
services information. In order to interact with the MT SIP module, it must follow the general
rules for building Akogrimo SIP applications described in section 5.4.1.

� For grid services not running at the MTs (tipically the EMS service), the current SIP Broker
module WS interface will be extended, adding a WSRF-compliant WS developed on top of
GT4 that acts as a gateway service in front of the SIP infrastructure. Using these new

D4.1.3, 1.1

© Akogrimo consortium members page 43 of 92

facilities, a grid service will be able to retrieve the current EPR of another service running on
a MT, be aware of the service availability, etc.

The way in which all these elements interact is described in the following MSCs.

Figure 18 – Intermediaries and interfaces setup

During the MT startup, the grid services, the SIP module and the gSDP application which will act
in behalf of the grid services are started following the depicted sequence in the right side of the
picture. The SIP module startup involves a SIP registration and a SIP presence publication, in
order to make visible the MT for other grid services that could be interested in the grid
applications running on it. After the gSDP application starts, the MT will be ready to provide
information about the grid services running on it. The service URI to be used will be the SIP
URI being used during the SIP registration.

The interface of the intermediate module running on the SIP Broker has also to be initialised, as
shown in the diagram (left side). After the initialisation, the consumer service (e.g. the EMS in the
sequence) will be ready to receive WSRF notifications.

Next sequence shows how the EPR of a mobile/ubiquitous service can be retrieved using this
framework, in order to invoke it.

Figure 19 – SIPification session establishment and service invocation

When the EMS needs to know the EPR of a service running on a MT, it invokes the operation
getConnectionDetails offered by the SIP Broker, indicating which service it is interested in
and the SIP URI being used by the MT in which the service is expected to be running (1). The
EMS can also request details about all the services running in the specified terminal. The SIP
Broker starts a SIP gSDP session setup with the required MT (2, 3, 4), whose status basically
provides the information the EMS needs to invoke the services. Finally, the method
getConnectionDetails returns with the required information (5). Annex D.1 describes the
agreed format used by the SIP gSDP session, which is also used as return value to the EMS. At

D4.1.3, 1.1

© Akogrimo consortium members page 44 of 92

this point, the EMS knows the EPR to be used in order to invoke the service or services it is
interested in (8).

Additionally, the SIP Broker performs a subscription to the SIP presence information of the
service SIP URI (6, 7); in this way, it will be aware on the availability status of the whole terminal
and it will be able, for example, to inform the EMS if the user disconnects from one location and
then connects from a different one. Using this feature, the EMS can take an appropriate decision,
like getting the services EPRs at the new services location. This is the behaviour described in the
figure below.

Figure 20 – User disconnection and reconnection from another location

Steps from 1 to 7 represent a controlled disconnection from certain location. From the point of
view of the services SIPification, most relevant steps are:

� The SIP Broker informs the EMS about the gSDP session termination using a WSRF
notification (3), indicating that all services running at the MT become unavailable. The format
of the content of this notification is described in Annex D.2.

� The Presence Agent informs about changes on the presence status while the presence
subscription done during the gSDP session setup phase remains active (5).

Then the service URI is used to connect again from another location (steps from 7 on). Thanks
to the active presence subscription, the SIP Broker detects that the presence status of the
associated service URI becomes online again (9) and it can inform on this to the EMS (10), which
typically will request again for the service details at the new location.

Even if an accidental disconnection takes place, the EMS will be aware on this situation, since the
SIP Broker will receive a SIP presence notification indicating that the presence status publication
of the service URI has expired. This event will be interpreted as an incidental disconnection and
the EMS will be informed about the complete services unavailability at the corresponding URI.

Formally, the presence information is not needed, since it is used only as an indirect mechanism
to detect a further reconnection (i.e. a SIP re-registration). The SIP Broker would be aware on
the registration status of the service URI using the method proposed in RFC3680 [RFC3680],
also based on the SIP event framework but for the registration event itself. Additionally,
incidental disconnections could be prevented by monitoring the status of the established gSDP
session, as described in RFC4028 [RFC4028]. Both mechanisms are being evaluated.

D4.1.3, 1.1

© Akogrimo consortium members page 45 of 92

The SIP session established will be used as the main mechanism to inform the EMS about
changes on the MT grid services availability or EPRs. So, if the information related to some
service changes, the MT gSDP application will send a reINVITE containing the new gSDP
session properties. The EMS will be informed on this through a WSRF notification, whose
content indicates a change on the services using the format described in Annex D.2. This
sequence is depicted in Figure 21.

Figure 21 – Change on services information

When the information related to the services running on certain MT is no longer needed, the
EMS can terminate an existing SIP gSDP session. In this case, the SIP presence subscription is
also terminated. See next figure for more details.

Figure 22 – gSDP session termination (from EMS)

5.4. Implementation

Main technologies being used for the SIP architecture development are Web Services, Java and C.
In the MT all components have been developed in Java, while in the SIP Server C was used (SIP
Server was developed using and extending SER).

The SIP Broker functionalities are exposed by means of the SOAP IF subcomponent (see Figure
17) like a Web Service, so, the Workflow Manager or the EMS simply has to invoke (by means of
SOAP requests) some method exposed by the Web Service and which are described in the Web
Service WSDL file. Additionally, it includes a client application that acts over a property of the
WSRF producer, which induces a WSRF notification to the consumer services subscribed to that
property. This is the way in which the Broker Engine can send WSRF notifications to the EMS
when required.

Other SIP Broker subcomponents (Broker Engine and SIP UA) were implemented with Java.

5.4.1. MT SIP Module

The MT SIP module has been developed in Java, and it has been designed to support multiple
and simultaneous SIP applications and sessions running over it. Applications interact with the

D4.1.3, 1.1

© Akogrimo consortium members page 46 of 92

SIP Module process using Java RMI technology, but the way in which the SIP Module has been
designed hides these details to the application developers.

Each application may be responsible for the handling of certain types of session, so they have to
define both the content type of the sessions they are responsible for, and the number of
permissible simultaneous sessions they can support: for example, the multimedia application
manages “application/sdp” sessions while the gSDP application is responsible for the handling
of “application/gsdp” sessions. In both cases, due to the nature of the sessions themselves, only
one session is allowed.

When the SIP Module starts, it checks if the login application was started in order to make use of
the current login information, which includes the SIP Address of Record, or main SIP URI (SIP
AoR) to be used during the SIP registration. If yes, the SIP module is successfully registered; if
not, a GUI is shown to request for the login data.

Once the SIP Module has been successfully started, SIP applications can be initiated. The final
version of the SIP module could be configured to automatically start some applications after a
successful registration. In the other hand, since SIP applications cannot work if the SIP module is
not running, all applications running on top will be closed when stopped.

The corresponding debian package install several .jar files that can be used to build an Akogrimo-
compliant SIP application following certain rules, as will be described below.

The mapping between the functional components and their implementation is described in the
table below.

Component .jar file Package

2.1 Sip Stack
JainSipApi1.1.jar

nist-sip-1.2.jar

These libraries contain the JAIN SIP specification
and RI, and a JAIN-compliant SIP Stack developed
by NIST. They are used by the SIP UA.

2.2 SIP User Agent SIPUA2.0.jar org.akogrimo.sip.ua

2.3 Session Control Logic MTSIPSessionControlLogic.jar org.akogrimo.sip.sipmodule.sessioncontrollogic

2.5 Session Description
Manager

MTSIPSessionControlLogic.jar org.akogrimo.sip.sipmodule.sessiondescription

2.7 Session Data Manager MTSIPSessionControlLogic.jar org.akogrimo.sip.sipmodule.sessiondata

2.9 QoS IF module MTSIPSessionControlLogic.jar org.akogrimo.sip.sipmodule. qos

2.10 App IF module MTSIPSessionControlLogic.jar org.akogrimo.sip.sipmodule

Table 4 – MT SIP module implementation: libraries and packages

These libraries offer a middleware that can be used by the programmers to build a SIP-aware
Akogrimo-compliant application, under certain preconditions (see Figure 23):

D4.1.3, 1.1

© Akogrimo consortium members page 47 of 92

Figure 23 – Akogrimo MT SIP application’s preconditions

1. Each application must define its own session object that implements the generic session
interface, named ISession. This empty interface will be used in all interactions with the SIP
Module; the application will be responsible to perform an appropriate casting from the
generic type to the specific one, and vice versa.

2. Each application must define how to parse its specific session description data from and to
SIP message bodies. This is done by extending from the generic parser base class, named
SessionDescriptionParser.

3. As mentioned before, each application must define its own session data handler, by extending
from the SessionDataHandler base class.

4. The MT SIP application must extend from the class SIPModuleConnector. This class just
provides an implementation of the key utilities that all Akogrimo SIP applications need in
order to make use of the SIP Module. But a session-oriented application may want receive
notifications from the session control logic (e.g. a new incoming session has just arrived), or
event notifications from the SIP Presence User Agent. In that case, it would additionally have
to implement one of the interfaces that define all possible incoming events from the SIP UA,
so the application developers will be able to decide what to do when the event comes – if the
application is not interested in the event, the method will be simply empty. For session
handling, the MT API offers an utility class (named SIPSessionApp) that already extends
from SIPModuleConnector and implements the required interface (for session handling,
ISessionControlLogicListener), so developers can extend directly from it.

Next table summarises these classes and the SIP Session Control Logic library package which
contains them.

Class/Interface Package (located at)

ISession org.akogrimo.sip.sipmodule.sessiondescription

SessionDescriptionParser org.akogrimo.sip.sipmodule.sessiondescription

SessionDataHandler org.akogrimo.sip.sipmodule.sessiondata

SIPModuleConnector org.akogrimo.sip.sipmodule

D4.1.3, 1.1

© Akogrimo consortium members page 48 of 92

Class/Interface Package (located at)

ISessionControlLogicListener org.akogrimo.sip.module.event 1

SIPSessionApp 2 org.akogrimo.sip.sipmodule

Table 5 – MT SIP module implementation: location of the main classes

After that, the main function of the application must do the following:

1. Create and initialise the Session Description Parser subcomponent, registering its own session
parser.

2. Create and initialise the Session Data Manager object, registering its own session data
handler.

3. Connect to the SIP Module.

4. Register the corresponding listeners.

The structure of the main function is depicted in Figure 24. Note that the base class
SIPModuleConnector already provides the implementation of the required methods, so they are
available to the MT SIP application subclasses.

public static void main (String[] args)

{

myApp app = new myApp();

…………………………………………………………………………………..

…………………………………………………………………………………..

………………………………………………………………………………….

}

1. // SIPModuleListener implements addDataParser, so available to myApp
 app.addDataParser(new myParser());

2. // SIPModuleListener implements addDataHandler, so available to myApp

 app.addDataHandler(new myDataHandler());

3. // SIPModuleConnector implements connectToSIPModule, so available to myApp

 String strSIPModulePath = path_to_sipmodule.xml_file;

app.connectToSIPModule(strSIPModulePath , "application/mySDP");

4. // Register listener. SIPModuleConnector contains a ISIPModule object, so available

 // to myApp

app.sipModule.addListener(app, "application/mySDP");

Figure 24 – Akogrimo MT SIP application. Main function structure

Just to mention that the connectToSIPModule method is responsible for creating the RMI
connection between the application process and the SIP Module, but these details remain hidden

1 All available listeners are defined in this package

2 This class extends from SIPModuleConnector and implements ISessionControlLogicListener, so it can be used as
the base class for all session-oriented SIP applications.

D4.1.3, 1.1

© Akogrimo consortium members page 49 of 92

to the application developers. This makes Akogrimo SIP applications clearer and simpler, by
avoiding the developers to know the concrete details of the RMI connections.

5.4.1.1. MT gSDP application

As mentioned earlier, a specialised SIP session-oriented application has been developed to act in
behalf of the grid services running at the MTs. The first version is just a proof-of-concept
prototype oriented to demonstrate the feasibility of the Akogrimo SIP-SOAP synergies approach,
so not all the required functionality has been included; however, missing features will be included
in further versions. Next table shows a comparison between the main characteristics of the first
prototype and the envisaged refined version:

Current prototype Final version

Started by the SSO login application after the
SIP Module

Started by the SIP Module itself when
successfully logged in

Interface with the grid services simulated; the
services information is read from a preloaded
xml file

Console application to simulate services input

Real interface with the grid services, which will
be able to use the gSDP application.
Additional GUI for admin. and testing
purposes.

Table 6 – gSDP application 1st prototype vs. final version

The mapping between the installed functional components and their implementation is described
in the table below.

Component .jar file Package

gSDP application gSDPApp.jar org.akogrimo.sip.gsdpapp

Table 7 – MT gSDP application implementation: libraries and packages

The corresponding debian package installs a shell script (gsdpApp) to handle the gSDP
application from the console and an xml file (services.xml) with the simulated services
information. The format of this xml file is identical to the gSDP session specification defined in
Annex D.1.

5.4.2. SIP Server

The whole SIP Server has been build using SIP Express Router (SER) implementation as the
basis [SER]. SER is a powerful, easily configurable, C-written and free SIP server
implementation. SER can be easily configured to acts as a proxy, registrar or redirect server. Most
relevant characteristics of SER are:

� Speed: SER is able to process thousands of calls per second even on low-cost platforms.

� Extensibility: using SER it is possible to link new C code to redefine, or extend, current logic.
New code, which can be developed independently on SER core, is linked to it in run time. In
this way, new functionality is included by adding SER modules (*.so libraries) keeping the
SER core really fast and compact. This has been the adopted solution to add the interface
modules with the A4C and the PBNMS.

� Flexibility: routing decisions and SIP method processing can be modified by means of textual
scripts that administrators may write. By modifying the main script (named ser.cfg) it is
possible to control and modify lot of parameters (e.g. expiration time of registration requests)

D4.1.3, 1.1

© Akogrimo consortium members page 50 of 92

and introduce new logic (loading new modules, and invoking exported functions when
necessary).

� Portability: written in ANSI C, and deeply tested on PC/Linux, Sun/Solaris platforms.

� Interoperability: SER is based in open SIP standards. SER core implements basically RFC
3261.

� Small size: core footprint is 300KB, add-on modules take up to 630KB.

As mentioned before, SER has been built to be configured using a configuration file, named
ser.cfg. It is a C-Shell script which defines how incoming SIP requests are processed. During the
server startup, this file is translated into an internal binary representation, because the direct
interpretation of this file would make SER very slow. Considering the functional description
provided in D4.1.1 [D411], the main configuration file and the main part of the SER core
implements both the SIP Proxy and the SIP Broker Engine modules. The appropriate
manipulation of this file enables the delivery of incoming SIP requests to the specific module that
implements a more concrete functionality, like the Registrar or the A4C interface. Annex B
includes the SER configuration file (ser.cfg) used for the demo.

Extensions to implement the required interfaces are described in next subsections.

5.4.2.1. Akogrimo A4C IF SER module

The Akogrimo A4C IF sub-module has been implemented as a SER extension. The resulting
dynamic C library is named a4c.so.

The basic functionality of this module is to check and validate the A4C Token included in a SIP
request, acting as a filter for the corresponding SIP transaction. In order to validate the token, the
C library makes use of the A4C C++ client library. If the validation finishes with success, such
transaction is allowed. D4.1.1 [D411] provides detailed information on how this mechanism
works.

Next table summarises the new functionality that this library exports, which have to be invoked
from the ser.cfg configuration file in order to validate the corresponding transaction. Annex B
shows a usage example for the validation of a SIP REGISTER.

Table 8 – a4c.so exported functions

Function Description Parameters

aa_request
This function checks and validates the
A4C token included in a SIP
transaction

None when invoked from
ser.cfg file 3

The library offers some configurable parameters. Most significant are:

� The detail level of the logs (for debugging purposes a traces mechanism – independent from
the SER traces framework – has been included. This allows the library debugging without
“interferences” from the rest of the SER code).

� The name of the non-standard SIP header field in which the A4C token will be included.

3 The SER framework passes implicitly the incoming SIP message structure to the function.

D4.1.3, 1.1

© Akogrimo consortium members page 51 of 92

� The executable command for validation (a wrapper for the A4C C++ client library to be
invoked from the a4c.so code).

5.4.2.2. Akogrimo PBNMS IF SER module

As the PBNM section describes (section 5.1), policies related to SIP proxies or the SIP Server
may also exist, but since the envisaged policies involves others systems besides the SIP
components (i.e. the QoSBroker and the A4C system) they have been primarily defined for these
systems, so the PBNMS IF sub-module has not been implemented yet; however, it would be also
implemented as a SER extension if required and documented in a further update of this
document.

5.4.3. SIP Broker

The SIP Broker is a standard Web Service deployed on an application server which exposes SIP-
based functionality. To be precise, in the prototype version two functionalities were offered:

� Grid-initiated SIP Call, which enables the possibility to arrange a grid call between two SIP
users.

� Grid-initiated SIP transfer, which enables the possibility to inform a user he/she can move an
ongoing session to a most suitable device.

Other functionalities (e. g. a WS interface to expose the SIP SD facilities) are being considered to
be included in next versions. A detailed description of the offered interface is described in section
3.3.3.

The internal structure of the SIP Broker comprises four differentiated sub modules, following the
functional description provided in Figure 17:

� The SOAP interface, which accepts incoming WS requests from the “grid world”: to be
precise, from the Workflow Manager.

� The A4C IF, an embedded overlay of the A4C Java client used to request the A4C Server for
the generic user profile (GUP) of the users to be contacted. The GUP contains (apart from
other information) the SIP AoR of the user, which is crucial for all SIP interactions.

� The Broker Engine. This Java component is the core of the SIP Broker. Its main task is to
convert the WS request parameters (typically the Akogrimo IDs of the user to be put in
contact, or the device URI the user is allowed to move to) into a suitable format that the SIP
UA can understand. This is made through the facilities provided by the A4C IF submodule.
For efficiency purposes, and considering that only one SIP UA and one A4C client are
needed, it has been implemented as a separate Java process that can be accessed through Java
RMI.

� The SIP UA, which handles the SIP process itself. It has been implemented as a Java library
based on JAIN SIP that other components can use.

The mapping between the functional components and their implementation is described in the
table below.

Component .jar file Package

JainSipApi1.1.jar

nist-sip-1.2.jar

These libraries contain the JAIN SIP specification
and RI, and a JAIN-compliant SIP Stack developed
by NIST. They are used by the SIP UA. 3.1 SIP UA

SipUA2.0.jar org.akogrimo.sip.ua

D4.1.3, 1.1

© Akogrimo consortium members page 52 of 92

Component .jar file Package

3.2 Broker Engine SIPBrokerEngine.jar org.akogrimo.sip.broker.brokerengine

3.3 SOAP IF
sgg.war (deployed on
Tomcat5.0.X)

akogrimo.sipBroker

3.4 A4C IF liba4cclient.jar
This library (UniZh) contains several utility
packages that are used by the Broker Engine.

Table 9 – SIP Broker implementation: libraries and packages

Most of the parameters of the SIP Broker can be configured through an xml file (named
sipbroker.xml) which is installed together with the mentioned libraries. Parameters that can be
configured using this file are:

� SIP Broker Engine RMI port and policy file.

� SIP UA related parameters (IP address, port, transport…).

� SIP proxy server parameters (IP address and port).

� A4C related parameters (A4C client library location, A4C Server IP address…).

The SOAP IF component receives the request of arranging a SIP Call or transferring a session
from one device to other. The SOAP-IF then translates the SOAP request to a SIP request. The
invocation of the corresponding SIP Broker Engine is made via RMI technology. The SOAP IF
implements a client whose URL contact is stored on a properties file that belongs to the SOAP
IF component.

This component has been developed using J2EE with a Web Service interface, so, in principle,
any application server J2EE-compatible can host this web service. In our case, Tomcat 5.0.9 has
been used and the service follows the specifications of a standard Web Service.

D4.1.3, 1.1

© Akogrimo consortium members page 53 of 92

6. PBNM

6.1. Introduction

Policy Based Network Management (PBNM) goal is to help bridge part of the conceptual gap
between a human policy maker and a network element that is configured to enforce the policy.
When a human business executive defines network policy, it is usually done using informal
business terms and language. For example, a human may come with a policy statement that reads:
“traffic generated by our human-resources application should have higher priority for making it
through to its destination compared to traffic generated by people browsing the WEB during
their lunch breaks” (abstract policy). While this statement clearly defines QoS policy for the
network, the network itself cannot enforce it. Translation to “network terms and language”
(concrete configuration) is required.

Clearly this wide gap implies several translation levels, from the abstract to the concrete. Two
levels will be analysed here: CIM ([CIM]) closer to human natural language and used in many
Akogrimo systems -WebServices will use WSDL ([WSDL])- and COPS ([RFC2748]) (and its
extension [RFC3084]) closer to configuration commands and used in QoS System.

6.2. Architecture

Akogrimo is currently deciding and designing the PBNM framework. Two models, CIM [CIM]
and WebServices WS-Policy [WSPOLICY], seem to be the winning candidates for PBNM. They
are focussed on two different aspects, CIM for network management and WS-Policy for services
control. To give coherence to these two models, we propose integration in the highest (closest to
human language) policy level.

Figure 25 depicts de PBM model that can be followed. It is divided in PDPs and PEPs (Policy
Decision/Enforcement Points). PDPs take decisions and control and configure the PEPs who
enforce the policies. PDPs and PEPs may communicate using e.g. COPS or DIAMETER
protocols. The actual protocol depends on the system considered: COPS for QoS (see section
4.4), DIAMETER for A4C. PDPs can gather the policies from a PBNM Server (PBNMS). PDPs
should communicate with the PBNMS all using the same protocol e.g. CIM (XML based) over
HTTP. PBNMS will store the policies (e.g. in a LDAP repository) and offer a Graphical User
Interface (GUI) for the manager to introduce the policies. Policy conflict is detected in the
PBNMS. PBNMS can be integrated with the WebServices WS-Policy Policy Manager thus
forming the coherent Akogrimo PBM. Both CIM and WS-Policy are based on XML. Details of
this integration are to be provided, but on a first approach, two components that can be shared
by PBNMS Server and PM are the policy repository and the GUI. Here we concentrate on the
CIM approach and on QoS issues.

D4.1.3, 1.1

© Akogrimo consortium members page 54 of 92

QoS enabled router

(Queues and filters

Parameters…)

Other PEPs

AAA Client

(including

access router)

Deliver or block

Service to the user

QoS Broker AAA Server Other PDPs

PBNM server

(CIM)

XML

PM

(WebServices

WSDL)

XML

…

Akogrimo

Coherent PBM

manager

CIM policy language

System dependent configuration languages

Figure 25 – PBM Architecture. Relation with other components

6.3. Sample scenarios

PBNM covers a wide range of scenarios and situations. For instance we have “policy conflict”
cases. This is better explained by an example. We have two policies: policy 1 “users under 18
years old, have a 50% discount in MMS between 20:00 and 8:00” and policy 2 “gold profile users
have a 60% discount in MMS between 21:00 and 9:00”. If a user is gold and under 18, which
policy should be applied?? Mechanisms handling these conflicts must be designed, for instance
assigning priorities to policies, or policy “set-union” rules.

Other scenarios, more related to QoS, may be as following. Let’s consider the following policy:

“On any interface to which these rules apply, guarantee at least 30% of the interface bandwidth to transport QoS
class conversational, and at least 40% of the interface bandwidth to transport QoS class transactional.”

Policies in the system level can be grouped in PolicySet CIM class. This class can also contain
information about the roles of the entities to which these policies apply. In our example the
desired role is an interface, because we want to allocate for QoS Classes an amount of bandwidth
available through the interface. The resources assigned to specific roles are described in
PolicyRoleCollection CIM class.

In the following scenario another aspect of PBNM system occurs. Let’s consider the following
policy:

“If the EF traffic load between A and B exceeds 70% of the allocated bandwidth, allocate more bandwidth to the
EF traffic from other classes.” (1)

This is an example of dynamically applied (reconfiguration) policy. In order to initiate this policy,
the QoS system (namely the QoSBroker) needs to know from where and how to get more
bandwidth. It means that in PBNM system other policies (describing any conditions) must have
been defined earlier and sent to the QoSBroker. They can be configuration or reconfiguration
policies.

Firstly, QoSBroker must have information from the measurement system (this system can be the
same as the QoS System) about the actual situation in network. This implies that a policy should
be supported by the measurement system. This policy could be:

D4.1.3, 1.1

© Akogrimo consortium members page 55 of 92

“Provide measurements of the EF traffic between A and B every 10 minutes and send the trigger to QoS Broker if
it exceeds 70% of the allocated bandwidth”. (2)

Additionally, another policy defining how to get more bandwidth for EF traffic load is required.
It can be defined in the following way:

“If the AF traffic load is under 40% you can take up to 30% of its unused bandwidth.” (3)

Abovementioned policy is a typical network view level policy. It seems simple but in fact it
engages a lot of aspects of network management. In order to enforce the policy it must be
translated into lower levels of abstraction. It also interacts with other policies on the same
(network) level.

Policies related to SIP proxies may also exist. One may think in a policy that reads:

If the user profile is not “high priority” and the network load is above 50% then, in any audio-video call, suppress
the video codecs and force to make an audio-only call. (1)

This policy involves others systems besides the SIP proxy, namely the QoSBroker and the A4C
system. As in the example above, policies should be defined for these systems. For instance, for
the QoSBroker one may define a policy such as:

If the network load is above 50% then on any reservation request prevent the SIP Proxy about such a status and
send an alarm to the SIP Proxy.(2)

6.4. Documents, standards, protocols &

interfaces

The communication between PDPs and PEPs is well defined in standards. In our PBM model
this communication can be different between the several systems, the coherence is achieved in
the PBNM Server level. For QoS the PDP-PEP communication is based on COPS-PR
[RFC3084] and the data representation on PIBs [RFC3571].

At the abstract end of the policies (closer to human language level) is CIM. CIM [CIM] is defined
by DMTF. CIM facilitates a formal representation of network business rules, thus providing the
first concretization level: formally representing humanly expressed policy. CIM is based on UML
(Microsoft Visio files are available) and XML representation exists. CIM policies are based on
Policy conditions (if …) and actions (then …). CIM covers a wide range of policies. Figure 26
represents an example of QoS policies definition. Due to the innovative nature of Akogrimo
some new policies will need to be defined.

D4.1.3, 1.1

© Akogrimo consortium members page 56 of 92

Figure 26 – A declaration of a QoS policy in CIM

As we said CIM is based on UML but XML representation exists. Figure 27 shows the QoS
Service Class present in Figure 26 but defined in XML. The communication between the PBNM
Server and the PDPs is based on this XML representation which is transported over HTTP.

<?xml version="1.0" ?>

- <CIM CIMVERSION="2.2" DTDVERSION="2.1">

- <DECLARATION>

- <DECLGROUP>

- <VALUE.OBJECT>

- <CLASS SUPERCLASS="CIM_Service" NAME="CIM_QoSService">

- <QUALIFIER TOSUBCLASS="false" TRANSLATABLE="true" NAME="Version" TYPE="string">

 <VALUE>2.7.0</VALUE>

 </QUALIFIER>

- <QUALIFIER TRANSLATABLE="true" NAME="Description" TYPE="string">

 <VALUE>This is a concrete class that represents ….</VALUE>

 </QUALIFIER>

 </CLASS>

 </VALUE.OBJECT>

 </DECLGROUP>

 </DECLARATION>

 </CIM>

Figure 27 – Representation of a CIM class in XML

We recall that for WebServices and service management [WSDL] will be the high (closer to
human natural language) level language.

6.4.1. Example: mapping policies to CIM

We should see in this section, how one of the policies presented in the scenarios in section 6.3
can be mapped into CIM classes. Let’s recall the policy:

“On any interface to which these rules apply, guarantee at least 30% of the interface bandwidth to transport QoS
class conversational, and at least 40% of the interface bandwidth to transport QoS class transactional.”

The proposed mapping of this policy for different level of abstraction is presented in Table 10

D4.1.3, 1.1

© Akogrimo consortium members page 57 of 92

Levels

Sample Objective Sample objects Relevant model
(see 6.4)

System

On any interface to which these rules apply, guarantee at least
30% of the interface bandwidth to transport QoS class
Conversational, and at least 40% of the interface bandwidth to
transport QoS class Transactional.

Conversational
Transport Class

CIM (PCIM,
PCIMe, QPIM)

Domain

Network
If (DSCP value is 01) THEN guarantee 30% of available BW
If (DSCP value is 02) THEN guarantee 40% of available BW

Conversational
DiffServ Service

CIM (PCIM,
PCIMe, QPIM)

Device

A possible implementation of these rules within a PEP (router in
this case) would be to use a Weighted-Round-Robin scheduler
with 3 queues. The first queue would be used for DSCP01 traffic,
the second queue for DSCP02 traffic and the third queue for the
rest of the traffic. The weights of the Weighted-Round-Robin
scheduler would be 30% for the first queue, 40% for the second
queue and 30% for the last queue.

Routers, Interfaces,
Queues

CIM (PCIM,
PCIMe, QDDIM)

Device

Instance
Specific commands configuring the queues of the devices. Objects representing

PIBs
PIB, COPS

Table 10 – Illustration of a process of mapping a policy from system level to instance level

6.5. Implementation

The first implementation will follow closely the work done in the IST-Daidalos project. For
PBNMS-PDPs communications we will use CIM and the OpenWBEM [OPENWBEM] tool. It
is free source code and not based on XML but on Managed Object Format (MOF) , but this
should cause no problems. Indeed MOF is also an accepted representation of CIM (Figure 28).

// Copyright (c) 2005 DMTF. All rights reserved.

// ==

// CIM_QoSService

// ==

 [Version ("2.7.0"), Description (

 "This is a concrete class that represents….")]

class CIM_QoSService : CIM_Service {

};

Figure 28 – Representation of a CIM class in MOF

Note that other open source tools for managing PBM CIM framework are available, such as
OpenPegasus [OPENPEGASUS]. OpenPegasus and OpenWBEM offer very similar
characteristics, indeed both could be employed.

The interface between the PBNMS and the management entities (PDPs) can be implemented as a
CIM OpenWBEM provider running in the PBNMS. Currently this provider main functionality is
to handle Akogrimo policy extensions and, based on the type of policy considered, “forward” it
to the appropriate PDP(s). HTTP and CIM-XML (over IPv6) are used for this communication,
see for instance Figure 29, where the PBNMS address is 2001:…:a5df and the PDP’s (a QoS
Broker) one is 2001:…:693d.

D4.1.3, 1.1

© Akogrimo consortium members page 58 of 92

Figure 29 – Communication between the PBNM Server and a PDP

OpenWBEM provider implementation is based on a CIMOM (CIM Object Manager) loadable
library, a UNIX .so file, completely controlled by the CIMOM. OpenWBEM proposes a remote
provider concept: remote providers use a light-weight CIMOM implemented in the managed
entity (the PDP) that, making use of a loadable library, implements the provider interfaces to the
managed entity. In the managed entity (the PDP) the provider is in charge of translating the CIM
policy to PDP understandable policies. Figure 30 illustrates the remote provider concept.

Figure 30 – CIM Remote Providers

The communication between both CIMOMs is performed in CIM-XML over HTTP. The light-
weight CIMOM interfaces the managed entity. This is exploited in the implementation of some
units. OpenWBEM CIMOM is able to store policies on a LDAP repository and offers a GUI
(Figure 31) for controlling them. We can check there the Akogrimo Policy extensions (termed
D_***) that will be handled by the implemented provider in the PBNM Server and sent to the
appropriate provider(s) in the PDP(s).

D4.1.3, 1.1

© Akogrimo consortium members page 59 of 92

Figure 31 – GUI for the CIMOM (PBNM Server)

In the QoS Broker, its provider will “translate” the policies into a mysql database understandable
by the QoS Broker. The interface between the provider in the QoS Broker and the PBNMS’
Provider is bidirectional: the QoS brokers will request the PBNMS for a configuration at startup
time, and along the time it will send alarms/notifications to the PBNMS; the PBNM Server
(PBNMS) will send a policy definition whenever it is (re)defined by the human operator or by
automatic application triggers.

The QoS broker configuration information may include the network topology description, the
QoS description of the services offered by the operator, and the initial resource distribution that
must be defined in its domain. The services available are described by the PBNMS in terms of
the DSCP code, the required resources both for the downlink and the uplink flows. It is very
important for the operator to have a central network entity defining, in an integrated way, the
service QoS parameters. A central service parameter definition avoids network configuration
inconsistencies as well as it makes the configuration job much easier. Furthermore, when a
service redefinition occurs the PBNMS performs an almost instantaneous QoS entities
configuration. Figure 32 illustrates the QoSBroker policy database.

Figure 32 – QoSBroker Policy database

The QoS network configuration is performed accordingly to the network usage. The broker can
also use historical network usage information namely at start-up. The initial resource distribution
is sent by the PBNMS. Several CIM classes will need to be developed in order to extend CIM
model in order to support the QoS Broker model.

D4.1.3, 1.1

© Akogrimo consortium members page 60 of 92

7. Security

7.1. Introduction

Security tackles a wide range of different fields and one of its characteristics is that is something
we can’t get enough of. No matter how many security mechanisms are provided and how strict
they are there is always a something left out. The reason being that security is a trade off with
usability. Usually the more secure a system is, the less usable it is. The objective is always to
provide a fairly secure system optimizing usability. There is a need to define how far one would
like to go in terms of security and draw a line delimiting an acceptable level of security that is
considered more than necessary for the purposes aimed. For instance, a user could be requested
to be authenticated in order to make a transaction of a considerable amount of money, but just
be requested to show a token in case of a small amount purchase, making it less secure but faster.

7.2. Attack model

In order to be able to deliver a consistent security architecture, first the targets and severity of
attacks that can be performed need to be identified. Table 11 shows the attack relations between
the main Akogrimo actors. The most relevant attacks fields are coloured in red whereas
secondary ones are coloured in green; the rest of the fields are considered out of scope and left
white.

User Terminal OpVO BaseVO

Customer

Domain

Network

Provider

Service

Provider

User

4/4/4

relevant

but out of

scope 4/2/2 1/2/1 2/3/2 4/2/2

4/3/3

Not

specific to

Akogrimo

1/1/1

Accounting;

SLA

Terminal 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2 4/3/2

OpVO 1/1/1 1/1/1 1/2/1 1/3/1 1/2/1 4/4/4 1/3/1

BaseVO 1/1/1 1/1/1 1/2/1 4/4/4 1/2/1 2/3/2 1/2/1

Customer

Domain 4/1/1 2/2/2 1/3/1 1/3/1 4/3/3

4/3/2

Not

specific to

Akogrimo 1/3/1

Network

Provider 4/3/3 4/2/2 2/3/2 2/3/2 4/4/4

4/3/2

Not

specific to

Akogrimo 4/4/4

Service

Provider 2/2/2 3/3/3 1/1/1 1/3/1 1/2/1 1/3/1 1/3/1

Relevance in Ako/Likelihood in Ako/Impact

Attacker

T
a

rg
e
t

1 high - 4 low

Table 11 – Attack model

From this table one can infer what fields need to be tackled in WP4.1 in terms of security. The
provisioning of security in WP4.1 will therefore be aligned to the following directions:

D4.1.3, 1.1

© Akogrimo consortium members page 61 of 92

- Provisioning of security aligned to the research done in the project and therefore
analyzing in detail the security issues arisen within the context of the new functionalities
developed (e.g. SIP with SOAP interactivity). From the table one can easily infer that this
is the issue with more preference, as most fields related to OpVO and BaseVO are
considered of high priority.

- Provisioning of security as a whole, in order to provide guidelines for the security of the
complete platform developed. (e.g. provide authentication and Single Sign On (SSO)) and
avoid the introduction of insecurities that come to the hand of the technologies used (e.g.
weaknesses introduced by the use of MIPv6).

- Provision of security on the tools used for implementation. (e.g. Java stubs). This point is
of lower priority as it is not Akogrimo specific.

In general very general terms, the security mechanisms should strive to achieve the following
goals:

- Provide Privacy

- Avoid Impersonation, man-in-the-middle, replay attack by means of Authentication

- Establish a robust Authorisation system.

- Provide integrity of network messages.

- Avoid DoS, DDoS attacks

- Provide Non-repudiation, and attacks using false information or internal attacks by
means of Auditing.

7.3. Network substrate attack scenarios

This chapter lists relevant attacks to the Network substrate. Some of them are more relevant than
others in the Akogrimo context and therefore will be treated in more detail.

7.3.1. Mobility/MIPv6

The use of MIPv6 introduces new insecurities over regular IPv6 that need to be palliated. Among
them we find: MN impersonation, HA impersonation, MiM or DoS. They all exploit the fact that
the mobile terminal needs to update its position when doing a handover, by manipulating,
blocking this information or sending false frames.

7.3.2. Attacks to Access Router

The threats that could suffer the Access Router in the Access Network could be divided in two
sections, external and internal. External refers to the AR’s interface to the access network and
internal refers to the interface to the core network.

7.3.2.1. External attacks

� DoS (Denial of Service)

� There is no getting around these kind of attacks

� If the terminal is only allowed to use “well-behaved” Akogrimo software, then DoS
attacks are not possible

� Unauthenticated users get their packets dropped. However, a big number of simultaneous
attackers can be effective at DoS’ing the AR.

D4.1.3, 1.1

© Akogrimo consortium members page 62 of 92

� Various possibilities

� Low level radio signal jamming

� Unauthenticated user flooding the wireless network with bogus packets

� Unauthenticated user sending the AR valid packets that must be analysed

� Impersonation

� The AR works in layer 3. An attacker can spoof packets with a valid user’s ip address.
Authentication+authorisation+token should stop this from happening.

These attacks are not specific to Akogrimo, and consequently they are not a high priority. Some
safety measures against impersonation attacks are considered, but not against DoS.

7.3.2.2. Internal Attacks

� Malicious QoS Broker sends wrong rules, for benefiting or hurting a user(s)

� Malicious A4C server can send fake user information

� Malicious QoS Broker can send fake rules; can benefit a certain user, giving him QoS level
which he would not get normally

� Any component can cause DoS attacks

The AR has a few basic safety measures, such as requiring a configuration for each of the
components that are able to communicate with it. That coupled with authentication of the
components between them reduces risks considerably, as a bad misuse or attack can more easily
be attributed to a concrete component and therefore restrict its access or take any other measure
against it.

7.3.3. QoS Broker

The QoS Broker receives requests from the Access Routers and the EMS Web Service. With user
profile information it gets from the A4C Server, and also information about the current network
status, it decides if a user is allowed a network flow at a given QoS level.

The same than before, there are two kinds of attacks, external and internal attacks concerning the
QoS Broker.

7.3.3.1. External attacks

� Authenticated user(s) causing repeated requests to the QoS Broker (DoS)

o Since the AR gets rules installed when a new flow is requested, this will only cause
problems if the user starts a large number of different flows. With typical
Akogrimo software this is not possible, so the user’s MT would have to have
been compromised and special software installed on it.

o Several users can cooperate, maximizing the attack

7.3.3.2. Internal attacks

� Malicious A4C server can send fake user profile

� Malicious AR can

o use any kind of data collected from innocent users

D4.1.3, 1.1

© Akogrimo consortium members page 63 of 92

o Perform a DoS attack on the QoSB

� Malicious EMS can also benefit a certain user; can cause repeated QoS requests

� Any component can cause DoS attacks

As in the AR, the QoS Broker has basic safety measures that coupled with authentication of the
components between them reduces these risks considerably.

7.3.4. PBNM

The PBNM is mostly sensible to internal attacks performed by another Akogrimo component
such as:

• PBNM manager impersonation

• Fake Profiles obtained

• Policies not enforced correctly

7.3.5. Attacks to SIP signalling

The SIP entities that are involved in the Akogrimo SIP infrastructure are the Mobile Terminal,
the Proxy SIP (in the Access Network) and finally the SIP Server and the SIP Broker in the Core
Network.

The possible attacks that could suffer each one of these SIP entities could be the following.

7.3.5.1. SIP with SOAP security problem

The SIP with SOAP interaction in Akogrimo takes place in the component called “SIP Broker”,
which basically exposes some SIP functionalities as a WS (typically invoked by the Workflow
Manager). To be precise, in the prototype version two functionalities were offered:

� Grid-initiated SIP Call, which enables the possibility to arrange a grid call between two SIP
users.

� Grid-initiated SIP transfer, which enables the possibility to inform a user he/she can move an
ongoing session to a most suitable device.

Other functionalities (e. g. a WS interface to expose the SIP SD facilities) are being considered to
be included in next versions. So we can consider that the SIP with SOAP approach in Akogrimo
mainly relays on the capabilities that this component offers.

The internal structure of the SIP Broker consists mainly on three differentiated main
submodules:

� The SOAP interface, which accepts incoming WS requests from the “grid world”.

� The Broker Engine. This component is the core of the SIP Broker. Its main task is to
convert the WS request parameters (typically the Akogrimo IDs of the user to be put in
contact, or the device URI the user is allowed to move to) into a suitable format that the SIP
UA can understand. This is made through an A4CServer’s user profile request (using an
embedded A4C client), that returns – apart from other information - the SIP AoR of the user.
For efficiency purposes, and considering that only one SIP UA and one A4C client are
needed, it has been implemented as a separate Java process that can be accessed through Java
RMI.

D4.1.3, 1.1

© Akogrimo consortium members page 64 of 92

� The SIP UA, which handles the SIP process itself. It has been implemented as a Java library
that other components can use.

In order to avoid that some non-authorised entity can make use of the facilities that the SIP
Broker can provide, security mechanisms must be implemented to protect each possible access
path to this component. In next section both the authorised way to use the SIP Broker and the
possible attacks are described.

Apart from attacks, another crucial consideration must be taken into account. The currently
implemented interactions (grid triggered SIP calls and SIP session transfers) take place within the
context of a certain VO, i.e. some entity decides that two members of an opVO should have a
conversation, or one of the members should be requested to transfer an ongoing session it has
with another opVO component to a most suitable device. The distributed perimeter security
model adopted by the opVO means that interactions between entities can only occur in the
context of a specific opVO instance. This issue is considered in section 7.4.5.1.

7.3.5.1.1. SIP Broker threat model

Figure 33 shows both the authorised way to use the SIP Broker and the potential attacks we have
identified.

Figure 33 – “SIP with SOAP” possible attacks

During a normal (authorised) operation, the Workflow Manager will request for a SIP process
using the interface that the SOAP interface subcomponent provides; then it invokes the
corresponding method of the Broker Engine using Java RMI, which will invoke the Java API
provided by the SIP UA to start the corresponding SIP mechanism (arrange a call or request for a
transfer in the current prototype). These interactions have been depicted with black arrows in the
figure.

We have identified three types of potential attacks, depending on the faked entity. Non-
authorised element and interactions have been depicted in red:

1. If the SOAP interface does not check the identity of the invoking element (i. e. the
Workflow Manager), it could be possible that a non-authorised element makes use of the
exposed WS interface to make SIP call or SIP transfer requests. So in order to avoid this

D4.1.3, 1.1

© Akogrimo consortium members page 65 of 92

kind of attacks, this WS interface should implement authorisation mechanisms. This is a
pure WS interface security problem.

2. The broker engine is exposed as a RMI daemon, so it could be invoked from a remote
machine. So if the identity of the calling entity is not guaranteed, some entity which
knows the RMI URL could fake the identity of the SOAP interface and make non-
authorised requests; to solve this, the JAVA RMI interface must guarantee that only the
real SOAP interface is allowed to use the broker engine. This is a pure Java RMI
security problem.

3. Finally, some malicious SIP entity could pose as the whole SIP Broker (to be precise,
posing as the SIP UA) to send false SIP requests to end user’s MTs. If neither the SIP
Server nor the end user terminal checks for the request authenticity, this non-authorised
entity could send a request to a MT to initiate a call or to perform a transfer. Anyway, this
is a pure SIP security problem.

So all possible attacks in which some entity poses as the SIP Broker (of any of its components)
can be reduced to a technology-related security problem (security with WS, RMI or SIP
interactions). Chapters 7.4.5.2 and 7.4.5.3 describe these different security mechanisms.

7.3.5.2. Registration Hijacking

The SIP registration mechanism allows a user agent to identify itself to a registrar as a device at
which a user is located, in Akogrimo project the SIP address are as user@domain A registrar
assesses the identity asserted in the “From” header field of a REGISTER message to determine
whether this request can modify the contact addresses associated with the address-of-record in
the “To” header field. While these two fields are frequently the same, there are many valid
deployments in which a third-party may register contacts on a user's behalf.

The “From” header field of a SIP request, however, can be modified arbitrarily by the owner of a
UA, and this opens the door to malicious registrations. An attacker that successfully
impersonates a party authorised to change contacts associated with an address-of-record could,
for example, de-register all existing contacts for a URI and then register their own device as the
appropriate contact address, thereby directing all requests for the affected user to the attacker's
device.

This threat type belongs to a family of threats that rely on the absence of cryptographic assurance
of a request's originator. Any SIP UAs that represents a valuable service, for instance the SIP
Broker, might want to control the access to its resources by authenticating requests that it
receives. Even an end-user (MT) is interested in ascertaining the identities of originator of
request.

This threat demonstrates the need for security services that enable SIP entities to authenticate the
originators of requests.

7.3.5.3. Impersonating a Server

The domain to which a request is destined is generally specified in the Request-URI. UAs
commonly contact a server in this domain directly in order to deliver a request. However, there
is always a possibility that an attacker could impersonate the remote server, and that the UA's
request could be intercepted by some other party.

D4.1.3, 1.1

© Akogrimo consortium members page 66 of 92

In Akogrimo project this attack type is especially important, in case of impersonating a SIP
Broker [1], since an attacker could send a REFER message to an end user (for instance the
doctor) in order to establishes a grid call with other user (the patient).

7.3.5.4. Tampering with Message Bodies

Consider a UA that is using SIP message bodies to communicate session encryption keys for a
media session. Although it trusts the proxy server of the domain it is contacting to deliver
signalling properly, it may not want the administrators of that domain to be capable of
decrypting any subsequent media session. Worse yet, if the proxy server were actively malicious,
it could modify the session key, either acting as a man-in-the-middle, or perhaps changing the
security characteristics requested by the originating UA.

This family of threats applies not only to session keys, but to most conceivable forms of content
carried end-to-end in SIP. These might include MIME bodies that should be rendered to the
user, SDP, or encapsulated telephony signals, among others. Attackers might attempt to modify
SDP bodies, for example, in order to point RTP media streams to a wiretapping device in order
to eavesdrop on subsequent voice communications.
For these reasons, the UA might want to secure SIP message bodies, and in some limited cases
header fields, end-to-end. However, since many header fields are legitimately inspected or altered
by proxy servers as a request is routed, not all header fields can be secured end-to-end.

The security services required for message bodies include confidentiality, integrity, and
authentication. These end-to-end services should be independent of the means used to secure
interactions with intermediaries such as proxy servers.

7.3.5.5. Tearing Down Sessions

Once a session has been established by initial messaging, subsequent requests can be sent that
modify the state of the dialog and/or session. It is critical that principal participants in a session
can be certain that such requests are not forged by attackers.

Consider a case in which a third-party attacker captures some initial messages in a dialog shared
by two parties in order obtain the parameters of the session (“To” header, “From” header, and
so on) and then inserts a BYE request into the session. The attacker could opt to forge the
request such that it seemed to come from either participant. Once the BYE is received by its
target, the session will be torn down prematurely.

Similar mid-session threats include the transmission of forged re-INVITEs that alter the session.

The most effective countermeasure to this threat is the authentication of the sender of the BYE
message. In this instance, the recipient needs only know that the BYE came from the same party
with whom the corresponding dialog was established. Also, if the attacker is unable to learn the
parameters of the session due to confidentiality, it would not be possible to forge the BYE
message. However, some intermediaries (like proxy servers) will need to inspect those
parameters as the session is established.

D4.1.3, 1.1

© Akogrimo consortium members page 67 of 92

7.3.5.6. Denial of Service and Amplification

Denial-of-service attacks focus on rendering a particular network element unavailable, usually by
directing an excessive amount of network traffic at its interfaces. A distributed denial-of-service
attack allows one network user to cause multiple network hosts to flood a target host with a large
amount of network traffic.

SIP creates a number of potential opportunities for distributed denial-of-service attacks that must
be recognized and addressed by the implementers of SIP systems.

Attackers can create bogus requests that contain a falsified source IP address and a
corresponding “Via” header field that identify a targeted host as the originator of the request and
then send this request to a large number of SIP network elements, thereby using hapless SIP UAs
or proxies to generate denial-of-service traffic aimed at the target.

Similarly, attackers might use falsified “Route” header field values in a request that identify the
target host and then send such messages to forking proxies that will amplify messaging sent to
the target.
“Record-Route” could be used to similar effect when the attacker is certain that the SIP dialog
initiated by the request will result in numerous transactions originating in the backwards
direction.

 A number of denial-of-service attacks open up if REGISTER requests are not properly
authenticated and authorised by registrars.
Attackers could de-register some or all users in an administrative domain, thereby preventing
these users from being invited to new sessions. An attacker could also register a large number of
contacts designating the same host for a given address-of-record in order to use the registrar and
any associated proxy servers as amplifiers in a denial-of-service attack. Attackers might also
attempt to deplete available memory and disk resources of a registrar by registering huge
numbers of bindings.

The use of multicast to transmit SIP requests can greatly increase the potential for denial-of-
service attacks.

 These problems demonstrate a general need to define architectures that minimize the risks of
denial-of-service, and the need to be mindful in recommendations for security mechanisms of
this class of attacks.

7.4. Defences

Spotting the most important fields in which security work in akogrimo needs to be done help us
focus on the targets that need to be secured, in addition to that the review of possible relevant
attacks is used as a guidance to define a generic defence architecture to a broader range of attacks
on the previously defined targets.

7.4.1. Assumptions

To focus even more on the most interesting parts of security we will assume the following
premises:

- No attacks will be executed by an Akogrimo component from the core network towards
another akogrimo component. The case of having the QoSB attacking the PBNM,

D4.1.3, 1.1

© Akogrimo consortium members page 68 of 92

although possible, does not seem to be quite probable and therefore it will not be
considered, as typically network operators consider their core network secure.

- The core is considered secure, communications inside the core are not expected to be
eavesdropped or manipulated as long as they don’t leave the network’s administration
area. However, if communications transverse different administration areas, or imply two
user end points or a user endpoint and the network, this is considered as communication
outside of the core and therefore efficient security mechanisms should be developed.

- Misuse from part of the user that can compromise his own security is not contemplated.
That is, cases like the user loosing his keychain, physical engineering, user forgetting
passwords, etc… are out of scope.

- Users need to be previously registered as Akogrimo users before making use of it.

- The user’s device is considered to be the security endpoint. Usually that implies not more
than one simultaneous user per handled (device). This could be extended in the future.

- Security solutions at L2 are not considered since the Akogrimo architecture is all-IP
access technology independent. So WEP, WPA or any other L2 based security
mechanism is neither taken for granted nor expected and will not be considered as part of
this work. Although, in principle, not necessary, its use can be optional as additional
security means.

- Insecurity related to host internal software security such as software bugs, rootkits,
viruses, OS exploits as well as physical access attacks fall out of scope.

- Highly sophisticated and complicated cryptographic attacks that are highly improbable
are not considered. If a cryptographic algorithm is considered secure by the community
so will we. Some algorithms that have been broken can be still considered secure such as
the SHA-1 hash, considered broken but not necessary vulnerable. (brute force attack to
find collisions would take fewer than 280 operations whereas using a know attack “only”
269 operations)

7.4.2. Perimeter security

In order to maintain the core secure, the perimeter of the core needs to be efficiently secured. To
this end traffic coming from the Access network or the Internet will have to be correspondingly
secured.

7.4.2.1. Perimeter defence

It will be enforced that all access through the core or to elements in the core, will have to be
authenticated, authorised and audited. This reduces possible attacks to well known and auditable
users. In order to do this, we need means to authenticate users, enforce that they communicate
just with whom they are allowed to and encrypt communications between users and the network.
On the other hand, the user will also want to authenticate that the network he is using is the one
he thinks he is using in order to avoid attacks towards users by someone trying to pretend to be
an access network. This implies then bi-directional authentication.

- For authentication, the A4C will be used as shown in the Figure 34. PANA will be used to
convey the messages from the MT to the Access network and Diameter will convey the messages
inside the A4C infrastructure.

- The AR is the first line of defence of the Akogrimo network. Its role is to prevent unauthorised
users from accessing the Akogrimo network, and to forward valid packets from authorised users
to their destination. The AR uses, at its core, Linux kernel netfilter, which given a set of rules,

D4.1.3, 1.1

© Akogrimo consortium members page 69 of 92

determines whether or not to drop (or block) a packet. A first basic rule that would need to be
enforced is that no traffic without corresponding authentication or encryption will be let in.

In this section we make a short explanation of how the AR works internally, and then proceed to
analyse what attacks can be made and what protections the AR has.

� Network flows

A network flow is identified by protocol, source and destination addresses, their respective
port numbers and DSCP code.

� Rules

Netfilter is linux’s packet filter. It looks at packet headers and then decides whether or not to
drop packets based on rules with which can be configured

The AR gets information about how to configure its netfilter rules from the QoS Broker.

A rule identifies a network flow and has information on what to do with it.

� Encryption

IPSec in transport mode is possible. Packets will be encrypted from the MT to the AR, where
they are decrypted, allowing the AR to perform its operations. Then, after traversing the core
network and reaching the AR that serves the destination MT, they are once again encrypted
and finally delivered to that MT.

� AR General Characteristics

� Only accepts packets from authenticated users. All other packets are dropped.

� When a packet from a new flow arrives, it checks with the QoS Broker if it’s allowed

� When a packet from an already known flow arrives, filters are already in-place and the
packet is dealt with without further requests to the QoS Broker.

�

� Upon successful bidirectional authentication the A4C will securely convey to the AR and
the MT enough cryptographic material to create corresponding Security Associations and
therefore bootstrap an IPsec tunnel between both. Connections between A4C and AR are
considered secured as they both are inside the core network and connections between A4C
and MT are encrypted and the material is only provided after successful authentication.

D4.1.3, 1.1

© Akogrimo consortium members page 70 of 92

Figure 34 – Network Authentication

7.4.3. Mobility/MIPv6

The use of MIPv6 in case of interdomain mobility reserves some attention in terms of security.
To avoid the weak points MIPv6 introduces, the use of IPsec security mechanisms in transport
mode, as described in [DuCo05, RFC3776], to ensure integrity in Binding Updates (BU) and
Binding Acknowledgements (BA) is mandatory.

7.4.4. PBNM Defence

The PBNM just communicates with other components inside the same core network and
therefore no special network security mechanisms are contemplated. It is suggested, nevertheless,
the use of IPsec in transport mode and the use of the Akogrimo PKI infrastructure for
authentication. The weak points here are not considered relevant and therefore work will be
undertaken on other more important tasks instead.

7.4.5. SIP Defence

In the following the most relevant candidates for sip defence are presented.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible
existing security models derived from the HTTP and SMTP space. Several security mechanisms
are analysed and describe at Annex E of this doc, such as, IPSec, TLS, S/MIME, HTTP Digest
and so on.

The implementation in Akogrimo project of some certificate-based security mechanism, like TLS
[TLS], will provide data integrity and confidentiality, preventing from MiM attacks. Other

D4.1.3, 1.1

© Akogrimo consortium members page 71 of 92

authentication mechanisms, such as HTTP Digest could be used, in order to provide good DoS
attacks protection.

By using IPSec security mechanisms direct attacks on the MTs could be avoided making use of
peer-to-peer nature of SIP, therefore avoiding for instance that the attacker sends a request to the
MT, impersonating both the SIP Server and the SIP Broker.

Finally the implementation of S/MIME provides the following cryptographic security services
for electronic messaging applications:

� Authentication, message Integrity and non-repudiation of origin (using digital signatures), and
Data Confidentiality (using encryption).

� Since the general use of S/MIME is to secure the message bodies, such as the SDP rather
than message headers, it seems most logical, that S/MIME enables to avoid attacks like those
described in chapter 7.3.5.4 “Tampering with message bodies”.

It is worth noting as a drawback that S/MIME (the same as IPSec) generates considerable
overhead in SIP messages.

So as conclusion, each one of these security mechanisms has some advantage and some
drawbacks, therefore is possible that several of them are implemented in Akogrimo project.

Besides these mechanism related to own SIP architecture, Akogrimo will implement another
security mechanism “SIP&SOAP Security Model”, which will provide an additional security level.

7.4.5.1. SIP&SOAP Security Model (VO Security)

The adopted solution to take into account the opVO security perspective takes advantage on the
extensibility and backward compatibility of the SIP protocol and consists on the definition of a
new header field containing the opVO membership token, which will be included into the SIP
signalling messages involved during the grid-triggered SIP call or SIP transfer. This new header
will be processed at application level at the MTs, providing end-to-end security. Anyway, it will
have a meaning only within the Akogrimo context; any other "non-Akogrimo" SIP entities are
requested to ignore it, as SIP protocol specifies.

So using this approach, when a MT is requested to be the initiator of a SIP call, it can check if the
request coming from the SIP Broker contains a valid opVO token prior to start the
communication. In this way, the initiating MT can check that the call is authorised. The only
requirement is, this information should be included somehow in the Workflow Manager request
to the SIP Broker, because the SIP call / transfer is sent to the MTs by the SIP Broker. in
response to a WS request from the WorkFlow Manager.

In the other hand, and in the case of a grid triggered SIP call, the initiator MT will include its
opVO token in the request, so the receiving MT can be sure the call is authorised. MT will obtain
its opVO tokens by connecting to the corresponding VO User Agent during the VO login. The
User Agent is created by the workflow to represent a particular user to the workflow. The user
"connects" to the User Agent from a particular MT (authentication, selection of opVO,
authorisation, etc). At this point, the MT is given its opVO token.

The best aspect of this approach is that the SIP network entities do not need to be secured from
the opVO security model perspective - being outside the opVO firewall they are not a security
threat (other than from a denial of service). Of course, self protection for the SIP broker and the
SIP Server would be beneficial, and these could use the same mechanism (i. e. the baseVO
dynamic perimeter) to ensure they only respond to valid Akogrimo opVOs and MTs.

D4.1.3, 1.1

© Akogrimo consortium members page 72 of 92

7.4.5.1.1. opVO’s security model in Akogrimo

Essentially, any user/service participating in an opVO will be given an opVO token to prove
their membership of that opVO instance. In this way, the user/service should only accept
instructions/data from an entity that also possesses that token. This token can be used to provide
end-to-end security for the communications.

The VO security mechanism operates as follows: all participants in a opVO are given
membership tokens signed by the opVO and containing their identity. An opVO member’s token
will contain the following information:

OpVOManager’s Token
BaseVO name
BaseVO public key
opVO name
OpVOManager’s public key

OpVO Token
OpVOManager’s token
member’s name
member’s public key
member’s role

Table 12 – opVO member’s token content

Each participant only responds to messages that contain such a token. The message content can
be protected using the token and message sequencing mechanisms. Thus the opVO members
communications within this opVO are secured against external attach. This basic mechanism can
be extended to provide security against insider attacks by enforcing role-based authorisation, or
even checking with an authorisation engine (which would have to be in the opVO).

For example, we create an eHealth opVO, O1, with doctor D, patient P, and two services S1 and
S2. Now all of these are provided with an membership token for O1, containing their name. O1
(or rather its workflow instance) will instruct S1 to invoke S2. S1 checks the message came from
O1 and has an O1 membership token (if not, the message is ignored). It then invokes S2,
passing its own membership token. S2 checks the message is from S1 and that S1 has a
membership token. It then accepts the invocation.

In the context of the SIP with SOAP interactions being considered in Akogrimo (grid triggered
SIP calls and SIP session transfers), Mobile Terminals should be able to process tokens,
signatures, encryption, message sequencing, etc… However, if that were not the case for a
certain component, then the SIP Gateway will to take over the responsibility of operating the
"distributed perimeter". On receiving an instruction to connect two Mobile Terminals, it will
have to check that the message has been authorised before acting on it, i. e. that both Mobile
Terminals are members of the same opVO as the sender. It will have to access the Participant's
Registry to check what opVOs the MTs belongs to, so needs to be a member of the same
BaseVO as the opVO. It may also have to check with the opVO that this particular
communication is authorised (the insider attach protection mentioned above)

In the example, if a service were to be a doctor doctor being used by a patient, the call should
only be possible if the doctor is treating the patient, i. e. in the context of an opVO. When the
patient gets the call, they should be sure that the caller is their own doctor, because the call is
known to belong to the opVO.

The inclusion of this mechanism in the SIP with SOAP security model has been described in
section 7.4.5.1.

D4.1.3, 1.1

© Akogrimo consortium members page 73 of 92

7.4.5.2. WS interaction path

As described earlier, in principle one attacker could impersonate the identity of the Workflow
Manager and make a non-authorised use of the WS exposed by the SIP Broker. Apart from this,
the WS communication path can be intercepted and the exchanged messages modified by a non-
authorised entity. In order to prevent this, specific WS security mechanisms are envisaged.

WS-Security core specification [WS Sec] defines several mechanisms to provide protection
against SOAP attacks. It includes also mechanisms to detect if some message has been
manipulated (XML signature) and encryption mechanism as well (XML encryption).

However, the adoption of the opVO security model provides a higher level of protection,
because the attacker should include a valid opVO token in the request; in any other case it will be
rejected.

7.4.5.3. RMI path

Internal communications between the SOAP interface and the SIP Broker broker engine is made
by means of an RMI interface. This means that remote clients could access the classes and
resources that the RMI server (the broker engine in our case) makes accessible. So if some
malicious entity knows how to invoke the corresponding methods, it could impersonate the
identity of the real SIP Broker SOAP interface and could make unauthorised requests.

To prevent these kinds of attacks, we must take advantage on the Java Security Model [Java Sec].
Using this, you can restrict the actions that remote entities can perform. By default, an RMI
program does not have a security manager installed, and no restrictions are placed on remotely
loaded objects. Anyway, the java.rmi package provides a default security manager implementation
that can be used, which requires the specification of a security policy file containing specific
permissions regarding which operations are granted, and from which locations (machines, ports)
[RMI]. So the best way to proceed is to specify that only requests from the machine in which the
SIP Broker SOAP interface is running are allowed.

The current implementation of the SIP Broker enables the configuration of the policy file to be
used. No security policies are applied if this file is not specified.

7.5. Security Architecture Overview

The following figure depicts the security additions to the architecture that need to be
accomplished in order to realize the defence mechanisms shown above. The assumption of
taking the core network as secure is taken in order to give preference to security mechanisms that
revolve around innovative aspects of the project rather than standard out-of-the-box security
mechanisms.

D4.1.3, 1.1

© Akogrimo consortium members page 74 of 92

Figure 35 – General architecture

D4.1.3, 1.1

© Akogrimo consortium members page 75 of 92

References
[CIM] Common Information Model (CIM) Standards http://www.dmtf.org/standards/cim/

[COPS] D. Durham et al., RFC 2748 “The COPS (Common Open Policy Service) Protocol”,
http://www.ietf.org/rfc/rfc2748.txt

[D411] Deliverable D.4.1.1, “Mobile Network Architecture, Design and Implementation”,
http://www.akogrimo.org/modules.php?name=UpDownload&req=getit&lid=43

[DuCo05] F. Dupont, J-M. Combes. “Using IPsec between Mobile and Correspondent IPv6
Nodes” <draft-ietf-mip6-cn-ipsec-02.txt>, IETF draft, December 2005.

[FHO] R. Koodli, RFC4068 “Fast Handovers for Mobile IPv6”,
http://www.ietf.org/rfc/rfc4068.txt

[MIPV6] D. Johnson, C. Perkins, J. Arkko, RFC3775 “Mobility Support in IPv6”,
http://www.ietf.org/rfc/rfc3775.txt

[TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January 1999.
http://www.ietf.org/rfc/rfc2246

[Java Sec] Security in Java 2 SDK 1.2; Security Features Overview.
http://java.sun.com/docs/books/tutorial/security1.2/overview/index.html

[OPENWBEM] Open Web Based Enterprise Management http://www.openwbem.org/

[OPENPEGASUS] "C++ CIM/WBEM Manageability Services Broker"
http://www.openpegasus.org/

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January
1999. http://www.ietf.org/rfc/rfc2246

[RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC
2401, November 1998. http://www.ietf.org/rfc/rfc2401

[RFC3084] COPS Usage for Policy Provisioning (COPS-PR). K. Chan, March 2001.
http://www.ietf.org/rfc/rfc3084

[RFC3261] Rosenberg J., Schulzrinne H. et al., “SIP: Session Initiation Protocol” RFC 3261.
http://www.ietf.org/rfc/rfc3261.txt

[RFC3268] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS)", RFC 3268, June 2002.

[RFC3571] “Framework Policy Information Base for Usage Feedback” D. Rawlins, August 2003.
http://www.ietf.org/rfc/rfc2571

[RFC3680] Rosenberg J., “A Session Initiation Protocol (SIP) Event Package for
Registrations” RFC 3680. http://www.ietf.org/rfc/rfc3680.txt

[RFC3776] J. Arkko, V. Devarapalli, F. Dupont. “Using IPsec to Protect Mobile IPv6 Signalling
Between Mobile Nodes and Home Agents”. RFC3776, IETF, June 2004.
http://www.ietf.org/rfc/rfc3776

[RFC3891] Mahy, R., Biggs, B., Dean, R., “The Session Initiation Protocol (SIP) "Replaces"
Header”, RFC 3891, IETF, September 2004. http://www.ietf.org/rfc/rfc3891

[RFC4028] Rosenberg J., Donovan, S., “Session Timers in the Session Initiation Protocol
(SIP)” RFC 4028. http://www.ietf.org/rfc/rfc4028.txt

[RFC2617] J. Franks, , P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart, "HTTP Authentication: Basic and Digest Access Authentication", RFC2617, June 1999.

D4.1.3, 1.1

© Akogrimo consortium members page 76 of 92

http://www.ietf.org/rfc/rfc2617.txt?number=2617

[RMI] RMI tutorial. http://java.sun.com/docs/books/tutorial/rmi/index.html

[RSVP] R. Braden et al., RFC2205 “Resource ReSerVation Protocol (RSVP)”,
http://www.ietf.org/rfc/rfc2205.txt

[SER] SIP Express Router homepage. http://www.iptel.org/ser/

[SHACH03] Shacham, R., Schulzrinne, H., et al. “Session Initiation Protocol (SIP) Session
Mobility”, IETF draft-shacham-sipping-session-mobility-03, Nov 2006.

[SIPSOAP] Secure SIP with SOAP, Akogrimo Security Task Force,
http://bscw.hlrs.de/bscw/bscw.cgi/d111221/SIPwithSOAPsec.doc

[WS CONT] Dorn, C., Dustdar, S.. “Achieving Web Service Continuity in Ubiquitous Mobile
Networks the SRR-WS Framework”. 4th International Workshop on Ubiquitous Mobile
Information and collaboration Systems (UMICS), co-located with CAiSE 2006, 5 - 6 June
2006.

[WSDL] Web Services Description Language (WSDL) http://www.w3.org/TR/wsdl

[WS Sec] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS
Standard Specification, 1 February 2006. http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

D4.1.3, 1.1

© Akogrimo consortium members page 77 of 92

Annex A. Access security at L3 example

Secure wireless access at 3-layer (IPsec). Just access with IPsec is

allowed. This is an example implemented using IPv4 to show the

functionality. The future implementation in IPv6 is analogous.

MN: 192.108.37.99

AR: 192.108.37.97

apt-get install racoon # Automatic keying

Choose direct mode in the menu

modprobe crc32c

modprobe ipcomp6

/etc/racoon/setkey.conf

#!/usr/sbin/setkey -f

flush;

spdflush;

server out to anything wireless: unrestricted

spdadd 192.108.37.97/32 192.168.37.96/29 any -P in none;

anything wireless into server: unrestricted

spdadd 192.168.37.96/29 192.108.37.97/32 any -P out none;

anything else going to laptop must tunnel from server to laptop

spdadd 0.0.0.0/0 192.108.37.99/32 any -P in ipsec

 esp/tunnel/192.108.37.97-192.108.37.99/require;

anything else coming from laptop must tunnel from laptop to server

spdadd 192.108.37.99/32 0.0.0.0/0 any -P out ipsec

 esp/tunnel/192.108.37.99-192.108.37.97/require;

In the server is the same but changing all "in and outs"

/etc/racoon.conf

path pre_shared_key "/etc/racoon/psk.txt";

path certificate "/etc/racoon/certs";

remote anonymous {

 exchange_mode main;

generate_policy off;

certificate_type x509 "my-cert.pem" "private.pem";

my_identifier asn1dn;

peers_identifier asn1dn;

 proposal {

 encryption_algorithm 3des;

 hash_algorithm md5;

authentication_method rsasig;

 authentication_method pre_shared_key;

 dh_group modp1024;

 }

}

sainfo anonymous {

 pfs_group modp768;

 encryption_algorithm 3des;

 authentication_algorithm hmac_md5;

D4.1.3, 1.1

© Akogrimo consortium members page 78 of 92

 compression_algorithm deflate;

}

/etc/racoon/psk.txt

IPv4/v6 addresses

192.108.37.97 I did it my way

#Add here the rest of the nodes in the wireless link if you want to

communicate with them...

#172.16.1.133 0x12345678

#194.100.55.1 whatcertificatereally

#3ffe:501:410:ffff:200:86ff:fe05:80fa mekmitasdigoat

#3ffe:501:410:ffff:210:4bff:fea2:8baa mekmitasdigoat

USER_FQDN

#foo@kame.net mekmitasdigoat

FQDN

#foo.kame.net hoge

On both machines:

setkey -f /etc/racoon/setkey.conf

racoon -F -f /etc/racoon/racoon.conf

Filter non authorized access to the network i.e. everything that is

not a esp tunnel.

(AR)

#!/bin/bash

EXT_IF="wlan0"

INT_IF="eth0"

IPTABLES="/sbin/iptables"

$IPTABLES -F

$IPTABLES -t nat -F

$IPTABLES -t mangle -F

$IPTABLES -P INPUT DROP

$IPTABLES -P FORWARD DROP

$IPTABLES -P OUTPUT ACCEPT

Mark VPN packets

$IPTABLES -t mangle -A PREROUTING -i $EXT_IF -p esp -j MARK --set-mark

1 #VPN

$IPTABLES -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

$IPTABLES -A INPUT -i $INT_IF -j ACCEPT

$IPTABLES -A INPUT -p icmp -j ACCEPT

$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -j ACCEPT #SSH

$IPTABLES -A INPUT -i $EXT_IF -p udp -m udp --dport 500 -j ACCEPT #VPN

$IPTABLES -A INPUT -i $EXT_IF -m mark --mark 1 -j ACCEPT

$IPTABLES -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

$IPTABLES -A FORWARD -i $EXT_IF -m mark --mark 1 -j ACCEPT

$IPTABLES -A FORWARD -i $INT_IF -j ACCEPT

D4.1.3, 1.1

© Akogrimo consortium members page 79 of 92

Annex B. SER (SIP Express Router)
configuration file (ser.cfg)

$Id: ser.cfg,v 1.4 2006/03/08 12:22:25 jebl231 Exp $

simple quick-start config script

----------- global configuration parameters ------------------------

#debug= # debug level (cmd line: -dddddddddd)

#fork=yes

#log_stderror=no # (cmd line: -E)

Uncomment this line to enter debugging mode

debug = 3

If log_stderror is set to 'yes', traces are sent to the console; if set

to 'no', traces are sent

to the corresponding trace file in folder /temp

log_stderror = yes

Uncomment these lines for multithreaded

fork = yes

children = 3

Here goes the real IP of the machine hosting the SIP server

listen = 192.108.37.72

listen = 2001:638:202:e00:213:d4ff:fe36:dab1

port = 5060

check_via=no # (cmd. line: -v)

dns=no # (cmd. line: -r)

rev_dns=no # (cmd. line: -R)

fifo="/tmp/ser_fifo"

alias = "akogrimo.org"

alias = "test.akogrimo.org"

------------------ module loading ----------------------------------

Uncomment this if you want to use SQL database

#loadmodule "/usr/local/lib/ser/modules/mysql.so"

loadmodule "/usr/lib/ser/modules/sl.so"

loadmodule "/usr/lib/ser/modules/exec.so"

loadmodule "/usr/lib/ser/modules/tm.so"

loadmodule "/usr/lib/ser/modules/rr.so"

loadmodule "/usr/lib/ser/modules/maxfwd.so"

loadmodule "/usr/lib/ser/modules/usrloc.so"

loadmodule "/usr/lib/ser/modules/registrar.so"

loadmodule "/usr/lib/ser/modules/esc.so"

loadmodule "/usr/lib/ser/modules/a4c.so"

Uncomment this if you want digest authentication

mysql.so must be loaded !

#loadmodule "/usr/lib/ser/modules/auth.so"

D4.1.3, 1.1

© Akogrimo consortium members page 80 of 92

#loadmodule "/usr/lib/ser/modules/auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("registrar","default_expires",86400)

-- esc params (presence agent module) --

modparam("esc", "trace_level", 2)

modparam("esc", "check_expires_timer_interval", 600)

modparam("esc", "max_subscription_expires_value", 3600)

modparam("esc", "max_publish_expires_value", 3600)

modparam("esc", "auth_mode", 0)

#modparam("esc", "single_authorised_subscriber_uri",

"contextmanager@akogrimo.org")

-- a4c params --

modparam("a4c", "trace_level", 2)

modparam("a4c", "AC4_token_hf", "X-A4C_Token")

modparam("a4c", "A4C_client_command", "/usr/lib/ser/modules/A4CIFmodule")

-- usrloc params --

modparam("usrloc", "db_mode", 0)

Uncomment this if you want to use SQL database

for persistent storage and comment the previous line

#modparam("usrloc", "db_mode", 2)

-- auth params --

Uncomment if you are using auth module

#modparam("auth_db", "calculate_ha1", yes)

If you set "calculate_ha1" parameter to yes (which true in this config),

uncomment also the following parameter)

#modparam("auth_db", "password_column", "password")

-- rr params --

add value to ;lr param to make some broken UAs happy

modparam("rr", "enable_full_lr", 1)

------------------------- request routing logic -------------------

main routing logic

route

{

 # initial sanity checks -- messages with

 # max_forwards==0, or excessively long requests

 if (!mf_process_maxfwd_header("10"))

 {

 sl_send_reply("483","Too Many Hops");

 break;

 };

 if (msg:len > max_len)

 {

 sl_send_reply("513", "Message too big");

 break;

 };

 # we record-route all messages -- to make sure that

 # subsequent messages will go through our proxy; that's

D4.1.3, 1.1

© Akogrimo consortium members page 81 of 92

 # particularly good if upstream and downstream entities

 # use different transport protocol

 record_route();

 # loose-route processing

 if (loose_route())

 {

 t_relay();

 break;

 };

 # if the request is for other domain use UsrLoc

 # (in case, it does not work, use the following command

 # with proper names and addresses in it)

 if (uri==myself)

 {

 if (method=="REGISTER")

 {

Uncomment this if you want to use digest

authentication

 /*

 if (!www_authorize("hi.inet", "subscriber")) {

 www_challenge("hi.inet", "0");

 break;

 };

 */

 # Uncoment this if A4C authorisation will not be

 # used and comment lines below

 /*

 log(1, "REGISTER transaction\n");

 save("location");

 break;

 */

 # Uncoment this to use A4C authorisation and comment

 # lines above

 if (aa_request())

 {

 log(1, "REGISTER transaction\n");

 save("location");

 }

 break;

 };

 # Presence agent behaviour

 if (method=="SUBSCRIBE")

 {

 if (!t_newtran())

 {

 log(1, "newtran error\n");

 sl_reply_error();

 };

 handle_subscription();

 break;

 };

 # Inform about not registered destinations

 if (!lookup("location"))

 {

 log(1, "user not found\n");

 sl_send_reply("404", "Not Found");

D4.1.3, 1.1

© Akogrimo consortium members page 82 of 92

 break;

 };

 if (method=="PUBLISH")

 {

 # The following piece of code creates a new

 # transaction.

 # MANDATORY IF THE MODULE PROCESSING THIS METHOD

 if (!t_newtran())

 {

 log(1, "newtran error\n");

 sl_reply_error();

 };

 handle_publish();

 break;

 };

 }

 # Proxy behaviour (forward to current URI using stateful

 # forwarding)

 log(1, "Proxy transaction\n");

 if (!t_relay())

 {

 log(1, "newtran error\n");

 sl_reply_error();

 };

}

D4.1.3, 1.1

© Akogrimo consortium members page 83 of 92

Annex C. Network User Profile

This is a skeleton XML file of the Akogrimo Network User Profile.

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="ANUP">

 <xs:annotation>

 <xs:documentation>Akogrimo Network User Profile</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="UID" type="xs:string">

 </xs:element>

 <xs:element name="PRIO" type="xs:short">

 </xs:element>

 <xs:element name="MAC" type="xs:string">

 </xs:element>

 <xs:element name="DSCP" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:unsignedInt">

 </xs:element>

 <xs:element name="Macro">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="MaxUpBW" type="xs:unsignedLong">

 </xs:element>

 <xs:element name="MaxDownBW" type="xs:unsignedLong">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Layout" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Filter">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FromAddr" type="xs:string">

 </xs:element>

 <xs:element name="ToAddr" type="xs:string">

 </xs:element>

 <xs:element name="FromPort" type="xs:unsignedInt">

 </xs:element>

 <xs:element name="ToPort" type="xs:unsignedInt">

 </xs:element>

 <xs:element name="Protocol" type="xs:string">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="QoSBundle" type="xs:unsignedLong">

 </xs:element>

 <xs:element name="PeriodOfDay" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

D4.1.3, 1.1

© Akogrimo consortium members page 84 of 92

 <xs:element name="Start" type="xs:string">

 </xs:element>

 <xs:element name="End" type="xs:string">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

D4.1.3, 1.1

© Akogrimo consortium members page 85 of 92

Annex D. gSDP formats

This annex describes the different formats being used for the services SIPification framework

D.1. gSDP session

The gSDP sessions are described using an xml document. The related xml schema is:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple types -->

<xs:simpleType name="avstatus">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="AVAILABLE"/>

 <xs:enumeration value="UNAVAILABLE"/>

 </xs:restriction>

</xs:simpleType>

<!-- definition of attributes -->

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="reference" type="xs:string" use="required"/>

<xs:attribute name="availability" type="avstatus"/>

<!-- definition of complex types -->

<xs:element name="service">

 <complexType>

 <xs:attribute ref="id"/>

 <xs:attribute ref="reference"/>

 <xs:attribute ref="availability"/>

 </complexType>

</xs:element>

<xs:element name="services">

 <complexType>

 <sequence>

 <xs:element ref="service" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

</xs:element>

</xs:schema>

D.2. gSDP notification

The content of the gSDP notifications are also based on xml. Its related xml schema is:

D4.1.3, 1.1

© Akogrimo consortium members page 86 of 92

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple types -->

<xs:simpleType name="avstatus">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="AVAILABLE"/>

 <xs:enumeration value="UNAVAILABLE"/>

 </xs:restriction>

</xs:simpleType>

<!-- definition of attributes -->

<xs:attribute name="mobileuser" type="xs:string" use="required"/>

<xs:attribute name="service" type="xs:string" use="required"/>

<xs:attribute name="status" type="avstatus" use="required"/>

<xs:element name="message">

 <complexType>

 <xs:attribute ref="mobileuser/>

 <xs:attribute ref="service/>

 <xs:attribute ref="status/>

 </complexType>

</xs:element>

</xs:schema>

D4.1.3, 1.1

© Akogrimo consortium members page 87 of 92

Annex E. SIP security mechanisms

From the threats described above, the fundamental security services required for the SIP
protocol are: preserving the confidentiality and integrity of messaging, preventing replay attacks
or message spoofing, providing for the authentication and privacy of the participants in a session,
and preventing denial-of-service attacks. Bodies within SIP messages separately require the
security services of confidentiality, integrity, and authentication.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible
existing security models derived from the HTTP and SMTP space.

Full encryption of messages provides the best means to preserve the confidentiality of signalling -
it can also guarantee that messages are not modified by any malicious intermediaries. However,
SIP requests and responses cannot be naively encrypted end-to-end in their entirety because
message fields such as the “Request-URI”, “Route”, and “Via” need to be visible to proxies in
most network architectures so that SIP requests are routed correctly. For instance the Proxy
Servers need to modify some features of messages as well, such as adding values to “Via” header

To this purpose, low-layer security mechanisms for SIP are recommended, which encrypt the
entire SIP requests or responses on the wire on a hop-by-hop basis, and that allow endpoints to
verify the identity of proxy servers to whom they send requests.

SIP entities also have a need to identify one another in a secure fashion A cryptographic
authentication mechanism is provided in SIP to address this requirement.

An independent security mechanism for SIP message bodies supplies an alternative means of
end-to-end mutual authentication, as well as providing a limit on the degree to which user agents
must trust intermediaries.

E.1. Transport and Network Layer Security

Transport or network layer security encrypts signalling traffic, guaranteeing message
confidentiality and integrity.

Oftentimes, certificates are used in the establishment of lower-layer security, and these certificates
can also be used to provide a means of authentication in many architectures.

Two popular alternatives for providing security at the transport and network layer are,
respectively, TLS [RFC2246] and IPSec [RFC2401].

E.1.1. IPSec

IPSec is a set of network-layer protocol tools that collectively can be used as a secure
replacement for traditional IP. IPSec is most commonly used in architectures in which a set of
hosts or administrative domains have an existing trust relationship with one another. IPSec is
usually implemented at the operating system level in a host, or on a security gateway that
provides confidentiality and integrity for all traffic it receives from a particular interface (as in a
VPN architecture). It can also be used on a hop-by-hop basis.

In many architectures IPSec does not require integration with SIP applications; It is perhaps best
suited to deployments in which adding security directly to SIP hosts would be arduous. UAs that
have a pre-shared keying relationship with their first-hop proxy server are also good candidates to
use IPSec. Any deployment of IPSec for SIP would require an IPSec profile describing the
protocol tools that would be required to secure SIP.

D4.1.3, 1.1

© Akogrimo consortium members page 88 of 92

The IP security (IPsec) provides confidentiality, integrity, data origin authentication services as
well as traffic analysis protection.

IPsec was introduced to provide security services such as:

� Encrypting traffic (So it can not be read in its transmission)

� Integrity validation (Ensuring traffic has not been modified along its path)

� Authenticating the Peers (Both ends are sure they are communicating with a trusted entity the
traffic is intended for)

� Anti-Replay (Protect against session replay)

For more detail see related documentation [RFC2401]

E.1.2. TLS

TLS provides transport-layer security over connection-oriented protocols, for the purposes of
this document, so signifying TLS over TCP. The primary goal of the TLS Protocol is to provide
privacy and data integrity between two communicating applications

TLS is most suited to architectures in which hop-by-hop security is required between hosts with
no pre-existing trust association. For example, Alice trusts her local Proxy Server, which after a
certificate exchange decides to trust Bob's local Proxy Server, which Bob trusts, hence Bob and
Alice can communicate securely.

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are
specified on a hop-by-hop basis in SIP, thus a UA that sends requests over TLS to a proxy server
has no assurance that TLS will be used end-to-end.

SSL/TLS has many of the advantages of IPsec and the successful introduction of the protocol in
the wired Internet has proved its usability and effectiveness. Likewise, SSL/TLS runs above
TCP/IP and below higher-level protocols such as HTTP or FTP and consequently the TCP
header is not encrypted.

In contrast to IPsec, TLS does not assume any trust relation among communication parties, so, it
is more suitable for Inter Domain Authentication.

SSL/TLS provides protection against several known attacks (including man in the middle
attacks), prevents the eavesdropping, the tampering, and message forgery. However is susceptible
to a number of denial-of-service (DoS) attacks. In particular, an attacker who initiates a large
number of TCP connections can cause a server to consume large amounts of CPU doing RSA
decryption.

Because TLS runs over TCP, it is also susceptible to a number of denial-of-service attacks on
individual connections. In particular, attackers can forge RSTs, thereby terminating connections,
or forge partial TLS records, thereby causing the connection to stall. These attacks cannot in
general be defended against by a TCP-using protocol. Implementors or users who are concerned
with this class of attack should use IPsec.

On the other hand, the biggest drawback with SSL/TLS is does not run over UDP. In addition,
keeping up many TCP connections simultaneously may be too heavy for Proxy Servers.

E.2. SIP URI Scheme

The use of a SIPS URI of the form “sips:alice@akogrimo.org “ an INVITE message requires
that TLS should be used on the whole path to the destination. Since each hop may add route
information to the SIP message header, TLS protection must be realized on a hop-by-hop basis

D4.1.3, 1.1

© Akogrimo consortium members page 89 of 92

on each segment of the path. The use of TLS requires the use of TCP as a transport protocol
(TCP/SIP) and necessitates a public key infrastructure.

E.3. HTTP Digest

SIP provides a challenge capability, based on HTTP authentication that relies on the 401 and 407
response codes and header fields for carrying challenges and credentials as well. Without
significant modification, the reuse of the HTTP Digest authentication [RFC 2617] scheme in SIP
allows for replay protection and one-way authentication.

In the SIP context, the “server” entity authenticating the “client” entity can be a proxy, registrar,
a redirect server or another user agent. The basic mechanism is similar in all cases: both client and
server have a shared secret (password), which must be known in advance (e.g. using out of bands
mechanisms). When the server receives a request, it challenges the client to provide valid
credentials; then the client provides a valid name and demonstrates it knows the password.

One of the advantages of the HTTP Digest mechanism is that the password does not have to be
sent in clear text, like in HTTP Basic Authentication. For this purpose the Digest mechanism
uses hash algorithms like MD5 or SHA1 (a hash function is a one way functions that provide a
fixed length output) and nonces (an arbitrary and random value which is used only once).

Next figure describe how this mechanism works. Note that the name of the header to be include
and the challenge number depends on the nature of the server entity: Registrar Servers and UAS
use the “WWW-Authenticate” and “Authorisation” header, and the 401 reply, while proxies use
the “Proxy-Authenticate”,and “Proxy-Authorisation” headers, and 407 reply.

Figure 36 – HTTP Digest security mechanism.

Client sends a SIP request to the Server (REGISTER, INVITE…)

Server challenges the request with a 401 (407) reply, including a “XXX_Authenticate” header
field with several parameters:

� realm: the domain of which the share secret (password) is required.

D4.1.3, 1.1

© Akogrimo consortium members page 90 of 92

� Qop (quality of protection): indicates if integrity protection applies for either the request
line (auth) or both request line and message body (auth-int).

� nonce, algorithm: hash function and random nonce to be used in the client side for
credential presentation (will be also used in the server side to check the reply)

The client replies with a new request with a “XXX_Authorisation” header field containing
several parameters. The most important is response, which contains a hash comprising the
username, password, the server’s nonce, the client’s nonce (specified in the cnonce
parameter) and the request line (also the body if auth-int was chosen).

The server calculates another hash value using the same input. If the result matches with the
response parameter of step 3, the request is processed; otherwise, the request will be
challenge again.

The security properties of this mechanism are the following:

� The usage of random nonces prevents again reply attacks (if some malicious entity obtains
the correct has value for a particular nonce, it will not be able to access the server because a
different one will be used in a different challenge).

� Provides user authentication.

� Provides limited integrity protection (i.e. the request line – method and URI – and the body,
if the proper qop parameter is selected). But considering that not all headers fields are
protected, this schema is sensible to MitM attacks.

� DoS attack protection (during the challenge period, the server remain stateless, so an attacker
can not block resources for a long time).

This strategy is commonly used in UAC because typically they will not implement advanced and
secure certificate-based security mechanism. These site certificates are commonly used for
network entities.

The HTTP Digest authentication drawbacks are as follows:

� Does not support message Integrity and Confidentiality.

E.4. S/MIME

S/MIME can also be used to ensure both integrity and confidentiality of SIP messages. It
basically consists on a certificate-based mechanism than can be used to sign or encrypt some
parts of SIP messages, typically SIP bodies. Encryption of an entire SIP message to provide end-
to-end confidentiality is not appropriate because some network entities need to view certain
headers (as shows Table 13) to properly route the message; however, S/MIME can provide some
kind of protection for headers fields, using a mechanism named “SIP message tunnelling”, which
basically consists on the encapsulation of a SIP message as the body of an “outer” SIP message.
This body, containing the whole message, is then encrypted using S/MIME.

Header Request

URI
From To Via Record

Route
Record Call Id Cseq

Modification
Allow

YES NO NO YES YES YES NO NO

Table 13 – Encrypted headers with S/MIME

As mentioned earlier, S/MIME is a certificate-based mechanism. These certificates are associated
with the keys that are used to sign or encrypt message bodies. Currently there is no a

D4.1.3, 1.1

© Akogrimo consortium members page 91 of 92

consolidated authority today that provides certificates for end user applications, so most usual
solutions are:

� Usage of pre-configured certificates previously trusted.

� Usage of self-signed certificates (that is, a certificated that cannot be verified by the recipient),
which are also sent in the requests as a multipart MIME body (different sets of data
combined in a single body, as defined in RFC 2046 [RFC2046]). In this case, the recipient end
user application is responsible for accepting or rejecting the request, based on the information
the certificate carries.

Each user agent supporting S/MIME must have a key ring for end-user certificates in order to
map between AoRs and their corresponding certificates. Anyway, SIP can also be used as a mean
to distribute these certificates. The S/MIME specification enable the inclusion of the certificate
itself together with the proper content to be protected as part of a multipart MIME body, so
when a new request including a certificate arrives, the user agent can validate it and add the new
certificate to its local database.

The security that this process provides relies on the usage of a random key which is sent together
with the protected content. This random key is encrypted using the public key of the recipient, so
when receiving a message, it will make use of its private key to a) decrypt the content encryption
key and b) use this decrypted key to decrypt the message itself. This process is depicted in the
figure below:

Figure 37 – S/MIME encryption and decryption

The usages of a symmetric key (the same key will be used in both sides) have a significant impact
on the speed of the encryption/decryption process. Obviously, senders must have foreknowledge
of the public key of recipients, so mechanisms to access this information must be implemented.

In order to provide sender’s authentication, messages can be also signed. However, in this case
the sender’s private key is used, as next figure describes. Again, the recipient needs to know in
advance the public key of the opposite side, in order to compare the decrypted message hash it

D4.1.3, 1.1

© Akogrimo consortium members page 92 of 92

has received with the calculated one by itself; but as mentioned before, senders may include it
with the message as appropriate.

Figure 38 – S/MIME signature

Finally, just to mention that both processes can be nested: encrypted messages can be signed, and
signed messages can be encrypted.

S/MIME provides the following cryptographic security services for electronic messaging
applications:

� Authentication, message Integrity and non-repudiation of origin (using digital signatures), and
Data Confidentiality (using encryption).

� Since S/MIME is mostly used for securing message bodies, such us the SDP rather than
message headers, S/MIME avoids tampering with message bodies’ attacks.

It is worth noting as drawback that S/MIME (the same than IPSec) generates considerable
overhead in SIP messages, and the lack of PKI is an additional restriction for the operation of
S/MIME in SIP.

