

WP 4.4 Grid Application Support Services

Dissemination Level: Public

Lead Editor: Giuseppe Laria, CRMPA

07/09/2005

Status: Final

D4.4.1

Architecture of the
Application Support
Services Layer V1

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

© Akogrimo consortium page 2 of 158

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia,
in which the Work in its entirety in unmodified form, along with a number of other
contributions, constituting separate and independent works in themselves, are assembled
into a collective whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other
pre-existing works, such as a translation, musical arrangement, dramatization,
fictionalization, motion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast, transformed, or
adapted, except that a work that constitutes a Collective Work will not be considered a
Derivative Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered a Derivative Work for
the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this
License.

d. "Original Author" means the individual or entity who created the Work.
e. "Work" means the copyrightable work of authorship offered under the terms of this

License.
f. "You" means an individual or entity exercising rights under this License who has not

previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights
arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner
under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and
to reproduce the Work as incorporated in the Collective Works;

© Akogrimo consortium page 3 of 158

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform
publicly by means of a digital audio transmission the Work including as incorporated in
Collective Works;

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats, but otherwise you have no rights to
make Derivative Works. All rights not expressly granted by Licensor are hereby reserved,
including but not limited to the rights set forth in Sections 4(d) and 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited
by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the
Work only under the terms of this License, and You must include a copy of, or the
Uniform Resource Identifier for, this License with every copy or phonorecord of the
Work You distribute, publicly display, publicly perform, or publicly digitally perform. You
may not offer or impose any terms on the Work that alter or restrict the terms of this
License or the recipients' exercise of the rights granted hereunder. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties. You may not distribute, publicly display, publicly perform, or
publicly digitally perform the Work with any technological measures that control access
or use of the Work in a manner inconsistent with the terms of this License Agreement.
The above applies to the Work as incorporated in a Collective Work, but this does not
require the Collective Work apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from any Licensor You must,
to the extent practicable, remove from the Collective Work any reference to such
Licensor or the Original Author, as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private
monetary compensation. The exchange of the Work for other copyrighted works by
means of digital file-sharing or otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary compensation, provided there
is no payment of any monetary compensation in connection with the exchange of
copyrighted works.

c. If you distribute, publicly display, publicly perform, or publicly digitally perform the
Work, You must keep intact all copyright notices for the Work and give the Original
Author credit reasonable to the medium or means You are utilizing by conveying the
name (or pseudonym if applicable) of the Original Author if supplied; the title of the
Work if supplied; and to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the Work. Such credit
may be implemented in any reasonable manner; provided, however, that in the case of a
Collective Work, at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as such other comparable
authorship credit.

d. For the avoidance of doubt, where the Work is a musical composition:
i. Performance Royalties Under Blanket Licenses. Licensor reserves the

exclusive right to collect, whether individually or via a performance rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital

© Akogrimo consortium page 4 of 158

performance (e.g. webcast) of the Work if that performance is primarily intended
for or directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive
right to collect, whether individually or via a music rights agency or designated
agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the
Work ("cover version") and distribute, subject to the compulsory license created
by 17 USC Section 115 of the US Copyright Act (or the equivalent in other
jurisdictions), if Your distribution of such cover version is primarily intended for
or directed toward commercial advantage or private monetary compensation.

e. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the
Work is a sound recording, Licensor reserves the exclusive right to collect, whether
individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license
created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other
jurisdictions), if Your public digital performance is primarily intended for or directed
toward commercial advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER
OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Collective Works from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

© Akogrimo consortium page 5 of 158

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the
Licensor offers to the recipient a license to the Work on the same terms and conditions as
the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

Context

Activity 4 Architecture definition

WP 4.4 Grid Application Support Services Layer architecture definition

Task 4.4.2

Task 4.4.3

Layered Architecture (subsystem and interfaces definition)

Detailed Design

Dependencies D2.2.4 , ID2.3.1, D2.3.1, D3.1.1

It will be the basis for D4.4.2 Prototype Implementation of the Application
Support Services Layer deliverable

Contributors:
Contributors: Reviewers
Aniello Rovezzi (CRMPA) Bastian Koller (USTUTT-HLRS)
Annalisa Terracina (DATAMAT) Dimitris Skoutas (ICCS-NTUA)
Antonios Litke (ICCS/NTUA) Antonios Litke (ICCS-NTUA)
Brian Ritchie (CCLRC) Ferry Sapei (UHOH)
Francesco Verdino (CRMPA) Ruth del Campo (USTUTT-RUS)
Giuseppe Cirillo (CRMPA)
Giuseppe Laria (CRMPA)
Josep Martrat (Atos Origin)
Julian Gallop (CCLRC)
Ludovico Giammarino (DATAMAT)
Pierluigi Ritrovato (CRMPA)
Raul Bori (Atos Origin)
Robert Piotter (USTUTT)
Tom Kirkham (CCLRC)

Approved by: Stefan Wesner (IP Manager)

Version Date Authors Sections Affected

0.1 22/11/04 Giuseppe Laria All, template definition

0.2 09/12/05 CRMPA Team All, template enrichment and tasks
distribution

0.3 29/01/05 CRMPA Team Added section on VO
Management,

Added paragraph 3.6

0.4 11/02/05 CRMPA Team Added Legacy Application
Integration section

Added overview contributions
provided by partners on each topic
(sections 3.X.1) and some initial
contributions on architecture
description (sections 3.X.2)

Added reference template

0.5 20/05/05 CRMPA Team Added section on SLA
Negotiation

Added section on Policy Manager

Added section on Orchestration

Updated sections 3.1 on VO
Management and revision of
template

0.6 26/07/05 CRMPA Team Updated all sections taking into
account partners contributions

0.7 26/08/05 All All, merged review comments and
integration requests

1.0 07/09/05 All Merged minor changes in overall
deliverable

© Akogrimo consortium page 8 of 158

Table of Contents
1. Summary ... 18

2. Overall Grid Application Support Services Layer description .. 19

2.1. General concepts ... 19

2.1.1. Base and Operative Virtual Organizations ... 19

2.1.2. Membership Lifecycle.. 22

2.1.3. Profile, Policy and Membership management .. 23

2.2. Main operations identified ... 25

2.2.1. Subscription and Registration .. 25

2.2.1.1. VO roles.. 27

2.2.2. Log-in and Log-out.. 29

2.2.3. Publishing.. 30

2.2.4. Acquiring a service... 31

2.2.5. Using a service... 33

2.2.6. Service destruction... 34

3. Detailed architecture description.. 35

3.1. VO Management... 35

3.1.1. Overview... 35

3.1.1.1. Objectives.. 35

3.1.1.2. Example Scenario.. 35

3.1.1.3. Functional Capabilities - Concepts... 37

3.1.1.4. Functional Capabilities - VO Management Operations.................................. 43

3.1.1.5. Position with respect to the Akogrimo infrastructure..................................... 44

3.1.2. Architecture description... 47

3.1.2.1. Architecture overview.. 47

3.1.2.2. Use case view... 49

3.1.2.3. Conceptual architecture description... 53

3.1.2.4. Logical architecture description ... 56

3.1.2.5. Involved technologies.. 57

3.1.2.6. Configuration and Deployment ... 58

3.2. Orchestration... 59

3.2.1. Overview... 59

3.2.1.1. Objectives.. 59

3.2.1.2. Example Scenario.. 59

© Akogrimo consortium page 9 of 158

3.2.1.3. Functional Capabilities... 61

3.2.1.4. Position with respect to the Akogrimo infrastructure..................................... 61

3.2.2. Architecture description... 63

3.2.2.1. Architecture overview.. 63

3.2.2.2. Use case view... 65

3.2.2.3. Conceptual architecture description... 68

3.2.2.4. Logical architecture description ... 71

3.2.2.5. Logical External Interfaces .. 74

3.2.2.6. Involved technologies.. 76

3.2.2.7. Configuration and Deployment ... 77

3.3. SLA Management.. 78

3.3.1. Overview... 78

3.3.1.1. Objectives.. 78

3.3.1.2. Example Scenario.. 79

3.3.1.3. Functional Capabilities... 79

3.3.1.4. Position with respect to the Akogrimo infrastructure..................................... 80

3.3.2. Architecture description... 84

3.3.2.1. Architecture overview.. 84

3.3.2.2. Use case view... 85

3.3.2.3. Conceptual architecture description... 94

3.3.2.4. Logical architecture description ... 96

3.3.2.5. Involved technologies.. 97

3.3.2.6. Configuration and Deployment ... 98

3.4. Security.. 99

3.4.1. Overview... 99

3.4.1.1. General Concepts.. 99

3.4.1.2. Example Scenarios... 100

3.4.1.3. Functional Capabilities... 104

3.4.1.4. Position with respect to the Akogrimo infrastructure................................... 104

3.4.2. Architecture description... 106

3.4.2.1. Architecture overview.. 106

3.4.2.2. Use case view... 111

3.4.2.3. Conceptual architecture description... 113

3.4.2.4. Logical architecture description ... 118

3.4.2.5. Involved technologies.. 120

© Akogrimo consortium page 10 of 158

3.4.2.6. Configuration and Deployment ... 120

3.5. Application Specific Services ... 121

3.5.1. Overview... 121

3.5.1.1. Objectives.. 121

3.5.1.2. Example eHealth Environment ... 121

3.5.2. Interface Descriptions ... 122

3.5.2.1. General Purpose Interfaces.. 123

3.5.2.2. eHealth Specific Interfaces... 124

3.5.3. eHealth Specific Services ... 125

3.5.3.1. Common Interfaces... 126

3.5.3.2. Medical Resource Service... 126

3.5.3.3. Medical Resource Locator Service ... 126

3.5.3.4. Virtual Emergency Environment (VEE) Service.. 126

3.5.3.5. ECG Data Source Service.. 127

3.5.3.6. Medical Data Logger Service.. 127

3.5.3.7. Medical Data Analysis Service.. 127

3.5.3.8. Electronic Health Record (EHR) Service... 127

3.5.3.9. Attending Physician’s EHR Service ... 127

3.5.3.10. Virtual Emergency Health Record (VEHR) Service 128

3.5.4. Application Components... 128

3.5.4.1. ECG Viewer.. 128

3.5.4.2. Map Viewer... 128

3.5.5. Generic Application Components.. 129

3.5.5.1. Membership Management Application .. 129

3.5.6. Scenario Descriptions.. 129

3.5.6.1. Scenario Overview... 129

3.5.6.2. Patient Monitoring Setup... 130

3.5.6.3. Emergency Response... 133

3.5.6.4. Emergency Handling ... 134

3.5.6.5. Configuration and Deployment ... 136

3.6. Legacy Application Integration.. 137

3.6.1. Overview... 137

3.6.2. Legacy System Modernization.. 138

3.6.2.1. System Evolution... 138

3.6.2.2. System Modernization ... 139

© Akogrimo consortium page 11 of 158

3.6.3. State of the Art .. 140

3.6.3.1. Transformation into Web Services... 141

3.6.3.2. Wrapping Legacy Codes .. 141

3.6.3.3. Screen Proxies ... 146

3.6.3.4. Front-end OGSI Grid Service Layer.. 147

3.6.4. Integration Criteria (to be updated) ... 148

3.6.5. Proposed Approach (to be updated).. 148

4. Conclusion .. 149

Annex A. Alternative OpVO topologies.. 154

Annex B. Summary tables and figures ... 158

© Akogrimo consortium page 12 of 158

List of Figures
Figure 1 Major components in the Grid Application Support Services Layer............................. 18

Figure 2 SPs members of BVO.. 20

Figure 3 OpVOs from the BVO.. 21

Figure 4 VO Membership Lifecycle... 22

Figure 5 VO policy management ... 24

Figure 6 Visitor and Member... 26

Figure 7 Member and Roles... 28

Figure 8 Registration and Log-in.. 29

Figure 9 Service publishing phase .. 31

Figure 10 Collaboration diagram for Acquiring BP.. 33

Figure 11 Subscription to the BVO.. 44

Figure 12 Add a User to an OpVO.. 45

Figure 13 Acquire Business Service.. 46

Figure 14: Services, BVO and OpVO's.. 48

Figure 15 Subscription and unsubscription .. 51

Figure 16 Acquire a business service .. 52

Figure 17 Join a user to an OpVO... 53

Figure 18: Core Akogrimo VO Management Services.. 54

Figure 19 VO Management main components... 56

Figure 20: A high-level sequence diagram depicting the workflow enactment of the example
scenario with respect to the other Akogrimo components ... 62

Figure 21: A sample workflow depicting a possible business process for the example scenario.. 65

Figure 22: A sequence diagram of the workflow enactment process... 67

Figure 23: Internal and external interfaces between BP Enactor components and external
AkoGrimo components... 68

Figure 24 Sequence diagram publication .. 81

Figure 25 Sequence diagram negotiation.. 82

Figure 26 Sequence diagram contract establishment... 82

Figure 27 Use case packages .. 86

Figure 28 Use Case “Publish Services”... 87

Figure 29 Use Case “Publish Services” composition.. 87

Figure 30 Use Case "Negotiate"... 89

Figure 31 Use Case “Negotiate” composition.. 90

Figure 32 Use Case “Set Contract” .. 93

© Akogrimo consortium page 13 of 158

Figure 33 Use Case “Set Contract” composition.. 93

Figure 34 SLA High Level Services architecture... 95

Figure 35 Steps cycle for each phase.. 96

Figure 36 UA and SA overview.. 100

Figure 37 Membership Authentication within BVO... 101

Figure 38 OpVO creation.. 102

Figure 39 Security implications of accessing to Services ... 103

Figure 40 VO Security Services inter WP4.4 interactions ... 104

Figure 41 Security interactions with other layers .. 106

Figure 42 Security architecture overview.. 107

Figure 43 Trust relationships ... 109

Figure 44, Authorization for VO ... 110

Figure 45 VO Authentication .. 114

Figure 46 Authentication using A4C.. 115

Figure 47: Security Policy Enforcement Points in an A4C environment................................... 116

Figure 48 eHealth Scenario Organizational Overview.. 122

Figure 49 IAkogrimoService.. 123

Figure 50 Patient Related Entities.. 129

Figure 51 HSP Hosting Environment.. 133

Figure 52: Enterprise information system life cycle.. 139

Figure 53: Architecture employing web service adapters .. 141

Figure 54: Wrapping Legacy Business Logic Using EJB... 144

Figure 55: Integration of legacy business logic using connectors.. 145

Figure 56: Wrapping legacy application with component wrapping.. 145

Figure 57: Integration of legacy systems with web and grid technologies 146

Figure 58: GEMLCA conceptual architecture.. 147

Figure 59 Summary of main interactions between WP4.4 components during “Acquire Service”
action... 150

Figure 60 – Three OpVOs each with a single business case (SBC)... 155

Figure 61 – A single OpVO with multiple similar business cases (MBC).................................. 156

© Akogrimo consortium page 14 of 158

List of Tables
Table 1 Summary interactions between VO Management and other WP4.4 components 46

Table 2: Summary interactions between WP4.4 VO component and components outside WP4.4
.. 47

Table 3 Subscription and unsubscription ... 50

Table 4 Acquire a business service... 51

Table 5 Join a user to an OpVO .. 52

Table 6 Summary interactions between orchestration components and internal WP4.4
components... 62

Table 7 Summary interactions between orchestration components and outsider WP4.4
components... 63

Table 8 Summary interactions between SLA Management and internal WP4.4 components...... 83

Table 9 Summary interactions between SLA Management and components outside WP4.4 83

Table 10: Use Case “Create SLA”.. 88

Table 11 Use Case “Publish SLA” ... 88

Table 12 Use Case “Publish Service”... 89

Table 13 Use Case “Start Negotiation” .. 90

Table 14 Use Case “Policy of Metrics” .. 91

Table 15 Use Case “Service Available” .. 91

Table 16 Use Case “QoS Demanded”.. 92

Table 17 Use Case “Return SP Status”... 92

Table 18 Use Case “Confirm Reservation” .. 94

Table 19 Use Case “Store Contract”.. 94

Table 20 Summary communication protocols.. 98

Table 21 Summary interactions between VO security and internal WP4.4 components 105

Table 22 Summary interactions between VO security and components outside WP4.4............ 106

Table 23 Use case "Join VO"... 112

Table 24 Use case "Request for a user/SP token".. 112

Table 25 Use case "Authorization change request" .. 113

Table 26 Use case "Task submission" .. 113

Table 27 Use case "Receive result"... 113

Table 28 Use case “PDA Setup”.. 131

Table 29 Use case “OpVO Setup”... 132

Table 30 Use case “Viewing ECG Data”... 132

Table 31 Use case “Emerging Response”... 134

Table 32 Use case “Emergency Handling – As Sub-Process of Patient Monitoring”................ 135

© Akogrimo consortium page 15 of 158

Table 33: Comparative definition of legacy software.. 137

Table 34 Components and Subcomponents... 158

© Akogrimo consortium page 16 of 158

Abbreviations
A table with used abbreviations is strongly recommended

Akogrimo Access To Knowledge through the Grid in a Mobile World

A4C Authentication, Authorization, Accounting, Auditing and Charging

BP Business Process

BPEL Business Process Execution Language

BVO Base Virtual Organization

BVO-PS Base Virtual Organization-Policy Store

EHR Electronic Health Record

EMS Execution Management Service

GrSDS Grid Services Discovery System

GT Group Token

HMES Heart Monitoring and Emergency Service

HSP Health Service Provider

HTTP HyperText Transfer Protocol

ID IDentifier

LDAP Lightweight Directory Access Protocol

LPM Local Policy Manager

MDVO Mobile and Dynamic Virtual Organization

MGT Management Group Token

NP Network Provider

OpVO Operative Virtual Organization

QoS Quality of Service

RDBMS Relational Data Base Management System

RHN Regional Health Network

SA Service Agent

SAML Security Assertion Markup Language

© Akogrimo consortium page 17 of 158

SC Service Customer

SGT Session Group Token

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SP Service Provider

TBC To Be Confirmed

TBD To Be Determined

TLS Transport Layer Security

UA User Agent

VEHR Virtual Emergency Health Record

VHE Virtual Hosting Environment

VHE-PS Virtual Hosting Environment-Policy Store

VID Virtual IDentifier

VO Virtual Organization

VOMS Virtual Organization Management System

WP Work Package

WS Web Service

WSDL Web Service Description Language

WSRF Web Services Resource Framework

XML eXetend Markup Language

© Akogrimo consortium page 18 of 158

1. Summary
The Grid Application Support Services Layer collects all services necessary to manage
applications at application layer. In particular it contains the following major components:

� VO Management: include services and functionalities to manage static and dynamic
Virtual Organizations, taking in account the nature of users that can be mobile.

� BP Enactor: manages workflow in order to guarantee the execution of different services
involved into a business process.

� SLA Management: manages the negotiation phase with contract establishment and
violations of agreements.

� Security: checks and guarantees secure access to business and infrastructure resources.

� Application Specific Services: defines services and tools to support the execution of a
business process in Akogrimo environment, in the context of a specific testbed
application.

Legacy Application Integration: gives input and guidelines to migrate legacy applications to the
Akogrimo infrastructure.

Figure 1 Major components in the Grid Application Support Services Layer

The figure (above) shows the major components, excluding Application Specific Services. It
shows that VO Management directly communicates with all other components and this is
reflected in the prominence given to it in chapter 2. Each major component and Legacy
Application Integration guidance is described in a separate section in chapter 3.

This layer is produced within Akogrimo WP 4.4, a term which is occasionally used as a short
hand for labelling this layer. Also, one of the important considerations in Akogrimo, the
components of this layer make use of components produced in other layers and similar
shorthand terms are used as follows:

� WP4.3 – Grid Infrastructure Services Layer

� WP4.2 – Mobile Network Middleware Layer

The details of these interactions can be found in the detailed component descriptions in chapter
3.

Security

BP Enactor

VO Management

SLA Management

© Akogrimo consortium page 19 of 158

2. Overall Grid Application Support
Services Layer description

Before the description of the major components in the Akogrimo Grid Application Support
Services Layer, it is useful introduce some consideration on VO Management. This chapter
presents an overall description of this layer by considering VOs as the fundamental concept. It
describes the types of VO in Akogrimo and the life cycles of membership and services. It goes on
to consider SLA and Workflow in this context.

The WP 4.4 (Grid Application Support Services Layer) provides services for enacting and
enforcing the creation of VOs as well as for supporting workflow management or compound
services. By means of VOs several organizations/providers are able to share resources and
services within a managed, secure and trusted environment, but some problems arise when the
involved entities are not bound to a fixed point of connection in its VO. Therefore, in Akogrimo
context, the VO meaning will be extended to more flexible capabilities inferring the added-value
view of a MDVO. To achieve this aim, Akogrimo leverages its dynamic behaviour by allowing to
replace resources, to accommodate changes or to adapt to new opportunities in the business
environment. Moreover, users and resources are not bound to a fixed location and therefore
Akogrimo has to take into account mobility aspects like contextuality and personalization.

In the following, we will introduce some general concepts for this layer, providing an overview of
the VO vision supported by Akogrimo.

2.1. General concepts

2.1.1. Base and Operative Virtual Organizations

We will refer to term “VO” in Akogrimo instead of “MDVO”, because MDVO will be the norm.

In Akogrimo we talk about mobile/nomadic resources highlighting the possibility to move them
in the Akogrimo environment and continuing to provide/use them without changes and
constraints. All entities/organizations that are able to provide resources are called SPs, otherwise
we can have users and customers. In this last case a user will access/use a resource bought by a
customer. Obviously all SPs, users and SCs have to be grouped and recognized inside a VO. The
following discussion of SP entities is sufficiently general that it applies also applies to SC entities.

Moreover, in Akogrimo we can distinguish two kinds of VOs: Base VO (BVO) and Operative
VO (OpVO). They have similar functionalities, but applied in different context. Indeed the BVO
is a static VO that lives until at least one SP belong to it and manages all action performed in a
VO. The OpVO is more dynamic adding to management action of the BVO all operation
necessary to drive the execution of a business service. The OpVO has the same lifetime of the
business service.

© Akogrimo consortium page 20 of 158

Figure 2 SPs members of BVO

In Figure 2 a general view of BVO is shown. The dotted oval contains all SP members of the
BVO that are available and so, visible to the BVO. The BVO is open, namely new members can
be included inside the BVO and existing participants can leave the BVO itself as well. This BVO
includes some static SPs (blue) and some mobile/dynamic SPs (red) and, in order to ensure the
service usage in a transparent way, the VO must manage these entities granting the ubiquitous
and pervasive service presence for their customers/users. The mobile SPs in red are shown on
the boundary and with arrows directed inwards and outwards the scope/visibility of the BVO to
emphasise their variable connectivity status; this means that these entities can probably become
unavailable, for reasons tied to their mobility, and the BVO manages these events.

Inside the BVO different OpVO, involving participants of the BVO, can be created. The OpVO
is the transient environment corresponding to instanced services and users brought together for
business purposes such as the consequence of workflow/orchestration instantiation where
different static and dynamic SPs collaborate among themselves to provide services in a
contextualized and managed way. The OpVO is open too, in the sense that participants could be
substituted, if required, also after its instantiation, but with more restrictive constraints: the
possible ‘substitute SP’ must be already known (in the sense that belongs to the BVO) during the
OpVO creation phase. Therefore, from logical point of view an OpVO could be thought like a
regular BVO representing entities belonging to different organizations brought together, but its
functionalities are specialized because the OpVO is considered to be short-lived.

BVO SP

SP

SP
SP

SP
SP

SP

SP

SP
SP

SP

SP

SP

© Akogrimo consortium page 21 of 158

Figure 3 OpVOs from the BVO

In Figure 3 we have the same BVO with two OpVOs (1 and 2). Each OpVO includes several
SPs, and some of them (just one in this figure) are shared between the two OpVOs. The shared
SPs could provide different or shared resources (e.g. service instances) to each OpVO. During
the execution of the OpVO a new member is allowed to join if the member is a user or the
member is a new SP enlisted as ‘reserve’ during the OpVO creation (see bidirectional arrows in
Figure 3). Reserve SP means only a normal SP that, during the research of the available SPs
providing the services necessary to the OpVO creation, is not chosen for the actual provision of
services, inside the OpVO in construction, but is considered for possible utilisation in case of
service failures of the chosen SPs. We could think these reserve SPs as SPs that provide very
good services for the OpVO but not the optimal ones; so, they do not result the best choice for
the OpVO execution but may be worth in some special circumstances (e.g. failures). Obviously,
since the BVO is a controlled environment, new members can join to OpVO if some binding
rules are satisfied and thus are enabled to replace their corresponding.

In order to manage this environment we have to take into account two different aspects:

1. The first one is related to the creation of the BVO and its management in term of new
participants’ arrival and departure.

2. The second one is related to the creation of OpVOs and it is mainly related to the
instantiation of a “workflow”. In this context, workflow has a very general meaning, it
identifies how the different service providers (and customers) involved in an OpVO have
to collaborate inside the OpVO itself.

Adopting this VO vision, Akogrimo will be able to manage the lifecycle of the VO, using the
BVO as an enabler VO that offers services useful to create new VOs (OpVOs). Further the BVO
is responsible for the formation of business agreements (among BVO participants) in order to
drive the creation of the OpVO. This reduces highly the complexity of the OpVO to include only
those services specifically involved in the application execution.

BVO

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP
SP

 OpVO1

OpVO2

© Akogrimo consortium page 22 of 158

We notice that, from now on, when we use the term VO we want to summarize general concepts
that can be applied to both BVO and OpVO.

2.1.2. Membership Lifecycle

We think it is useful to point out an initial terminology for defining the several states that an
entity may assume during its lifecycle, with respect to the VO.

At the beginning, an unknown entity subscribes itself to the VO, becoming a visitor. As a visitor,
it is identifiable but is not able to make anything inside the VO; so, the subscription mainly deals
with the identification of the entity that wants to participate. To use services in the VO, it is
necessary to register the visitor to the VO, in order to make him a member; the registration
mainly deals with associating an operative meaning (the role). As a member, the entity has a role
and can make operations (invoking or being invoked). (We use the terms register or add or join
interchangeably)

We define also the unsubscribe and removal phases respectively as dual of the subscribe and
addition phases. Obviously, the removal phase has to be executed before the unsubscribe phase.
This ordering is mostly logical: the removal phase deletes the role of a participating entity and the
unsubscribe phase deletes the identity (for the VO) of the participating entity; so, it has no sense
to remove the identity before the role. Furthermore, it could be possible to remove a participant
as member from a VO (removal phase) but not necessarily remove its identification (unsubscribe
phase).

As sub states being a member, we define a logged in and logged out member. A member may actually
do something if he is logged in.

Figure 4 VO Membership Lifecycle

Unknown
Entity

Visitor Member

Subscribe

UnSubscribe

Addition

Removal

Logged in
Member

Logged out
Member

Log-out

Log-in

Member
Substates

© Akogrimo consortium page 23 of 158

2.1.3. Profile, Policy and Membership management

Life inside VOs needs to be controlled, so each participant will be subordinated to some rules in
order to access resources (i.e. services) provided by other participants. Furthermore each
participant has to clarify the rules under which its own resources may be used by other
participants. Furthermore, these rules need to be taken into account when OpVOs are created.

To achieve this aim, a BVO participant that will provide a service (i.e. a SP) has to produce also a
set of policies (requirements) consisting of statements, rules or assertions that specify the correct
or expected behaviour of the resource. These policies need to be verified in order to create
OpVOs involving several participants. For each BVO participant, there will be created a profile
stored inside a participant registry and there will be associated some BVO policies (created by the
BVO administrator). Furthermore, they have to expose a list of attributes that will allow the BVO
manager to understand which relationships can be undertaken with the participants.

Example: a policy could specify that the SP doesn’t permit to rent their services to specific
customers (e.g. belonging to particular nations because there are some restrictions in them), then
each BVO participant had to expose a “nationality” attribute in order to allow the BVO manager
to match policies and participants. If the user doesn’t expose the attributes necessary to satisfy
the SP policies or BVO policies (e.g. highlighting them in the profile) he will not be able to access
resources under policy checking constraints. Obviously in a BVO we can have different type of
resources and each one of them can have one or more access policies associated with them. If the
resource doesn’t have access policies on it the BVO participant will have free access on them. At
the moment we don’t foresee a dynamic change of a policy at runtime until the service or
resources is used.

In addition to this kind of policies the BVO participant should specify if there are some technical
restrictions to access their services (e.g. the local environment of the SP could support only
particular security and authorization mechanism). In general we can say that each new participant
will be characterized by policies related to different scopes (e.g. security, privacy, resource use,
etc.) and his context/profile (that will be the ensemble of “attributes” and possible constraints,
e.g. it is a mobile user with some specific characteristics).

On the basis of this consideration, we imagine a hierarchical architecture with a BVO. In
particular we can imagine that inside the BVO there are different VHE, that can be treated as
local environment associated to specific SPs. Then we can foresee a BVO Membership Manager
that needs of interacting with some LPM in the local environment of the organizations (VHE)
for enabling different entities/resources to communicate among them. This means that whether
an OpVO is going to be created, the LPMs of local environments involved into the OpVO will
be contacted by asking them to set up the environment in order to permit the communication
among the parties engaged within the OpVO (for more details see paragraph 2.2.4).

We refer to the local environment as a Virtual Hosting Environment (VHE). Policies, whether
for security or resource control or some other sort, are expected to vary from one VHE to
another, but are described in a standardised language. We use the word virtual in this connection,
because the VHE does not necessarily correspond to a specific single host computer.

In a general description of policies we refer to three types of scopes:

� BVO policies: are policies related to BVO supporting services and having visibility to all
members of BVO. For instance, a Workflow Enactment service can restrict its use to only
working days.

� VHE policies: are policies mainly related to local administration and their details don’t
need to be known outside the BVO. For instance, a policy related to a resource use

© Akogrimo consortium page 24 of 158

(service S), in order to accomplish its goals, can use one of resources R1, R2 or R3; all
belonging to the same VHE. This information has no visibility to the rest of BVO since
its relevance has visibility only within the VHE.

� VHE-to-BVO policies: are policies related to resources in the VHE but, since their
applications involve BVO supporting services or entities belonging to other VHE, their
visibility must be extended outside the VHE. For example: two component services,
which are involved into the execution of a workflow, belong to different VHEs and each
of them has to respect specific policies. Because the execution of the workflow runs
involve BVO and OpVO then could be feasible to make a match between all policies at
different level.

Figure 5 VO policy management

Each of these types of policy is held in a corresponding Policy Store. In Figure 5 a general
representation of BVO policy management is depicted. The BVO Policy Store (BVO PS) holds
policies related to VO entities (e.g. the SPs, SCs described in 2.2.1 or BVO supporting services
themselves), while the Virtual Hosting Environment Policy Store (VHE-PS) holds policies related
to VHE resources. In order to define new policies about an entity (i.e. a service) with VHE-to-
VO visibilities, a BVO participant having the rights (e.g. the Service Provider) has to apply for
support to the Local Policy Manager of its VHE. In the case of services with BVO visibilities the
interactions can be direct from the BVO participant (e.g. BVO administrator) and the BVO
Membership Management because the policies for services are being defined have only VO
relevance.

BVO

BVO PS

BVO
Participant

VHE

VHE

BVO Membership
Management

VHE

LPM

VHE-PS VHE-PS VHE-PS

LPM LPM

U
pd

at
e

re
gi

str
y

Portal
(?)

Updates Policies (VO visibility)

Updates Policies (VHE-to-VO visibility)

© Akogrimo consortium page 25 of 158

2.2. Main operations identified

In this section, we describe the main operations affecting BVO participation – subscription,
registration, log in and log out – and BVO operations affecting services – publish, buy/acquire,
use and destroy.

We remember that, in Akogrimo, there are two specializations of VO concept in terms of BVO
and OpVO to achieve specific needs. So, in the next paragraphs, we will use the term VO to refer
both BVO and OpVO (as stated in 2.1.1).

2.2.1. Subscription and Registration

Within the Akogrimo BVO each participant has to be recognized and its role has to be known in
order to manage the regular BVO access and service use. Indeed, in Akogrimo, BVO should
provide capabilities to subscribe and register new participants inside the BVO itself. The
subscription and registration (and the dual operations unsubscription and removal) are two
separate and different operations.

The first phase is concerned to BVO subscription, where an unknown entity (person or resource)
becomes a BVO visitor for an undefined period of time (long term subscription). As visitor, the
entity has not yet a role inside the BVO; so, another operation is necessary to achieve this: roles
are assigned to visitors with the operation addition (or join or registration). This last operation
adds/registers a given recognized entity to a VO with one/more associated roles that define the
set of privileges for accessing VO resources. These roles should be defined by the VO
Administrator and released to participants of BVO allowing them to access and use the available
resources in a controlled and secure manner. At BVO level, the BVO Manager is the real entity in
charge of enrolling users and resources (along with managers assigned to them) into the BVO.

At the moment, we foresee the subscription operation only at BVO level as a una tantum
operation; so, to become visitor, it is necessary to subscribe to the BVO. After the subscription, it
is possible to make a registration. The registration is requested per-VO: this implies that if a visitor
wants to access/provide services inside a given VO then he has to register to this VO (BVO or
OpVO). Typically, we will have one (or few) BVOs and many OpVOs. For example, a visitor
that only registers to the BVO can invoke/offer services inside the BVO but can not access/offer
services in an associated OpVO, unless explicitly registered in that OpVO.

© Akogrimo consortium page 26 of 158

Figure 6 Visitor and Member

The Figure 6 shows graphically some relation between the introduced concepts. The OpVO and
BVO are concrete specialization of the abstract VO. A visitor has to be subscribed to a BVO and
is a first (identifiable) representation of an entity inside VO environments. A member has to
belong to one VO (OpVO or BVO) and is identifiable as a visitor. As consequence of several
registrations, a visitor may be associated to many members.

During the subscription/registration phases, a distinction must be made between services and
users that will become BVO members. From business point of view this distinction is needed for
enacting who provides usable functionalities and who will use them. As generic idea (but not only
the unique choice) the subscription/registration phases can be accomplished by different entities:

� The network operator, service providers or other general organizations (e.g. a bank) wishing
to become BVO member can personally contact (actually, who contacts is their
representatives) a BVO administrator who will subscribe and register them. In this way they
will become BVO-trusted entity and will be allowed to publish their services or enable users
to access in.

� A user that wishes to become member of BVO could accomplish through a portal that
provides a subscription and registration phases with several forms to be filled in. A way to
access to this portal is by means of user’s network operator that represents a trusted entity for
the BVO and guaranteeing for the new BVO participant.

� Services are made available within the BVO by means of their provider that will notify the
VO environment of their presence. This task can be effectively executed by service provider
administrator that could access to a BVO portal and provide all needed information for
service publishing.

VO

belongs to

Entity

Person WS-Resource

stays for/mapped on

… …

BVO OpVO
Member

Visitor subscribed to

Role

He is only
RECOGNIZED by

the VOs

has a profile

has roles

has an identity

He can operate in VO
to which belongs

is identifiable as
1

N

N

1

Generalization

Association

© Akogrimo consortium page 27 of 158

2.2.1.1. VO roles

Inside a VO, each member assumes a specific role, mainly based on action performed, so the VO
should be able to store and manage them. In particular, when the participant decides to register
to the VO, on the base of action taken, he can assume a specific role. For this reason in
Akogrimo environment we can distinguish two main categories of roles: BVO roles and OpVO
roles.

� BVO roles are base roles covered by all members that belong to the BVO. We can
distinguish them in:

� BVO Administrator: is the entity in charge of managing the BVO environment by issuing
roles, constraints and privileges. The BVO Administrator has the main role to enable new
organizations to join to BVO by making them trusted within BVO environment.

� SP, sells/provides services. This role is different from the Service (not defined explicitly
here) that actually implements the functionality; it is a trusted entity involved within the
BVO and is able to publish service for their purchase by other BVO members. The SP
embodies the management of a VHE where services are brought together to represent the
overall capabilities provided by SP. In this context, the SP is also in charge of
assigning/revoking roles to/from the BVO members affiliated with its administrative
domain (or VHE), as well as of administrating authorization of BVO member to its
domain.

� SC buys/consumes services. This role should be different from the User (not defined
explicitly here) that actually only uses the service, stating nothing about payment; this is
the entity recognized within the BVO (and thus trusted to BVO) able to acquire services
and make available to its users. For example, a SC could be a network provider that
acquires services on behalf of its clients; the SC will charge itself of payment and could
require its service requestor to pay in alternative way such as a debt on client fee. In a
similar manner to a SP, the SC has to manage its environment and ensure the right access
and use to/of its environment.

� OpVO roles are business specific roles. For instance if an OpVO is set up to provide e-
Learning application, there could be roles for students, teachers, experts…

This difference is needed for distinguishing who will provide resources, what kind of resources is
provided, who will buy and who will utilize them.

Besides the introduced roles, we can introduce some basic meta-roles; these meta-roles may be
used to better characterize each role. Indeed, each role may have one/more meta-roles. As basic
definitions, we introduce:

� User: is only able to invoke services. The user will be related to capabilities and constraints
(privileges) to use services within the BVO or inside the OpVO. We can introduce also the
following specializations:

� Management User : is an user with management purposes; so, it is
necessary/responsible for some management operations inside the VO; as first idea of
entities that can achieve these meta-role, we can list not only the obvious Administrator
member but also the management services foreseen in the main components of the
WP4.4 Layer (BP Enactor, SLA High Level Services, VO Management, etc) that have to
use/invoke other services; furthermore, it will be possible that also other kind of entities
(virtualized as services) belonging to other WP4.X Layers may assume this meta-role;

© Akogrimo consortium page 28 of 158

� Business User : is the actual user of the bought service; typically, it is necessary to
account his service usage;

� Service: is only able to provide functionalities. The service will be related to some constraints
(access list), in order to enforce the authorized access only. We can introduce also the
following specializations:

� Management Service : is a service with management functionalities; so, it is
necessary/responsible for some management operations inside the VO; as mentioned for
the Management User meta-role, we can provide as simple examples (of entities emboding
this meta-role) the list of the management services of the main components of the WP4.4
Layer (or, if necessary, lower layers);

� Business Service : is the actual bought service; typically, it is necessary to account his
service usage and his QoS;

Figure 7 Member and Roles

User Service

Management

User

Business

User

Management

Service

Business

Service

Customer, SP Administer Teacher, or
Expert, or

Student, etc ..

Field Trip,
Speech To
Text, etc..

QoS

Privileges Access list

Service Usage
Service Usage

Can only be
invoked

Can only
invoke

Meta-Roles Role Concept

Member

Role

roles

Meta-Roles may be

VO Manager WF Manager,
Context
Manager

© Akogrimo consortium page 29 of 158

During the registration phase, the new VO member (or its representative such as the VO
manager) will provide information about one of these VO roles it is going to cover together with
the policies enabling to interact with (e.g. security, payment and negotiation aspects). Obviously
the two operations (subscription and registration) can be treated as two actions common to BVO
and OpVO.

Users wishing to register themselves should use the portal provided by their network providers or
an application client incorporating the registration phase and available on a user’s mobile/PC. By
means of this portal, for instance, the user will be at first identified in the supporting network by
using one of several possible identification mechanisms (e.g. knowledge-based, cryptography
based, biometrics, secure signature, etc.; see paragraph 3.1.1 of [9]) and gaining a SAML token.
This token will be utilized by VO manager to ensure itself of the user’s identity and for instancing
a new VO session. The necessary credentials depend on the role being requested by the candidate
user.

Within a VO a ‘participant registry’ can be envisaged in order to enumerate all entities registered
with the VO. Each entry of this registry should be enriched with metadata that explains what is
the role of this participant inside the VO. It is possible to envisage “some” intelligent knowledge
creator system that, when the participant acts inside the BVO (interacting with another
participant through the OpVO mechanism), could update this registry with new metadata,
describing which kind of relationships are possible to be created involving the specific
participant.

At the end of this phase, the new VO member will receive some credentials (see Figure 8) that
allow access to the VO on subsequent occasions (log-in phase) and acquiring/using/providing
services in according to its role and rights.

2.2.2. Log-in and Log-out

After the subscription/registration phases, the new entity (user, service, SP, etc.) is allowed to
access VO functionalities and be recognized by other members. The log-in phase comprises the
authentication and deals with the submission of registration certificate by BVO member to BVO
management services; subsequently a new temporary token is provided to member enabling it to
acquire, use or sell services (or be used in the case of service). The lifetime of this token defines
the session at VO management level.

Figure 8 Registration and Log-in

As depicted in the Figure 8, at the end of registration phase the new entity is a member of the VO
(BVO or OpVO) and a certificate is released to it in order to subsequently proceed with the log-

Registration Log-in

VOmember

certificate

VOparticipant

token

© Akogrimo consortium page 30 of 158

in. After the log-in. the member will become a logged member of BVO and is able to access Grid
functionalities by means of its token.

2.2.3. Publishing

When the SP has become a BVO participant, after subscription and registration to the BVO, then
new services could be published into the GrSDS [9].

The GrSDS is a “static” discovery registry (it could be an UDDI based registry with some
“semantic addition”) where the static description of services (i.e. WSDL description) is published.
The SP, acting as BVO participant, will publish its services in the GrSDS. To achieve this aim,
the SP has to provide a contract template (i.e. SLA template, where are collected QoS info,
charging policies and service requirements) associated to each service and published against a
SLA-Template repository. These interactions are represented as in Figure 9 with the grey arrows.

Of course, in GrSDS, some relationships must be created between the published service and the
SP. This could be useful when a customer wants to set up an OpVO, in order to make the best
match between customer needs and provider capabilities, considering in case membership rules
related to the specific SP.

We describe another interesting interaction mechanism for the publishing: the GrSDS could
receive data from information source coming from the SP local environment and storage this
data allowing also to retrieve them in other context (e.g. during the service buying phase). This
interactions are represented in Figure 9 with the blue dashed arrow. Following the WSRF model,
the information source could be WS-Resources that simply have a status and an interface
specifying its capabilities and how to interact with. In order to make other VO members aware of
the presence of these services, their interface should be localizable within the GrSDS. This
publishing phase can be realised using the notification mechanism provided by WSRF
specification with a previous recognition phase of information sources and subscription phase to
their notifications; this phases may happen when a new participant wants to register itself to the
BVO, as a member with the role of SP, providing the required information to refer and to
subscribe to the his information source.

© Akogrimo consortium page 31 of 158

Figure 9 Service publishing phase

In Figure 9 the main components that come on stage are depicted. The BVO participant (i.e. the
SP) knows the information about the service to publish and will indirectly interact (the grey
arrows in the figure) with a service registry for storing service functionality interfaces as well as
with the SLA-Template registry for storing its service requirements parameters. Again, adding
metadata like semantic information could be also provided in order to improve the research
capabilities on services, for this reason we can foresee a metadata registry.

In the case that the service has a more complex nature, by being a composition of some services
that compound the overall functionalities for the service, the compound service can be described
by means of an orchestration or workflow language with semantic capabilities for specifying what
type of services the workflow composes together. In any case the compound service will be
represented with a classical service interface published inside GrSDS. In this case the provider of
this service will be represented by the reference of the Workflow Manager that is able to execute
it.

2.2.4. Acquiring a service

As default step, in Akogrimo vision, a service consumer has to buy a Business Service (or have it
bought by a SC) before he can use it; this fact gives reason to our introduction of the SC role. So,
with respect to ordinary VOs (in OGSA vision, [14]) that support and enable the availability of
services to all their members, we foresee a set of negotiation (both economic- and QoS-oriented)
services in order to reach some agreements and to match consumer-service requirements.
Obviously, some services provided by third parties can be free-of-charge, but also for these
services a negotiation phase must be accomplished. In this last case we can talk about “light
negotiation phase” because the final consumer will not pay for their usage, but the service should
be guaranteed with some QoS requirements or in the worst case with a best practice QoS

 BVO

GrSDS (WP 4.2) Workflow Registry

SLA Template Registry

Metadata Registry

SP

VHE

VHE

Information source Information source

BVO Manager

owns

Notification

© Akogrimo consortium page 32 of 158

requirements. In any case this should be specified inside the SLA template and in the final SLA
contract.

The result of this phase, which takes place in the BVO, will be the creation of an OpVO
composed by services required by customer and bound to users making use of them.

Who really has the rights for service acquiring is the BVO participant assuming the SC role.

Before starting the description of the steps to buy a service we show how data are stored. Each
business process appears as a simple service (web interface), which means that it is published
inside the GrSDS, but some metadata of the published information is different (e.g. the SP of a
business process will be the Workflow Manager that is in charge of finding and associating the
right workflow template to execute the business process). Inside the Workflow Registry there are
all workflow templates useful to execute the business process and additional metadata to manage
semantic information. The Workflow Manager is in charge to find the best match between
business process discovered in GrSDS (based on service customer input parameters) and
workflow templates stored in Workflow Registry.

We will explain steps in order to provide a complex service (business process). The main steps
can be summarized as follows (see Figure 10):

1. SC (belonging to BVO as participant) requests the acquisition of a business service
passing through an access point (maybe a portal or an agent that recognizes and forwards
the request).

2. The request arrives to the Workflow Manager (inside BP Enactor block) – step 1. This
entity receives the metadata describing requirements on the requested service (that could
be complex or simple) and make a search of it on GrSDS.

3. If the requested service is a complex service (behind it there is a workflow that involves
different component services) the SP is the Workflow Manager itself. Then the Workflow
Manager chooses what is the best workflow template in order to provide this service. It
will decide what are component services involved into the workflow and provide a list of
them to OpVOBroker (inside VO Management block) – step 2.

4. In the case the service requested is a simple one, the workflow manager recognize a
different service provider and forward the request to the OpVOBroker – step 2.

5. The OpVOBroker receives the list of component services and makes a search of their
providers in GrSDS – step 3. Then based on the returned list makes some internal
ranking (on the base of profiles, credentials, and other available info on customer and
provider) and tries to negotiate for each component service until there isn’t a SP able to
provide them.

6. The SLA-Negotiator is involved into the negotiation phase (step 4) in order to check the
resources availability to provide business service. When all component services are
negotiated the reservation will be made (step 5) and the OpVO creation process starts.
Otherwise if OpVOBroker isn’t able to negotiate for all component services, the control
comes back to Workflow Manager that will provide an alternative service/s to be
negotiated. If there isn’t any service to renegotiate the process is stopped and the service
can’t be provided with the required QoS.

7. When all component services are negotiated the Workflow Manager contacts the
OpVOManager in order to set up the OpVO with the right access policies.

8. The Workflow Manager subscribes itself to context change of business service and to
violation monitoring service.

© Akogrimo consortium page 33 of 158

9. At the end of these steps an identifier is returned to the customer to the access services in
the new OpVO.

Figure 10 Collaboration diagram for Acquiring BP

We notice that in the previous steps description, we have hidden intentionally the interaction
related to the security issues, to provide a more abstract and simple view.

2.2.5. Using a service

After buying a service, the SC may decide the actual users of its services and add them to the
OpVO, using management functionality provided by the OpVO Manager. This operation is the
registration or join of new member to the OpVO.

This registration implies also a check to verify that real users can be added within the workflow
execution to match their profile (or part) against the BP-role of process definition.

Further, a member can actually utilize this service only if he has logged-in to the OpVO.

During the service purchasing, the set of possible users is also populated with the constraints and
capabilities they have. For instance, in the e-Learning scenario a professor can require to buy a
service to his university (as a BVO member SC) that operates on his behalf by also issuing the
possible users such as students, professors or experts. This Customer can be embodied by
University Institution providing e-learning services and bridge for his students, professors and

VO Management

SLA High Level BP Enactor

(Mobile Network Middleware Layer – Layer 4.2)
GrDS

(Grid Infrastructure Services Layer – Layer 4.3)

EMS/SP

1. Acquires BP

2. Acquires Services
4. Negotiates Service

3. Searches Services

5. Reserves Service

Layer 4.4

Other Layers 4.X

© Akogrimo consortium page 34 of 158

technical to (Base) VO. Once a service is bought and possible users are enacted, a student
wishing to access Field Trip functionalities should require the OpVO Manager to enable his
access and, after profile checks, the OpVO will arrange some supporting services to take care of
the user’s requests. One of the main purposes of these supporting services is to ensure the user
security accesses.

In a more complex condition such as a workflow where several SPs are involved in a common
OpVO, a SP can need functionalities of other SP so that the first one becomes the “user” for the
required services. Differently from the users/humans presence, the SPs as users are already well
known to other SPs at the buying phase, therefore a strict binding among these SPs is created to
provide the overall functionalities for requestors in the same way of using a unique SP.

At last, the participants involved within an OpVO assume (also dynamically) one or more roles
defined during the service publication and different from roles defined for BVO participants (see
paragraph 2.2.1). The OpVO roles represent the capability to invoke/offer functionalities
from/to other OpVO members. So, these roles can be viewed as the roles at BVO level
specialized for a specific business domain. For instance, returning to Field Trip scenario for e-
Learning domain, the OpVO can involve some services such as the FT and some users such as
the professors, the experts, the students, etc.; in this case a professor role can have the right to
utilize some functionalities of a service that a student can’t. These roles are application-specific
because who defines services that will be involved within the OpVO is in charge of modeling
these roles for the possible participants.

2.2.6. Service destruction

By service destruction we mean the dismissal of the corresponding OpVO and the releasing of its
involved resources. Because the OpVO is a transient environment that can be viewed as a
“specific business service VO” with a possibly short life-time living, in a natural situation the
destruction can be issued in three ways:

� When the goal is successfully reached

� Time-expired: the prefixed time-living for the service established during the buying phase
is over (we refer to service as which the customer has bought).

� Explicit request: the user having the rights (SC) can request the immediate or scheduled
destruction.

As consequence, all resources reserved for the OpVO are released and some BVO reassessment
are accomplished (e.g. revoking some users’ rights) so that the functionalities can be no more
accessible by users.

© Akogrimo consortium page 35 of 158

3. Detailed architecture description

3.1. VO Management

3.1.1. Overview

3.1.1.1. Objectives

The Grid presents an opportunity for a type of organization that crosses conventional
organizational boundaries and offers a collection of services that require the cooperation of
several conventional organizations – VO. In Akogrimo, this goes further: with a MDVO, people
and services are mobile, either changing their location or their connectivity. The immediate
connection for a device can be passed from one access network to another. Supporting devices
could be mobile, or could be pervasive allowing a person or service to connect when in the
vicinity. In this document, we drop the word “mobile” but always assume it, unless stated
otherwise.

A VO has participants who may be service users or providers or customers. Participants take on
roles and there are policies for associating roles and participants with rights, restrictions and
responsibilities within the VO – sometimes the word member is also used. The procedures for
establishing the environment for service usage and provision are grouped under the heading of
VO Management.

Section 2 describes the life cycles of members and services.

3.1.1.2. Example Scenario

3.1.1.2.1. eHealth testbed organizations

In the eHealth testbed validation document [1], several conventional organizations are involved.
For convenience, we summarise below the essentials from that document as they affect VOs:

� A university hospital, regional hospitals, medical specialists, general practitioners, emergency
medical services and an emergency dispatch center establishing a regional health network
(RHN) – the initials differ from those used in [1].

� The RHN is headed by the university hospital and provides telemedicine services to the
partners and the patients attended by partners of the network. These services are focused on
particular diseases and risk groups.

� For providing the services the RHN collaborates with a health service provider (HSP) and a
network operator (NO).

� The NO hosts an infrastructure to provide telemedicine services over its network. It offers
computational, network and data collection services.

� The HSP distributes the telemedicine equipment, provides advanced medical analysis services,
configures application services specific to the health network’s needs and is responsible for
the patient-side accounting and billing. If the customer of the eHealth services is the hospital
that in turn offers these services to its patients, the hospital will be accounted and billed. If
the hospital provides accounting and billing to each patient, it can use accounting reports of
the eHealth services, which specify usage for each patient, and itself computes the bill.

© Akogrimo consortium page 36 of 158

� The heart monitoring and emergency service (HMES) is one of the services provided by the
regional health network and addresses the patients with an increased risk on suffering a heart
attack or apoplectic stroke. Patients belonging to this risk group are subscribed to this service.
The main objective of this service is the early recognition of heart attacks or apoplectic
strokes and a proper treatment as fast as possible. In the case considered here, just one task is
offered by the service. During the treatment process of a patient in this risk group the
attending physician can recommend the application of a permanent monitoring service to
observe the cardiac function that assures a more detailed diagnosis, a fast alert triggering, and
a disease-specific response in the case of an emergency.

� In the testbed, the people involved also include an emergency first responder and the police
services, but we do not require them in the explanation of the services in this document.

3.1.1.2.2. Scenario based on the eHealth VOs

 It should not be necessary to model all the existing, conventional organizations as VOs. We
therefore outline here some possible candidates for a VO in the eHealth scenario, which involve
conventional organizations pooling resources. Note that these are not necessarily the same as in
the section 3.5 – because here we are simply using the examples to illustrate the possibilities of
VOs.

� EHealth BVO: Below we distinguish between BVOs and operative VOs, where a BVO
provides an environment within which operative VOs may be created. For the eHealth
scenario, we have a BVO which needs to include services and users from the RHN, the
HMES and the Network Operator, which offers computational, network and data
collection services.

� Patient Monitoring VO: Patient monitoring is the subject of an Operative VO service. In
principle the infrastructure should allow the possibility of either a separate VO being set
up for each patient monitored by the HMES or one patient monitoring VO for all
patients. This issue is discussed in Annex A. We assume the former in the discussion
here. Although there is not an emergency, when this VO is first required, reducing the
start up would be an advantage. We can make the assumption that, apart from the
patient, all participants in this VO are already members of the eHealth BVO and
authorisation and authentication for them has been successful. So the Akogrimo
infrastructure should make it possible for authorisation rights and restrictions to be
derivable from an existing VO, the eHealth BVO. Another distinction between this VO
and the previous one is the need to be able to run a workflow (implementing a business
process) – the term Operative VO (OpVO) will be introduced below. Monitoring
equipment attached to the patient and accessed via the phone can be modeled as services
and therefore requires mobile services.

� Patient Emergency Response VO: This too is the subject of an Operative VO service When
an emergency is declared, organizations not involved in patient monitoring need to be
involved. Here a speedy start up is required and some automation becomes critical here,
while still maintaining accuracy and resilience. Additional sources of patient monitoring
data (e.g. in an ambulance) will be required with additional mobility requirements and the
patient’s sensor data may be connected to the ambulance communications equipment
instead of his mobile phone. Merging of several data sources will be needed, including
several sources of mobile monitoring data and the historical database on a fixed server.
Here too there could be just one OpVO for the function handling multiple patients or
one for each patient.

© Akogrimo consortium page 37 of 158

The Testbed Validation Scenario document [1] contains a list of actors, roles and services for the
eHealth testbed and these are associated with particular VOs. An actor may be an organization
or an individual.

3.1.1.2.3. Elearning testbed scenario too

A future version of this document will consider VO management from the point of view of the
eLearning testbed scenario.

3.1.1.3. Functional Capabilities - Concepts

This section outlines concepts and properties of a VO in Akogrimo. The first bulleted list
contains quite familiar VO concepts, but their relevance to Akogrimo is discussed (section
3.1.1.3.1 onwards). The second bulleted list below contains concepts introduced in Akogrimo and
are described from section 3.1.1.3.8 onwards. There may need to be some adjustment when
existing plausible implementations are examined in more detail, except where fundamental
Akogrimo principles would be compromised.

After the concepts are listed, they’re discussed in more detail.

� VO owner (e.g. an administrator in a university hospital)

� VO Manager

� The identity of a VO

� The conventional organizations and individuals participating in the VO (e.g. a regional
hospital or a doctor there)

� The services offered by a participant

� Participant’s role – organizations have roles and so do individuals (e.g. a doctor at a
regional hospital) - an owner could be a predefined role

� Policies associated with a role

� User agent

� Service agent

This 2nd list contains concepts which are introduced in Akogrimo.

� A BVO: this was introduced earlier in the example of the eHealth BVO

� An OpVO: this was introduced earlier in the examples of patient monitoring VO and
patient emergency response VO. The first list of concepts is presented below with a BVO
in mind; variations on this are presented in the description of the operative VO.

� An OpVO Manager

� An OpVO Broker

© Akogrimo consortium page 38 of 158

3.1.1.3.1. VO owner

An individual initiates a VO and as a result becomes the VO owner. The owner sets up an initial
set of roles and policies. For example an administrator in a university hospital could set up an
HMES and become the owner.

It is required that some VOs (for example, patient emergency monitoring service) be set up
quickly, thus adding an aspect of dynamism that goes beyond that commonly associated with
VOs.

In other work on VOs (e.g. TrustCoM [55]), the two separate operations, (i) identify the
requirement for a VO and (ii) form a VO. The former is a necessary preamble, but need not be
part of the Akogrimo infrastructure.

It could be argued that anyone could set up a VO and become the owner and hence define the
rights and restrictions of anyone else wishing to join. There could be security implications where
unsuspecting people are trapped into giving away details of their identity (like spoofing of email
messages from banks). It is suggested that this problem be ignored in the Project’s 1 st cycle.

3.1.1.3.2. VO Management and the identity of a VO

It must be possible to distinguish one VO from another globally, to ensure global distinctness on
creating a VO and to allow its participants to identify it when VO Management operations are
required. This concerns the identity of the VO. There are several ways of implementing the VO
identity:

a) Each VO is identified by being associated with a unique VO Management service
instance, i.e. the VO is the service instance. In all other alternatives, a single VO
Management instance could manage multiple VOs.

b) The VO could be identified by an XML Namespace. However the namespace normally
refers to the specific XML-based language, not an actual XML document. Furthermore,
the URI identified by an XML namespace is allowed to refer to a non-existent document
and that makes it hard to check whether or not the VO already exists.

c) Implement as an XML document at a specific URI – with some suitable prototypical tag
such as <AkogrimoVO>.

d) Implement as a registry of VOs: if it’s not in a VO registry somewhere, it’s not a VO.

Considerations need to include scalability, redundancy (possibly using replication – consider the
mobile, possibly disconnected situation), multiple simultaneous operations and interworking with
non-Akogrimo VOs.

It must be possible for the VO Owner to choose whether the identity of the VO is to be private.
This may mean allowing the possibility of encrypting all VO Management messages.

It may also be desirable to allow VOs to be published. How should this be done? Possibly using
the Service Discovery mechanism, which implies that the VO would be implemented as a service
(see option (a) above).

In option a), a single VO Management service instance is responsible for managing the resources
associated with the VO.

© Akogrimo consortium page 39 of 158

With the other options, the VO identity and resources are dissociated from any particular VO
Management service instance. In principle a service from a different SP could be invoked each
time a VO Management operation is required and would be passed the details of the VO identity.

3.1.1.3.3. VO participants

Participating individuals

Section 2.2.1 introduces subscription and registration of VO participants. An individual
participant may or may not be associated with an existing conventional organization. Medical
staff would be associated with a hospital, but a patient is a patient whoever they work for. (In
some situations and in some countries, a patient would need to be a citizen of that country or be
part of some national health insurance scheme or have sufficient financial reserves, so some
authentication would be needed, even for the patient – some decision on the authentication of
patients needs to be made – preferably a simple one).

When an individual attempts to join a VO, some form of identification/authentication and
character reference may be required in order to allow them to fulfil a particular role in the VO.
Certain roles (e.g. a patient, whose only access to data is the monitoring equipment allocated to
them) would require a different degree of security protection than others (e.g. a database
manager).

This introduction of an individual in a BVO could be largely a manual process. An individual,
who is associated with a recognized conventional organization already, may be allowed to join the
VO by means of credentials made available by that organization.

Participating organizations

It may be possible to treat individuals and organizations (e.g. doctors and hospitals) the same
way, in terms of their participation in a VO. This may be desirable in order not to proliferate the
number of different kinds of entity in the system. However it is possible that individuals and
organizations may need to be treated differently. For instance: different individuals in the same
conventional organization who join a VO may use different authentication credentials from each
other. An organization may have a code known to the VO. An individual in the organization
could use an additional code, specific to each participant and provided by the organization. This
additional code is transparent to the VO. In case of a problem, the organization will be
responsible to the VO but the organization will be able to know who is responsible among its
participants thanks to the additional code.

Participants’ information

Some information about each participant needs to be kept accessible within the VO. For an
individual, these include:

� The identity: used to distinguish this individual when entering into a logged in session
with this VO

� Other information related to the individual’s identity such as, name and conventional host
organization

� Details related to authentication

© Akogrimo consortium page 40 of 158

� Contact details – either stored directly with the VO participant information or available
outside the VO, by looking up via the participant’s identity

� The possible roles which the individual can adopt within the VO.

This information persists throughout the lifetime of the participant’s association with the VO.
This is accessible for reading and updating, using as a key the VO identity and the participant’s
identity. This can be implemented using a participant registry, which can be created when the VO
is created. This Akogrimo layer (WP4.4) is responsible for implementing the participant registry
and scalability considerations suggest that this should be kept independently for each BVO.

When a participant intends to partake in a logged session with the VO, other information about
the participant needs to be maintained. This includes:

� Network Home Address

� Context

� The role that the participant has declared when establishing access

Although ideally a logged in session implies a “continuous” period of access, to this is not
necessarily possible due to spasmodic connections and one of the goals here is to maintain
session, role and workflow status, despite connection discontinuities.

Recursive participation

In principle a VO may itself become a participant of a VO. Although attractive in general it may
introduce unsuspected complications and might not be necessary for the testbeds, and so is not
considered part of this design. However there does need to be some relationship between one
VO and another (for instance a Patient Monitoring VO is related to a host HMES VO), but this
can be handled in a different way which is discussed under OpVOs and under Relationships
between VOs.

3.1.1.3.4. The services published by a participant

Services are potentially diverse and examples may include:

� Data analysis

� Access to data from sensors monitoring the patient: in the pre-emergency phase,
connected by his mobile phone and in the emergency phase using a connection from the
ambulance to the RHN

� Establishing and managing a conversation connection between a specialist doctor and the
emergency staff

� Obtaining a text message response from a specific doctor to confirm that they are
available

Further details of service publication are in section 2.2.3.

© Akogrimo consortium page 41 of 158

3.1.1.3.5. Participant role

Participants may be service providers or service consumers/users. To preclude complex
statements about what a participant may do in a given situation, it is simpler to say that a new
participant P may undertake possible roles R, S or T and at the present moment is accessing the
VO in the role S.

We distinguish between different sorts of role, belonging to the VOs:

� Infrastructure role : Some roles are predefined and must always exist inside a VO, because
necessary for the management of the VO itself – for instance the VO Owner.

� Business role : Business-specific roles may be established in a specific OpVO and represent
the roles, defined in the application, that the customer needs to accomplish his business goals
e.g. FirstResponder, DataAnalyst.

A role is defined using a set of generic terms, for instance:

� What can a given role offer inside a VO - services provided by someone in this role (service
viewpoint)

� What can a given role do inside a VO – what services can be accessed by someone in this
role (user viewpoint)

Roles need to be updateable and accessible and are relative to the specific VO. There could be a
role registry, managed by a generic registry mechanism or could be stored with the VO.

3.1.1.3.6. Policies associated with a role

The purpose of having a mechanism for expressing VO Policy is to allow some flexibility in the
operation of VOs and to allow the flexible aspects to be stated in some visible and processable
document. An aspect of a VO which might be the subject of a policy is: which VO Role
Descriptions are subject to which security restrictions?

VO Policies can be stored using a general Policy Manager service, which can be used to manage
and store VO policies. VO policies and policy enforcement and decision points will also need to
be provided.

Each policy domain needs to provide information in the form of a policy template and an
example for VOs is provided in D4.3.1 Annex A.6 [8]

3.1.1.3.7. User and service agents

User and service agents are general mechanisms (in particular services) in order to check/grant
access rights at VO level. For example a participating user of the VO is represented inside the
BVO/OpVO by a user agent. To this agent is associated a role and VO services can
check/assure user access rights inside BVO/OpVO. A service agent has similar behaviour. These
are discussed in more details in the section on security (3.4).

© Akogrimo consortium page 42 of 158

3.1.1.3.8. Operative VOs and BVOs

In Akogrimo, an OpVO can be set up on demand in order to provide an operative environment
within which a business process can run. Since it is able to makes use of services, policies, roles
and especially rights and restrictions already established in a pre-existing VO (a BVO), an OpVO
adds further dynamism in its initiation beyond that commonly associated with VOs. As
described in section 2.1.1 multiple OpVOs may be associated with a single BVO.

Operative VO

The OpVO is a dynamic organization with a specific task: let a user or a service achieve a specific
business goal. In general behind an OpVO will be executed a workflow template and the overall
users and services involved during lifetime of OpVO will represent a business process.

For example, Patient Monitoring VO: A separate VO could be set up for each patient monitored by
the HMES – but see also the discussion in Annex A.

BVO

A BVO is a quite static organization which actually has a broad task: let participants establish
(search/negotiate) OpVOs and provide basic identity management (profiles, participant
registry…). A service may be published and associated with a BVO but is not capable of
execution within a VO until the creation of an OpVO which includes that service.

For example, HMES (This VO provides all the necessary HMESs) and Network Operator within
the eHealth testbed. The services in an HMES VO could request services belonging to the
Network Operator VO)

OpVO Initiation

Given a requirement for an OpVO, one can be set up based on a pre-existing BVO. An OpVO
would require a set of participants fulfilling certain roles and a set of services provided by those
participants. A BaseVO would already have been set up as an umbrella organization containing a
range of participants for each role and a range of published services. The application designer
would need to ensure that the BaseVO is adequately populated.

Forming the OpVO would proceed by inheriting the BaseVO roles and policies and by selecting
a set of participants and published services already established and authenticated in the BaseVO.
The criteria for selection (e.g. location, specialisms) would depend on the circumstances which
led to the OpVO being required.

Some of this would proceed automatically, for instance authentication. Other aspects of this
OpVO formation may rely on actual human negotiation to determine availability, although even
this could be automated to some extent.

The OpVO could be created by means of copying from the BVO, thus setting up the OpVO as
an independent entity. An alternative is that the OpVO is created by defining its relationship with
the BVO. Thus any changes in the BVO are, if relevant, reflected in the OpVO (e.g. change of
contact details for a specialist; or new recruit is immediately drafted into the OpVO). This latter
alternative may be preferable.

© Akogrimo consortium page 43 of 158

A BVO could be regarded as a large organization, capable of forming multiple OpVOs each for a
specific case. So in the eHealth scenario, the HMES could be a BVO which then is the basis for a
Patient Monitoring OpVO, one for each patient.

Discussion has led to the preference that there is a 1 to 1 relationship between an OpVO and a
Business Process. So, the purpose of a particular OpVO is to provide an environment within
which it is possible to enact the business process with which it is associated. One possible
problem with this is that it could lead to an artificial inflation of the extent of a single business
process or an artificial specialisation of the purpose of an OpVO. So the business process
associated with the Patient Monitoring OpVO might have to be titled: Monitor_The_Patient
Whether this is satisfactory could be determined by working through some use cases.

3.1.1.3.9. An OpVO Manager

The identity and management of a VO was discussed in section 3.1.1.3.2 and a number of
alternative implementations were discussed. A corresponding decision should be made here. In
fact, where possible, an OpVO should be managed by mechanisms which are similar to a
BaseVO in nearly all respects.

3.1.1.3.10. An OpVO Broker

This entity is responsible for business service acquiring. It is offered by the BaseVO and acts on
behalf of final customer that wants to set up an operative VO. It is in charge to conclude the
negotiation phase for each component services involved into the global business process asked
for the customer. In order to conclude the negotiation it has to lead the search phase performed
by GrSDS (belonging at 4.2 level) and to rank service providers list by using ranking criteria (e.g.
based on matching between customer and service provider profile or using some additional input
parameters provided by the customer, etc).

3.1.1.3.11. Relationships between VOs

The idea of a BVO and its associated OpVOs amounts to is a 2 level hierarchy of VOs. It is
possible to conceive of circumstances in which more levels may be needed, if the organizational
arrangements in the application are complex. Although this may be worth studying in general,
the present design envisages just 2 levels, the BVO at one level being the parent, but not an
ancestor, to multiple OpVOs.

3.1.1.4. Functional Capabilities - VO Management
Operations

A VO has a collection of management operations associated with it. It is likely that these are all
Grid Services.

� Form a VO and designate the owner of it

� Associate a role with a VO (alternatively associate with the BVO/OpVO a collection of
roles in the form of a VORole document (in XML)) – allow changes and enquiries

© Akogrimo consortium page 44 of 158

� OpVO Broker operations.

� Form an OpVO by association with a BVO

� Associate a participant organization or participant individual with a role - allow changes
and enquiries.

� Finally, dissolve the OpVO when the business process is completed (e.g. the patient
doesn’t need to use requested e-Health service)

� Dissolve a BVO (e.g. when there aren’t organizations inside it able to provide services or
the owner of VO doesn’t need to maintain it up). Even though some BVOs might persist
for a long time, the possibility of dissolving a BVO should still be available.

Many aspects of a VO can be controlled not explicitly by passing parameters but by
populating suitable XML documents (e.g. for describing a role and its associated policies) and
this simplifies the list of VO Management Services.

3.1.1.5. Position with respect to the Akogrimo
infrastructure

3.1.1.5.1. Interactions with Akogrimo infrastructure components

Figure 11 Subscription to the BVO

The subscription of a new VO participant should be requested by the BVO Administrator (a
person) to the BVO Manager (a service) that checks some membership requirements and, in turn,
requests the addition of the participant profile to the Participant registry (Figure 11).

© Akogrimo consortium page 45 of 158

Figure 12 Add a User to an OpVO

When the OpVO is created, a new user may be added at run-time; this operation should be
requested by the OpVO Customer (a person) to the OpVO Manager; this component will create
a user agent (a service that represents the user in the VO - it is represented by a ws-resource) and
assign a role to him. Moreover it requests the addition of the user to the participant registry of the
OpVO (Figure 12).

© Akogrimo consortium page 46 of 158

Figure 13 Acquire Business Service

Figure 13 outlines the phase of acquiring a business service. The Workflow Manager, having
determined which services are required, passes the list to the OpVO Broker and asks it to return
a list of corresponding specific services satisfying certain criteria, which could include some QoS
metadata (may be also some budget constraints). The OpVOBroker is in charge of looking for
(using GrSDS component, of WP4.2) available services, applying some ranking criteria and then
asking the negotiation to the SLA Negotiator. (Obviously, this sequence shows only the main
kind of interactions between components and omits some detail). When the services are found,
the OpVO Manager may ask for the creation of the OpVO to the OpVOManager that will set up
the OpVO with the required agents for users and services.

Identified interaction Rationale for interaction Issues to be addressed

BVO Manager – VO Security
subsystem

Authentication and
authorization

OpVO Manager – VO Security
subsystem

Authentication and
authorization

Define what functionalities
belong to security
subsystem and what others
are covered by
BVO/OpVO Managers

OpVO Broker – SLA Negotiator Negotiation and contract

BP Enactor – OpVO Manager OpVO initiated by
Workflow

Table 1 Summary interactions between VO Management and other WP4.4 components

© Akogrimo consortium page 47 of 158

Identified interaction Rationale for interaction Issues to be addressed

Participant Registry – Generic
Registry mechanism

To store participant
information

Need to decide whether the
VO Participant Registry
uses the Generic Registry
Mechanism or a registry
designed for this purpose

VO Policy Manager – Policy
Manager

To obtain low level policies

BVO Manager - GrSDS To publish a service To decide what metadata
needs to publish

OpVOBroker - GrSDS To search published
services

Table 2: Summary interactions between WP4.4 VO component and components outside WP4.4

3.1.2. Architecture description

3.1.2.1. Architecture overview

The concept of VOs that span computing networks and working environments can be seen as
the essence of Grid computing. VO’s provide the logical architecture behind the distribution and
management of services within Grid computing environments. Akogrimo’s use of VO’s in
mobile computing environment has led to a redefining of the traditional VO’s architecture.

Within Akogrimo the relationship between Virtual Organization’s and GRID resources and
services have been reviewed to reflect the mobile nature of the Akogrimo GRID. Within
traditional GRID infrastructures the Virtual Organization is static and based on fixed resource. In
Akogrimo the virtual organization involves mobile resources and is often required to be mobile in
its nature.

This mobility in relation to the hosting environments making up a VO challenges the GRID in
the way it manages and accesses services. The ability of hosting environments within a VO to
drift in and out of range, change their IP address, suffer from fluctuations in relation to the
quality of service of the VO are some examples of the problems that mobility poses to the GRID
architecture.

Architecturally within Akogrimo this problem is addressed by the creation of two types of VOs:
the BVO and OpVO. The BVO exists as a core VO in the sense that it contains specific key
services in relation to workflow, security management, service level agreements and brokering.
The Brokering service is required during the creation of the OpVO, it is used to rank possible
services for use in the OpVO when executing a workflow.

The OpVO is a collection of services grouped in order to achieve the completion of a specific
task. This set of services is not limited to the ones that are managed and owned in the BVO. The
OpVO also includes services that are registered with a BVO service but are managed, owned and
located outside the boundary of the BVO. These services in Akogrimo are often mobile in
nature.

© Akogrimo consortium page 48 of 158

Services, BVOs and OpVOs are illustrated in Figure 14 below. The External services are
illustrated as separate to the BVO services. This is because they are possibly not owned or
constantly in connection with the BVO. These services are likely to be mobile in the model. The
main time they become connected with the BVO except from registering is when they are being
used in an OpVO. This is also illustrated in Figure 14.

The OpVO Broker selects services into the VO using rules from the external services and the key
BVO services in relation to workflow and selection requirements. This takes into account
characteristics of the services that are affected by mobility from location to network connectivity.
As the broker can bring in replacement external services if others fail. Within the BVO the
services are less mobile and generally are more robust and stable.

Figure 14: Services, BVO and OpVO's

3.1.2.1.1. Functional requirements

Below are what seen as the likely functional requirements/service of a VO

� Membership Registry. There needs to be a central registry for all services involved in a VO. This
registry will be a store of service information from application attributes to network related
information.

� Participant Registry. This registry will contain static data (i.e. profiles) of VO participant. This
information is useful to manage participant credentials and to associate a role to each user
that will access to an OpVO.

� Management. In the VO architecture there is a need for a management service. This service will
act as a central point of VO management from security to the establishment of OpVO’s.

� Ownership. In terms of legality and policy the VO will need a VO Owner.

� Brokering. Brokering is a key stage in the establishment of an OpVO. The brokering service
will broker between services internal and external to the BVO when establishing the creation
of an OpVO its remit and members.

� Security. Security will be implemented at all levels of the network from VHE to BVO level. In
terms of VO the BVO will be the central point of control for authorisation of users and
services, as will credential mapping for use of user service agents within OpVO’s.

� SLA. Access to SLA repository and function in the VO is essential to aid the brokering phase
of OpVO creation.

© Akogrimo consortium page 49 of 158

� Grid Service Discovery Service GSDS. This repository service (outside WP4.4) will be called upon
during the discovery of services registered with the VO Manager.

3.1.2.1.2. Non-functional requirements

� Twin speed Brokering. Interaction between broker and internal and external services in the
execution of workflows and tasks must be carried out in a fast efficient manner in cases where
users are charged related to use time or the value of a deal can change over time (i.e. share
price). In cases where this is not an issue and there is no financial charge or other overhead
which requires fast brokering in relation to a service, a slower brokering process could be
used. This could save the VO on brokering resources and also allow for the inclusion of other
more detailed specifications in the brokering process.

� Speedy VO creation. The creation of VO’s to execute tasks, in terms of establishing
communication channels and security / roles between services must be quick and efficient.

� Scalability. Each VO must be able to adapt to large numbers of members either leaving or
joining over long or short periods of time. The VO must be robust enough to be able to
manage and monitor the demands of its member services. Also the Architecture must be able
to handle multiple base and OpVO's.

� Change Management. In cases where the network /service attributes change within the VO this
change must be managed, for active services and non active services in Akogrimo.

� Network fault tolerance. Faults in network connectivity or service execution must be catered for
within the VO. The ability of mobile devices to drop out of range must be expected to occur
in the architecture and the VO must be able to deal with this.

3.1.2.2. Use case view

3.1.2.2.1. Actors

A list of actors involved in VO management use, cases are:

� Service provider and network provider

� BVO Administrator

� Workflow Manager, SLA Management entities

� GrSDS (from outside WP4.4)

� OpVO customer

� OpVO Manager

© Akogrimo consortium page 50 of 158

3.1.2.2.2. Use Cases

Below are described main use cases that address VO management functionalities.

Use Case Subscription and unsubscription

Description This use case describes how to add a participant in Akogrimo BVO.
The participant could be a NP or a SP, but also a simple participant
as a final user.

Flow of events:

� In the first part of use case SP or NP asks to BVO
Administrator to add itself, as participant, inside the BVO.

During the unsubscription phase a trusted part entity is
removed together with its users, recognized as participant of
BVO.

� In the second part of use case a simple user is added as
BVO participant throught a trusted entity recognized by
BVO Manager.

A user could be also unsubscribed by its trusted entity.

Actor SP, NP, BVO Administrator

Preconditions BVO Administrator knows SP or NP.

BVO Manager recognizes trusted entity that wants to add a “simple
user”.

In order to execute the unsubscribe action each participant has to
belong into the BVO

Postconditions A new participant is added to the BVO

An existing participant is removed from the BVO

Table 3 Subscription and unsubscription

© Akogrimo consortium page 51 of 158

Figure 15 Subscription and unsubscription

Use Case Acquire a business service

Description In the use case are highlighted major steps when the Workflow Manager
wants to acquire a business service (or a set of services). The subsystem
has to perform a search on GrSDS and a negotiation for each component
service involved into the execution of workflow or for the one service
asked (if the business service isn’t composed).

At the end of acquiring service phase the Workflow Manager asks the
creation of the OpVO.

The Workflow Manager dissolves the OpVO, releasing all resources.

Actor Workflow Manager, GrSDS, SLA Management

Preconditions A SC wants to acquire a business service with specific requirements and
uses BVO entities/functionalities to achieve task.

A user doesn’t need requested OpVO.

Postconditions A business service is acquired and an OpVO is set up.

The OpVO is dissolved.

Table 4 Acquire a business service

© Akogrimo consortium page 52 of 158

Figure 16 Acquire a business service

Use Case Join a user to an OpVO

Description A user wants to be added to an instance of OpVO in order to
collaborate/take part in the execution of a business service

Actor OpVO Customer, OpVO Manager

Preconditions The user has to be a visitor (i.e. subscribed to the BVO) and an instance
of the OpVO is available and set up

Postconditions A user is added into the OpVO if he is recognized to have specific
rights. The user will receive the reference to its UA.

Table 5 Join a user to an OpVO

© Akogrimo consortium page 53 of 158

Figure 17 Join a user to an OpVO

3.1.2.3. Conceptual architecture description

As discussed previously the VOs within Akogrimo are split into two types. These are the BVO
and OpVO. The BVO is central to all business processors that take part within any of the
OpVO's associated with a specific BVO. It is envisaged the BVO's will be application specific.
For example an architecture for e-learning could be split up and may consist of multiple BVO's
for specific jobs including teaching, learning material and students. Off this each BVO could
create multiple OpVO's to deal with separate lower level key tasks, for example in a student
BVO, OpVO tasks could include roll call and homework distribution.

Figure 18: Core Akogrimo VO Management Services

Within the BVO there are specific services that have been agreed on in the architecture plans for
the project, within the OpVO these services exist too, but also in OpVO’s external services
specific to the task are also included. Figure 18 shows the core VO management services.

Essentially the main responsibility of the services in the diagram is to enable the establishment of
an environment that will conduct a specific task. Thus the key components reflect workflow,
SLA, membership, brokering and security. In the process of task initialisation to completion it is
envisaged each one of these services will be involved.

VO Manager

The VO Manager is key to the operation of the VO. It is the first point of contact for external
services registering with the VO and also provides the first point of contact for users of the VO.
The VO manager covers essentially functionalities for registration of users and services, but at the
same time is high level coordination entity.

The VO manager’s external interaction is with the VO Owner. They have the responsibility of
providing membership rules for the VO, the VO Manager is the point of enforcement for
security and policy within the model.

The VO manager has the power to instantiate an OpVO based on data it receives from trusted
entities. It does this by setting up an OpVO broker, and establishing the OpVO Manager service.

GrSDS

This service (belonging to WP4.2 level) contains services published by SP throw BVO Manager
or other alternatives mechanism (see 2.2.3) when the SP has been recognized.

OpVOBroker

The OpVOBroker service (belonging to VO Management block) essentially manages the
negotiation phase, performing search operation on each component services involved into
business service and provides ranking criteria to start negotiation with specific service providers..

© Akogrimo consortium page 55 of 158

The power to do this task i.e. security credentials and ID information of the task is passed down
from the VO manager.

SLA Management

The SLA Management block contains information about Service level requirements specific to
internal BVO requirements and external OpVO member requirements. Examples of internal SLA
requirements can be seen to include rules associated with processing power/time used during the
execution of the task, an external requirement could relate to a specific financial constraint or
level of QoS expected. The SLA management provides this information in the SLA repository
and it is enforced by the SLA enforcement component (located at 4.3 level). The SLA
Management doesn’t belong to VO Management and is described in detail in a separate section
3.3.

Workflow Manager

The Workflow Manager is essentially a service that gains information specific to the execution of
a VO from external and internal sources to the BVO. The Workflow Manager contains a
workflow repository of workflows located internal and external to the BVO.

The workflow manager’s job is essential in this brokering phase, as information relevant to
available workflows are central for a task to be completed. It locates the specific workflows and
provides their necessary means of execution. In Akogrimo it is expected that BPEL and a BPEL
engine requirement will be a part of the Workflow Management, at least for this first cycle.

In cases where the negotiation of one or more services involved into a workflow fails (e.g. can’t
be provided with specific QoS), the OpVOBroker requests from the Workflow Manager another
list of services to negotiate. If the Workflow Manager is able to provide this new list then the
acquiring process continues, otherwise it is interrupted because the requested business process
can’t be provided with requested QoS.

The Workflow Manager is in a separate subsystem from VO Management and is described in
detail in a separate section 3.2.

Policy Manager

Finally and essentially in the BVO services security exists. This service is directly linked to the VO
Manager and security policy is stored in the Policy Manager. In relation to a VO security is best
visualised at policy level as opposed to a specific examination of potential threats.

Within the VO the security service will be relied on to provide rules and processes relating to the
exchange of credentials in the system and Authentication, it can be best visualised as a
partnership between the policy and VO Manager. It is envisaged that VOMS will have a role to
play in the way security permissions are planned in Akogrimo, although essentially policy will be
set directly by the VO Owner or indirectly by the VO Manager.

The initial key phases of Authentication and Authorisation can be seen as at the initial registering
of a SP and associated services with the VO Manager, this process will be designed to establish a
trust relationship. The authorisation phase will be relied on during the setting up of an OpVO
and the provision of services within it; here external services like trusted A4C servers will be used.

Further information on Security and the Policy Managers role in its provision is described in
detail in a separate section.

© Akogrimo consortium page 56 of 158

3.1.2.4. Logical architecture description

In VO management architecture we can identify different entities, that are able to address all
aspect of management related Akogrimo BVO and OpVO. At the moment we can identify them
with the following aspects:

� Membership Management. This block contains a registry where to store static profiles and
roles of participants inside the Akogrimo VOs. Obviously the access to this registry is
managed by a service that allow classical actions as add, remove and update of entries
inside repository.

� Brokering Management. The OpVOBroker applies specific ranking criteria on the list of
service provider that are able to provide specific services. This action is made in order to
reduce the time necessary to complete negotiation phase, speeding up the process of
OpVO instantiation. The action to rank service provider list can involve different entities
and services in VO Management topic, because should take in account the relation
existing between service customer and service provider, their credentials, access rights,
profiles and so on.

� Grant security accesses. BVO Manager makes internal checks to determine what a specific
participant is able to do, what roles can cover and in which way is bound to one or more
running OpVO. Inside Akogrimo VOs we foresee an authorization mechanism for each
participant (called also user) and service. This mechanism can be applied in the BVO as
well in the OpVO and involves different base components of VO management like
membership, participant management, role identification, credential mapping etc.

3.1.2.4.1. Main components description

The figure below shows the main entities of the VO Management. The BVO Manager and the
OpVO Manager share same basic functionalities, related to the configuration and add/remove of
the participants; these functionalities are summarized in the generalization with the VO Manager.

Figure 19 VO Management main components

For each component, we identify the functionalities:

ParticipantRegistry:

� Add/Remove/Modify Participant Profile

� Get Participant Profile

© Akogrimo consortium page 57 of 158

BVO Manager:

� Add/Remove Participant, the VO Manager is responsible to check if a given entity may
become a member of the managed VO and then store his/her profile in the Participant
registry

� Configure Membership Rules, allows the setting of rules for the membership, such as
minimum requirements on the profile of the participants or other constraints useful to
impose some compatibility between the members of VO

OpVO Manager:

� Create\Dissolve OpVO, due to the transient character of the OpVO, we need lifetime
management of the OpVO;

OpVOBroker:

� AcquireBusinessService, this core functionality deal with the choice of the best service
provider and the best service for the service customer; this task is achieved with the
matching of their business goal/requirements using some ranking criteria;

� Configure Ranking Criteria, the criteria for the ranking may be dictated by the
characteristics and goals of the BVO and so, granting flexibility, it is useful to configure
these criteria

3.1.2.5. Involved technologies

At this layer we will map all resources and services as grid services, following WSRF
specifications. For this reason we will use the most candidate underlying frameworks
(WSRF.NET and GT4) that implement the WSRF specifications, in fact the major part of
communications are SOAP requests over HTTP. Moreover we will manage some static
information that needs to be stored in repositories and we can use RDBMS databases or xml
native databases, on the base of specific needs.

3.1.2.5.1. VOMS

The Virtual Organization Membership Service acts as the interface for the user information
database inside a Grid. Traditionally in computer systems this role of managing user data was
conducted by LDAP. VOMS is a replacement for LDAP in Grid computing and offers an
improved service in the management of user data in terms of security and functionality.

Aside from solving the various technical nuances Grid users face with LDAP (like mass updates
and CN names crashing with a VO names), VOMS offers a new approach in the management of
user data for the Grid. A good example of this is that VOMS provides separate instances for
every VO in the VOMS database along with LCAS/LCMAPS as opposed to the gridmap file in
LDAP.

The granting and verifying of credentials is improved in VOMS via the use of voms-proxy-init as
opposed to grid-proxy-init. In this model the VOMS registration and VO servers are contacted in
the process of setting up a job so all relevant credentials are matched to the user's request. Thus
facilitates the update of the Information Service and removing the previous procedure of copying
certificates that were needed to every node.

Within the VOMS' user management, additional attributes are used:

� The user's working Group (e.g. registration, integration, testing)

© Akogrimo consortium page 58 of 158

� The user's Roles (within a given "Group" i.e. inheriting the Group's privileges, e.g.
production manager, user).

This allows the administrator to register members within a VO more effectively (members should
provide their DN, CA and Group affiliation). So during the grid job submission when a member
issues voms-proxy-init they get an extended proxy certificate from the VOMS server, including
the member's Groups and Roles as additional attributes.

3.1.2.6. Configuration and Deployment

This section will be updated during implementation phase, because at the moment there aren’t
enough details to provide inputs on it.

3.2. Orchestration

3.2.1. Overview

3.2.1.1. Objectives

In order to fulfil the business goals of a Virtual Organization, the services on offer must be
combined and controlled through the use of structured workflows that reflect the business
(process) models of the VO. The Application Support Services layer of the Akogrimo
architecture includes support for such service orchestration, provided by the Business Process
Enactor.

The mobile, dynamic grid world of Akogrimo introduces special concerns and problems that
have to be catered for by the orchestration components of Akogrimo. Mobile clients and
(particularly) mobile services may have changing requirements and capabilities, which must be
taken into account in workflow management. In Akogrimo, we “decompose” large-scale business
processes into multiple smaller workflow templates (in the first prototype, decomposition will be
a priori, that is, external to the system), and so reduce the problem in two ways. Firstly, both the
choice of template to use, and the instantiation of the template with “concrete” service instances,
will be chosen based upon the current dynamic context (as well as drawing upon VO brokerage,
negotiation and policy management). Secondly, context-dependent choices of action will be
supported within the workflows themselves, though the intention is that each workflow instance
should be of sufficiently short duration that context change is less of an issue.

3.2.1.2. Example Scenario

We have chosen to base the scenario on the Testbed scenario “Manage Virtual Emergency
Environment” (in document D2.3.2, Testbed Validation Scenarios [13]). In this use case, an
emergency call (from a patient or their heart monitor) is handled by an Emergency Centre
Operator, who gathers further information, selects appropriate medical staff, and “initiates the
emergency workflows”. However, we have not adhered to the scenario rigorously, but have
modified it to demonstrate the orchestration functionality in more detail, or to illustrate
architectural arguments. In particular, we hope to demonstrate the behaviour of the Akogrimo
orchestration components in the following situations:

� triggering of a workflow by some (possibly external) event: by a user request for a service,
or by as an action from another workflow;

� choosing a workflow template: based on both static and dynamic (e.g. contextual)
requirements;

� resolving a workflow template’s abstract services into concrete services: using service
discovery and negotiation;

� enactment and monitoring of the activities within a workflow;

� detecting and reacting to exceptions: SLA violations, failures to uphold policy;

� completing a workflow.

The scenario is initiated when a patient makes an emergency call, either by calling the Emergency
Centre or when their heart monitor sends an alarm (which may be sent using the patient’s phone,
or by other unspecified means). This call is handled by an Operator in the Centre, who performs
the next steps. We could consider the Operator as the de facto instigator of the emergency

© Akogrimo consortium page 60 of 158

response workflow, and take this as the starting point for our scenario; but from a technology
viewpoint it may be more interesting to consider the emergency call as the true instigator. That is,
we consider that the emergency call itself triggers creation of an instance of the emergency
response workflow. Thus the workflow is triggered by an event, and not (directly) initiated by a
person. Initially, this workflow has a single “assigned” OpVO member, namely the patient
himself. (We will consider the registration and logging-in of the patient as outside the scope of
our scenario.)

Obtaining the patient’s attributes and context could be considered either as a step in the
workflow or could be associated with logging in to the VO (though this would have to be
automatically triggered by the (receipt of) the emergency call.) We note that the choice of
workflow could depend on this information: for example, an emergency call from abroad would
have to be handled in a different manner to a national call. (Or to be more prosaic, the choice
may depend on whether the patient is at home, at work or on the move.)

The first action in this workflow (after the trigger event) is to be carried out by a user with the
role EmergencyOperator, therefore the next step in processing is to choose an individual of this
role. In other words, the emergency call must be assigned to an operator (and it would be sensible
to choose an operator who is not busy). So we need to ask the OpVO Broker to assign a (non-
busy) operator to the OpVO for this workflow. There may be further constraints; for example,
that the operator should be able to speak the patient’s language. This means that information
about the patient must be available to the Workflow Manager and/or the VO Manager before the
choice of operator can be made. This illustrates that we may not know all role assignments, and
hence not the full OpVO membership, until we are part-way through enactment of a workflow.
Static constraints can be satisfied in advance and can be used to create a list of eligible
participants for this role. Other constraints, dynamic ones, would need to be satisfied as close to
the required time as possible, otherwise inappropriate choices might be made. The impact on an
OpVO depends on when and how OpVOs are created; this is discussed in 3.1.1.3.10. If a new
OpVO is set up for this case, it may be preferable for all participants satisfying the static
constraints to be eligible for the role - or a subset such as the "top 3". If a new activity is set up
within an existing OpVO, all potential role-fulfillers are already in the OpVO, except possibly for
new recruits, which we do not consider here.

Next, the Operator establishes “two-way voice contact” with the patient (presumably only if the
patient is conscious); presumably once established, this communication persists in parallel
through most of remaining steps of the case, and the Operator cannot be considered available for
further calls until the dialog is closed (that is, the workflow cannot be considered completed until
the dialog has ended).

In the meantime (in other words, in parallel with the above task), data relevant to the patient’s
condition must be retrieved. In practice, it would make sense (assuming sufficient capacity) to
have such information included in the patient information retrieved as part of the initial response
to the emergency call; for demonstration purposes here, we could view this as another step in the
workflow wherein the data is collected; as this may be from a variety of sources, the step may
itself be a complex sub-workflow.

Suitable parties for the emergency response must be found; in other words, available VO
members must be sought and added to the OpVO for this workflow. Here, “suitable” includes
both static and dynamic criteria, such as medical expertise specialised to the patient’s condition,
location and (of course) availability. Again, in practice it would make sense to pre-determine
those VO members who could satisfy the static constraints (expertise, etc.), and this may be part
of the formation of the “Virtual Emergency Environment” in the original testbed use case; but

© Akogrimo consortium page 61 of 158

the dynamic constraints (particularly location) are best resolved “on the spot”. The choice may
depend on information obtained in the parallel discussion between the Operator and the patient.

The final step in the use case is for the Operator to “start respective services and workflows”.
Though this could be considered to be the point where orchestration really starts, we could also
consider it to be the end of our workflow, which finishes by having the Operator choose one or
more new workflows to start. The Workflow Manager must ensure that the appropriate data is
“inherited” by the new workflows; and remember that there may be parallel tasks (such as the
voice communication) that must be completed before the workflow can be considered complete.

The above has not considered possible exceptions in the workflow. One example could be if the
Operator has to stop dealing with this case part-way through. Then a new Operator must be
chosen, and sufficient context transferred to her (along with membership of the OpVO) to
enable her to continue the task. Might the handover process itself be described by a workflow?

3.2.1.3. Functional Capabilities

The Orchestration components of the Application Services Layer are intended to provide the
following functions (naturally, through interaction with other components):

Workflow Template Management

� Selection of appropriate workflow templates based on semantic attributes

� Storage of workflow templates representing advertised services

OpVO Management

� Incremental formation of an OpVO upon workflow template enactment

� Destruction of an OpVO upon workflow template termination

Workflow Template Evaluation

� Resolution of abstract services into concrete services, through service discovery and
selection

Workflow Enactment

� Execution and steering of a workflow control-flow

� Management and steering of a workflow data-flow

� Coordination and synchronization of services

Workflow Enactment Monitoring

� Subscription of services for monitoring

� Event polling for exception management

3.2.1.4. Position with respect to the Akogrimo
infrastructure

This section provides a broad view on the position of the orchestration topic with respect to the
whole Akogrimo architecture. Sequence diagrams and interaction tables will be presented to

© Akogrimo consortium page 62 of 158

depict briefly the basic concepts behind the orchestration components making up the
orchestration problem.

3.2.1.4.1. Interactions with Akogrimo infrastructure components

Following the example scenario of section 3.2.1.2, the Figure 20 is a sequence diagram depicting
the initial scenario’s workflow enactment process with respect to some Akogrimo components.
Recall that the BP Enactor depicted is the WP4.4 component in charge of managing the whole
orchestration process.

Figure 20: A high-level sequence diagram depicting the workflow enactment of the example scenario with

respect to the other Akogrimo components

It is worth noticing that the functions depicted in this sequence diagram are directly taken from
sections 3.2.2.4 and 3.2.2.5. Moreover, note that these are not the only interactions arising in a
workflow enactment process. This is only the initial high-level sequence of steps of the enactment
process. For a more detailed view of interactions and sequence diagrams of enactment see
sections 3.2.2.2 and 3.2.2.3. Meanwhile, the following table lists the broad interactions between
orchestration components and the Application Support Services layer. The interfaces are detailed
further in section 3.2.2.

Identified interaction Rationale for interaction Issues to be addressed

OpVO Manager OpVO creation, management
and destruction

Are we foreseeing the
possibility for a user to join an
already instanced OpVO?

OpVO Broker Service discovery and selection

Table 6 Summary interactions between orchestration components and internal WP4.4 components

© Akogrimo consortium page 63 of 158

The following table lists the broad interactions between the Orchestration components and other
layers of the Akogrimo infrastructure. The interfaces are detailed further in section 3.2.2.

Identified interaction Rationale for interaction Issues to be addressed

Grid Service Discovery Server Find services matching user
request

What semantic annotation
should be used?

Context Manager Subscribe/unsubscribe for
particular context changes;
poll for event changes

Might event push be possible?

SLA Enforcement Subscribe/unsubscribe for
particular SLA state changes;
poll for event changes

Might event push be possible?

User Agent Workflow initiation and
control; return of results

Service Agent Invoke service methods

Table 7 Summary interactions between orchestration components and outsider WP4.4 components

3.2.2. Architecture description

3.2.2.1. Architecture overview

The service orchestration problem is the problem of modelling, expressing and successively
enacting a set of services in order to make them cooperate in a coordinated fashion. In our case,
the modelling is done by means of a workflow-based representation of the intended interactions
and synchronizations between services. Such workflows represent specific business processes and
will be handled by the BP Enactor.

Services can be referenced in both abstract and concrete ways, the former meaning only service’s
semantic information are used along with the discovery process and the latter meaning services
can be directly referenced, thus without passing through the discovery process. Ideally, every
business process published in Akogrimo will be stored, as a workflow template representing a
specification of the interaction between abstract services, in a Workflow Registry.

Architecturally, the orchestration process is started and managed by the Workflow Manager
component of the BP Enactor. During the orchestration process, workflow templates will be
“resolved” to concrete workflows by discovering each composing abstract service. From an
architectural point of view it is important to note that this “resolution” step will be accomplished
in a lazy way, thus resolving and enacting pieces of workflow whenever they become “available”.
Moreover, the instantiation of workflow parts will entail the necessity for the Workflow Manager
to interact with the OpVO Manager for creating and maintaining the OpVO related to the
submitted business process. The Workflow Manager will successively submit such resolved
workflow parts for enactment.

An Enactment Engine, capable of creating an instance of a workflow and successively steering
and managing the run-time execution arising from the interaction and synchronization steps
between services, then carries out the enactment process. The engine is thus responsible of

© Akogrimo consortium page 64 of 158

invoking service operations, moving I/O data between services and fulfilling the temporal and
control dependencies described by the submitted workflow piece.

During this enactment process, the Workflow Manager will be responsible of adapting the
workflow to particular events. Such monitoring capability is necessary for managing context and
SLA changes in user and service state respectively. Note also that this monitoring process, carried
on by the Monitoring Daemon sub-component of the BP Enactor, entails a tight communication
with external components such as the SLA Enforcement and the Context Manager.

3.2.2.1.1. Functional requirements

From a purely functional point of view the BP Enactor is responsible of intercepting user
requests of services execution, matching them to some published and available services and
enacting them while providing the necessary feedback to the user.

In a more formal way, this means the BP Enactor is required to provide the following functional
characteristics:

� User Interaction: the first and foremost functional requirement is to provide ways for users
to communicate their requests of service execution. The user will be able to select specific
services for enactment or to specify a set of annotations describing, semantically, the type of
service requested.

� Service Matching: the BP Enactor does not directly provide service matching. However, it
must filter the information gathered from the user request and forward the important ones to
the service in charge of matchmaking such information to appropriate services

� Workflow Selection: the returned service matching the user requirements must be
associated, when necessary, to appropriate workflow templates, stored in workflow registries.
Such templates will describe the interactions between abstract services, i.e. services without
any binding to real web-services. Abstract services will be described by the means of semantic
annotations that will describe their functional and non-functional capabilities and
requirements. Moreover, because several workflows can correspond to one published service,
selection of the best workflow should also be addressed by associating usage-related statistical
information to stored workflows

� Workflow Enactment & Monitoring: the BP Enactor is responsible of providing the final
enactment of the whole workflow. Such enactment entails the need for functional
characteristics that make the Enactor able to execute and monitor the workflow. Moreover,
the enactor should provide mechanisms for managing and steering such execution.

3.2.2.1.2. Non-functional requirements

The BP Enactor has the task of managing, steering and monitoring the execution of workflows.
Such tasks need to be done in a flexible and adaptive manner and it is necessary to have these
characteristics assured while creating the BP Enactor architecture. The following is thus a list of
the principal non-functional characteristics the BP Enactor is supposed to own:

� Service oriented sub-architecture: all sub-components making up the BP Enactor should
be exposed to the AkoGrimo environment as normal services, thus entailing the use of
standards such as WSDL, SOAP and HTTP as protocols for interactions among internal and
external components

© Akogrimo consortium page 65 of 158

� Adaptive Enactment: flexible enactment of a workflow requires the possibility of making
quasi real-time changes to its control flow. Such adaptability can be achieved by applying
enactment techniques that enables rollback, run-time substitutions and suspension of
workflow executions

� Lazy Evaluation: evaluation of a workflow’s nodes, i.e. resolution of abstract services into
concrete ones, in a lazy way is indispensable for obtaining a flexible enactment process. Lazy
evaluation gives the Enactor the ability to evaluate and successively execute services of a
workflow with a high degree of control over how to deal with failures, with flow branches
and with monitoring tasks

� Real-time Monitoring: real-time monitoring is obviously another fundamental characteristic
required by the Enactor. Adaptive enactment of a workflow can only be done if real-time
monitoring characteristics can be provided for the Enactor to take run-time decisions. Such
monitoring needs to be effective not only on services execution but also on most of the
workflow execution parameters that could influence the enactment process.

3.2.2.2. Use case view

The use case view proposed in the two following sections has been extracted from the previously
described example scenario. Its purpose is to depict more clearly what are the interactions
between the actors taking part into the whole process of workflow enactment. Note that to
accomplish such a goal we are using entities, precisely the sub-components of the BP Enactor
briefly introduced in section 3.2.2.1, which are clearly described only in section 3.2.2.3.

Moreover, the following is a figure depicting a sample workflow that will be used as a reference
to describe the use case extracted from the example scenario. Note that, to be coherent, this
workflow too has been modelled on the example scenario.

Figure 21: A sample workflow depicting a possible business process for the example scenario

As depicted in Figure 21, the workflow sample describes the entities, the control-flows and the
data-flows involved in a possible e-health business process.

© Akogrimo consortium page 66 of 158

3.2.2.2.1. Actors

By considering the example scenario, the sub-components of the BP Enactor, the previously
described interactions between Akogrimo entities and, finally, by recalling Figure 21 we can list
the followings as the potential user and service actors of a workflow enactment process:

� The patient’s UA: This is the entity inside Akogrimo and inside the OpVO that works on
behalf of the user.

� The emergency operator’s UA: This is the entity that actually triggered the workflow
request to the BP Enactor.

� The involved SAs: These are all the services that have become available and have been
selected for fulfilling the workflow enactment process. These are the actual concrete services
the BP Enactor decides to use during the emergency workflow’s evaluation.

Moreover, the followings are the identified actors of a workflow enactment from a BP Enactor’s
components point of view:

� The Workflow Manager: This component is the actual central unit for processing all the
necessary decision on the workflow enactment process. The Workflow Manager is the
decision-making component of the BP Enactor.

� The Enactment Engine: This component is directly responsible of the service methods
invocation, of managing the I/O data, and of submitting all the necessary requests through
the classical communication protocols, namely HTTP and SOAP.

� The Workflow Registry: This component is just a repository of the description, or
implementation, files of the workflows published in the Akogrimo environment. Some sort of
database manager will serve such registry.

� The Monitoring Daemon: This component is in charge of subscribing and polling events of
entities involved in the workflow enactment. Such monitoring will be necessary for checking
run-time SLA failures and for updating user’s context information changes, due to the user’s
possible mobility for instance.

Finally, the followings are the actors of an enactment process from the point of view of the
Akogrimo’s Application Support and Infrastructure services:

� The OpVO Manager: This entity will manage all the aspects of the OpVO life-cycle. It is its
duty to create, add, remove and destroy OpVO related to single workflow enactment
processes. Addition and removal of entities from an OpVO must be supported even at run-
time, so to enable a high level of adaptivity. The OpVO Manager will thus be also responsible
of finding the good security tokens to create or pass enabling all participants in an OpVO to
interact with each other.

� The OpVO Broker: This is the entity in charge of finding appropriate services for the
workflow. It will ask the discovery server the list of concrete potential services and
successively will interact with the SLA High Level services for agreeing on SLA contract. The
selected service will then be announced to the Workflow Manager.

� The GrSDS: As stated just above, this is the entity involved in the service discovery process.
Such process will be carried-on by matching semantic information of the requested
functionalities with semantic information of the capabilities of published services, found in
service registries.

� The Context Manager: This entity is one of the two entities involved in the monitoring
problem. The Context Manager will interact with the Monitoring Daemon previously

© Akogrimo consortium page 67 of 158

introduced for constantly checking triggered events stating some context changes in the user
status.

� The SLA Enforcement: This is the second entity involved in the monitoring. Similarly to
the Context Manager, the SLA Enforcement will interact with the Monitoring Daemon for
having run-time information about SLA contract failures and QoS-level status of subscribed
services.

3.2.2.2.2. Use Case

Figure 22 shows a detailed view of how all the actors introduced in the above section interact
with each other. This sequence diagram shows the steps done by the BP Enactor’s components
for the enactment of part of the workflow sample of Figure 21. Note that this sequence diagram
completes the previously shown diagram of Figure 20, which depicted the initial high-level steps
of the interactions between parts of all the involved actors.

Figure 22: A sequence diagram of the workflow enactment process

For the sake of simplicity, but without loss of details, the sequence diagram only depicts the
enactment process starting from the Quick Analysis task, as depicted by the blue circles and arrows
of Figure 22.

It is worth noting how the BP Enactor copes with task in the workflow, namely the Advanced
Analysis one. When asking for this service to the OpVO Broker, the Workflow Manager is

© Akogrimo consortium page 68 of 158

answered with a workflowID meaning that the service is a sub-workflow and thus needs to be
searched and enacted as a nested workflow. That is the reason for the following self-submitWF
done by the Workflow Manager. By “looping back” to itself this request the Workflow Manager
will start a nested workflow enactment process for that Advanced Analysis workflow with a
sequence similar to the one depicted here.

3.2.2.3. Conceptual architecture description

As stated in section 3.2.2.1, the orchestration process is handled by the BP Enactor, which is
composed of several subcomponents. These components will be necessary for storing and
selecting workflows, managing context and SLA run-time changes, and maintaining instanced
OpVO.

Figure below shows an overview of the internal architecture of the BP Enactor. The
subcomponents are depicted in red/dark colour. Dashed arrows represent the interactions with
internal components. For completeness, the figure also depicts external components, in
blue/bright colour, representing the other entities with which some sub-components of the BP
Enactor need to interact.

Figure 23: Internal and external interfaces between BP Enactor components and external AkoGrimo

components

3.2.2.3.1. Workflow Manager

This component is at the core of the BP Enactor. Its purpose is to manage and steer the whole
workflow enactment process, starting from the selection of the appropriate workflow and ending

© Akogrimo consortium page 69 of 158

with the results transfer to the user who requested the workflow instantiation. The Workflow
Manager is thus responsible of maintaining a repository of workflow, of selecting the most
appropriate one based on the users semantic requests, and of starting, monitoring and adapting
the workflow execution based on the real-time evolution of services and Akogrimo resources.

The Workflow Manager can be seen as the central processing unit of the whole workflow
enactment process. It is in charge of receiving and processing user-side requests of service
execution, of managing SLA and user context event notification and of submitting and
monitoring the workflow enactment process.

The Workflow Manager interfaces externally with the Service Discovery Server to find services
that match the user-submitted criteria. Successively, when the GrSDS answers with semantic
keywords corresponding to a complex service, the Workflow Manager will check the workflow
registry for retrieving the appropriate workflow implementation file. For an overview of
invocation methods required by the Workflow Manager see section 3.2.2.5.1.

The Workflow Manager interfaces externally with the OpVO Broker for gathering the necessary
information concerning the set of concrete services to be used for the workflow enactment
process. The Workflow Manager will thus ask the OpVO Broker to discover and select
appropriate services based on the semantic functional and non-functional requirements specified
in the workflow implementation file. Note that it is the Workflow Manager responsibility to
decide whether the whole workflow has to be discovered before execution or whether it can be
enacted in a more lazy fashion. For an overview of the invocation methods required by the
Workflow Manager see section 3.2.2.5.1.

The Workflow Manager interfaces externally with the OpVO Manager for gathering information
on both users and services authenticated into the Akogrimo environment. Moreover, this
interface is needed also for enabling the Workflow Manager to ask the creation, management and
destruction of OpVOs. For an overview of the invocation methods required by the Workflow
Manager see section 3.2.2.5.1.

The Workflow Manager interfaces externally with the User Agent, which invoked the workflow
instantiation. Service methods should be provided, by the latter for enabling the former to notify
it of requested interactions, ending of the workflow enactment, availability of results, location and
persistency of I/O data, etc… For a more accurate description of the invocation methods
provided by the Workflow Manager to the user agents see section 3.2.2.5.1.

The Workflow Manager interfaces internally with the Workflow Registry for retrieving and
storing workflow implementation files. Such files use a particular language, BPEL for instance,
for describing the abstract services’ orchestration process to be enacted. File transfer between the
two entities will be accomplished by the means of secure and reliable protocols such as SFTP.
For a detailed description of the Workflow Registry see section 3.2.2.3.2.

The Workflow Manager interfaces internally with the Enactment Engine for submitting,
managing, steering and inspecting a workflow’s execution. It will thus be the Workflow Manager
duty to check the execution state of a workflow, to cancel or stop workflow execution and to
inspect internal state of a workflow’s enactment process. For a detailed description of the
Enactment Engine see section 3.2.2.3.3.

The Workflow Manager interfaces internally with the Monitoring Daemon for retrieving the
necessary information related to on-line context changes or SLA failures of services involved in
the orchestration process. Thus, the Workflow Manager will constantly interact with the
monitoring daemon to retrieve events that entail specific workflow management procedures. For
a detailed description of the Monitoring Daemon see section 3.2.2.3.4.

© Akogrimo consortium page 70 of 158

3.2.2.3.2. Workflow Registry

The workflow Registry is the component in charge of storing implementation files of published
workflows. Such files will be stored in some relational database, MySQL for instance, along with
annotations necessary for semantically identifying workflows. A unique key will identify each
workflow and its semantic annotations. Semantic annotations will be stored either as a secondary
database table or as files written in semantic languages such as OWL-S.

Note that such annotations can also be used to store “usage” information useful to the Workflow
Manager for taking decisions on which workflow to use for satisfying a specific user-request.
Thus, the workflow registry will be update by the Workflow Manager each time a workflow has
been enacted, so to trace statistical usage parameters such as execution errors, SLA failures,
execution successes, requests, etc…

Note that this workflow registry is only used by the Workflow Manager, thus is not considered a
service belonging to the Akogrimo basic VO. Thus, the workflow registry interfaces, internally,
solely with Workflow Manager and it is the Workflow Manager duty to query, remove or store
workflows in this registry. For a detailed description of the APIs provided by the Workflow
Registry to the Workflow Manager see section 3.2.2.4.2.

3.2.2.3.3. Enactment Engine

The Enactment Engine is the component in charge of invoking the necessary operations on the
discovered and selected services, to collect data outputs when necessary and to steer the
workflow enactment based upon the control flow specifications given in the workflow
implementation file.

The Enactment Engine interfaces externally with Service agents for invoking the necessary
service methods that progress the workflow enactment. For an overview of the invocation
methods required by the Enactment Engine see section 3.2.2.5.3.

The Enactment Engine interfaces internally with the Workflow Manager. The latter, after
resolving a workflow’s abstract services into concrete ones will submit the concrete workflow to
the engine for enactment. During this enactment process, the Engine can interact with the
Workflow Manager to communicate it how is the submitted concrete workflow execution
evolving. Service failures, branch selections, loop’s iteration number and intermediate variable
values are all tracked by the enactment engine and communicated to the Workflow Manager, if
necessary. For a detailed description of the invocation methods provided by the Enactment
Engine see section 3.2.2.4.3.

3.2.2.3.4. Monitoring Daemon

This is the component in charge of monitoring and tracing all events related either to context
changes of an entity involved in the workflow enactment process, or to the SLA failures deriving
from the inability of a service of fulfilling the initially agreed Service Level Contract.

The Monitoring Daemon interfaces externally with the Context Manager. Such interaction is
necessary for this component, to know what are the changes in context of entities involved in the
workflow enactment process. Thus, the Monitoring Daemon needs to subscribe to the context
Manager all the necessary entities involved in the enactment process. Upon receiving a context
change event, the Daemon will store it in a priority queue for retrieval by the Workflow Manager.

© Akogrimo consortium page 71 of 158

Thus, the Monitoring Daemon duty is to trace such events and manage the queue in which they
are stored so to always be able to inform the Workflow Manager, when it requests for events, of
the context changes that occurred during the enactment of those entities. Note that, for the
Monitoring Daemon to be effective, the priority and management policies related to the event
queue are fundamental. For an overview of invocation methods required by the Monitoring
Daemon see section 3.2.2.5.4.

The Monitoring Daemon interfaces externally with SLA Enforcement. For this interaction, the
same concepts and ideas stated for the Context Manager interaction apply. For an overview of
invocation methods required by the Monitoring Daemon see section 3.2.2.5.4.

The monitoring Daemon interfaces internally with Workflow Manager. The former needs to
expose methods that can enable the latter to manage the queues of entities to be monitored for
context changes or SLA failures. Moreover, the Workflow Manager obviously needs methods to
query for the state of such queues and maybe to select the priority and management policies to be
used. For a detailed description of the invocation methods provided by the Monitoring Daemon
see section 3.2.2.4.4.

3.2.2.4. Logical architecture description

3.2.2.4.1. Workflow Manager

The Workflow Manager interfaces with the user agent. To it, the Manager should provide service
methods for enabling the users to access workflow basic enactment functionalities. The following
is thus the list of service methods provided by the Workflow Manager to user agents:

� workflowID submitWorkflow(annotations[])

It returns the identifier associated with the workflow selected by the Workflow Manager upon
successful selection from the registry.

The parameter is the user-side annotations used to semantically identify the service.

� resultURI getResults(workflowID)

It returns an URI to where results have been stored. Note that in case of workflow enactment
failure the function should return some error value (null for instance).

The parameter is the workflow identifier returned by the Workflow Manager with the
submitWorkflow call.

� cancelWorkflow(workflowID)

This function enables the user to cancel execution of a workflow.

The parameter is the workflow identifier returned by the Workflow Manager with the
submitWorkflow call.

� stopWorkflow(workflowID)

This function enables the user to temporarily suspend the execution an already submitted
workflow for later resume. Such function requires the BP Enactor to provide mechanisms for
suspending a workflow execution, thus mechanisms for maintaining all necessary information
related to workflow status and services I/O.

The parameter is the workflow identifier returned by the Workflow Manager with the
submitWorkflow call.

© Akogrimo consortium page 72 of 158

� startWorkflow(workflowID)

This function enables the user to restart an already submitted workflow or to resume it after a
stopWorkflow call.

The parameter is the workflow identifier returned by the Workflow Manager with the
submitWorkflow call.

� wf_infos getStatus(workflowID)

It returns the workflow enactment process information, along with the actual service being
executed and the variable values of the control and data flow.

The parameter is the workflow primary key returned by the Workflow Manager with the
submitWorkflow call.

3.2.2.4.2. Workflow Registry

The Workflow Registry interfaces, internally, solely with Workflow Manager. It is the Workflow
Manager duty to query, remove or store workflows in the registry. Thus, basic APIs to be
provided by the Workflow Registry for making the Manager interact with it are the following:

� workflowID Store(wfTemplateFile, annotations[])

It returns a workflow identifier assigned by Database upon success.

The parameter is the workflow implementation file and the associated semantic annotation
array.

� WFTemplateFile Get(workflowID)

It returns the workflow implementation file upon success.

The parameter is the workflow identifier eventually returned by the searchService request sent
to the GrSDS.

� Update(workflowID, annotations[], values)

It returns success or failure.

The parameters are the workflow identifier, the semantic annotations to be updated and their
new values

� Remove(workflowID)

It returns success or failure. This function removes the specified workflow from the database.

The parameter is the workflow identifier.

3.2.2.4.3. Enactment Engine

The enactment engine interfaces internally with the Workflow Manager. It will be the Workflow
Manager duty to submit and query state of workflows to the enactment engine. Basic service
methods to be provided by the Enactment Engine are thus the following:

� workflowRef Submit(wfTemplateFile)

It returns an internal workflow reference if it has been correctly parsed and accepted by the
engine.

© Akogrimo consortium page 73 of 158

The parameter is a workflow (or part of it) described through a BPEL, OWL-S or data
structure specification.

� Start(workflowRef)

This function starts the execution of a workflow.

The parameter is the engine’s workflow internal reference returned by the Submit function.

� Cancel(workflowRef)

This function cancels the execution of the workflow and all related intermediate data.

The parameter is the engine’s workflow internal reference returned by the Submit function.

� Stop(workflowRef)

This function suspends the workflow execution by saving all intermediate control flow data
and services I/O (note that suspension is made upon successful completion of the service
executing at the moment of the suspension request).

The parameter is the engine’s workflow internal reference returned by the Submit function.
Information related to the state of the workflow (control flow variables, services I/O values
and service reached in the workflow) can be retrieved with the InspectVar and InspectFlow
functions.

� wf_state GetWFState(workflowRef)

It returns the status of a workflow. Possible suggested states are NO_WORKFLOW,
SUBMITTED, STOPPED, EXECUTING, SUSPENDED, FLOW_ERROR, SUCCESS.

The parameter is the engine’s workflow internal reference returned by the Submit function.

� wf_variable InspectVar(worfklowRef)

It returns the list of a workflow’s intermediate variables and services I/O values.

The parameter is the engine’s workflow internal reference returned by the Submit function.

� wf_construct InspectFlow(workflowRef)

It returns the list of workflow’s control flow constructs along with their state and value.
Moreover, this function returns the state, DONE/FAILED/RUNNING, of each service
involved in the workflow.

The parameter is the engine’s workflow internal reference returned by the Submit function.

These are the basic, static, functions that makes the Workflow Manager able to control and query
the execution of a submitted workflow. With such functions the Workflow Manager is able to
“monitor” the execution of a workflow with a simple looping procedure in which execution
information are asked to the engine. Below an example of such an “event” loop is shown:

while(GetWFState(workflowRef) == EXECUTING){
 wf_variable variables = InspectVar(worfklowRef);
 wf_construct flowInfos = InspectFlow(workflowRef);
 /* Do what is needed to do */
}

© Akogrimo consortium page 74 of 158

This simple code is an example of how the Workflow Manager could monitor the
workflow enactment done by the engine. Moreover, note that this loop can be
nested into a switch statement providing cases for all the wf_state values returned by
the GetWFState function.

3.2.2.4.4. Monitoring Daemon

The Monitoring Daemon interfaces internally with the Workflow Manager. It will be the
Workflow Manager duty to update, add, remove and query the Monitoring Daemon about
pending events related to context changes and/or SLA failures. Basic service methods to be
provided by the Monitoring Daemon are thus the following:

� subscribeEntity(entityURI, monitorType)

It returns a success or failure.

The parameters are the entity’s URI to be monitored and the type of monitoring to be done,
i.e. user context or SLA.

� unsubscribeEntity(entityURI)

It returns a success or failure.

The parameter is the entity’s URI.

� event pollEvent(entityURI, monitorType)

It returns the first event found in the priority queue related to a specific entity and monitoring
type.

The parameters are the entity’s URI to be monitored and the type of monitoring to be done,
i.e. user context or SLA.

� getQueueLength(entityURI, monitorType)

It returns the length of the queue of pending events.

The parameters are the entity’s URI to be monitored and the type of monitoring to be done,
i.e. user context or SLA.

Note that, even though the service methods provided by the Monitoring Daemon are few and
simple, it is of greatest importance that it manages appropriately the necessary queues of events
related to the entities of a workflow being enacted. Such queues represent the only way for the
Workflow Manager to know, thus to adapt the execution, how the state of resources and services
in us has changed form a context and SLA point of view.

3.2.2.5. Logical External Interfaces

3.2.2.5.1. Workflow Manager

The Workflow Manager, core component of the BP Enactor, interfaces externally with the
Service Discovery Server, with the OpVO Broker, the OpVO Manager and with User Agents.
Such interactions need service methods specification, but such specification should be provided
and described by the two latter components whereas the Workflow Manager will use such
methods to access functionalities of these AkoGrimo services.

© Akogrimo consortium page 75 of 158

However, for completeness, we provide hereunder a list of functionalities that should be exposed
as service methods, the Workflow Manager require from these two external components:

� GrSDS – searchService: some APIs should be provided for the Workflow Manager to be
able to ask for the discovery of services based on semantic annotations

� OpVOBroker – searchServiceWithSLA: some APIs should be provided for the Workflow
Manager to be able to ask for the discovery of concrete services fulfilling specific SLA
requirements

� OpVOManager – getInfo: some APIs should be provided for the Workflow Manager to be
able to request information about users and services that should get involved in a workflow
enactment. Such information will probably be retrieved from Akogrimo’s participant registries
by the means of the VOManager.

� OpVOManager – setUpOpVO: some APIs should be provided for the Workflow Manager
to be able to request the creation, and thus the dissemination among initial participants, of
appropriate credentials (maybe tokens) for setting up an OpVO within which the workflow
enactment process can be started

� OpVOManager – addActor/removeActor: some APIs should be provided for the
Workflow Manager to be able to add new actors, at run-time, to the OpVO containing the
actual workflow enactment process and its participants

� OpVOManager – destroyOpVO: some APIs should be provided for the Workflow
Manager to be able to request the destruction of an OpVO. Usually, such event happens after
workflow enactment completion and can thus be triggered only by the Workflow Manager
(being the only entity knowing if the workflow enactment has ended)

3.2.2.5.2. Workflow Registry

As already stated, the Workflow Registry doesn’t interact with services external to the BP
Enactor. The workflow registry just provides APIs to the Workflow Manager subcomponent.

3.2.2.5.3. Enactment Engine

The Enactment Engine interfaces externally with the agents of the services involved in the
workflow enactment process. The methods required by the Engine to interface with such agents,
thus with their respective services, are stored and specified in the workflow. Thus, the Engine
requires no specific method. The latter will find all the necessary information about method
invocation syntax and I/O data type in the workflow specification submitted with to it with the
Submit method.

3.2.2.5.4. Monitoring Daemon

This component interfaces externally with two AkoGrimo core services: the context manager and
the SLA High Level. With both of them, required functionalities they should expose as service
methods are the following:

� Subscription/Unsubscription: methods should be provided by the two AkoGrimo core
services for subscription and unsubscription of entities to the related events. Ability to specify
the type of event, along with the entity to be monitored, should be given

� Event Polling: a method for gathering occurred events should be provided. Ability to
specify the type of event to poll and the type of entity for which we are interested should be

© Akogrimo consortium page 76 of 158

provided. Note however that it is foreseeable to have, instead of a polling mechanism, a
simpler event management mechanism based on event pushing.

3.2.2.6. Involved technologies

The orchestration problem described conceptually and architecturally in this chapter needs
technologies that enable its real and effective implementation. Such technologies should address
the two most important aspect of orchestration:

1. How is the orchestration between abstract services modelled and described

2. How is this model interpreted and executed

The first point is addressed by selecting a language that can describe the control and data flow
between different entities, possibly specified in both an abstract (i.e. without referring to some
real implemented piece of software of service) and a concrete (i.e. binding the entity specification
to a precise service or resource) way. From such point of view, our attention has restricted its
choice between two known languages, namely BPEL and OWL-S:

� The former is a more “business process” centric language. Its specification enables the
description of highly complex workflows, within which parties exchange information by
following the control and data flows descriptions. BPEL is a fully working orchestration
language that supports abstract and concrete specification of services and that provides a
very wide range of constructs for flow control, data binding and variable definition.

� The latter in, instead, a more “semantic” oriented language. Even though OWL-S
supports basic control and data flow constructs that virtually provide the ability of
producing any kind of complex workflow1, its focus is on the semantic specification of
entities. Ideally, OWL-S enables the description of services’ functional and non-functional
characteristics at an arbitrary level of abstraction, thus making it a very flexible and
adaptable language for future AkoGrimo scenarios in which semantic matching and
entailment can be requested.

The second aspect of orchestration is addressed by defining and, if necessary, implementing the
engine in charge of effectively parsing and executing the workflow. Such an engine needs to
maintain adequate data-structures and information about a workflow so that execution can be
steered, monitored and managed in a flexible way. Moreover, such an engine should also provide
all the necessary APIs, languages, protocols and standards for making it possible to invoke
service’s methods, passing them inputs and retrieving, when necessary, outputs.

The three following sections describe the possible combinations of these technologies to address
the orchestration problem. It is not our intention to suggest a solution as the best one. Instead,
we want to clearly describe what can be the advantages and disadvantages, within the AkoGrimo
environment and scenarios, of all the possible solutions arising from the combination of the
aforementioned technologies.

1 We can refer to this characteristic by stating that OWL-S is a Turing-machine equivalent language.

© Akogrimo consortium page 77 of 158

3.2.2.6.1. BPEL Centric Solution

This solution is based solely on the BPEL language and its capabilities of describing both
orchestration-oriented flows and abstract service capabilities and requirements. As already stated,
such solution doesn’t give AkoGrimo the ability to use semantic description of services, however
it can still make use of keywords for service description and abstract workflow definitions.

The use of BPEL as the only language for both enactment and description provides two
advantages: firstly, a single language makes it possible for all components of the BP Enactor
along with external components to communicate without “translation” and/or “interpretation”.
This gives the whole systems a more robust, updatable and manageable architectural aspect.
Secondly, there exist in literature a wide range of BPEL engines, one of which is the open source
ActiveBPEL Engine.

3.2.2.6.2. OWL-S Centric Solution

The OWL-S based solution is in some ways similar to the previous BPEL-centric solution.
Differences arise when the two languages are compared. However, a part these already described
differences, it has to be noted that an OWL-S centric solution would have some interesting
advantages, specifically related to AkoGrimo.

The use of OWL-S, along with some foreseeable extensions, would give AkoGrimo the necessary
flexibility in semantic description of highly diverse services and resources, thus assuring the ability
of adapting, through time, whatever new solution or upgrades will come to life. Moreover, the
mobile world considered by AkoGrimo would highly appreciate such flexibility.

3.2.2.6.3. BPEL/OWL-S Hybrid Solution

The last solution considers a hybrid use of both BPEL and OWL-S. As already stated, BPEL is
very well suited for business process description, whereas OWL-S is highly committed to the
semantic and flexible description of resources and services.

Ideally, the use of OWL-S for services description, thus service discovery, along with the use of
BPEL as the language for describing and enacting a workflow can be seen as the best solution.

Practically however, using two different languages in two different but related contexts can make
some problems arise. There need to be a precise mapping between the language constructs and
such mapping needs to be synchronized every time a new entity is introduced in one of the two
languages. Moreover, it is often difficult to clearly trace the line that splits the use of one language
from the use of the other. From the point of view of the BP Enactor it can be quite dangerous to
define such line: problems could arise in the future while trying to implement specific features
that would need a language more than the other.

3.2.2.7. Configuration and Deployment

This section will be updated during implementation phase, because at the moment there aren’t
enough details to provide inputs on it.

3.3. SLA Management

3.3.1. Overview

The Service Level Agreement (SLA) subsystem, in the scope of the Akogrimo infrastructure, is a
set of two main groups split between WP4.3 and WP4.4 layers. Within WP4.4 context, the SLA
Management is basically involved on the negotiation phase of all the services that belong in a
workflow execution, as well as the establishment of a contract as a result of this negotiation. The
participants of a negotiation are the SP,, who offers his services, and the SC or better someone
on behalf of him. Its goal is to check the availability of services able to carry out actions required
by a user. This part of the SLA subsystem is called “SLA High Level Services”. The other
group belongs to WP4.3 layer and it is called “SLA Enforcement”. This last part is more focused
on the execution control of the service, and it is detailed in WP4.3 component design document,
so there will not be more references here.

One of the possible purposes of the SP is to offer (and in the majority of cases to sell) several
services to the SC. When a SP has developed a service and wants to publish it into Akogrimo
VOs (addressed as BVO) it is also necessary to provide at least one SLA template document that
will be the base of a future contract between the SP and the SC. In this way, it will be assured
good service provisions to the SC. SLA subsystem offers to Akogrimo infrastructure the
possibility of managing SLA templates, contracts, and to establish the negotiation of quality of
service (QoS) for guaranteeing good use of the services.

In order to manage the service negotiations it is necessary for the SLA subsystem to interact with
other subsystems, mainly the Policy Manager and the EMS. The main goal is to reach an
agreement that will establish the conditions of usage for a concrete service in a concrete period of
time. The negotiation phase will terminate when all the services have been contracted and all
contracts have been saved into a repository.

The conditions of use by the SC must be accuracy defined because the service can pass through
several states while it is working.

3.3.1.1. Objectives

The SLA subsystem is distributed among several places in the Akogrimo infrastructure because
of its presence in different phases. One of the steps that set up a BVO is the registration of a SP
and the publication of its services that are offered to Service Customers. Each service has to be
associated to one or more documents called SLA-Template, that will contain service information
as well as QoS offered by the SP, charging policies of use, penalties for bad provisioning, etc.
Akogrimo middleware will provide a specific tool that will allow to the user to build SLA
templates easily without having any know-how about how a document template is built internally.

Before one SP publishes a service, all service templates must be stored in an entity called SLA-
Repository. Afterwards, during the publication phase, the SP can register the service and relate it
to the templates already stored. This is the way for making the services available within the
Akogrimo environment. Another phase, where SLA modules participate, is during the search of
specific services. The GrSDS, in charge of managing this operation, wants to retrieve information
related to all services in order to show it to the SC. For this reason a set of modules are necessary,
these are SLA-Access and SLA-Translator, which will extract this section from all templates.
Next step with participation of the SLA subsystem is the negotiation phase, where the SC, in
agreement with the conditions that offers the SP, decides what kind of QoS he wants. In this step
also participates Policy Manager and EMS subsystems with the aim of ensure the availability of

© Akogrimo consortium page 79 of 158

the SP. Afterwards, if the negotiation has been successful, a contract is made between the SC and
the SP for guaranteeing the achieved agreement. This contract must contemplate the agreed QoS
together all the possible situations that could happen during the use of the service. All contracts
will be saved into the SLA-ContractRepository that will be an entity analog to the SLA-
Repository but storing contracts instead of templates. After that, next phases are already related
to WP4.3, with the participation of the SLA on the service execution and the continuous
management of the QoS fulfillment.

3.3.1.2. Example Scenario

To make services available to the overall Akogrimo environment is necessary to do two initial
steps that must be carried out together. When a SP has developed and deployed a service is
necessary to build a document that reflects the conditions of use, on the one hand concerning the
service provision, on the other hand, essential for the service consumption. Once this document
(it can be more than one) has been created it is stored into a repository together with the other
services templates. Next step is to publish the service and make it visible for all the participants
inside Akogrimo environment. Once all these steps are finished, the service can be requested for
everyone joining the BVO where the SP is registered. When a customer requests for services, the
SLA subsystem provides the functionality for extracting general info from them. This
information will be showed to the user in such way he is able to know what each service is
offering and to choose one of them. Once an available service is elected, several QoS parameters
must be asked in order to know if the SP is able to provide them during the service execution.
This is the moment when the negotiation phase starts for contracting this service. The SLA
subsystem, according to several mapping metrics, will ask for the availability of the service to the
SP. If the negotiation is fruitful, that means, the service is available and the SP assures that it can
provide the desired QoS, there will be made a pre-reservation for the use of the service in a
concrete time and with all the conditions achieved. Once the OpVOBroker, in charge of
managing all the pre-reservations, confirms that all necessary services are available, there will be a
confirmation of the reservation and a contract will be established where will be reflected all the
conditions agreed between the customer and the provider.

3.3.1.3. Functional Capabilities

These are the set of functional capabilities identified for the SLA High Level Services:

� To create document template:

� Define a document template with the QoS offered by a SP for a specific service.

� To access documents:

� To offer functionalities to other modules for accessing to the data of the templates.

� To provide a transparent way to access to the template documents without considering
the interface.

� To control the negotiation:

� To negotiate and achieve an agreement between a SC and a SP in relation with the use of
a determinate service.

� Create contract dynamically:

© Akogrimo consortium page 80 of 158

� To establish a contract as a result of the negotiation phase where will be established all
agreed conditions.

� To store documents:

� To store all the templates on a repository.

� To store all the contracts on a repository.

3.3.1.4. Position with respect to the Akogrimo
infrastructure

In Akogrimo infrastructure we have addressed SLA management issues in two workpackages (4.3
and 4.4), in order to cover different aspects. SLA management, in fact, “contains” “high level”
needs (e.g. provisioning of services with specific QoS and agreement on contract between service
customer and service provider) as well as “low level” needs (e.g. monitoring of agreed SLA
contract and violations management). In particular in this workpackage (4.4) we will present an
architecture to address “SLA high level needs” such as:

� Building and manipulation of SLA-Templates. SLA templates collect service requirements
and we should foresee a tool (or a service) able to write it, in the sense that the service
provider should use this utility to build a right SLA template to use in Akogrimo
middleware. We can foresee this tool or service as a SLA-TemplateBuilder, in this way we
will be able to write a SLA without fear to make it in a wrong way. On the other hand we
will foresee some additional functionality to “SLA high level” in order to access to SLA
template/contract and manipulate them.

� SLA templates storing. The service provider publishes a service and associates to it one or
more SLA templates, that contain information about service requirements. During the
acquiring phase of a service customer requiring a business service, he asks for specific
QoS. On the base of these parameters the search for one or more service providers able
to provide the desired QoS takes place.

� Negotiation. A service customer needs to acquire a business service providing some input
parameters, so the infrastructure services of this layer will provide functionalities in order
to achieve the result. The conclusion of the negotiation will be the formalization of a
contract where will be defined the requirements and conditions of use of a specific
service, and also the reservation of the appropriate resources for the execution of this
service.

� Final SLA contract management. At the end of negotiation phase a contract between
service customer and service provider is reached. Inside it there are service requirements,
QoS and policies about violation management and charging to apply. This information
could be useful for the setup of the service as well as it is used for the enforcement of the
SLA Management during the execution phase. This final contract is delivered to service
customer and stored inside a repository.

All these functionalities are offered at this layer as grid application support services and will be
detailed in next sections.

© Akogrimo consortium page 81 of 158

3.3.1.4.1. Interactions with Akogrimo infrastructure components

The next part shows three phases where the SLA High Level Services participates within WP4.4
layer. These phases are the publication, the negotiation and the contract establishment. For each
phase there is a figure with a sequence diagram where are exposed all the interactions between the
components of this layer and also WP4.2 and WP4.3 layers.

Before publishing a service the SP has to register at least one SLA-Template. Afterwards the
service will be registered together some information extracted from the template. The content of
this information and how could it be structured is not clear yet. The reason is that it depends of
the requirements of the search phase, in concrete it depends of the requirements of the GrSDS.
During the publication phase the GrSDS gets information that could be (or not) enough for the
search phase. Depending on what will be the final design there are two possible ways for
providing necessary information for the search phase to the GrSDS:

- During the publication phase the GrSDS retrieves from the template all the necessary
information (following a fixed structure) that will be useful for the search phase.

- During the publication phase the GrSDS retrieves from the template some information that
will be only useful for the user application. During the search phase the GrSDS will access
to the template again in order to obtain the required information.

In this phase of the design it has been chosen the first option, which is to provide necessary
information to the GrSDS during the publication of the service, so in this case while the search
service operation is not necessary to access to the SLA-Template again for retrieving necessary
information because the GrSDS has stored it during the publication phase.

Figure 24 Sequence diagram publication

During the negotiation phase of a service the SLA-Negotiator will map the input parameters
turning them into low level parameters in order to give the EMS the possibility of consulting with
the SP its availability for serving this service.

© Akogrimo consortium page 82 of 158

Figure 25 Sequence diagram negotiation

After the OpVOBroker confirms the use of a negotiated service the EMS will confirm the
reservation in the SP. Then the SLA-Negotiator will create the contract that will contain the
conditions of execution of this specific service.

Figure 26 Sequence diagram contract establishment

This table summarize the interactions between the SLA modules and the other components of
this layer:

© Akogrimo consortium page 83 of 158

Identified interaction Rationale for interaction Issues to be addressed

OpVOBroker – SLA-Negotiator Start negotiation

OpVOBroker – SLA-Negotiator Confirmation

OpVOBroker – SLA-Negotiator Establish contract

SLA-Negotiator – SLA-Access Set QoS from user TBD if this step will be
finally done or it is not
necessary

SLA-Access – SLA-Translator Set QoS at the document (a
pre-contract)

TBD if this step will be
finally done or it is not
necessary

SLA-Negotiator – SLA-Access Set Data

SLA-Access – SLA-Translator Set Data to the contract TBC if this action will be
done by using the SLA-
TemplateBuilder

SLA-Negotiator – SLA-
ContractRepository

Store agreed SLA contract

Table 8 Summary interactions between SLA Management and internal WP4.4 components

This table summarize the interactions between the SLA modules and the other components
outside the layer:

Identified interaction Rationale for interaction Issues to be addressed

GrSDS – SLA-Access Get Info in publication TBD how and which
information will be
extracted from the template.

SLA-Negotiator – Policy
Manager

Get policies on mapping
metrics

SLA-Negotiator – EMS Service availability

SLA-Negotiator – EMS Confirm reservation

Table 9 Summary interactions between SLA Management and components outside WP4.4

© Akogrimo consortium page 84 of 158

3.3.2. Architecture description

3.3.2.1. Architecture overview

The architecture of SLA High Level Services is a classical architecture service oriented, in the
sense that each module is implemented as grid service. In order to implement all functionalities
we will use an underlying support framework that implements WSRF specification. All entities
belonging at this layer are in charge to conclude the negotiation phase and manage SLA templates
and contracts. Indeed we will find functional blocks able to:

� Store SLA templates and contracts.

� Access to SLA documents in order to retrieve info from them and manipulate their contents
(add, remove and update existing nodes with SLA information), in a way totally transparent to
the invoker.

� Conclude negotiation phase between a service customer and a service provider.

� Request resources reservation for acquired services.

� Build a final agreement contract between who wants to acquire a service and who wants to
sell it.

� Define charging policies between purchaser and seller.

� Remove expired contracts.

� Provide a tool that is in charge to help service provider in building phase of SLA template to
be published when a service will be available.

With the proposed architecture we would provide all functionalities useful to realize a negotiation
phase and management tasks related to SLA. We would highlight that the negotiation phase
couldn’t be executed for all services requested, in the sense that some of them will be provided
for free. In any case we imagine that for each business service should exist at least one SLA
template published, where is specified which are the services functionalities and under which
conditions the service provider can offer them. For each service requested, if the resources
reservation phase is completed, then will exist a final contract. Now, for services offered by free
there are specific rules and particular SLA templates (missing in some parts like charging policies
for example) that won’t be negotiated. For this kind of services (offered free) the acquiring phase
will be concluded in a shorter time respect to services that aren’t free, because will skip some
steps and the customer should accept the services with its QoS availability. An overview of SLA
High Level Services entities and a more detailed description of them is provided at 3.3.2.3.

3.3.2.1.1. Functional requirements

These are the requirements found for the SLA Management:

� A SLA-Template will be built strictly by using the SLA-TemplateBuilder tool.

� Before publishing a service is mandatory to have published at least one document template
related to it. This document will be an XML language based document.

� Each SP has also to indicate policy metrics related to mapping between High Level
parameters and Low Level parameters.

© Akogrimo consortium page 85 of 158

� No outside modules will be able to access to these documents. All the interactions must be
done only by the SLA-Translator.

� The SLA-Negotiator will be a bridge between the SC and SP and it will be the one able to
establish the final contract.

� The contract will be similar than the template, with adding all conditions agreed and some
details/information added at runtime (e.g. unique identifier reference of grid service).

3.3.2.1.2. Non-functional requirements

These are identified several non-functional capabilities:

� Availability: Availability of SLA Management is bound to the availability of general Akogrimo
platform. No special requirement is expected for SLA negotiation.

� Interoperability: SLA design is independent of a concrete technology. The use of generic
specifications like WS-Agreement and XML messages interface would guarantee the
interoperability with other components by design. However as a baseline, .NET technology is
considered. The invocation of SLA services from client based on other technologies is
envisaged as basic test.

� Performance: This aspect is not considered as a main issue in the first prototype.
Implementation will follow main well-know software mechanisms as patterns to address the
issue according to best practises and experience of design team in order to optimise the
development.

� Portability: SLA Management components will be developed for a specific deployment case.
However, the design is generic enough (decoupled from technology) so that it is foreseen that it
can be ported to other platforms.

� Reliability: SLA-Negotiator subsystem must take into account this issue carefully since it is a
critical component for the platform to run properly. Reliability issue must be framed in a
general fault-tolerant strategy coordinated for all Akogrimo key components involved in this
phase. This aspect should be thoroughly considered in second cycle of the project since isolated
strategy would not give this feature to SLA components.

� Scalability: This topic is difficult to address and even more difficult to measure. Scalability is a
continuum, not a binary variable, in such a way that someone can simply say: this platform is
scalable or it is not. SLA Management design takes this aspect into account in order to reach a
solution minimizing possible bottlenecks in a large deployment. For scalability measurement it
is necessary to establish reference cases in order to verify the scalability of the solution against
concrete parameters. For SLA Management services of negotiation phase two cases may be
foreseen: a) scalability when number of customers requests for a QoS negotiation increases. b)
scalability when deployment infrastructure increases (for instance when double size).

3.3.2.2. Use case view

3.3.2.2.1. Actors

Following actors have been identified with some participation with any of the entities that make
up the SLA High Level Services block. Furthermore whatever entity, service, others that need to

© Akogrimo consortium page 86 of 158

access to the contract or the document template, must follow the right procedure, by using the
SLA modules described before for this purpose.

• GrSDS: The Grid Service Discovery System will require information from the SLA-Template
during the publication phase of the service templates. To do this it will ask to the SLA-Access
module for providing this information.

• OpVOBroker: This actor will only interact with the SLA-Negotiator module throughout all
the time the negotiation phase spends. Its role is to be in charge of managing the negotiation
for all the services that are demanded by the consumer in order to concrete at what time and
which will be the service providers that will host the service execution. Once the
OpVOBroker is aware of all required services will be executed on any service provider it
begins to order the SLA-Negotiator that the contract has to be carried out. After the
contracts are saved in the repository the negotiation cycle is completed.

• Policy Manager: SLA High Level Services also interacts with Policy Manager in the
negotiation phase, when it is necessary to know the metrics that define the mapping from
high to low level parameters. These policies are defined by the application designer and are
stored in a policy db. When the negotiation starts the SLA-Negotiator will require them.

• EMS: During negotiation the SLA-Negotiator will ask the Execution Management Service
for concrete service availability in a time scheduled. It is responsible for checking the service
provider status and establishing a pre-reservation of the service use for this period in case of
it is feasible. Once the OpVOBroker realizes that all the negotiation has been successful EMS
must confirm the reservation of the services.

3.3.2.2.2. Use Cases

Next figure shows the use case packages that are involved on SLA. Only the “Package
Publication“, “Package Negotiation“ and “Package Contract“ will be explained below.

Figure 27 Use case packages

Figure 27 shows all SLA packages related to WP4.4 layer. Each package is composed by a generic
use case and after this use case is split in other use cases. From now on, each time the word
“service” appears in the text, it will refer to a concrete instance of any kind of service.

© Akogrimo consortium page 87 of 158

The publication of any service has relation with the SLA infrastructure because this includes the
publication of one or more SLA-Templates associated to it. Furthermore, these templates contain
information that will be useful later for the GrSDS.

Figure 28 Use Case “Publish Services”

Next figure depicts the breakdown of this generic use case:

Figure 29 Use Case “Publish Services” composition

© Akogrimo consortium page 88 of 158

Use Case Create SLA

Description Create a SLA-Template related to a service with specific metrics. A SLA-
Template is a document that establishes all the features that is composed a
service. This action is responsibility of the owner of the service.

Flow of events:

� A SP builds the SLA-Template of the service on the basis of its
capabilities and functionalities (i.e. a SP decide to offer a service with
specific features on the base of resources that it has).

Actor SP

Preconditions The SP has to be able to guarantee what is described inside SLA-Template

Postconditions SLA-Template document related to one service

Table 10: Use Case “Create SLA”

Use Case Publish SLA

Description The first step of the publication phase is associated with the storage of the SLA-
Template into the repository.

Flow of events:

� SLA-Template is stored into the SLA-Repository.

Actor SP, SLA-Repository

Preconditions One or more SLA-Template documents exist for this service. Indeed a SP can
offer the same kind of service with different QoS.

Postconditions The SLA-Templates of the service are saved into a repository

Table 11 Use Case “Publish SLA”

Use Case Publish Service

Description The last step of the publication phase is related to the registration of the service.

Flow of events:

� SP starts the registration service action

� GrSDS gets some information stored into the SLA-Templates from the
SLA-Repository.

� The service is registered

Actor SP, GrSDS, SLA-Access, SLA-Translator, SLA-Repository

© Akogrimo consortium page 89 of 158

Preconditions SP has published the SLA-Templates related to the service.

Postconditions The service is registered together some information extracted from the SLA-
Templates

Table 12 Use Case “Publish Service”

The final goal of Package Negotiation is to achieve an agreement between the SC and the SP. The
main actor is the SLA-Negotiator that will manage all the cycle of negotiation between all
components involved in this phase. Is necessary to assure that an agreement is reached to
guarantee a concrete QoS.

Figure 30 Use Case "Negotiate"

Next figure depicts the breakdown of this generic use case:

© Akogrimo consortium page 90 of 158

Figure 31 Use Case “Negotiate” composition

Use Case Start Negotiation

Description The OpVOBroker acts on behalf of SC and determinates values for the QoS
that it is asked for. After, it starts a negotiation to check if the SP is able to fulfil
what it wants.

Flow of events:

� The user sets the application input parameters.

� These parameters are sent to the OpVOBroker who communicates with
SLA-Negotiator.

Actor OpVOBroker, SLA-Negotiator

Preconditions The user has selected one SP and it has fulfilled the required input parameters

Postconditions The SLA-Negotiator receives the parameters from the OpVOBroker and now
is able to check the availability of the chosen SP

Table 13 Use Case “Start Negotiation”

© Akogrimo consortium page 91 of 158

Use Case Policy of Metrics

Description SLA-Negotiator asks Policy Manager for mapping policies from high to low
level parameters

Flow of events:

� SLA-Negotiator asks for the metric policies to the Policy Manager

� SLA-Negotiator translate the metrics received into QoS parameters
understandable from the EMS

Actor SLA-Negotiator, Policy Manager

Preconditions There are policies defined with the mapping from high to low level parameters

Postconditions SLA-Negotiator has obtained the metric policies and it has mapped the user
parameters

Table 14 Use Case “Policy of Metrics”

Use Case Service Available

Description SLA-Negotiator passes to EMS subsystem the QoS parameters and asks for the
availability of service instantiation in the SP chosen for a given time (it is a fix
date for a future execution)

Flow of events:

� EMS receives the SP and QoS from the SLA-Negotiator

� EMS asks for the availability of the SP to offer a service with this QoS

� EMS returns to the SLA-Negotiator the result of this availability

Actor SLA-Negotiator, EMS

Preconditions There is a SP chosen and a QoS required

Postconditions Returns the availability for this future execution request. If it is possible to host
this request, all is right. Otherwise, other actions must be carried out.

Table 15 Use Case “Service Available”

Use Case QoS Demanded

Description SLA-Negotiator communicates to SLA-Access the QoS selected by the user

Flow of events:

� SLA-Access receives the selected QoS

� SLA-Access orders SLA-Translator to set this information on the
template.

© Akogrimo consortium page 92 of 158

� SLA-Translator accesses to the template and set the QoS section. This
template would be converted to a contract if the agreement were
confirmed.

Actor SLA-Negotiator, SLA-Access, SLA-Translator

Preconditions SLA-Negotiator receives a list with the QoS values demanded by the SC

Postconditions The template is set with the QoS communicated by SLA-Negotiator

Table 16 Use Case “QoS Demanded”

Use Case Return SP Status

Description SLA-Negotiator returns the availability of the chosen SP. There are several
possible situations:

� SP is available: (EMS has done a pre-reservation of the appropriate
resources, only until contract is created)

� SP is not available: SC will receive again the previous list. After it ought
to start a new negotiation but changing QoS parameters or choosing
another SP

Flow of events:

� SLA-Negotiator communicates to the OpVOBroker the availability of
the chosen SP.

Actor SLA-Negotiator, OpVOBroker

Preconditions The SLA-Negotiator knows the availability of the SP

Postconditions Show to SC the results of the negotiation and in case SP is not available return
to SC the previous list with all candidates

Table 17 Use Case “Return SP Status”

The Package Contract is the result of a successful negotiation and the establishment of contracts
signed between SC and SP.

© Akogrimo consortium page 93 of 158

Figure 32 Use Case “Set Contract”

Next figure depicts the breakdown of this generic use case:

Figure 33 Use Case “Set Contract” composition

© Akogrimo consortium page 94 of 158

Use Case Confirm Reservation

Description EMS is notified to confirm the pre-reservation of a service usage for a concrete
SP during the negotiation phase.

Flow of events:

� OpVOBroker communicates to SLA-Negotiator that the agreement has
been reached and confirmed.

� SLA-Negotiator notifies to EMS that the pre-reservation must be now a
reservation.

Actor OpVOBroker, SLA-Negotiator, EMS

Preconditions The SP has a pre-reservation and OpVOBroker confirms that the agreement
can be closed.

Postconditions EMS confirms the reservation for the service use on that SP.

Table 18 Use Case “Confirm Reservation”

Use Case Establish Contract

Description After the reservation is confirmed, an SLA-Contract is created. It will be the
base of the fulfilment of the required QoS. This contract will be stored in a
repository

Flow of events:

� OpVOBroker orders the contract establishment

� SLA-Negotiator creates the contract by using SLA modules

� The contract is saved in a repository

Actor OpVOBroker, SLA-Negotiator, SLA-Access, SLA-Translator, SLA-
ContractRepository

Preconditions There is a reservation in EMS for a service use in a concrete SP.

Postconditions SLA-Contract document is created and stored in a repository.

Table 19 Use Case “Store Contract”

3.3.2.3. Conceptual architecture description

In below picture (Figure 34) are highlighted entities belonging to SLA High Level Services
architecture and main interactions between inter and intra WPs.

© Akogrimo consortium page 95 of 158

Figure 34 SLA High Level Services architecture

Following modules and tools have been identified in the design of SLA High Level Services
architecture:

� SLA-Access. This module provides all the functionalities for getting info from/setting info
on any SLA document (SLA-Template or SLA-Contract). All the interactions between the
other modules and the documents will be managed by the SLA-Access, because these
modules won’t be allowed to access directly to them.

� SLA-Translator: This module is used by the SLA-Access as a way to reach to the SLA
document templates. It is the one able to make read/write actions against the templates and
thus to make them transparent for the SLA-Access module.

� SLA-Negotiator: This subsystem is in charge to carry out the negotiation phase between a
service consumer and a service provider to reach an agreement.

� SLA-TemplateBuilder. It represents a tool that helps the service provider to produce a SLA
template for the service to be published.

� SLA-Contract. This is the formal contract established between a SC and a SP.

© Akogrimo consortium page 96 of 158

� SLA-ContractRepository. Repository that stores all established (live) SLA-Contracts.

� SLA-Template . Document based on XML language that describes the SLA metrics,
penalties and charging policies associated to a service.

� SLA-Repository. Repository where the SLA-Templates of all published services are stored.

3.3.2.3.1. External interfaces

The external interactions of SLA High Level Services identified involve entities belonging to
WP4.3 and WP4.2. In details we will have:

� GrSDS – SLA-Access. The method objectMetadata retrieveInfoMetadata(string serviceID, string
SLATemplateID) allows GrSDS to retrieve some metadata info from published SLA-Template
and associate them to the interface of service published in GrSDS.

� SLA-Negotiator – Policy Manager. The method objectPolicy getPolicyMetrics(object contextRequestor)
get policies on mapping metrics.

� SLA-Negotiator – EMS. The methods object checkSPStatus(string SP, objectQoS QoS) and boolean
confirmReservation(string SP, string serviceID, objectQoS QoS) allow, respectively, to verify if the SP
is able to provide a requested QoS for a specific service and to confirm resources reservation
at the end of negotiation phase.

3.3.2.4. Logical architecture description

In below picture (Figure 35) the internal communications within WP4.4 entities are described for
all the phases in which SLA entities are involved.

PUBLISH PHASE

SLA-
REPOSITORY

SLA-
CONTRACT

REPOSITORY

 SLA-NEGOTIATOR

 SLA-TRANSLATOR

SLA-ACCESS

 SLA-CONTRACT

 SLA-TEMPLATE

CONTRACT PHASE

NEGOTIATION PHASE

OPVOBROKER

SLA-TEMPLATE
BUILDER

Figure 35 Steps cycle for each phase

© Akogrimo consortium page 97 of 158

3.3.2.4.1. Internal interfaces

The internal interactions between SLA High Level Services with themselves and with
OpVOBroker component are fully detailed below:

� OpVOBroker – SLA-Negotiator. The method boolean StartNegotiation(string SP, objectQoS QoS)
enables the negotiation of a service in the SP. The method Confirm(string SP, string serviceID,
objectQoS QoS) notifies to the negotiator to carry out the reservation. The method boolean
EstablishSLAContract(string SP, objectQoS QoS) starts the mechanism for elaborating the
contract between SC and SP.

� SLA-Negotiator – SLA-Access. The method QoSDemand(objectQoS QoS) creates a document
based on the template of the service that will contain the QoS requested for the user. The
method SetInfo(XMLDoc template, objectInfo info) fills a concrete section of the contract with the
information coming from the negotiator.

� SLA-Access – SLA-Translator. The methods objectInfo GetTag(XMLdoc doc, string section) and
SetTag(XMLdoc doc, string section, objectInfo info) order to the translator module to extract or fill in
respectively a specific section from a document.

� SLA-Negotiatior - SLA-ContractRepository. The method boolean StoreSLAContract(string SC,
string SP, XMLdoc contract) stores the contract established by SC and SP.

3.3.2.5. Involved technologies

SLA High Level Services will be deployed over the WSRF.NET middleware [41] and all the
modules will be written in c# language (with the Microsoft Visual Studio .NET 2003 tool). The
SLA-Template and the SLA-Contract will be XML documents and they will follow the standard
WS-Agreement. A new tool will be created for building document templates with the right
structure. This tool will be also developed in c#.

SLA-Repository and SLA-ContractRepository will be organized for the first prototype as a typical
structure of file system. Later the repositories could be managed through XML-Native databases.

This table summarizes the interactions (from the protocol communication point of view)
between the SLA High Level Services entities and the other components:

© Akogrimo consortium page 98 of 158

 SLA High
Level Services
entities

GrSDS OpVOBroker Policy
Manager

EMS

SLA-
Negotiator

WS requests
(SOAP over
HTTP)

 WS requests
(SOAP over
HTTP)

WS requests
(SOAP over
HTTP)

WS requests
(SOAP over
HTTP)

SLA-Access WS requests
(SOAP over
HTTP)

WS requests
(SOAP over
HTTP)

SLA-
Translator

WS requests
(SOAP over
HTTP)

Table 20 Summary communication protocols

3.3.2.6. Configuration and Deployment

Next components will be deployed within Akogrimo environment as is exposed below:

� SLA-Negotiator will be deployed together the OpVOBroker module because they need to
maintain direct communications during the negotiation phase for each service that is
asked for be used. The SLA-Negotiator must be visible for the other components that
have interaction with it already commented.

Next four modules will be deployed once for administrative domain of the whole VO:

� SLA-Repository will store all SLA-Templates. On a first implementation the templates
(and after the contracts) will be stored in a File System structure, each one identified with
a concrete name. The way to find each document will be to query directly through its
name. In a second implementation all these documents will be stored in XML-Native
databases where the xml documents will be added.

� SLA-ContractRepository will store formal contracts between SC and SP and it will be
deployed and structured in the same way as SLA-Repository.

� Since the role of SLA-Access is to provide access to all SLA templates and contracts, it’s
not necessary to distribute this component for too many machines. In this way, it will be
deployed together both repositories.

� SLA-Translator is able to make read/write actions on both (SLA-Template and SLA-
Contract) SLA documents, so it should be also deployed together both repositories.

This is a simple possible distribution of all the modules that compose SLA High Level Services
along the Akogrimo infrastructure.

Further update on this section could be done during implementation phase.

3.4. Security

Emerging Web services security specifications address the expression of Web service security
policy (WS-Policy [43], XACML [44]), standard formats for security token exchange (WS-Trust
[12], SAML [46]), standard methods for authentication and establishment of security contexts and
trust relationships (WS-SecureConversation [47], WS-Security [45], SAML [46]), mechanisms and
procedures for mapping trusted information about users from one domain into authentication
and authorization information required by resource or service provider from other domain (WS-
Federation [48]), and standard mechanisms describing how access policies are specified and
managed. These specifications may be exploited to create standard, interoperable methods for
these features in Grid security. But they may, in some cases, also need to be extended to address
the Akogrimo security requirements.

Some delegation mechanisms should be defined in order to support the users and services
interaction at VO level by leveraging the SAML standard and its possible extension for delegation
purposes [11]

3.4.1. Overview

The Grid Application Support Services layer requires supporting security mechanism enabling
communication between involved parties by satisfying the security policies between requestors
and requested services. At this layer the security purposes are to address identity and access
constraints of BVO and OpVO participants and to define a secure mechanism to allow users and
services belonging to diverse organizations to access VO services. The VO is hence viewed as a
‘large’ (virtual) administration domain owning its security services for managing security among
VO entities and bridging the VO members’ security domains.

Regarding the Authentication process, using some tokens (SAML) generated at network layer, we
will identify the entities (i.e. services [10]) involved at VO level.

3.4.1.1. General Concepts

In a dynamic environment, such as in a VO, each entity is bound to its own administration
domain where it is identified. The VO is built upon sharing of resources, capabilities and
information derived from several organizations or groups owning security mechanisms and
policies in order to achieve the common objective.

At this layer Akogrimo aims to define a common mechanism to ensure a secure relationship
between organizations involved within a VO; then, a general and common security mechanism
must be defined to support the cross-domain interactions. Starting from a general security
problem inside VO we will address, in particular, security in base VO and operative VO (the
difference between them has been highlighted in previous paragraphs, we will indicate them
respectively as BVO and OpVO).

Before starting with description of services involved for each administration domain and relevant
to BVO, some considerations must be taken into account:

� VO entities: with the term ‘entity’ we refer to a resource or user visible and interoperable
at VO level. Following the OGSA aims, both resources and user are virtualized as Grid
services and at VO level a user is represented by the ‘User Agent’ while a service by the
‘Service Agent’. User/service agent is the way to allow these kinds of entities to interact
among them in the Akogrimo BVO context.

© Akogrimo consortium page 100 of 158

� Each entity belongs to an administration domain: The BVO will maintain information
about the most representative entities (e.g. services providers, network providers, service
customers, etc.). On the other hand, each administration domain is in charge of managing
its members and should provide security policies for accepting foreign mobile members.

� An entity can be, also temporarily, bound to different administration domain and thus
participate in the BVO. The A4C subsystem is taken into account for authentication of
entities.

� Service and User Agents: are strategic components (at the moment, used also for security
purpose) which represent user/service interactions inside a BVO/OpVO. They may
provide control on the invocation, for example checking if a given user may invoke a
service. Each user and each service have, inside the OpVO, an associated user/service
agent acting as delegate.

Figure 36 UA and SA overview

3.4.1.2. Example Scenarios

Security at this level involves several administration domains bound together in the common
Virtual Organization. In the following we explain three main scenarios for interacting within the
BVO and OpVO: membership (service or user) authentication, the buying of services together
with Operative VO creation, and finally how to use these services.

3.4.1.2.1. BVO Membership authentication

User wishing to access VO (in particular BVO or OpVO) services has to be registered. By means
of registration phase the user is authenticated within the BVO and a session (BVO session) is
established enabling him to require services for a fixed time.

BB//OOpp VVOO

VVHHEE11

UUsseerr11 UUsseerr22

VVHHEE22

SSeerrvviiccee11

SSeerrvviiccee22

UUAA

BB//OOpp VVOO

MMaannaaggeerr

UUAA

SSAA

SSAA

© Akogrimo consortium page 101 of 158

In Figure 37 a user who accesses a foreign domain is at first authenticated at network layer. This
first step has, as result, a SAML token returned to the user. By means of this token the user
requires to access to Grid services by asking his delegate UA to create (or renovate) his BVO
session. To achieve this aim, the UA is able to ascertain the user credential by communicating
(using BVO Manager) with A4C subsystem. At the end, the UA will forward the user request to
BVO Manager for creating a new BVO session, checking the user rights at BVO level and setting
up the environment for the user requests.

A trust communication already has been established between the UA and BVO Manager before
the user request allows the UA to act on behalf of (and thus as a delegate of) user at BVO level.

Figure 37 Membership Authentication within BVO

3.4.1.2.2. OpVO creation

During the purchasing phase of a service(s) provided by third parties a new OpVO is created to
ensure service usability by several users. For each user, that is going to use the service, a user
agent is associated to him as well as a service agent for the requested service. Inside a BVO, a
member that covers the role of SC is able to buy services. For instance (in the case of e-Learning
scenario) a professor, wishing to provide the Field Trip services to his students, has to require the
purchasing to his ‘academic institution’. Therefore, the SC (academic institution) pays for the
services, while its users (students) can pay the SC for these services, for instance, by means of
university taxes.

These steps (see Figure 38) can thus be summarized in:

1. The user requires the service purchasing to his SC member by indicating his
identity (SAML token), his context, what is researched and the constraints.

2. The SC will check the identity of requiring user by taking advantage of A4C
subsystem at network layer and its right by interacting with Policy Manager (in
this step the SC can also check how the user will pay for the service that the SC
will buy).

3. The request is forwarded to the BVO Manager (BVO Manager) that will check
the SC rights at BVO level.

BBVVOO

HHEE11 ((uusseerr ’’ss tteemmppoorr aarr yy))
ddoommaaii nn

Policy
Manager

HHEE22 ((uusseerr ’’ss hhoommee)) ddoommaaii nn

A4C

Enforcement
Authorization

Service

BVO Manager
VO Policy
Manager

UA

A4C

Enforcement
Authorization

Service
Policy

Manager

© Akogrimo consortium page 102 of 158

4. The request (indicating the users that will utilize the service and user/customer
profiles as well) is then sent to Workflow Manager acting for service negotiation
and OpVO instantiation.

5. The OpVO is created by Workflow Manager including the UAs and SAs for the
users and services involved within OpVO. These agents are supplied of security
information valuable at BVO level.

6. The UAs and SAs will perform some initialization procedures in order to identify
roles and users that will take part to the OpVO.

Figure 38 OpVO creation

3.4.1.2.3. Using Services

In the distributed authorization scenario there are at least two administrative domains involved:
one of the requestor subject and the second one of the requested resource. In a dynamic and
mobile environment such as Akogrimo, the requestor and requested resource can temporary join
another administration domain, but some of their information (e.g. identity, profile) is kept in
their home domain.

Figure 39 shows a possible security model in Akogrimo for accessing third party services and for
simplicity many details of security process, such as auditing, client-side authorization and privacy,
are omitted. Supposing the user has been identified within the BVO after the registration phase,
now the user wishes to use a service bought in previous steps and by means of his UA (operating
on his behalf) makes the request to access the required functionality. Ideally the UA can be
thought as a service bound to user hosting environment. But that doesn’t mean the service lives
in this hosting environment, just as the SA doesn’t live in the related service’s hosting
environment. In this simple scenario the SA, UA and OpVO Manager are linked together into

BBVVOO
HHEE11 ((uusseerr ’’ss tteemmppoorr aarr yy))

ddoommaaii nn HHEE22 ((uusseerr ’’ss hhoommee)) ddoommaaii nn

A4C

WF Manager

OpVO

UA
UA UA

UA
UA SA

SC
A4C

BVO Manager

VO Policy
Manager

VO
Authorization
Enforcement

Enforcement
Authorization

Service
Policy

Manager

Enforcement
Privacy Service

1. 2.

3.

4.
5.

6.

4.a

© Akogrimo consortium page 103 of 158

the OpVO meaning these entities represent the environment required for the execution of the
OpVO. In general, these entities, together with supporting services at BVO level, form a
common group enabled to communicate together in trusted way.

Figure 39 Security implications of accessing to Services

During this phase we want to enable a user identified in a hosting administration domain to
benefit from a service belonging to another administration domain. Before starting it must be
taken into account that the UA manages the registration session for the User and acts like a proxy
for accessing BVO services. The following steps are taken to handle the security of the request:

1. The UA tests if the user session is still valid and the user profile has not changed since the
last service invocation and eventually asks for an update of inconsistent info.

2. In the next step, the User Agent will communicate with WorkFlow Manager acting as
delegate by asking for the requested service and explaining the user credential.

3. The Workflow Manager knows the logic of business process and will require access via a
SA to a Service previously bought.

4. The Service Agent checks if the user has the authorization rights to access the service.
This check involves the interaction between the SA and the BVO Manager that takes
advantage of VO Policy Manager and VO Authorization Enforcement for accomplishing
its purposes.

5. Then, the request is sent to the corresponding Service having the SA as proxy. Before
accomplishing the request to a service belonging to the other hosting environment, some
checks must be considered at this level; more details can be found in D4.3.1 [8].

OpVO

BBVVOO
HHEE11 ((uusseerr ’’ss tteemmppoorr aarr yy))

ddoommaaii nn

WF Manager

UA

SA

A4C BVO Manager

VO Policy
Manager

VO
Authorization
Enforcement

HHEE33 ((sseerrvv iiccee ’’ss)) ddoommaaii nn

A4C

Enforcement
Authorization

Service
Policy

Manager

Enforcement
Privacy Service

S

1.

2.

3.

4.

5.

4.a

© Akogrimo consortium page 104 of 158

3.4.1.3. Functional Capabilities

At VO level the Akogrimo’s security model must address the following security capabilities:

� Authentication. Authentication means the capability of identifying entities. Users and
services require authentication in a secure environment.

� Delegation. Provide facilities to allow for delegation of access rights from requestors to
services, as well as to allow for delegation policies to be specified. In order to deal with only
the task(s) intended to be performed, some constraints (e.g. lifetime) must be bound to
delegating entity. At VO level the User/Service Agent is the concrete example of delegation
since they act on behalf of their users/services.

� Authorization. In general, service access has to be controlled in order to allow only the
authorized access and under authorize conditions. The service is associated with authorization
policies as well as the requestor with some invocation policies.

� Confidentiality. Enables only the intended recipients to be able to determine the contents of
the confidential message. It protects the confidentiality of the underlying communication
(transport) mechanism and the confidentiality of the messages or documents that flow over
the transport mechanism in Akogrimo’s network infrastructure.

� Message integrity: ensures that unauthorized changes made to messages or documents may
be detected by the recipient. The use of message or document level integrity checking could
be determined by policy.

� Policy exchange. Allow service requestors and providers to exchange dynamically security
(among other) policy information to establish a negotiated security context between them.
Such policy information can contain authentication requirements, constraints, privacy rules
etc.

3.4.1.4. Position with respect to the Akogrimo
infrastructure

3.4.1.4.1. Interactions with Akogrimo infrastructure components

Figure 40 VO Security Services inter WP4.4 interactions

VO security
Services

BP
Enactor

OpVO
Manager

VO Policy
Manager

Participant
Registry

BVO
Manager

© Akogrimo consortium page 105 of 158

The relations with other components of Akogrimo Application Support Layer can be
summarized:

Participant Registry: the UA/SA belonging to VO Security Services have to be dealt with as
other services at VO level. Their information is hold in the VO Participant Registry because they
represent the users and services involved in business processes.

VO Policy Manager: actions inside every VO have to be controlled in such way each participant
will be subordinated to some VO and Business Process rules in order to access to VO services
and this service will provide functionalities for these purposes. This component is requested for
security purposes since it is able to take the current context and requested action and returns a
decision to eligible VO Security Services (i.e. VO Authorization Enforcement and/or VO Privacy
Service) whether the requested action (wholly or “partially”) can or cannot be carried out.

Business Process Enactor (BP Enactor): interacts with the secure components representing
the user and the service at VO level (i.e. User Agent and Service Agent) during the workflow
enactment process.

BVO/OpVO Manager: in some cases a restricted security chain is requested for guaranteeing a
secure communication among services involved within the BVO/OpVO. In fact, at VO level
some interactions should be bounded to a restricted group of participant; for instance it may be
required that all participants of an OpVO belongs the same secure group and no participant of
other OpVO can interacts with the first.

Identified interaction Rationale for interaction Issues to be addressed

VO Security Services à VO
Policy Manager

Set/Unset security policies

Base VO Manager à VO
Security Service

Participant Secure Group
definition.

VO Policy Managerà VO
Security Service

Requests for security
interventions in the case of
violations

BP Enactor ßà VO Security
Services

Communication with
user’s/service’s secure proxy

VO Policy Manager à VO
Security Services

Whether policy invalidation is
triggered, the Security Services
must take an enforcement
action.

Common way to interoperate
with security services, even if
we should use different
underlying WSRF frameworks.

Table 21 Summary interactions between VO security and internal WP4.4 components

© Akogrimo consortium page 106 of 158

Figure 41 Security interactions with other layers

The interaction between the VO Security Services and the A4C/(third party) services can be
summarized:

A4C: users and services have to be identified also at VO level in order to support the
Authentication process.

Third party service: includes services like Business Services and infrastructural services (e.g.
EMS)

Identified interaction Rationale for interaction Issues to be addressed

VO Security Services à A4C For authentication purposes

VO Security Services ßà
(third party) service

For allowing a secure access
to/from services belonging to
an administration domain

Common way to interoperate
with security services, even if
we should use different
underlying WSRF frameworks
and security features.

Table 22 Summary interactions between VO security and components outside WP4.4

3.4.2. Architecture description

3.4.2.1. Architecture overview

In our first analysis we refer to a static structural model in order to show the sub-modules (that
are being developed as separate units) for the security framework defined at Grid Application
Support Layer level.

VO security
Services

(third party)
Service A4C

© Akogrimo consortium page 107 of 158

Figure 42 Security architecture overview

The entities outlined above want to be the main Akogrimo security services required at VO level
and they define different behaviours for security enactment. These main security entities and their
functionalities at VO level can be summarized in:

� UA: is in charging of checking the user’s registration session and holding the user
credentials for accessing to the BVO/OpVO (i.e. what are its BP roles in the BP).

� SA: knows which user roles are allowed to access functionalities of represented service
since it knows the possible BP roles of actors that can invoke its service. The SA will
check if the requestor credential corresponds to one of possible roles it manages and will
verify this credential. For instance, the credential of requestor indicates the “Doctor
Robinson” will access to some functionalities provided by service S. At first, the SA will
check if the ‘Doctor’ role can require the functionality.

� VO Authentication Service: each Virtual Hosting Environment (i.e. we mean to refer it
as “domain” that could represent generic SPs or NPs or schools or banks or hospitals,
etc.) should provide means to authenticate itself within the BVO. For each domain is
foreseen a VID token (a SAML token) that enable it to access VO environment. This
VID token should be authenticated by VO Authentication Service taking advantage of
A4C system.

� VO Authorization Enforcement: is the agent in charge of actualizing an action issued
by VO Policy Manager. Its tasks are to stop, permit or trigger actions on a given VO
service.

� Security Designer: is the component that allows defining security policies for services at
VO level. These policies will be applied both for regulating service use within the VO and
for regulating the accesses from VHE

� Security Log: is the repository in charge of maintaining security information.

� Security Bridge: in charge of mapping/translating different security mechanisms and
credentials in order to enable the interoperability among different administration domains.
WS-Trust specifications and in particular the STS (Security Token Service) component are
going to be taken into account in order to realize the Security Bridge.

VO
Authorization
Enforcement

VO Security Services

Security

Designer

SA UA

VO Authentication
Service

Security Log

Security
Bridge

© Akogrimo consortium page 108 of 158

3.4.2.1.1. Group Token and Trust Relationships

A trust relationship is made when one entity is willing to rely upon a second entity to execute a
set of actions; a direct trust communication between parties is thus established enabling them to
accept as true all (or a subset of) the claims in the token sent by the requestor [12]. At VO level a
solid trust relationship among VO members must be defined in order to allow a secure but
lightweight communication. In the example scenarios (see section 3.4.1.2) the main interactions
between BVO/OpVO services are depicted assuming that their communication is secure, that is
the entities involved are brought together in a restricted membership group enabling them the
secure communication: each entity of the group has to communicate with other entities of the
group. To achieve this goal, the WS-Trust [12] model can be used for defining a framework
enabling the Grid services to securely interoperate: each Grid service interoperating in a group
must provide a security token in each of its requests and one way to demonstrate the authorized
use of this security token is also to include a digital signature using the associated secret key. The
security token represents a collection of claims that may include name, identity, key, group,
privilege, capability, attribute, etc. Moreover, WS-Security, that describes enhancements to SOAP
messaging to provide quality of protection, also provides a general purpose mechanism for
associating security token with SOAP messages and describe how to encode binary security token
(e.g. X.509 certificates [51], Kerberos tickets [50], SAML assertions, etc.). Lastly, WS-Trust [12]
provides a mechanism by which the level of trust to claims and assertions presented by
others/entities is defined and expressed in the Policies (i.e. WS-Policy [43], WS-PolicyAttachment
[49], WS-SecurityPolicy [52]).

In general we need tokens to communicate in a secure environment, and then we can foresee
different kind of tokens as listed below:

� GT is a security token that allows a user/service to access in a restricted secure
environment (called group). The group claim the requestor belongs to and we distinguish
two kinds of GT (detailed in next bullet points) enabling the communication with the
‘static’ services present within the BVO and others enabling the communication with
‘dynamic’ services within the OpVO.

� MGT enables the UA/SA to interoperate with services for VO management (i.e. BVO
Manager, Workflow Manager, etc.) or among services for VO management itself.

� SGT enables the interoperability among short-lived services related to the creation of an
OpVO, for instance between UA and SA.

.

© Akogrimo consortium page 109 of 158

Figure 43 Trust relationships

Figure 43 illustrates relationship between two VHEs and their VO where each VHE represents
an organization providing users and services to the VO. To achieve this aim, the two levels of
trust that are established between VHE and VO (user/service and its agent), and within the VO
itself (among VO services, UA/SA included). The first one represents a peer-to-peer relationship
between parties (realizable for instance by means of WS-SecureConversation [47]), while the trust
relation among parties within VO is achievable by means of GTs (for instance, all services
belonging to an OpVO have the same GT). From an implementation point of view, these trust
relations could be built on the base of a security context described in WS-SecureConversation
[47].

3.4.2.1.2. VO Authorization

By taking into account the authorization framework described in [6], the authorization decisions
are made based on authorization information provided by authorities. These authorities at VO
level must have a direct (or a delegated) relationship with both the authorization subject (e.g., the
User Agent to which the authorization is issued) and with the resource that is the target of the
request that prompted the authorization (e.g., Service Agent). A possible way to implement these
relationships may be by using the Group Token concepts described in the paragraph above. To
achieve this aim, (see example in Figure 44) for the authorization process we identify:

Subject: An entity that can request, receive, own, transfer, present or delegate an electronic
authorization as to exercise a certain right. At this level, the subject may be identified as the UA
or some other VO entity requiring services. The subject may define a set of policies that
determine how its authorization is used, taking into account some privacy rules as well.

Resource: A component of the system that provides or hosts services and may enforce access to
these services based on a set of rules and policies defined by entities that are authoritative for the

Barrier

VHE1

S1 S2

S3

S4

VHE2

…
…

BVO/OpVOs

 S1

 S2

 S3

 S4

SSs
SLA-H

WF-M VO-M

GT1

GT2
GT3

© Akogrimo consortium page 110 of 158

particular resource. Access to resources may be enforced by a Resource itself or by some entity (a
policy enforcement point or gateway) that is located between a resource and the requestor and
thus protecting the resource from being accessed in an unauthorized fashion. Typical resources at
Grid VO level might be Service Agents and other BVO/OpVO entities if their functionalities are
required by a subject.

Authority: An administrative entity that is capable of and is authoritative for issuing, validating
and revoking an electronic means of proof such that the named subject of the issued electronic
means is authorized to exercise a certain right or assert a certain attribute. Right(s) may be
implicitly or explicitly present in the electronic proof. A set of policies may determine how
authorizations are issued, verified, etc. based on the contractual relationships the Authority has
established.

The Authority so defined can be also specialized as a policy authority, attribute authority and an
identity authority [6]. In Figure 43 at the VO Manager is assigned the role of Attribute Authority
because it is able to assign the credential to a UA. This credential enables and constraints the UA
to access only some services and functionalities. The VO Manager is also in charge of setting the
service access policies by issuing authorization policies to the UA (or some of its dependent
entities). Finally, the VO Manager is viewed to assume the identity authority role because it is able
to issue some certificates (e.g. GT, etc.) enabling a group of VO services to communicate among
them, as discussed in the previous section.

During the execution time some checks are performed by the SA in order to verify the claims
derive from a secure and trusted entity and conform to the SA policy.

Figure 44, Authorization for VO

UUAA SSAA VVOO MMaannaaggeerr

UUsseerr SSeerrvviicc ee SSeett rriigghhttss

credential

SSeett aacccceessss ppoolliicc iieess

cchheecckk

constraints

BBVVOO//OOppVVOO lleevveell

© Akogrimo consortium page 111 of 158

3.4.2.2. Use case view

3.4.2.2.1. Actors

In the framework of Akogrimo the following actors have been identified with respect to the
security considerations that will be applied:

� Users which are allowed to use/consume the services provided.

� Service Providers which are as well certified resource/service providers in the
framework of the VO.

� VO Manager allows the participation of people to be part of the VO and to assign the
roles (enable the authorization for accessing services) in the administrative domain of the
VO.

� Certificate Authorities (SAML Authority) providing tokens that are going to be used
for the authentication in the framework of Akogrimo.

The system’s infrastructure should provide distinct WS authentication and authorization
capabilities (built on the same base of X.509 standard) which are used to identify persistent entities
such as users and servers and to support the temporary delegation of privileges to other entities,
respectively.

The security framework that will be used to manage WS-Resources will include:

� Message-level Security mechanisms which implement the WS-Security [45]standard
and the WS-SecureConversation [47] specification to provide message protection for the
system’s SOAP messages.

� Transport-level Security mechanisms which use TLS [53] mechanisms; and

� an Authorization Framework that allows for a variety of authorization schemes,
including a “grid-mapfile” access control list , an access control list defined by a service, a
custom authorization handler, and access to an authorization service via the SAML
protocol.

© Akogrimo consortium page 112 of 158

3.4.2.2.2. Use Cases

The following use cases have been identified for the cases of Akogrimo. However, the list might
be enhanced in the next phase of the project by the time that the technologies will be clearly
identified.

Use Case VO Registration

Description � A user (alternatively service provider) requests from the VO
Manager to join the organization

Preconditions N/A

Input The user provides its personal data and preferences (determining which
services and resources of the virtual organization he wants to be authorized
to access).

Effects – Output

The user becomes a member of the virtual organization and gets a (unique)
Id and assigned role.

Actor Users, VO Managers.

Table 23 Use case "Join VO"

Use Case Request for a user/SP token

Description

A user (or SP) subscribed in the VO requires a certificate for its
authentication. This could happen either if the user has newly joined in the
VO or if his previous certificate has expired.

Preconditions The user requesting the certificate has requested to join the VO.

Input The identifier of the user in this VO.

Effects – Output A new certificate (SAML token) is generated and sent to the user.

Actors Users, Certificate Authorities, VO Manager.

Table 24 Use case "Request for a user/SP token"

Use Case Authorization change request

Description

A user asks the VO Manager to change the set of services and resources
of the virtual organization that is authorized to access.

© Akogrimo consortium page 113 of 158

Preconditions The user has a valid certificate and a concrete role (authorization scheme)
in the VO

Input The user’s id and new role.

Effects – Output

The user is notified by the virtual organization manager whether its request
is fulfilled. A new role (authorization) is valid for the user.

Actors Users, VO Managers.

Table 25 Use case "Authorization change request"

Use Case Task submission

Description A user submits a task to the Akogrimo system.

Preconditions The user submitting the task has been subscribed to the service requested
which means he has a valid role and a token for using the service.

Input The new task.

Effects – Output The system undertakes the requested task and sends it for execution in the
SP.

Actors Users, SPs.

Table 26 Use case "Task submission"

Use Case Receive result

Description A user receives the results of a submitted task.

Preconditions The user has submitted a task requesting services in which he has
subscribed.

Input A notification from the SP that the task has finished.

Effects – Output The results of the submitted task are returned to the user.

Actors Users, SPs.

Table 27 Use case "Receive result"

3.4.2.3. Conceptual architecture description

As discussed in previous sections there is a VO hierarchy present within Akogrimo, this is
illustrated with the BVO’s relationship with the OpVO’s and can also be seen in the relationship

© Akogrimo consortium page 114 of 158

between the core VO services and the VO Manager. It could be argued that this would make the
implementation of a security policy easier to visualise.

However the distributed nature of the services in the Akogrimo Grid makes it important to also
consider security at the end nodes of the Akogrimo Grid. These end points can be seen as the
services called on in the OpVO. Not only does the BVO have to implement adequate security
infrastructure for these services and act as a central policy point for security within Akogrimo, but
these services have to provide and tailor their security infrastructure so it can work securely in a
bi-directional fashion with the BVO of Akogrimo. The main elements for the Authentication
process can be seen in the diagram below.

Figure 45 VO Authentication

Authentication in Akogrimo Virtual Organization

In order to connect / register or request a service from a VO a service has to be authenticated.
Within Akogrimo this Authentication will be conducted via a network of A4C servers. A trust
relationship between the SP domains and the domain of the BVO will be established by the VO
Owner before or during the operation of the BVO.

The repository of information stored in the VO Manager will also include a repository of trusted
domains which external services can be activated from. This repository then will link to an A4C
server on the external domain to authenticate the service. See diagram in Figure 46.

In the figure below the main interaction between service and VO manager are depicted in order
to identify the data flow exchange during the authentication process. The authentication ensures
that a user is who he or she claims to be enabling them to “bypass” the identity recognition
subsequently.

© Akogrimo consortium page 115 of 158

Figure 46 Authentication using A4C

1. Service sends credentials and the requests actions to Base VO.

2. Base VO sends credentials to appropriate A4C server for authentication.

3. Service’s identity checked against the VO Participant Registry

4. Results of Authentication are sent back to the Service.

Once authenticated the service becomes part of the Base VO and is given a token so it can be
passed down to an Operative VO for execution. The A4C hence becomes a fundamental
component in the Akogrimo context for the authentication process, since it allows checking the
identity of the entity (service or user) as a VHE member, before checking it as a VO member.
After the Authentication phase the user/service will get credentials enabling him to operate
within the Base/Operative VO without passing for A4Cs components in future requests.

Finally, within Akogrimo all security tokens and messaging will be conducted using WS secure
tunnelling.

Authorization in Akogrimo Virtual Organization

Authorization is the next step from Authentication, which as discussed using A4C servers is a
pre-requisite. At VO layer, Authentication is the process of granting or denying credentials to
access Grid resources. This second stage allows the user access to various resources based on
their credentials.

After the Authentication credentials are received, at the point of policy for the application (in our
case VO Manager) a decision is made in relation to Authorization. This decision can be seen as
the enforcement process of the rules of policy to make an authorisation decision. In general, we
have an Authorization process for both the VO level and VHE level but with different goals. The
Authorization enforcement points shown in Figure 47 represents the Authorization process of a
user request attaining a service in a VHE.

At this level the check can be related to rules defined by VHE administrator, for instance, to
constrain the foreign requests. Instead, at VO level the authorization checking are related to more
business/application specific rules, for instance in the workflow context if a doctor wants to
access patient data (and hence to the data managing service), his request is checked in order to
evaluate his role and what he can do on the requested service.

VO MANAGER

A4C

SERVICE

A4C

BVO
Hosting Environment

1

2

!

4

3

© Akogrimo consortium page 116 of 158

Figure 47: Security Policy Enforcement Points in an A4C environment

As mentioned within the Akogrimo BVO, the authorization process would always be preset at
the VO management level. The VO Manager has the power to create and destroy OpVO’s and
therefore the tasks being run in the VO. It is therefore at this point where enforcement is best
applied.

In converse to the model, the enforcement of Authorization applied by the VHE to requests
received from the BVO or OpVO would also be applied at an appropriate security management
level (as in Figure 47).

Once Authentication is completed within the BVO a token is generated and associated with the
task requestor which is used to bind with its OpVOs. As the OpVOs are created services from

© Akogrimo consortium page 117 of 158

VHEs are reserved to populate the OpVOs, the VHEs authorise this action based on the security
credentials provided via the token given to the task requestor. . Within Akogrimo all security
tokens and messaging will be conducted using WS secure tunnelling.

Internally the VO, the BVO Manager will grant security tokens for the use of services and
UA/SA in order to maintain workflows and movement of data through the VO without the need
to authenticate and in some cases to re-authorise (for instance, when the requests are similar).

SA and UAs.

SA and UA are essentially wrappers exposed as WS-Resources that enable services and users to
interact within Akogrimo VO. In order to maintain security within Akogrimo the communication
and also the wrappers need to be secured and that could be done by taking advantage of both
binding/network secure communication protocols and policies defined within the VO.

It is envisaged within Akogrimo that the communication between the VO’s and services will be
via WS-SecureConversation [47]. This technology will ensure that the information passed
between nodes (like A4C credentials) will be encrypted from end to end. Furthermore all security
tokens and messaging will be conducted using WS secure tunnelling.

Once authenticated, the SA and UAs will receive tokens that they can use to interact with the
VO’s, without the need for further authentication. This is the same concept as the tokens
received within the BVO as discussed in the authorization process above.

This use of Base VO authenticated tokens outside the immediate remit of the BVO and BVO
owner could pose a potential chance of misuse. In order to combat this, the build up of agents
will have to be designed in relation to specific security constraints and policy provided by the
BVO owner.

Security Log

Within the whole operation of the VO’s, logging will play an essential role in the security of the
system. This is particularly true in the initial testing of the system. There is therefore an
immediate requirement within the system for a logging tool for both security issues in the system
and general behaviour. Essentially in the early days of development of the system everything
should be logged.

David Chadwick of Kent University [54] has developed a secure logging tool designed for Grid
applications which is capable of this job, and it is therefore suggested that this tool be
investigated for use in Akogrimo.

Security Bridge

These elements in the architecture have been touched on before in relation to A4C and
specifically relate to both trust and secure communication. Bridges will exist between security
domains with the security policy within those domains being determined by the security root, in
the BVO case this is the BVO Manager. The bridges are essentially the term given to the secure
channels that will be used to pass data between services within VO’s and also credentials between
services without needing to know the different derivation nature of these credentials.

As discussed, this network of bridges will be built on trust relationships among the different
administration domains and by taking advantage of A4C system, as well. Encryption will be

© Akogrimo consortium page 118 of 158

provided by WS secure conversation maybe using XML digital signature and XML digital
encryption to encrypt SAML tokens.

Policy Service / Security Designer.

These elements of the security phase can essentially be seen as provided by the security policy in
force within the VO’s. The security designer would be a tool in which security policy can be
changed and developed.

3.4.2.4. Logical architecture description

The logical architecture described below aims to define a general overview of functionalities and
interfaces that the security components should provide.

VO Authentication Service

The VO Authentication service will be present at VO level and also within the hosting
environments that external services are picked from to become part of the OpVO’s.

- request (serviceID, Credentials)

At the beginning of a business process within Akogrimo a request will be received at the VO
manager that can be linked to a specific workflow. This request will be linked to the workflow ID
(service ID) and also will be authenticated via credentials provided by the service sending the
request.

VO Authorization Enforcement

- reject Credentials(ErrorMessage)

If A4C fails to authenticate user, the enforcement VO authorisation service rejects the request for
service.

SAs and UAs

- Authenticate(Credentials)

The Agent should be able to authenticate its corresponding user/service and perform some
initialization process for enabling the requestor’s further requests.

- RequestService(requestorCredentials, ServiceID,requestedFunctionality)

The Agent must be able to send a user/service’s request message to a service.

- ReceiveToken (Token)

Agent must be able to receive and store tokens.

- Credentials request (serviceID)

If an external service requests a service from the agents it must be able to authenticate the
requesting body.

- transmit data (UserID, TargetID,Data)

© Akogrimo consortium page 119 of 158

Once a workflow is in progress the agent must be able to transmit data.

- StopService(ServiceID)

In the case of a user / workflow ID loosing its authorization permissions or completing its task
the agent must be able to stop the service from running.

Security Log.

VO-ID Record Events (time/date, event)

Must be able to record the activity in a VO at a suitable abstract level.

VO-ID GetActivity (argument)

Must be open to interrogation

Security Bridge.

The Security Bridge need arises when we have user and resources located in different
administration domain. We need interoperability cross-domain that takes into account the
different mechanisms and credentials:

o X509 V.S. Kerberos

o X509 V.S. X.509 in different domain

o X509 attribute certificates V.S. SAML assertions

The Security Bridge is related to credential/identity conversion and mapping enabling the
seamless single sign-on and federated session management.

Credential convert(credential, targetType)

Converts the credential of specified type into the desiderate type target.

Id mapping(Id, targetID)

Maps the id from one type to other type.

Security Designer.

Operating from a base level of security there must be a system or tool in place where the user can
make simple changes to the VO’s security policy.

block (component, howlong)

Must be able to create access control based on blocking of VO’s or services.

Restrict (component, data)

Must be able to restrict types of data present on specific VO’s or services.

Grant (accessType, targetComponent, sourceID)

It allows defining some bind policies for an entity (e.g. service, user) on accessing a target service.

© Akogrimo consortium page 120 of 158

Trust (VO-ID, VHE-ID)

Establish basic trust relationships in the form of mappings between VO’s and service
environments.

3.4.2.5. Involved technologies

On the base of Liberty Alliance Project results [42] we are going to develop our security system
by taking advantage of SAML standard [46] and its possible application for WS-Resources. By
means of SAML support provided at Network layer, each entity involved at Grid Application
Support Layer level is identified and the message interchange between these entities will be
protect by combining SAML with network and binding security technologies and specifications
such as XML digital signature, XML encryption, WS-Security, etc.

3.4.2.6. Configuration and Deployment

This section will be updated during implementation phase, because at the moment there aren’t
enough details to provide inputs on it.

3.5. Application Specific Services

3.5.1. Overview

3.5.1.1. Objectives

The application specific services section will describe the envisioned working of architectural
middleware components in the context of an eHealth environment. It is intended to highlight and
detail important aspects of the components from all levels.

3.5.1.2. Example eHealth Environment

In the following we describe the organizational background of the eHealth scenarios we will
detail later. The presented organizational setup is just one simplified example and does not cover
many business details as the focus is on the architecture. It is intended to provide a rough idea of
who the actors are and what their relation is.

The diagram in Figure 48 shows the basic structure of a regional health network. The yellow
boxes are the main organizational actors. The health network consists of hospitals, medical
specialists, general practitioners, an emergency dispatch centre and possibly other members. In
order to build an IT infrastructure for eHealth services the regional health network cooperates
with a network operator (NO) and an IT specialist, the health service provider (HSP). Together
they form a virtual organization (VO). In our example, the network operator controls the
network infrastructure and also the IT infrastructure of the VO. The health service provider is a
software and consulting specialist in the eHealth domain. Regarding the IT infrastructure, the
network operator is responsible for the generic part, i.e. the part that does not have any domain
specific elements, and the health service provider implements and adopts all the domain specific
services. Among the responsibilities of the HSP are:

� Provide mobile equipment, in our case only wearable ECG devices.

� Integrate the IT infrastructure of the involved medical institutions and practitioners

� Integrate external eHealth information systems like patient record databases

� Integrate external information systems like geographical information systems. This is used
to find best way for the ambulance to the patient, or the hospital that is closest to the
emergency location.

� Implement eHealth domain specific grid services like a medical analysis service

� Define the business process in cooperation with the regional health network and the
network operator.

� Define the workflow templates that make up the business process.

� Define policies in compliance with the regional health network and the network operator.

� Define SLA templates.

Network Operator QoS Bundles are adjusted to the needs of the VO.

© Akogrimo consortium page 122 of 158

Figure 48 eHealth Scenario Organizational Overview

3.5.2. Interface Descriptions

In this section we will describe the interfaces of the grid services that are implemented by the
health service provider (HSP). The interfaces give a rough idea about the application logic that is

© Akogrimo consortium page 123 of 158

provided by the services. A detailed description will follow in the service descriptions section
3.5.3.

3.5.2.1. General Purpose Interfaces

3.5.2.1.1. IAkogrimoService

We assume the existence of an interface definition, the IAkogrimoService interface, that ensures
the interoperability of services. IAkogrimoService contains the functionality that is common to all
web-services that are to be used in the Akogrimo environment. Common functionalities are e.g.
policy distribution and querying, security and SLA management support. Especially the BP
Enactor component would depend on such an interface for service invocation and meta-data
distribution and collection.

Figure 49 IAkogrimoService

Interface: IAkogrimoService

Description: The interface provides general purpose functionality for:

� Messaging

� Identity and Security

� Policy distribution and querying

� SLA Management

IAkogrimoService

Grid Middleware

Service

Identity &
Security

Messaging Policy
Services

SLA-
Management

© Akogrimo consortium page 124 of 158

3.5.2.1.2. IRegisterService

It is assumed that the Service Discovery Server (SDS) provides the IRegisterService interface to
allow services to be registered along with their meta-data.

Interface: IRegisterService

Description: Provides functionality to register a service plus its meta-data with the Service
Discovery Server (SDS).

3.5.2.1.3. IContextProvider

We consider the context information to be provided via the IContextProvider interface. This is a
functional assumption and may be replaced by a general publish-subscribe mechanism in the real
implementation.

Interface: IContextProvider

Description: Used to retrieve context information about user from the Context Manager.

3.5.2.2. eHealth Specific Interfaces

3.5.2.2.1. IMedicalResourceInformation

Interface: IMedicalResourceInformation

Description: � Allows to query the geographical location of the medical resource

� Allows to query up-to-date information about the medical resource. E.g.
for a hospital the current available personnel with specific skills could be
requested.

3.5.2.2.2. IPatientInformation

Interface: IPatientInformation

Description: � Administrative data of a patient can be requested through this interface.

3.5.2.2.3. IECG_Data_Source

Interface: IECG_Data_Source

Description: � A service implementing this interface provides access to ECG data
either as a stream of data or by sending the data in specified time
intervals (e.g. once a minute). The endpoint reference of the data sink is
a parameter of the service.

© Akogrimo consortium page 125 of 158

3.5.2.2.4. IElectronicHealthRecord

Interface: IElectronicHealthRecord

Description: � Allows to query and to retrieve electronic health records.

3.5.2.2.5. IPatientMonitoringRecord

Interface: IPatientMonitoringRecord

Description: � Allows to query and to retrieve monitoring information from a Medical
Data Logger.

3.5.2.2.6. IVirtualEmergencyHealthRecord

Interface: IVirtualEmergencyHealthRecord

Description: � Allows to query and to retrieve a patient record that contains patient
information relevant for the emergency case.

3.5.2.2.7. IAlertReceiver

Interface: IAlertReceiver

Description: � Receives alerts from various sources. Automatic action or human
intervention can be triggered.

3.5.2.2.8. IEmergencyOperator

Interface: IEmergencyOperator

Description: � This interface is used to query the SIP identifier of an emergency
operator that is assigned to a specific patient. A phone conversation
between emergency operator and patient may be initiated by the
Enactment Engine.

3.5.3. eHealth Specific Services

This section describes a selected set of application specific services from the eHealth domain.
The described services are intended to fit into the general overview shown in 3.5.2.1 and to
provide the application layer building blocks that the use case descriptions are based upon. The
design decisions made in this section are intended to provide one example of how to define
eHealth specific services.

© Akogrimo consortium page 126 of 158

3.5.3.1. Common Interfaces

The following interfaces are provided or consumed by all services. They won’t be mentioned in
each description of a service.

Provided Interfaces: � IAkogrimoService

Consumed Interfaces: � IRegisterService to register a service with the SDS

3.5.3.2. Medical Resource Service

Real world entities like hospitals, ambulance cars or helicopters are referred to as medical resources.
A medical resource implements the IAkogrimoService interface and registers with the SDS. A
medical resource provides a specific interface, the IMedicalResourceInformation interface,
through which current up to date information can be requested.

Provided Interfaces: � IMedicalResourceInformation

Consumed Interfaces:

3.5.3.3. Medical Resource Locator Service

The Medical Resource Locator Service uses the SDS to find potentially useful medical services.
Additional application specific logic allows the Medical Resource Locator Service to understand
the information provided by the IMedicalResourceInformation interface and make a decision
about suitability of a service depending on that information.

Provided Interfaces: � IMedicalResourceLocator

Consumed Interfaces: � IMedicalResourceInformation

3.5.3.4. Virtual Emergency Environment (VEE) Service

The Virtual Emergency Environment (VEE) provides information and coordination to the
participants involved in the handling of the emergency case. Decisions that require human
interaction are taken here. An alert signal from the Medical Analyzer service is sent to the
Enactment Engine. The business process definition might specify forwarding the alert signal to
the VEE service in order to get a decision on how to proceed from the emergency operator. The
emergency operator might automatically be connected to the patient by phone in order to
support his decision making.

Provided Interfaces: � IVirtualEmergencyHealthRecord to provide emergency case
related information that is collected from different data sources.

� IAlertReceiver to provide a human decision

� IEmergencyOperator to request the SIP URI of the assigned
emergency operator

Consumed Interfaces:

© Akogrimo consortium page 127 of 158

3.5.3.5. ECG Data Source Service

In our example the ECG device that actually measures the heart signals is connected to a PDA.
The PDA implements the grid service that receives the endpoint of the data sink at start-up and
sends the data to that endpoint periodically. The PDA has also the capability to provide
information about its geographical location.

Provided Interfaces: � IECG_Data_Source

Consumed Interfaces:

3.5.3.6. Medical Data Logger Service

The medical data logger consumes ECG data and stores it in a Patient Monitoring Record.

Provided Interfaces: � IPatientMonitoringRecord

Consumed Interfaces: � IECG_Data_Source

3.5.3.7. Medical Data Analysis Service

The Medical Data Analysis service consumes ECG data stored in a Patient Monitoring Record.

Provided Interfaces: � IMedicalDataAnalysis

Consumed Interfaces: � IPatientMonitoringRecord to read monitoring data

� IAlertReceiver to be able to send alerts

3.5.3.8. Electronic Health Record (EHR) Service

Information systems of hospitals and doctors’ offices implement this service interface to enable
querying for patient records.

Provided Interfaces: IElectronicHealthRecord

Consumed Interfaces:

3.5.3.9. Attending Physician’s EHR Service

Electronic health records (EHRs) provided by the attending physician’s Electronic Health Record
service can include the ECG monitoring data. So when the Virtual Emergency Health Record is
prepared by the VEHR service the ECG monitoring data will be incorporated via the patient
record provided by the attending physician. Also the emergency health care provider will use a
Medical Data Logger.

© Akogrimo consortium page 128 of 158

3.5.3.10. Virtual Emergency Health Record (VEHR)
Service

The Virtual Emergency Health Record service aggregates patient records from various sources.
These sources are represented as EHR services. The VEHR service performs an aggregation of
the electronic health records.

Provided Interfaces: IVirtualEmergencyHealthRecord

Consumed Interfaces: IElectronicHealthRecord

3.5.4. Application Components

3.5.4.1. ECG Viewer

The ECG Viewer can visualise real time ECG data as well as ECG data stored in a Patient
Monitoring Record.

Provided Interfaces:

Consumed Interfaces: � IECG_Data_Source

� IPatientMonitoringRecord

3.5.4.2. Map Viewer

A Map Viewer visualises the location of patients and medical resources like hospitals or
ambulance cars. Information about these entities can be requested via the graphical user interface
of the Map Viewer. Attributes of the medical resources that are of special interest may be
visualised graphically, so the Map View becomes an important instrument in supporting human
decision taking.

Provided Interfaces:

Consumed Interfaces: � IMedicalResourceInformation

� IContextProvider

� IPatientInformation

� IMapService – interface to an external geo-information service
to generate maps showing the location of medical resources and
patients

Optionally additional information can be included:

� ITrafficInformation – interface to an external traffic information
service

� INavigationService – interface to calculate optimal routes

© Akogrimo consortium page 129 of 158

3.5.5. Generic Application Components

3.5.5.1. Membership Management Application

As will be detailed in the scenario descriptions an application to include patients into an OpVO,
or in general, users into a VO should exist in a real world scenario.

3.5.6. Scenario Descriptions

3.5.6.1. Scenario Overview

The description of the scenario background is intended to motivate a connection to a real world
scenario. Some simplifications are due to technical restrictions like focusing on WLAN and not
using other wireless technologies. Others are made for clarity of the examples, e.g. inter-VO
relationships are only addressed briefly. Only one BVO and a single OpVO are considered.
Figure 50 shows a sketch of the mobile actor, the patient, and the entities related to the mobile
grid service, the ECG Data Source service.

Figure 50 Patient Related Entities

A patient who’s ECG is being monitored, carries a mobile ECG measuring device with him that
is connected to a PDA. The PDA hosts the ECG Data Source Service that can send the ECG
data via WLAN to a data sink, in our case the Medical Data Logger service. Throughout the
scenarios only WLAN will be considered. At the network layer IPv6 and MIPv6 are used. The
PDA is also capable of providing geographical location information.

© Akogrimo consortium page 130 of 158

3.5.6.2. Patient Monitoring Setup

Due to heart problems the patient’s ECG is to be monitored for a specified period of time. In the
doctor’s office the setup of the monitoring service, the hardware equipment and the OpVO is
done.

3.5.6.2.1. PDA Setup

The hardware equipment in our example scenario is provided by the HSP, it is not the patients
own PDA that is used. For this reason an association of the PDA with a specific patient has to be
created anew in each ECG monitoring case. There are several ways to “tell” the system that the
grid services that are hosted by the PDA “belong” to the specific patient. In any case the meta-
data of the gird services has to contain information that identifies the patient. E.g. the patient
could become the service provider of the grid services. Or “patient identifier“ field could be
introduced as a specific entry of the meta-data that describes the service. Also the context
providing client software has to be able to specify the identity of the user. In our example,
identity information of the patient is transferred to the PDA during the setup. The identity
information that is stored on the PDA can be used to spare the patient a manual login when the
PDA is switched on.

Use Case PDA Setup

Initiator Doctor

Primary Actor Doctor

Additional
Actors

VO Manager, A4C, PDA, ECG Data Source service

Description � The doctor requests an identifier for the patient from the VO
Manager. The VO Manager contacts the A4C to retrieve the required
token.

� The doctor transfers the identifier to the PDA. The identifier is stored
on the PDA for ease of use, so the patient does not have to do a
manual login when he switches the PDA on.

� The ECG Data Source service is configured with the identifier of the
patient. This means that the identity of the user is used in the meta-
data of the service to associate the service with the patient. In the
service discovery process the meta-data information is used to include
the right ECG Data Source service into the workflow. There may be
other ECG Data Source services “provided” by other patients, so
identifying the right patient is essential.

Pre-conditions Doctor and patient are members of the BVO. The doctor can request a
patient identifier. The doctor is allowed to access the PDA for setup
purposes.

© Akogrimo consortium page 131 of 158

Post-conditions The PDA “carries” the patient identity information, so the patient does not
have to use a user name and password to identify himself. The identity
information is used in the meta-data of the ECG Data Source service and in
the context providing client software.

Table 28 Use case “PDA Setup”

After the PDA setup is done, the ECG Data Source service is published into the Service
Discovery Server.

3.5.6.2.2. Creating the Patient Monitoring OpVO

Use Case OpVO Setup

Initiator Doctor

Primary Actor Doctor, Workflow Manager

Additional
Actors

OpVO setup application, VO Manager, OpVO Manager, OpVO Broker,
Service Discovery Server, Workflow Registry

Description � With the help of a OpVO setup application following steps are
executed.

� A workflow template is specified by the doctor. He may have to
choose from a list of pre-selected workflow templates. E.g. ECG
monitoring, blood preasure monitoring and others. Alternatively the
workflow template may be discovered depending on the given
parameters.

� Parameters for the setup of the Patient Monitoring OpVO are
specified with the OpVO setup application. These parameters are:

� The human actors and their roles. Identifying the actors can be
done by passing identifying data like name, date of birth, etc. to the
VO Manager and receiving an identity token. Identifying data may
also be taken from a patient identity card or in the case of the
doctor, form an existing login.

� The duration of the monitoring, which VEE should be contacted,
phone number or SIP address of the patient, who is the
“Attending Physician” (if not the doctor).

� Also SLA parameters for the services that are to be used in the
workflow can be specified.

� The OpVO setup application pases the parameters to the Workflow
Manager and request an OpVO to be created. OpVO creation is
detailed in section 3.2.2.3.

Pre-conditions Doctor and Patient are members of the BVO. The doctor has the right to
request the creation of an OpVO. The appropriate ECG Data Source service
has been registered with the Service Discovery Server, i.e. the PDA has been

© Akogrimo consortium page 132 of 158

set up for the specific patient.

Post-conditions The patient and doctor are member of the newly created OpVO. The patient
can act in the role of “Monitored Patient”, i.e. he can use dedicated services of
the Patient Monitoring OpVO, like sending an alert in case of emergency. The
doctor can act in the role “Attending Physician”.

Table 29 Use case “OpVO Setup”

3.5.6.2.3. Viewing ECG Data

After the OpVO has been created the doctor starts the ECG Viewer application on his desktop
PC. The ECG can also be view on the PDA of the patient.

Use Case Viewing ECG Data

Initiator Doctor

Primary Actor Doctor, ECG Viewer application

Additional
Actors

Medical Data Logger, Workflow Manager, Service Authentication Service.

Description � The doctor starts the ECG Viewer application.

� The viewer application uses the identity and OpVO membership
information that is present on the desktop PC of the doctor.

� With this information the application (via the User Agent) contacts the
Workflow Manager to request a service that can provide the ECG data
of the patient.

� The ECG Viewer requests ECG data from the Medical Data Logger
service.

� The Service Authentication service of the hosting environment where
the Data Logger is hosted verifies that the viewer application on behalf
of the doctor (or patient) can access the ECG data.

Pre-conditions The Patient Monitoring OpVO has been set up successfully.

Post-conditions The working of the ECG measuring device has been verified by viewing the
ECG data with the ECG Viewer application.

Table 30 Use case “Viewing ECG Data”

3.5.6.2.4. Hosting Environment Setup

The services provided by the HSP can be vitally important for the treatment of patients and
handling of emergency situations. In order to ensure scalability, reliability and performance the
HSP hosting environment uses grid middleware components as describe in D4.3.1 [8]. In Figure
51 we just show the Execution Manager (EMS) and the Data Manager. Monitoring of the

© Akogrimo consortium page 133 of 158

computational and hardware resources is essential to counter service failures. Application specific
services like the Medical Data Logger and the Medical Analysis services are deployed into the
hosting environment of the HSP. Only a few interactions of the components are indicated in
Figure 51. Multiple ongoing patient monitoring processes are indicated by the two mobile ECG
devices sending data to two Medical Data Logger services. The HSP hosting environment most
likely contains a variety of eHealth related services.

Figure 51 HSP Hosting Environment

The service descriptions of the services hosted by the HSP hosting environment are published
into the Service Discovery Server of the VO. Services may be pre-allocated to specific VOs or
may be allocated when needed. Interactions of the OpVO Broker and the EMS for service
allocation are detailed in section 3.2.

3.5.6.3. Emergency Response

The ECG data of the patient is continuously logged and analysed. The Medical Data Analysis
service has detected an anomaly and sends an alert message to the Enactment Engine.

© Akogrimo consortium page 134 of 158

Use Case Emergency Response

Initiator Enactment Engine

Primary Actor Enactment Engine

Additional
Actors

Medical Data Analysis service, VEE, VEE operator, patient, EHR service,
SIP server

Optional: Diagnosis Support service, medical expert

Description � The Medical Analysis service has detected an anomaly in the ECG
data of the patient

� An alert message is sent to the enactment engine

� The enactment engine requests the VEE operator to contact the
patient in order to get additional information about the symptons.

� After the VEE operator has signaled his availability, the Enactment
Engine connects the VEE operator and the patient by phone.

� The operator asks the patient for his symptoms. In this procedure the
operator is guided by a Diagnosis Support service.

� The operator can view the ECG data of the patient.

� The operator may request a cardiologist to evaluate the anomaly of the
ECG data.

� An initial diagnosis of the heart problem is prepared and stored in the
Electronic Health Record of the patient.

� The operator decides whether the patient should be brought to a
hospital or not.

Pre-conditions The Patient monitoring process is ongoing.

Post-conditions Information about the situation of the patient is available. A decision has been
taken by the VEE operator whether the patient should be brought to a
hospital or not.

Table 31 Use case “Emerging Response”

3.5.6.4. Emergency Handling

In case the VEE operator decides that the detected anomaly (see previous scenario) is severe, the
emergency handling procedure is initiated. This emergency handling procedure might be executed
within the Patient Monitoring OpVO or it might be realized by creating an Emergency Handling
OpVO. We first describe the case where emergency handling is a sub-process of the existing
Patient Monitoring OpVO. As emergency situations do not regularly occur during the ECG
monitoring process, the necessary services would not be allocated up front, but would have to be
included on demand into the existing OpVO. Existing identity information, role assignment,
security and access policy settings would continue to subsist.

© Akogrimo consortium page 135 of 158

Use Case Emergency Handling – As Sub-Process of Patient Monitoring

Initiator VEE operator

Primary Actor Enactment Engine, VEE operator

Additional
Actors

Workflow Manager, OpVO Manager, OpVO Broker, Virtual Emergency
Health Record (VEHR) service, several Electronic Health Record (EHR)
services, Medial Data Logger, ECG Data Source service, Medical Resource
Locator service, several Medical Resource services

Description � The VEE operator has confirmed the execution of the emergency
handling sub-process. The Workflow Manager has retrieved the
associated workflow template from the Workflow Registry.

� The Workflow Template or parts thereof are passed to the OpVO
Broker to allocate the necessary services.

� The services are configures with the necessary tokens and policies.

Following actions are initiated in parallel by the Enactment Engine. Some of
them may involve human actors:

� Preparation of the Virtual Emergency Health Record (VEHR). This is
done by the VEHR service.

� Electronic Health Records (EHRs) from various sources, e.g. from
hospitals, from the attending physician and other doctor’s, are
queried and combined into a Virtual Emergency Health Record.
The VEHR includes information that is necessary to provide
appropriate treatment in the current emergency situation.

� Bringing the patient into a hospital

� Find a suitable hospital (Medical Resource Locator service)

o Send an ambulance

o Prepare medical treatment

� The VEE operator continues to talk to the patient. He get’s feedback
from the system about the actions that are initiated by the Enactment
Engine. He may be asked to confirm certain decisions proposed
automatically by the system.

� Experts are consulted if needed

Pre-conditions An emergency situation has been diagnosed. Information about the situation
and location of the patient is available.

Post-conditions Appropriate help is on the way. Detailed medical information about the
patient is available.

Table 32 Use case “Emergency Handling – As Sub-Process of Patient Monitoring”

© Akogrimo consortium page 136 of 158

An alternative way to deal with the emergency situation is to create a new OpVO. In this case the
basic OpVO setup steps have to be carried out. In the description of the creation of the Patient
Monitoring OpVO it was assumed that the doctor uses an application to create the OpVO.
Parameters like the duration of the ECG monitoring were entered manually. In the case of an
emergency, time is precious and the OpVO creation should be automated as far as possible. A
pre-selection of a suitable workflow for emergency handling could be done by the system. The
final selection would be confirmed by the VEE operator.

Communication between the Patient Monitoring OpVO and the Emergency Handling OpVO
would be achieved by means of the data that is stored about the patient. Usually this is enough
and no direct interaction between participants or services of different OpVOs is necessary. In the
patient monitoring case the ECG Data Source service that was created to be used in the Patient
Monitoring OpVO provides information that is also needed in the Emergency Handling OpVO.
So some sort of coordination between the OpVOs is necessary. It should be avoided that the
ECG Data Source service stops operating before the ECG monitoring is transferred to the more
sophisticated ECG equipment of the ambulance car.

3.5.6.5. Configuration and Deployment

Depending on their nature, application specific services can be deployed on any hosting
environment that supports the implementation of web services. Configuration and deployment of
a service includes the following phases:

� Deployment of the service and the service description

� Discovery of the service by a potential service consumer

� Negotiation of the terms of use

While the WSDL describes the functional behaviour of a service, the terms and conditions of use
are expressed by policies and SLAs that are attached to the WSDL description. This information
about the service is deployed into the Service Discovery Server. For a detailed description see [9]
section 5.4. Also information about the service discovery process can be found there. The
complexity of the negotiation of the terms of use depends on the service and its hosting
environment. E.g. the ECG Data Source service that is hosted on a small mobile device like a
PDA will either say that it is can provide ECG data or not. Services deployed into the hosting
environment of the HSP will use dedicated negotiation functionality to agree upon the
configuration of the SLA parameters.

Further update on this section could be done during implementation phase.

3.6. Legacy Application Integration

The goal of this section is to provide a connector that makes legacy applications (Mobile) Grid-
aware and for this reason it needs a more detailed description of the testbeds that will evaluate
Akogrimo Infrastructure and a final specification of Grid Application Support Services Layer.
Therefore, if necessary, an update of this section will be provided in next deliverable (D4.4.2
Prototype Implementation of the Application Support Services Layer).

3.6.1. Overview

The grid environment can be treated as a federation of heterogeneous, distributed and dynamic
resources which are seamlessly and transparently integrated across diverse virtual organizations
and collaborate in order to deliver the desired quality of service [14]. Entities constituting the grid
are not subject to centralized control and are coordinated by means of standard, open, general-
purpose protocols and interfaces. The fundamental paradigms which lay the foundations of grid
computing are resource virtualization and service orientation.

When combined, they yield a model in which widely varied software and hardware resources are
uniformly abstracted into the high-level services designed to support interoperable machine-to-
machine interaction conformant to the well-defined conventions. Services communicate by
exchanging message and collectively comprise a distributed system referred to as service-oriented
architecture (SOA).

In the context of grid environment, the legacy software can be considered as one that follows
traditional process-based model of computation. This is in contrast to service-based processing,
which is the characteristic of SOA. Both approaches differ considerably with respect to the
offered level of abstraction and interoperability, as presented in Table 33.

Criterion Grid Services Legacy Software

Paradigm Service-oriented Process-oriented

Interface Language-neutral (WSDL) Language-dependent

Execution mode System-neutral run-time en-
vironment (virtual machine)

System-dependent native ope-
rating-system process

Table 33: Comparative definition of legacy software

It is worth emphasizing that the foregoing classification disregards the programming language
employed by implementation. A software component is considered to be a legacy one, when it is
designated to be executed as a native operating system process. Thus, it is dependent on the
underlying system API and architecture. Moreover, legacy libraries exhibit interfaces which are
dependent on a specific programming language. The situation is totally different in case of grid
services since they are run within the virtual machine provided by the hosting environment and
their interfaces are language-neutral. Service-centric approach enhances flexibility and reduces
maintenance expenditure thus lowering the total cost of ownership (TCO).

For the vision of the world wide grid to become reality, there is a need for adaptation of a large
number of presently used legacy applications to SOA. One of the key challenges facing this
process is a cost-effective migration strategy that has to be devised. Significant corporate
investments in the existing high quality validated software need to be preserved during the

© Akogrimo consortium page 138 of 158

transition to the new environment. Legacy systems are critical enterprise assets reflecting key
business practices and knowledge acquired over the life of an organization. From economic
perspective, it is unacceptable to discard fully operative software and re-design and re-implement
it from scratch using grid-enabled technology. It is essential to ensure that legacy systems can be
incorporated into the grid infrastructure in a smooth, incremental way which does not involve
excessive development effort.

Another important issue is that in some cases it is not only expensive but also undesirable to port
legacy software to a different technology. This is particularly true for computationally intensive
applications (e.g. those using numerical libraries) that are optimized for certain native platforms.
They could suffer from an intolerable degradation of efficiency when relocated into the runtime
environment built on the top of a virtual machine.

For the above-mentioned reasons, it is clear that legacy software cannot be entirely substituted.
Process-based computing will remain indispensable even in the face of emerging grid technology.
In fact, both described models need to co-exist and seamlessly cooperate with each other.
Therefore, it is necessary to design an architecture enabling for transparent bridging between
legacy systems and grid services. And ideally, there should exist a framework supporting software
developers in porting legacy codes to SOA.

3.6.2. Legacy System Modernization

In this chapter we familiarize ourselves with certain aspects of legacy software engineering. In
particular, we should realize what kind of activity migration to a new technology is and how it
relates to the whole process of system evolution. For this purpose we will now briefly describe
the life cycle of a typical enterprise information system.

3.6.2.1. System Evolution

A number of activities account for the evolution of any software system. They can be roughly
divided into three broad categories, i.e. system maintenance, system modernization, and system
replacement [33].

Figure 52 illustrates how they relate to one another in the context of the system life cycle. The
dashed line represents the growing business needs while the solid one reflects the provided
functionality. As shown in the diagram, maintenance is the activity which usually suffices only for
a short period of time. When the system becomes increasingly outdated, its functionality starts to
fall behind the business needs. Under such circumstances, modernization effort is required.
Finally, when the system can no longer be evolved, it must be replaced with a new one.

© Akogrimo consortium page 139 of 158

Figure 52: Enterprise information system life cycle

Maintenance is an incremental and iterative process which involves introducing minor changes to
the system, like bug corrections or small functional enhancements. Architectural modifications
are here out of the question. Maintenance is indispensable for the evolution of any system, but it
possesses many limitations. First of all, the cumulative effect of numerous small changes is the
erosion of the system conceptual integrity. Secondly, the source code continuously expands due
to the fact that the unused modules are seldom systematically removed. Furthermore, the costs
gradually increase since finding expertise in out-of-date technologies becomes more and more
difficult in the course of time.

Replacement is appropriate for legacy systems that can not keep pace with business needs and for
which modernization is not possible or cost-effective. It is normally employed in case of systems
that are undocumented or not extensible. Obviously, replacement is connected with a number of
risks that should be evaluated before this technique is decided upon. Most importantly, building a
system from scratch is a very resource intensive task. In the majority of situations it may basically
prove too expensive. What is more, there is no guarantee that the new system will be as robust or
functional as the old one which is already thoroughly tested and well-tuned. Therefore,
replacement may cause a period of degraded system functionality with respect to the business
needs (as depicted in Figure 52).

3.6.2.2. System Modernization

Modernization is an activity which involves more extensive changes than maintenance (e.g.
system restructuring, important functional enhancements), but conserves a significant portion of
the existing software [17] [18]. It is employed when a legacy system requires more pervasive
modifications than those possible during maintenance, yet it still presents the business value that
must be preserved.

We can distinguish two basic classes of system modernization techniques:

• White-box modernization, which requires knowledge of the internals of a legacy system,
and

• Black-box modernization, which requires knowledge only of the external interfaces.

© Akogrimo consortium page 140 of 158

3.6.2.2.1. White-box Modernization

White-box modernization requires an initial reverse engineering process to gain an understanding
of the internal system operation. Components of the system and their relationships are identified,
and a representation of the system at a higher level of abstraction is produced [21].

Program understanding is the principal form of reverse engineering used in white-box
modernization. Program understanding involves modelling the domain, extracting information
from the code using appropriate extraction mechanisms, and creating abstractions that help in the
understanding of the underlying system structure [22]. Analyzing and understanding old code is a
difficult task because with time, every system collapses under its own complexity [23]. Although
some advances have been made in program understanding, it is still a risky and work-intensive
task [24] [25].

After the code is analyzed and understood, white-box modernization often includes some system
or code restructuring. Software restructuring can be defined as “the transformation from one
representation form to another at the same relative abstraction level, while preserving the subject
system’s external behaviour (functionality and semantics)” [21]. This transformation is typically
used to augment some quality attribute of the system like maintainability or performance.
Program (or code) slicing is a particularly popular technique of software restructuring. A
description of a semi-automatic restructuring technique to improve cohesion of legacy
procedures can be found in [26].

3.6.2.2.2. Black-box Modernization

Black-box modernization involves examining the inputs and outputs of a legacy system within an
operating context to gain an understanding of the system interfaces. Although acquiring an
understanding of a system interface is not an easy task, it does not reach the degree of difficulty
associated with white-box modernization.

Black-box modernization is often based on wrapping. Wrapping consists of surrounding the
legacy system with a software layer that hides the unwanted complexity of the old system and
exports a modern interface. Wrapping is used to remove mismatches between the interface
exported by a software artefact and the interfaces required by current integration practices [27]
[28]. Ideally, wrapping is a “black box” reengineering task in which the legacy interface is
analyzed and the legacy system internals are ignored. Unfortunately, this solution is not always
practical, and often requires an understanding of software modules’ internals using white-box
techniques [29].

3.6.3. State of the Art

Many large industrial and scientific applications, which are available today, are well written before
Grid computing or SOA appeared. In order to ease industries in adopting the Grid technology,
these legacy code programs have to be integrated into service-oriented Grid architectures with the
smallest possible effort without degrading their performance. This chapter summarizes several
research efforts on black-box modernization aiming at transforming legacy codes into a Grid
service.

© Akogrimo consortium page 141 of 158

3.6.3.1. Transformation into Web Services

In [20] a conceptual architecture for adaptation of legacy applications to web services technology
is presented. As illustrated in Figure 53, three components constitute the essence of the proposed
solution: web service container, web service adapters, and back-end legacy servers running legacy
applications. Each web service is equipped with an adapter which is responsible for connecting to
the appropriate backend server(s) on behalf of the client. The role of adapters is to hide the
complexity of calling backend functions which typically involves the communication through
proprietary protocols.

Figure 53: Architecture employing web service adapters

There are some disadvantages on this approach, i.e.:

1. Insecurity

Each backend server demands an open port on which it can listen to the client requests.
In complex installations this may introduce serious security vulnerabilities.

2. Inflexibility.

Service adapters have to be configured statically with regard to the locations of the
corresponding backend servers so that the communication can be established. In
consequence the infrastructure cannot tolerate process migration between computing
nodes and thereby lacks such features like automatic load-balancing and fail-over.

3. Lifetime management is not supported

Instances of web services cannot be created and destroyed on demand. Hence, potentially
dynamic and transient nature of grid services are not fulfilled using this technique.

3.6.3.2. Wrapping Legacy Codes

Currently, there are two techniques which are used to wrap the legacy codes, i.e. object-oriented
wrapping and component wrapping. These techniques are explained briefly in section 3.2.1 and
section 3.2.2 respectively.

© Akogrimo consortium page 142 of 158

3.6.3.2.1. Object-oriented Wrapping

Objects have been used to implement complex software systems successfully. Object-oriented
systems can be designed and implemented in a way that closely resembles the business processes
they model [23]. Additionally, the use of abstraction, encapsulation, inheritance, and other object
orientation (OO) techniques make object-oriented systems easier to understand.

To support object distribution, we need a more powerful means of communication than that
provided by normal inter-object communication mechanisms. Distributed object technology
(DOT) is the combination of distributed technology with OO [27]. In effect, DOT extends
object technology to the net-centric information systems of modern enterprises by using object
middleware. The most prevalent object middleware is the Common Object Request Broker
Architecture (CORBA) from OMG, with its platform-neutral object specification language,
robust remote method calls, interoperable protocols, and rich set of services.

The conceptual model of object-oriented wrapping is deceptively simple: individual applications
are represented as objects; common services are represented as objects; and business data is
represented as objects. In reality, object-oriented wrapping is far from simple and involves several
tasks including code analysis, decomposition, and abstraction of the OO model. Several
difficulties exist during legacy system wrapping, i.e.:

1. The definition of appropriate object-level interfaces

Translating the monolithic and plain semantics of the often procedural legacy system to
the richly hierarchic and structured semantics of an object-oriented system can be a
difficult task. A good knowledge of the domain can greatly help in the translation. For
example, Stets describes an experience in which the Win32 API is translated into objects
[34]. To create meaningful objects, domain-specific knowledge of the structure of an
operating system is used. Unfortunately, developers who wrap a system rarely possess
such deep domain knowledge. Some techniques have been developed to perform the
legacy to OO mapping more automatically. For example, in one such method, every
coarse-grained persistent item is mapped into an object, and services are assigned to
objects with an algorithm that minimizes coupling [35]. Although these and other
techniques are useful in extracting objects from legacy systems, the mapping problem is
far from being solved.

2. The need for integrated infrastructure services

The second challenge of translating an OO system using DOT is integrating
infrastructure services in the OO system. Almost any DOT middleware provides some set
of services such as security, transactions or persistence. However, it is often the case that
to get the expected level of services the developer must integrate two or more of these
middleware solutions. This integration is at least problematic due to unexpected
interactions and incompatibilities between theoretically compatible products [36]. To
address this need for integrated services, the industry has developed what is commonly
known as application servers (AKA server-side component frameworks). An application
server is a product that integrates a set of services and defines a component model.
Components, which are developed conforming to this model, are able to leverage all the
services provided by the application server.

A proposal of a semi-automatic technique for conversion of legacy C interfaces to their Java
equivalents is presented in [19]. Two auxiliary tools, i.e. JACAW (JAva-C Automatic Wrapper)
and MEDLI (MEdiation of Data and Legacy code Interface), are introduced which allow for

© Akogrimo consortium page 143 of 158

code wrapping and data mapping, respectively. Although separate, they are intended to work in
collaboration. The JACAW tool exploits JNI (Java Native Interface) in order to bridge between C
and Java code. It provides facilities which enable to generate Java interfaces from the given C
header files. MEDLI allows for conversion of the obtained Java code to components that can be
then deployed in the Triana-based grid environment. Triana is a workflow composer which can
be used to build complex grid services from pluggable components.

This approach is connected with three major limitations:

1. Most importantly, it is restricted to configurations in which legacy applications are located
on the same machine as the service container. It stems from the fact that the
communication is realized locally by means of JNI. In a vast array of situations this
inflexibility can prove unacceptable.

2. It is constrained to Java language as far as hosting environment is concerned. Along with
the emergence of different non-Java container implementations, this shortcoming may
become problematic.

3. The solution is unsafe due to the fact that legacy code is executed in the same operating
system process as the container’s JVM. Bugs present in the legacy library can manifest
themselves by crashing the whole runtime environment. In other words, there is a very
poor isolation and safety provided.

3.6.3.2.2. Component Wrapping

Component wrapping is very similar to OO wrapping, but components, in contrast with objects,
must conform to a component model. This constraint enables the component framework to
provide the component with quality services. The component model market consists initially of
numerous proprietary and mutually incompatible solutions. Fortunately, this situation is
improving with the emergence of a small set of standard enterprise component models and
products. Of these standards, three are of particular consequence:

• Distributed internet ArchitectureTM (DNA) is the Microsoft solution and a de facto
standard because of Microsoft’s weight in the industry.

• The CORBA 3 Component Model is the OMG approach for the enterprise that promises
an enterprise component model for CORBA.

• Enterprise JavaBeans (EJB) is the Sun Microsystems solution for Java server-side
computing.

According to press releases from the OMG, it is likely that the CORBA 3 Component Model and
EJB will merge into a single standard leaving only two dominant players. The following
discussion uses EJB to illustrate component wrapping, but does not necessarily mean that EJB is
superior to other competing models or that these solutions cannot be implemented with other
products.

Components in EJB are known as Enterprise JavaBeans (also referred as beans). Each bean
encapsulates a piece of business logic. Enterprise JavaBeans are deployed within an application
server, or EJB server, that provides the runtime environment for the bean and manages common
services such as security, transactions, state management, resource pooling, distributed naming,
automatic persistence, and remote invocation. This allows the EJB developer to focus on the
business problem to be solved. An Enterprise JavaBeans is, in essence, a transactional and secure

© Akogrimo consortium page 144 of 158

remote method invocation (RMI) or CORBA object, in which some of whose runtime properties
are specified at deployment using special files called “deployment descriptors”.

The first step in wrapping a legacy system using EJB is to separate the interface of the legacy
system into modules consisting of logical units - shown in Figure 54 as Function 1 and Function
2. The degree of difficulty in dividing the legacy system into discrete functions will vary
depending on the degree to which the separation was defined in the legacy system interfaces and
whether new interfaces must be built. Although a black-box approach is preferable, poor
documentation and a cryptic legacy system interface may make it necessary to peer into the black-
box to better understand the legacy system [37].

Figure 54: Wrapping Legacy Business Logic Using EJB

The next step in wrapping the legacy business logic is to build a single point of contact to the
legacy system. It is a good idea to centralize all the communication knowledge in a single software
artefact. The communication method used by this artefact depends on the particular situation.
Options for communication between the single point of contact and the legacy system include
RMI over IIOP, sockets, or even Message Oriented Middleware (MOM), which has the
advantage of uncoupling the EJB server from the legacy system and allowing for asynchronous
communication. This single point of contact can be implemented as a bean (called adapter) or as
service broker – a software component placed external to the EJB server. Placing the point of
contact inside or outside the server depends mainly on the chosen communication method and
some security restrictions. For example, if you need to create a new thread or listen to a socket,
the single point of contact must be outside of the application server because the EJB
specification prevents Enterprise JavaBeans from being multithreaded or listening to sockets. The
final step in wrapping the legacy business logic is to implement a wrapper bean for each module
in the legacy system. In Figure 54, this wrapper is shown as Bean 2. These beans forward requests
to the legacy system using the single contact point, in a manner similar to object wrapping.

There are several advantages to the component approach for wrapping legacy business logic.
First, with relatively limited effort, the advantages of component-based systems are supported.
We can, for example, build new Enterprise Java Beans that use the wrapper beans in
unanticipated ways, greatly improving system flexibility. Second, wrapper beans are bona fide
Enterprise Beans and can be integrated fully with all the management facilities and services
included with the application server. Lastly, wrapping legacy business logic provides a roadmap to
substitute the old system incrementally. After wrapping the functionality of the legacy system, we
can re-implement wrapper beans one at a time (Bean 1 in Figure 54), without having to go
through a “big-bang” replacement of the system. This is possible because the system and the

© Akogrimo consortium page 145 of 158

clients would not notice any disruption as the re-implemented bean maintains the same interfaces
provided by the wrapper bean. In time, it is possible to replace the old system completely.

Wrapping legacy business logic with EJB is not without risk. The EJB specification is porous and
portability problems can arise between different vendor’s application servers [38]. In addition, the
Java programming language is considered by some to be unsuitable for critical applications.

As mentioned earlier, application servers manage the system services of deployed components
(persistence, transactions, etc). However, a wrapping bean represents a piece of business logic
living in an external legacy system. A mechanism is needed to coordinate the service management
of both the legacy system and the EJB server. This mechanism, called connector, is being
developed by Sun and promises to simplify the integration of legacy assets [39]. Connectors
(shown in Figure 55) are a standard set of system level interfaces that manage transactions,
security, and resource pooling between the server and the legacy resource. This architecture
supports the development of a standard connector to access a legacy data source or system. The
connector is plugged into an application server and provides connectivity between the legacy
system and the application server. This connector, once developed, can be plugged into any
application server that supports the connector mechanism. It is, of course, still necessary to
implement application-level communication.

Figure 55: Integration of legacy business logic using connectors

In [31] a black-box modernization technique which is largely based on the component wrapping
technique is presented. The general approach that is employed while porting a certain legacy
application to grid services technology is based on the separation of its interface and
implementation. Legacy interface is first extracted, then refined and finally exposed in the form of
a grid service. Legacy implementation is encapsulated into a software wrapper which constitutes
the necessary adaptation layer. The resulting components can be deployed on disparate hosts.

Figure 56: Wrapping legacy application with component wrapping

As described in Figure 56, the architecture which is used in [31] consists of three major
components, i.e.:

1. Backend host

Backend host Hosting
environment

Service client

SOAP SOAP

© Akogrimo consortium page 146 of 158

Backend host represents the machine on which legacy software is installed. In order to
enhance performance and reliability, several instances of the same legacy application are
deployed on different computing nodes which are located possibly in diverse geographic
locations.

2. Hosting environment

Hosting environment is basically the container for grid services which provides the
needed middleware facilities.

3. Service clients requesting grid services.

These three components are potentially located on different machines and communicate by
means of SOAP messages. The only way in which information can be exchanged between the
components is remote method invocation performed on grid services residing in the hosting
environment.

3.6.3.3. Screen Proxies

A non-decomposable legacy program contains business logic and data model components in
which their interfaces are dependent each other and cannot be separated. An approach to deal
with non-decomposable legacy programs is described in [30] to integrate character-based legacy
systems written in Cobol language with the Web and Grid technologies by using screen proxies
and redirecting input/output calls. Figure 57 depicts legacy systems integration with web and grid
technologies exploiting this technique.

Figure 57: Integration of legacy systems with web and grid technologies

The Activation & Proxy Container (APC) on the right side of Figure 57 includes the information
about legacy systems that either have been or may be activated. It interacts with Directory Service
for registering the legacy system services that can be activated. When a web user connects to a
Web Server to find and interact with a legacy system through a web user interface, the Web
Server activates the Screens & Proxy Container Servlet (SPCS). The SPCS contains the references
between the screens models and the associated activated legacy system. It contacts the APC
associated to the legacy system that should be activated. Afterwards, the APC activates the legacy
system and keeps a reference to it. The legacy system contacts the SPCS for creating its user
interface which is actually done through the wrapper of the legacy system and through the proxy
part of the APC. The SPCS creates an instance of a screen model corresponding to the legacy
system user interface and connects them. The legacy systems continue to run and modifies its
associated user interface through calls to the proxy part in the APC that redirect calls to the SPCS

Web
Browser

Web
Browser

Web
Server

Screens & Proxy
Container Servlet

Activation & Proxy
Container

Directory
Service

Legacy System 2

Screen Model
Legacy System 1

Screen Model
Legacy System 2

Legacy System 1

© Akogrimo consortium page 147 of 158

and then to the specific screen model. At a certain time the SPCS responds to the Web Server
transforming the screen model to an HTML page. This may happen when the legacy system
requests a user intervention. The Web Server forwards the answer to the web browser. After the
user fills in an input field or the web browser simply asks for a refresh of the screen, the Web
Server redirects the request to the SPCS. The SPCS redirects the web input to the legacy system
through the APC.

3.6.3.4. Front-end OGSI Grid Service Layer

There is a clear need to deploy existing legacy code programs as OGSI Grid Services since legacy
code applications have been developed and implemented to run on a single computer or on a
computer cluster and do not offer a set of OGSA compliant interfaces. Two approaches can be
identified to solve this problem. The first approach is to re-engineer the legacy code which in
many cases implies significant efforts. The second one is to develop a front-end OGSI Grid
service layer that contacts the target host environment without re-engineering the original code.
The Grid Execution Management for Legacy Code Architecture (GEMLCA) supports the last
approach and it is presented in [32].

The GEMLCA offers a front-end Grid service layer that communicates with the client in order to
pass input and output parameters, and contacts a local job manager through Globus MMJFS
(Master Managed Job Factory Service) to submit the legacy computational job. Thereby there is
no need for the source code in order to deploy a legacy application as a Grid service. The user
only has to describe the legacy parameters in a pre-defined XML format. The legacy code can be
written in any programming languages and can be not only a sequential but also a parallel PVM or
MPI code that uses a job manager like Condor and where wrapping can be difficult. The
GEMLCA conceptual architecture is shown in Figure 58.

Figure 58: GEMLCA conceptual architecture

In order to access a legacy code program, the user executes the GEMLCA Grid Service client
which creates a legacy code instance with the help of the legacy code factory. Following this, the
GEMLCA resource submits the job to the compute server through GT3 MMJFS using a
particular job manager (Condor or Fork).

A GEMLCA resource is composed of a set of Grid services that provides a number of Grid
interfaces in order to control the life-cycle of the legacy code execution. This architecture can be
deployed in several user containers or Tomcat application contexts.

GEMLCA has been designed as a three layer architecture: the first, front-end layer offers a set of
Grid Service interfaces that any authorized Grid client can use in order to contact, run, and get

© Akogrimo consortium page 148 of 158

the status and any result back from the legacy code. This layer hides the second, core layer section
of the architecture that deals with each legacy code environment and their instances as Grid
legacy code processes and jobs. The final layer, backend is related to the Grid middleware where
the architecture is being deployed.

3.6.4. Integration Criteria (to be updated)

This chapter explains criteria in determining whether a given application qualifies for a grid
solution. The criteria deal with job/application, data, usability, and non-functional perspectives.

3.6.5. Proposed Approach (to be updated)

This chapter will describe our approach in integrating legacy applications within Akogrimo
project.

4. Conclusion
In this deliverable we have described the architecture and main functionalities provided by WP4.4
Grid Application Support Services Layer. All services described in the deliverable will be
implemented using grid services and following WSRF specification [40], then we will use some
support grid middleware to develop them. Inside the document there are, also, some topics that
explain what application services can be useful in order to implement Akogrimo testbeds and
some guidelines to provide a connector that makes legacy applications (Mobile) Grid-aware.

In next Figure 59 we will show an overall vision about interactions between entities belonging to
WP4.4 in relation to a specific action. In this way we would give a general view to summarize role
and relationships between entities.

Figure 59 Summary of main interactions between WP4.4 components during “Acquire Service” action

© Akogrimo consortium page 151 of 158

References
[1] D2.3.2 Validation Scenarios, in folder http://bscw.hlrs.de/bscw/bscw.cgi/0/54606,

document D2.3.2 Draft 0.3

[2] Open Science Grid, A Blueprint for the Open Science Grid,
http://www.opensciencegrid.org/documents/ (2004)

[3] R. Alfieri et al, VOMS, an Authorization System for Virtual Organizations (2003 - check)

[4] C Kesselman, Grids, where next?, (2005)

[5] T. Dimitrakos, D.Golby, Paul K.earney, Towards a Trust and Contract Management
Framework for dynamic Virtual Organizations (2004 - check)

[6] M. Lorch, B. Cowles, Conceptual Grid Authorization Framework and Classification,
GFD-.038, 2004 -11-23, http://www.ggf.org/Meetings/ggf7/drafts/authz01.pdf

[7] Web Services Trust Language, ftp://www6.software.ibm.com/software/developer/library/ws -
trust.pdf

[8] D4.3.1 Grid Infrastructure Services Layer (Version 1.0)

[9] D4.2.1 Overall Network Middleware Requirements Report (Version 1.0)

[10] S. Gokul, Authenticating Web Services with SAML ,
http://www.awprofessional.com/articles/article.asp?p=28286

[11] Wang, D. Del Vecchio, M Humphrey, Extending the Security Assertion Markup Language
to Support Delegation for Web Services and Grid Services, 2005 IEEE International Conference
on Web Services (ICWS 2005), Orlando, FL, July 12-15, 2005,
http://www.cs.virginia.edu/~humphrey/papers/SAML_delegation.pdf

[12] Web Services Trust Language,
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf

[13] D2.3.2 Testbed Validation Scenarios (Version 1.0)

[14] Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid

[15] Open Grid Services Infrastructure: http://www.gridforum.org/ogsi-wg/

[16] Open Grid Services Architecture: http://www.globus.org/ogsa

[17] Seacord, R. C., Comella-Dorda, S., Lewis, G., Place, P., Plakosh, D.: Legacy System
Modernization Strategies, SEI, July 2001

[18] Comella-Dorda, S., Wallnau, K., Seacord, R. C., Robert, J.: A Survey of Legacy
System Modernization Approaches, SEI, April 2000

[19] Huang, Y., Taylor, I. Walker, D., Davies, R.: Wrapping Legacy Codes for Grid-Based
Applications, Proc. International Workshop on Java for Parallel and distributed
computing, Nice, France, 2003

[20] Kuebler, D., Eibach, W.: Adapting Legacy Applications as Web Services:
http://www-106.ibm.com/developerworks/webservices/library/ws-legacy

© Akogrimo consortium page 152 of 158

[21] Chikofsky, Elliot, J., Cross II, J.H.: Reverse Engineer and Design Recovery: A
Taxonomy, IEEE Software vol. 7, 1990, p. 13-17

[22] Tilley, Scott, R., Smith, Dennis, B.: Perspectives on Legacy System Reengineering
(draft), Reengineering Center, Software Engineering Institute, Carnegie Mellon
University, 1995

[23] Phoenix Group: Legacy Systems Wrapping with Objects,
http://www.phxgrp.com/jodewp.htm

[24] Haft, T. M., Vessey, I.: The Relevance of Application Domain Knowledge: The Case
of Computer Program Comprehension, Information Systems Research vol. 6, 1995, p.
286-299

[25] Von Mayrhauser, A., Vans, A. M.: Comprehension Processes During Large Scale
Maintenance, Proceedings of the International Conference of Software Engineering
ICSE, Sorrento, Italy, p. 39-48, 1994

[26] Lakhotia, A., Deprez, J-C.: Restructuring Functions with Low Cohesion, Proceedings
of the 6 th Working Conference of Electrical and Electronics Engineers, 1998

[27] Wallnau, K., Morris, E., Feiler, P., Earl, A., Litvak, E.: Engineering Component-
Based Systems with Distributed Object Technology, Lecture Notes in Computer Science,
International Conference WWCA’97, Tsukuba, Japan, 1997

[28] Shaw, M.: Architecture Issues in Software Reuse: It’s not just the Functionality, It’s
the Packaging, Proceedings IEEE Symposium on Software Reusability, 1995

[29] Plakosh, D., Hissam, S., Wallnau, K.: Into the Black Box: A Case Study in Obtaining
Visibility into Commercial Software, Software Engineering Institute, Carnegie Mellon
University, 1999

[30] Bodhuin, T., Tortorella, M.: Using Grid Technologies for Web-enabling Legacy
Systems, Proceedings of the Software Technology and Engineering Practice (STEP),
Amsterdam, 2003

[31] Balis, B., Bubak, M., Wegiel, M.: A Framework for Migration from Legacy Software
to Grid Services, Cracow Grid Workshop, Cracow, 2003

[32] Delaitre, T., Goyeneche, A., Kiss, T., Winter, S. C.: Publishing and Executing Parallel
Legacy code using an OGSI Grid Service, 2004

[33] Weiderman, N, Northrop, L., Smith, D., Tilley, S., Wallnau, K.: Implications of
Distributed Object Technology for Reengineering, Pittsburgh, Carnegie Mellon
University, 1997

[34] Stets, Robert, J., Hunt, Galen, C., Scott, Michael, L.: Component-Based APIs for
Versioning and Distributed Applications, IEEE Computer, p. 54-61, 1999

[35] Cimitile, A., De Lucia, A., Di Lucca, A., Fasolino, A. R.: Identifying Objects in
Legacy Systems, Proceedings of the 5th Workshop on Program Comprehension, 1997

[36] Seacord, R. C., Wallnau, K., Robert, J., Comella-Dorda, S., Hissam, S. A.: Custom vs.
Off-the-Shelf Architecture, Proceedings of 3rd International Enterprise Distributed
Object Computing Conference, University of Mannheim, Germany, 1999

© Akogrimo consortium page 153 of 158

[37] Plakosh, D., Hissam, S., Wallnau, K.: Into the Black Box: A Case Study in Obtaining
Visibility into Commercial Software, Pittsburgh, Carnegie Mellon University, 1999

[38] Comella-Dorda, S., Robert, J., Seacord, R.: Theory and Practice of Enterprise
JavaBean Portability, Proceedings International Society for Computers and Their
Applications (ISCA) 1st International Conference on Information Reuse and Integration,
Atlanta, Georgia, 1999

[39] Sun: J2EETM Connector Architecture (JSR-000016), 1999

[40] http://www.oasis-open.org/news/oasis_news_03_17_04a.php OASIS – WSRF
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

[41] WSRF.NET framework http://www.cs.virginia.edu/~gsw2c/wsrf.net.html

[42] Liberty Alliance Project, http://www.projectliberty.org/index.php

[43] Web Service Policy Framework
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf

[44] XACML TC - http://www.oasis -
open.org/committees/tc_home.php?wg_abbrev=xacml

[45] WS-Security TC - http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[46] SAML - http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

[47] WS-SecureConversation - http://www-
128.ibm.com/developerworks/webservices/library/specification/ws -secon/

[48] WS-Federation - http://www.verisign.com/wss/WS-Federation.pdf

[49] Web Service Policy Attachment - http://www-
128.ibm.com/developerworks/webservices/library/specification/ws -polatt/

[50] Kerberos WG - http://www.ietf.org/html.charters/krb-wg-charter.html

[51] X509 WG - http://tools.ietf.org/wg/secsh/draft-ietf-secsh-x509/

[52] WS-SecurityPolicy - http://www-
128.ibm.com/developerworks/webservices/library/specification/ws -secpol/

[53] Transport Layer Security - http://www.ietf.org/html.charters/tls-charter.html

[54] Information Systems Security Group at Kent University -
http://www.cs.kent.ac.uk/research/groups/iss/index.html

[55] TrustCoM project - http://www.eu-trustcom.com/

© Akogrimo consortium page 154 of 158

Annex A. Alternative OpVO topologies
In most cases, the design of an OpVO is likely to be used in many situations. So we design
an OpVO for monitoring a patient, allowing for the possibility of many patients. The
whole process of monitoring a single patient can be regarded as a business case.

Two OpVO topologies can be distinguished:

§ An OpVO with a single business case (SBC)

§ An OpVO with multiple similar business cases (MBC)

What about

 An OpVO per customer per workflow services still shared

 An OpVO per workflow / similar workflows using same services with multi
customers grouped in OpVO sharing services

Figure 60 and Figure 61 show a graphical representation of the two topologies. Each
business case is represented by the Service Consumer. VO related information like
membership tokens that each entity of the OpVO manages are represented by a circle.

© Akogrimo consortium page 155 of 158

Figure 60 – Three OpVOs each with a single business case (SBC)

These two OpVO types are different in the complexity of achieving certain technical goals
like:

§ VO Management

§ Performance

§ QoS Management

§ Security

§ Scalability

© Akogrimo consortium page 156 of 158

Figure 61 – A single OpVO with multiple similar business cases (MBC)

Differences in VO management:

Single business case OpVOs (SBC OpVOs) are rather short lived and focused on
accomplishing one step in an overall process. The complexity in number of services is rather
limited. E.g. in the eHealth domain an OpVO might be formed to provide a detailed
diagnosis in preparation for a medical treatment. Specialists would be included into the
OpVO and granted access to the necessary resources to perform their task. When the
diagnosis (the service) has been provided the OpVO is dissolved.

Membership management is easier for the OpVO Manager in the SBC OpVO. There is no
need to distinguish several unrelated customers. Service providers on the other hand may
have to manage several OpVO memberships, but each service instance would only need to
manage one. The Base VO services will have to support multiple VO’s.

If any situation is expected to use the MBC method, a generic OpVO Manager will have to
be written which handles multiple cases. This could encourage more generic core services.

The Multi OpVO services could also have to deal with membership of multiple VO’s. For
instance if a monitoring MBC OpVO contains all patient heart monitoring devices, if an
alert is triggered that sets up separate OpVO’s to deal with an emergency a response from

© Akogrimo consortium page 157 of 158

one of the new VO’s would need to be sent back to the device to end the alert when the
process is completed.

The MBC enables grouping of services in a process, rather than separate private processes.
It encourages single VO per workflow type.

Differences in Performance:

From the viewpoint of the Base VO, creation and dissolution of multiple OpVO services
means effort. Services have to be found and allocated, SLAs have to be agreed upon and
configuration information has to be distributed. When choosing between the two
alternatives, runtime behaviour has to be evaluated. Also the setup of the Base VO is an
important factor when performance is required. Are there pre-arrangements between the
Base VO members that make certain processes (e.g. negotiation easier)? Are certain critical
services pre-reserved by the Base VO? How many actors are involved? As multi business
case OpVO have a tendency to be longer lived the overhead in creating the OpVO is
reduced.

Differences in QoS management:

Service providers may prefer having a contract with only one OpVO in order to make
management of their services simpler. If they sell their services to multiple OpVOs the
potentially different contracts regarding quality of service may require weighing multiple
factors to achieve an optimal overall performance. This is true but commercially it would be
appealing if a service could appeal in various types of VO.

Differences in Security:

For an MBC OpVO, special care has to be taken to keep the service consumers separate.
Patient information from the one case should not interfere with patient information from
another case.

Differences in Scalability:

The additional measures that have to be taken to ensure security can influence the overall
performance and scalability of the system. More information has to be processed. More
entities are related by the same workflow. Tight cohesion hampers scalability and makes
management more complex. However scalability could be enhanced if this complexity is
dealt with well, the singleOpVO model probably would present more headaches in terms of
scalability.

Does the MBC alternative eventually become a bottleneck when there are a large number of
cases?

© Akogrimo consortium page 158 of 158

Annex B. Summary tables and figures
This annex provides a table that shows in one place a summary of the major components
and the constituent subcomponents. The Application Specific services and legacy application
integration are not included.

Section title VO
Management

Orchestration SLA Management Security

Name of
major
component
in WP4.4

VO
Management

BP Enactor SLA High Level
services

VO Security
Services

Sub
Components

BVO Manager

OpVO
Manager

OpVO Broker

Participant
Registry

Workflow
Manager

Monitoring
Daemon

Enactment
Engine

Workflow
Registry

SLA-Access

SLA-Translator

SLA-Negotiator

SLA-Contract

SLA-
ContractRepository

SLA-Template

SLA-Repository

SLA Template Builder

VO
Authentication
Service

VO
Authorization
Enforcement

Security Log

Security Bridge

User Agent

Service Agent.

Security
Designer

Table 34 Components and Subcomponents

