

WP4.4 Grid Infrastructure Services Layer

Dissemination Level: Public

Lead Editor: Giuseppe Laria, CRMPA

30/01/2006

Status: Final

D4.4.2
Prototype
Implementation of the
Grid Application
Support Service layer

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.18

Grid for complex problem solving

Proposal/Contract no.: 004293

© Akogrimo consortium page 2 of 45

This is a public deliverable that is provided to the community under the license Attribution-
NoDerivs 2.5 defined by creative commons http://www.creativecommons.org

This license allows you to

• to copy, distribute, display, and perform the work
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work by indicating that this
work originated from the IST-Akogrimo project and has been
partially funded by the European Commission under contract
number IST-2002-004293

No Derivative Works. You may not alter, transform, or build
upon this work without explicit permission of the consortium

• For any reuse or distribution, you must make clear to others the license terms of this
work.

• Any of these conditions can be waived if you get permission from the copyright holder.

This is a human-readable summary of the Legal Code below:

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,
musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a
Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image
("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means all partners of the Akogrimo consortium that have participated in the production of this text
d. "Original Author" means the individual or entity who created the Work.
e. "Work" means the copyrightable work of authorship offered under the terms of this License.
f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this

License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License
despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

© Akogrimo consortium page 3 of 45

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in
the Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio
transmission the Work including as incorporated in Collective Works.

c. For the avoidance of doubt, where the work is a musical composition:
i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether individually

or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital
performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually or
via a music rights society or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

d. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor waives
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to
make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to
make Derivative Works. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms
on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not
distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control
access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as
incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to
the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable,
remove from the Collective Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or Collective Works, You must keep
intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another
party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service
or by other reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does
not refer to the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable
manner; provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other
comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE
LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

© Akogrimo consortium page 4 of 45

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work, the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be
reformed to the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

© Akogrimo consortium page 5 of 45

Activity 4 Detailed Architecture, Design & Implementation

WP4.4 Grid Application Support Services Layer Architecture, Design &
Implementation

Dependencies This is the accompanying report prepared as the D4.4.2 Prototype
Implementation of the Grid Application Support Services Layer deliverable.

Contributors:

Contributors (in alphabetical Order): Reviewers:1

Annalisa Terracina (DATAMAT): section 3.3
Brian Ritchie (CCLRC): section 3.3
Ferry Syafei (UHOH): section 3.4
Francesco D’Andria (Atos Origin): section 3.2
Giuseppe Laria (CRMPA): section 1, section 2,
contributions integration

Ian Johnson (CCLRC): section 3.1
Josep Martrat (Atos Origin): section 3.2
Nadia Romano (CRMPA): section 3.2, section 3.1
Raul Bori (Atos Origin): section 3.2
Robert Piotter (USTUTT): section 3.2
Tom Kirkham (CCLRC): section 3.1

1 Due the nature of this document being a central document of the project it was not possible to determine
completely independent reviewers. The approach chosen was to assign sections not written by the authors
themselves to be reviewed and consolidate the results.

© Akogrimo consortium page 6 of 45

Version Date Authors Sections Affected

0.1 19/10/2005 Giuseppe Laria Template

0.2 26/10/2005 Giuseppe Laria Template revision focusing on
modules description

0.3 9/11/2005 All All. First version of developed
service description

0.4 29/11/2005 Ferry Syafei Application Specific Services
description

0.5 2/12/2005 Raul Bori SLA High level services
description: update

0.6 23/12/2005 Ian Johnson,
Tom Kirkham

VO management services
description: update

0.7 12/1/2006 Giuseppe Laria Update of the overall document
structure and addition of sections
1 and 2

0.8 19/1/2006 Brian Ritchie Section 3.3: update

1.0 31/1/2006 Giuseppe Laria Final integration

© Akogrimo consortium page 7 of 45

Table of Contents
Executive Summary ...11
1. Introduction – Overview ...12

1.1. Addressed concepts ...12
1.2. The Overall Picture..12

1.2.1. Offline Setup..13
1.2.2. Operational behaviour..13

2. The developed services...16
2.1. VO management subsystem...16

2.1.1. BVO Manager..16
2.1.2. OpVO Manager ..17
2.1.3. User Agent (UA) ...18
2.1.4. Service Agents ...19
2.1.5. Participant Registry ...21

2.2. SLA High Level ..29
2.2.1. SLA-Access ..29
2.2.2. SLA-Translator ..30
2.2.3. Contract/Template-Repository...32

2.3. BP enactment..34
2.3.1. WorkFlow Registry ...34
2.3.2. WorkFlow engine..35
2.3.3. WorkFlow Manager ..38
2.3.4. Monitoring Daemon...39

2.4. Application specific services...40
2.4.1. Objectives...40

3. Conclusions..44

© Akogrimo consortium page 8 of 45

List of Figures

Figure 1 – The patient uses the OpVO ..14

© Akogrimo consortium page 9 of 45

List of Tables
Table 1 - BVO manager service methods...16
Table 2 – OpVO manager service methods...17
Table 3 – User Agent methods ..18
Table 4 - Service Agent methods ...20
Table 5 - Participant Info service methods ..22
Table 6 – SLA Access service methods ..29
Table 7 – SLA Translator service methods ..31
Table 8 - SLA repository service methods ...33
Table 9 - WF Registry service methods ..34
Table 10 - WF engine methods ..36
Table 11 - WF manager service methods ...38
Table 12 - Monitoring Daemon service methods..40
Table 13 – Application Specific services methods ..41

© Akogrimo consortium page 10 of 45

Abbreviations
Akogrimo Access To Knowledge through the Grid in a Mobile World

BVO Base Virtual Organization

BVOm BVO Manager

ECG Electrocardiogram

GASS Grid Application Support Services

MD Monitoring Daemon

OpVO Operative Virtual Organization

OpVOm OpVO Manager

PR Participant Registry

SA Service Agent

SA_ECG_DA Service Agent ECG data analyzer

SA_ECG_DG Service Agent ECG data generator

SA_ECG_DV Service Agent ECG data visualizer

SA_MDL Medical data logger

SDFS Service Description Fact Sheet

SLA_A SLA Access

SLA_R SLA Repository

SLA_T SLA Translator

UA User Agent

WF Workflow

WF_E Workflow Engine

WF_M Workflow Manager

WF_R Workflow Registry

© Akogrimo consortium page 11 of 45

Executive Summary
In this document, the functionality and implementation status of the first prototype of Grid
Application Support Service layer is presented. The different components will be described and
their interfaces and implementation technologies is documented.

In order to reach the current prototype, the WP4.4 participants have implemented and refined
multiple modules that have been designed in the Grid Application Support Service layer
architecture deliverable (D4.4.1). Of course at the current stage just a subset of all functionalities
have been implemented.

This document assumes a general understanding of Akogrimo concepts and a high level
knowledge of GASS layer architecture (see Deliverable 3.1.2 “Initial Overall Architecture” and
for more details Deliverable 4.4.1 “Architecture of GASS layer”)

It is organized as follows:

 Section 1 provides an overview of the scope and goal of this first prototype. Furthermore a
summary of the available modules is provided and a sketch of their behaviour

 Section 2: provides a set of tables that list for each module the provided methods and their
description. Details about the involved technologies are provided as well.

 In the conclusion it is underlined the status of the implementation with respect to the long
term vision that will be achieved in the final prototype.

© Akogrimo consortium page 12 of 45

1. Introduction – Overview
The GASS layer represents the “front-end” of Akogrimo platform, in fact, it provides high level
services that allow the application to have an access point to leverage on Akogrimo platform
capabilities. This layer provides the following major subsystems (see D.3.1.2 “Detailed Overall
Architecture Design” and D4.4.1 “Architecture for the Application Support Services Layer” for
detailed design):

 VO management: includes services to manage BVO and OpVO.

 SLA High Level: it provides services to manage negotiation and contract definition.

 BP enactment: it provides services to manage the instantiation and execution of a workflow
template.

 Application Support Services layer: provides services and tools to support specific testbed
execution in the frame of Akogrimo environment.

Of course, in the first prototype we haven’t implemented all components and also the
implemented components don’t provide all functionalities designed in the architecture
documents. The details about the available components and related functionalities are available in
the following section 2.

1.1. Addressed concepts

The first prototype of GASS layer has the aim of providing proof of concept with respect to
some requirements of the demo scenario that in its turn is a preliminary prototype of the eHealth
test bed. In particular, in this scenario, we assume an OpVO already exists and we are going to
proof the feasibility of:

 BVO authentication (integration between network and grid layer authentication)

 Using an OpVO through the User Agent and Service Agent components.

 Adaptation of Business Process execution according with context changes.

 Interactions with other layers of the architecture:

 WP4.3 that provides the infrastructure to execute the business services involved in the
business process.

 WP4.2 that provides components supporting authentication (A4C server) and business
process adaptation (context changes notification through the context manager).

1.2. The Overall Picture

For each subsystem listed above a set of services has been implemented, that is:

 VO management:

 BVO Manager (BVOm)

 OpVO Manager (OpVOm)

 User Agent (UA)

 Service Agent (SA)

 Participant Registry (PR)

 SLA high level:

© Akogrimo consortium page 13 of 45

 SLA Access (SLA_A)

 SLA Translator (SLA_T)

 SLA Repository (SLA_R)

 BP enactment:

 Workflow Manager (WM)

 Workflow Registry (WR)

 Workflow Engine (WF_E)

 Monitoring Daemon (MD)

In this first prototype just a set of the functionalities foreseen in the final version have been
implemented then we have to assume that many setup actions have to be performed offline.
Actually all the process of the OpVO creation is simulated in order to bring all the components
in an operational status.

Then in order to use this prototype we have to identify two different phase: offline setup and
operational status.

1.2.1. Offline Setup

In this step, we configure all the services involved in the operational phase. Of course this
configuration steps will be performed by the Akogrimo platform itself in the final version of the
prototype but, at the moment, due to missing functionalities we perform the configuration
through some GUI clients.

The offline setup involves:

 Creation and configuration of the User Agent

 Configuration of the Service Agents

 Store information in Participant Registry and WF Registry

 Deployment of business process script

 Creation and Configuration of monitoring daemon.

1.2.2. Operational behaviour

The following Figure 1 shows how the prototype works when everything has been set. We are
assuming the patient is already logged in the network and every actions to allow him/her to
contact the WP4.4 has been performed (it is part of the prototypes developed in other WP4.x).

We are going to explain the meaning of each interaction labelled with a sequence number.

© Akogrimo consortium page 14 of 45

Node1

Node2

Node3

Node5

Node4

UA patient

WF_E

MD

SA_ECG_DA

SA_MDL

SA_ECG_DV

SA_ECG_DG

BVOm

PR

OpVOm

Patient

MT

2

1

A4C

3

4

OpVO

4.x

4.y

CM

4.y.z

M
D

L

EC
G

_D
G

EC
G

_D
A

EC
G

_D
V

4.x.y

WP4.3WP4.2

1.1

1.2

Figure 1 – The patient uses the OpVO

1. The patient has logged on the network and he/she has a reference to the BVO manager.
The BVO manager is invoked in order to retrieve the list of services (User Agent) running in
the BVO on behalf of the patient.

1.1. BVOm asks the A4C server for authenticating the incoming request

1.2. The authentication is successful, then the BVOm calls the PR to retrieve the list
of pair UAs and related OpVO token to be returned to the patient.

2. The patient chooses an application (UA) between the available for him/her (received
from the BVOm). He/she will invoke the UA using the associate OpVOtoken and specifying
the method and parameters to be passed.

3. The UA invokes the OPVOm to validate the OpVO token received by the patient in the
method invocation.

4. If the validation is successful the UA will invoke the method on a specific service inside
the OpVO. The UA will have a list of possible services to be invoked and it will select the
right one on the basis of the request coming from the patient. In the specific case, it will
invoke the service exposed by the BP engine to start the workflow execution.

4.x. During the workflow execution the engine will invoke the SAs that will act inside
the OpVO on behalf of the external services involved in the workflow.

4.x.y. The SAs will forward the request to the business service instances running
in different administrative environment and managed by services developed in the
frame of WP4.3

© Akogrimo consortium page 15 of 45

4.y. During the workflow execution the MD will receive notification from the CM
about context change. The BP engine will be informed about these changes and the
workflow execution will be adapted to the new context.

This is the behaviour of the GASS layer first prototype and it interacts with prototype of WP4.2
layer with respect to notification of context changes and with WP4.3 that provides and manages
the execution of the external services, that in Figure 1 are the ones involved in our first scenario:
ECG_DV, ECG_DA, ECG_DG and MDL. Of course, depending on the workflow script
deployed in the BP engine the steps 4.x and 4.y will be different.

In this first prototype release, we have designed just one workflow template that is the one of the
first simplified scenario.

The following section provides details about each single service and functionalities implemented
so far.

© Akogrimo consortium page 16 of 45

2. The developed services

2.1. VO management subsystem

2.1.1. BVO Manager

2.1.1.1. Objectives

The Base VO Manager is the key part of policy and authorization enforcement at the top of the
Base VO. The Manager interacts as a “go between” in between the participant’s registry, A4C
server and external requestors. All service requests to the VO pass through the manager and
checked against the A4C server and participant’s registry by the manager. Based on the response
from the A4C server, the Base VO manager makes a decision to either refuse or the request entry
to the Base VO. If entry is granted the Base VO Manager creates an OpVO Manager and starts
the process to create a new OpVO, at the end the Participants registry is informed of the new
participant’s credentials

2.1.1.2. Functionality

The Table 1 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X

Z = Method name
Table 1 - BVO manager service methods

BVO manager

Incoming request management

Description This group includes methods to manage the incoming requests for joining to the
BVO.

E-BVO-VO-GetApplicationList

TokenAgentType[] getApplicationList(String token, String participantId)

Description The BVO Manager receives a request for the list of applications that this
participant (identified by the participantID) is allowed to execute. The ‘token’
parameter is ignored for the time being. The return value is an array of pairs,
consisting of the EPR of a UserAgent and the associated OpVO token to invoke
this UserAgent.

© Akogrimo consortium page 17 of 45

2.1.1.3. Involved technologies

The main technologies involved in the implementation of this service are:

 Windows XP and RHEL 3

 Apache Tomcat 5

 GT4

 Ws-core-3.95 (GTK libs)

2.1.2. OpVO Manager

2.1.2.1. Objectives

The Operative VO Manager (OpVO Manager) takes the role of the VO manager during the
execution of an Akogrimo application inside an OpVO. Once a requestor has been authenticated
by the Base VO it receives a token that is validated by the OpVO manager during the lifetime of
the Akogrimo application it is valid for. The token is passed from the User Agent to the OpVO
everytime as a parameter and at this stage will be a simple string, the UA itself will pass its token
everytime as a SOAP message and at this stage will be a simple XML file.

2.1.2.2. Functionality

The Table 2 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 2 – OpVO manager service methods

OpVO manager

Validation of Invocation to the OpVO

Description This group includes methods to manage the incoming requests that ask for a
service inside the OpVO.

OpVO-JoinReq

Boolian [] checkToken (String token, String participantId)

Description The OpVO manager will receive a request from a User Agent to perform a task
in the Base VO, this request is accompanied by the agents token.

© Akogrimo consortium page 18 of 45

2.1.2.3. Involved technologies

The main technologies involved in the implementation of this service are:

 Linux Ubuntu

 Apache Tomcat 5

 GT4

 Ws-core-3.95 (GTK libs)

2.1.3. User Agent (UA)

2.1.3.1. Objectives

This service belongs to VO Management topic and takes care to represent a user inside the
OpVO. Moreover it is in charge to manage secure accesses to the application. The User Agent
provides a standard front-end to be invoked by the outside. The OpVO user always we’ll invoke
the same method on the UA that will generate in an automate way the invocation for the right
service inside the OpVO.

 The service is implemented as WSRF service, we will have a dedicated UA for each external user.

2.1.3.2. Functionality

The Table 3 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 3 – User Agent methods

UserAgent

Application methods

Description This group includes methods it is the method called from outside to ask for a
service inside the OpVO

E-UA-InvokeApplication

public arrayOfXmlElement InvokeApplication(string methodName, arrayOfXmlElement
inputMethodParameters)

© Akogrimo consortium page 19 of 45

UserAgent

Description This method allows to start the execution of a specific method on a service
inside the OpVO. The OpVOToken is passed in the SOAP message and the
User Agent extracts it to manage security accesses.

It returns the object with application results or null.

E-UA-GetMethodList

public string GetMethodList()

Description This method allows to external invoker to retrieve the list of methods available
to be invoked inside the OpVO

Configuration methods

Description This group includes methods to be invoked in order to configure the user agent.
For example it is necessary to provide the services available in the OpVO, to set
security policies,…

E-UA-Configuration

public void Configuration(string serviceURL, string methodName, string[]
xmlInputParametersFormat)

Description This method allows to configure the UA with respect to the service methods it
has granted access in the OpVO.

2.1.3.3. Involved technologies

The service is implemented using Web Service technology and in particular it will work with
SOAP over HTTP. Furthermore it is able to elaborate the SOAP pipeline in order to extract the
VOToken.

Summarizing the main involved technologies are:

 MS Windows 2003 Server

 WSRF.NET

 WS-Security

2.1.4. Service Agents

2.1.4.1. Objectives

This service belongs to VO Management topic and takes care to represent a service inside the
OpVO. Moreover it is in charge to manage secure accesses to the service associated to the agent.
It implements a general mechanism to check access rights, but for each service typology foresees
a specialization in terms of data managed and proxies to access the service.

© Akogrimo consortium page 20 of 45

At this stage the service is implemented as a simple WS.

2.1.4.2. Functionality

 The Table 4 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name

Table 4 - Service Agent methods

ServiceAgent

Application methods

Description This group includes all the methods that are a replication of the methods
exposed on the outside service represented by the SA inside the OpVO. They
will be different depending on the outside service, then we will not list them
here because they can be found between the Application Support Services

The service agent will be customized on the base of services to invoke. This means that this
service will provide the same methods of component services (involved into the workflow) to
invoke. Maybe if we will need some additional info in order to manage service agent actions we
will add it in the final interface. As soon as possible we will have the component services
interfaces we will provide external interfaces.

Configuration

Description This group includes methods to configure the service agent about different
aspects: authorization rights, services to be invoked,…

At this stage the security set up is not available yet.

E-SA-setEPR

setEPR (EndpointReferenceType EPR)

Description Allows to set the EPR of the outside service to be invoked

© Akogrimo consortium page 21 of 45

2.1.4.3. Involved technologies

The service is implemented using Web Service technology and in particular it will work with
SOAP over HTTP.

Summarizing the main involved technologies are:

 SOAP

 WSRF.NET

2.1.5. Participant Registry

2.1.5.1. Objectives

The Participant Registry service is actually constituted by three services that provide different
kind of information on the BVO/OpVO and their participants. These services are:

 Participant Info: this service will contain and manage all information related to participant
features in the context of BVO/OpVO. This service will allow to create a WS-Resource
associated to each participant and we will store them information related to the specific
participant. In fact, it is able to manage information associated to each different participant
about:

 Tokens

 Roles

 Agents

 Application and BVO/OpVO Manager identifier

 VO info: This service will manage information related to VO (BVO or OpVO) about its
participants and its manager identifiers (name identity and endpoint reference). We will have a
WS-Resource for each BVO/OpVO storing the mentioned information

 ParticipantNameService: This service will manage the mapping table in order to maintain
an association between participant identifier and the endpoint reference of the resource
created for him/her into the ParticipantInfo. Retrieving the endpoint reference it is possible
to access to the participant related information. This service is a simple Web Service.

2.1.5.2. Functionality

The Table 5 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X

Z = Method name

© Akogrimo consortium page 22 of 45

Table 5 - Participant Info service methods

Participant Info

Tokens and agent management

Description The methods in this group manage the list of pairs, OpVOtoken and related
User Agent EPR, associated to each participant and stored in the ws-resource
that represents that represents them.

E-PR-ParticipantInfo-InsertTokenAgent

public string InsertTokenAgent(string agentEpr, TokenType token)

Description Insert a token and an agent to access a service in an existing participant WS-
Resource.

The result is the token identifier if operation has success, otherwise "failure"

E-PR-ParticipantInfo-UpdateTokenAgent

public bool UpdateTokenAgent(TokenAgentType oldEntry, TokenAgentType newEntry)

Description Updates a pair token and agent of a participant with a new one.

E-PR-ParticipantInfo-UpdateToken

public bool UpdateToken(TokenAgentType oldEntry, TokenType newToken)

Description Updates data in a token.

Return true or false.

E-PR-ParticipantInfo-UpdateAgent

public bool UpdateAgent(TokenAgentType oldEntry, string newAgent)

Description Updates agent data, in particular, the EPR of the agent.

Return true if the update has success, false otherwise

E-PR-ParticipantInfo-RemoveTokenAgent

public bool RemoveTokenAgent(TokenAgentType entry)

Description Removes a token and its agent associated to a participant

Returns true if peration has success, false otherwise

E-PR-ParticipantInfo-RetrieveTokenList

public TokenType[] RetrieveTokenList()

© Akogrimo consortium page 23 of 45

Participant Info

Description Retrieves the tokens’ list of the participant

Returns token type list if has success, null object otherwise</returns>

E-PR-ParticipantInfo-RetrieveAgentList

public EndpointReferenceType[] RetrieveAgentList()

Description Retrieve the agents’ list of the participant

Returns endpoint reference type list if has success, null object otherwise

E-PR-ParticipantInfo-RetrieveTokenAgentList

public TokenAgentType[] RetrieveTokenAgentList()

Description Retrieves the list of tokens and agents associated to the participant

It returns the Full list if has success, null object otherwise

Profile Management

Description The methods in this group manage the profiles associated to each
participant. Each participant can have different profiles each of
one related to an OpVO where he/she has involved in.

E-PR-ParticipantInfo-AddProfile

public string AddProfile(ParticipantProfileType participantProfile)

Description Adds a profile for the participant

Returns the profile identifier if operation has success, "failure"
otherwise

E-PR-ParticipantInfo-UpdateProfile

public bool UpdateProfile(ParticipantProfileType oldProfile, ParticipantProfileType newProfile)

Description Updates an existing profile of the participant

It returns true if the operation has success, false otherwise

E-PR-ParticipantInfo-RemoveProfile

public bool RemoveProfile(ParticipantProfileType profile)

Description Removes a participant profile

It returns True if the operation has success, false otherwise

© Akogrimo consortium page 24 of 45

Participant Info

E-PR-ParticipantInfo-RetrieveProfile

public ParticipantProfileType RetrieveProfile(string profileId)

Description Retrieves a profile of the participant

It returns the profile associated to the identifier if operation has
success, null object otherwise

E-PR-ParticipantInfo-RetrieveProfileListId

public string[] RetrieveProfileListId()

Description Retrieves the list of profile identifiers associated to the
participant

Returns one or more profiles associated to the participant

Property management

Description This group of methods allow to manage the properties associated
to each participant. Participant properties include: identifier of
BVO Manager where the participants is registered, identifier of
OpVOs where participant is involved, identifiers of application
owned by the participantsm, …

E-PR-ParticipantInfo-ConfigureParticipantProperty

public bool ConfigureParticipantProperty(ParticipantProperty prop)

Description Configures property of the participant

E-PR-ParticipantInfo-UpdateParticipantProperty

public bool UpdateParticipantProperty(ParticipantProperty oldProp, ParticipantProperty
newProp)

Description Configures properties of a participant

It returns true if the update has success, false
otherwise</returns>

E-PR-ParticipantInfo-RetrieveParticipantProperty

public ParticipantProperty[] RetrieveParticipantProperty()

Description Retrieves participant properties

Returns participant properties array if operation has success, null
otherwise

© Akogrimo consortium page 25 of 45

Participant Info

E-PR-ParticipantInfo-RemoveParticipantProperty

public bool RemoveParticipantProperty(ParticipantProperty prop)

Description Removes property of participant

Returns True if deletion has success, false otherwise

E-PR-ParticipantInfo-SetParticipantIdentifier

public bool SetParticipantIdentifier(string id)

Description Set identifier of participant

Returns True if setting has success, false otherwise

E-PR-ParticipantInfo-GetParticipantIdentifier

string GetParticipantIdentifier()

Description Returns the participant identifier

VOInfo

Participant reference management

Description This group of methods manage the reference of participant inside a VO.
For each VO we will have a dedicated WS-Resource and it will store
information about the participants.

E-PR-VOInfo- AddParticipantReference

public bool AddParticipantReference(ParticipantMapping partRef)

Description Allows to add participant reference information in particular the
participant id and the EPR of the related resource of the participant info
service

It returns true if the operation has success, false otherwise

E-PR-VOInfo-UpdateParticipantReference

public bool UpdateParticipantReference(ParticipantMapping oldPartRef, ParticipantMapping
newPartRef)

Description It updates participant reference information

It returns true if the operation has success, false otherwise

© Akogrimo consortium page 26 of 45

VOInfo

E-PR-VOInfo- RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string partId)

Description It allows to retrieve the participant endpoint reference

Returns the participant endpoint reference if has success, null otherwise

E-PR-VOInfo- RemoveParticipantReference

public bool RemoveParticipantReference(ParticipantMapping partRef)

Description Remove participant reference information

Returns true if the operation has success, false otherwise

BVO/OpVO Manager setting

Description This groups includes methods that allow to set OpVO/BVO related
information on the WS-Resource that represents the OpVO/BVO itself

E-PR-VOInfo-SetVOIdentifier

public bool SetVOIdentifier(string id)

Description Set the VO (BVO or OpVO) identifier

returns true if the operation has success, false otherwise

E-PR-VOInfo-GetVOIdentifier

public string GetVOIdentifier()

Description Get the OpVO/BVO identifier

Returns the identifier if the operation has success, "failure" otherwise

E-PR-VOInfo-SetManagerIdentifier

public bool SetManagerIdentifier(string id)

Description Set the (BVO or OpVO) Manager identifier

Returns True if the operation has success, false otherwise

E-PR-VOInfo-GetManagerIdentifier

public string GetManagerIdentifier()

© Akogrimo consortium page 27 of 45

VOInfo

Description Get the (BVO or OpVO) Manager identifier

Returns the identifier if the operation has success, "failure" otherwise

E-PR-VOInfo-SetManagerEpr

public bool SetManagerEpr(string manEpr)

Description Set the (BVO or OpVO) Manager EndpointReferenceType

Returns true if the operation has success, false otherwise

E-PR-VOInfo-GetManagerEpr

public string GetManagerEpr()

Description Get the (BVO or OpVO) Manager EndpointReferenceType

Returns the EPR (serviceUrl#resourceID) if the operation has success,
"failure" otherwise

ParticipantNameService

Mapping table management

Description This group of methods manage a table that stores the mapping between
unique identifier of the participant and the EPR of the associated
participant resource in the Participant info service

E-PR-ParticipantNameService-CreateParticipantMappingCollection

public bool CreateParticipantMappingCollection()

Description Create the collection to map participant identifiers (or unique user name)
and related endpoint reference

It returns true if the collection is created right, false otherwise

E-PR-ParticipantNameService-CheckCollectionExistence

public bool CheckCollectionExistence()

Description Check if the collection '/db/Akogrimo/ParticipantMapping' is already
created in Xindice

Returns true if the collection exists, false otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingCollection

© Akogrimo consortium page 28 of 45

ParticipantNameService

public bool RemoveParticipantMappingCollection()

Description Removes the collection used to maintain mapping between participant
identifier and their endpoint reference

Returns true if the operation has success, false otherwise

E-PR-ParticipantNameService-AddParticipantMappingEntry

public string AddParticipantMappingEntry(string participantId, EndpointReferenceType epr)

Description Adds an entry inside the mapping table

Returns Participant identifier if the operation has success, false otherwise

E-PR-ParticipantNameService-RemoveParticipantMappingEntry

public bool RemoveParticipantMappingEntry(string participantId)

Description Removes a participant from the collection

It returns true if the action has result, false otherwise

E-PR-ParticipantNameService-RetrieveParticipantEpr

public EndpointReferenceType RetrieveParticipantEpr(string participantId)

Description Retrieves a document from a collection

Returns the document if the operation has success, null otherwise

2.1.5.3. Involved technologies

The service is implemented as service on top of WSRF.NET.

The involved technologies are:

 Windows Server 2003 Enterprise Edition

 WSE 2.0 SP3

 IIS 6.0

 .NET Framework 1.1

 WSRF.NET

 Xindice 1.1b4

 Tomcat 5.0.28

© Akogrimo consortium page 29 of 45

2.2. SLA High Level

2.2.1. SLA-Access

2.2.1.1. Objectives

This service provides all necessary functionalities that other components could require from the
document template and contract. Unlike SLA-Translator, SLA-Access does not access directly to
the documents stored in the repositories (SLA-Templates and SLA-Contracts), but it uses the
SLA-Translator by passing the document Id and the specific tag what it is looking for. So the
SLA-Access contains the logic to retrieve and manipulate data from/to SLA template and
contracts.

The SLA-Access has been implemented as a WS-Resource developed in c# (.NET) which
exposes, at this moment, three methods (retrieveInfoMetadata, setInfo and getQoSParameters).
These methods offer to the consumer a way for accessing to concrete data of a specific
document.

All these methods define what to do with concrete parts of the document, that is, to retrieve the
service information, the description of the service, get some parameters, or for example to update
the content of some tags, all them carried out with a support service as the SLA-Translator.

2.2.1.2. Functionality

The Table 6 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name

Table 6 – SLA Access service methods

SLA-Access

SLA contracts and templates management

Description This group of methods allows to access the SLA templates/contracts
and to modify them in a transparent with respect to the XML details.

E-SLA-Access-retrieveInfoMetadata

public objMetadata retrieveInfoMetadata(string SLADocId)

© Akogrimo consortium page 30 of 45

SLA-Access

Description Retrieves general information related to a service

An object with requested metadata if the operation has success, null
object otherwise

E-SLA-Access-setInfo

public bool setInfo(string SLADocId, objInfo info)

Description This method allows to fill specific sections of SLA contract

It returns true if the operation has success, false otherwise

E-SLA-Access-getQoSParameters

public objQoS getQoSParameters(string SLADocId)

Description This method is used to retrieve QoS parameters and thresholds to be
monitored

It returns an object with QoS parameters if the action has success,
null object otherwise

2.2.1.3. Involved technologies

It is implemented as a WS-Resource. We will have an SLA Access instance associated to a
specific SLA-Translator

Involved technologies:

 Windows Server 2003 Enterprise Edition

 WSE 2.0 sp3

 IIS 6.0

 .Net Framework 1.1

 WSRF.NET v2.1.1

 Xindice 1.1b4

 Tomcat 5.0.28

2.2.2. SLA-Translator

2.2.2.1. Objectives

This service is the only responsible for accessing physically to the documents (SLA-Template and
SLA-Contract) and get (or set) information from them. For each document it will know the
associated ID and it will contact with the repositories in order to retrieve the appropriate
document.

© Akogrimo consortium page 31 of 45

The SLA-Translator has been implemented as a WS-Resource developed in c# (.NET) which
exposes two methods (getData and setData) for getting / setting information from a document.
There are only two methods offered to stress on the main use of this service, but each one has a
set of input parameters which value have an influence on its results, so they can be seen as a
generalization of many more methods.

This type of implementation makes possible to choose between different types of results just
changing the input parameters of both operations.

2.2.2.2. Functionality

The Table 7 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 7 – SLA Translator service methods

SLA- Translator

SLA contracts and templates management

Description This group of methods allows to process the XML document that
represents the SLA contract/template

E-SLATranslator- getData

public string getData (string SLADocId, string rootTag, int occurrence)

Description This method will be used for retrieving specific sections from a
template or contract.

In getData method, the consumer has to specify the tag name
involved in the operation by setting the simple tag name or a
concrete root tag.

Furthermore, it has also to specify how many occurrences it expects
from the results that is choosing between the first occurrence found
/ all the occurrences / the first one and its siblings.

It will return a string that will represent the XML document
containing all the information that matches the requirements in
input.

E-SLATranslator- setData

public bool setData (string SLADocId, objUpdateTag objUpdate)

© Akogrimo consortium page 32 of 45

SLA- Translator

Description This method will be used for setting a specific tag in a template or
contract.

In setData method, the consumer has also to specify the tag name
involved in the operation by setting the simple tag name or a
concrete root tag. Furthermore, it has also to fill a specific object
type with the data it wants to update.

2.2.2.3. Involved technologies

It is implemented as a WS-Resource. We will have an SLA-Translator instance associated to a
specific SLA Access instance

Involved technologies:

 Windows Server 2003 Enterprise Edition

 WSE 2.0 sp3

 IIS 6.0

 .Net Framework 1.1

 WSRF.NET v2.1.1

 Xindice 1.1b4

2.2.3. Contract/Template-Repository

2.2.3.1. Objectives

The SLA Template Repository allows storing and retrieving SLA Template documents. This
service is used as a storage facility by the SLA-Translator.

The SLA Template Repository is currently implemented as a couple of regular Web Services
deployed in c# (TemplateRepository and ContractRepository) that simply virtualizes a file
system, but in future it will be a WS-Resource developed in c# (.NET) that will use Xindice in
order to store/retrieve information interacting with this DB.

2.2.3.2. Functionality

The Table 7 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name

© Akogrimo consortium page 33 of 45

Table 8 - SLA repository service methods

SLA- Repository

Storing SLA contracts and templates

Description This group of methods allows to store and retrieve templates and
contracts from the repository

E-SLARepository- storeTemplate

public string StoreTemplate(string templatePath, bool overwrite)

Description The StoreTemplate() method accepts a path to a local file
(templatePath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA templates with the same
name. Currently the name is used to identify the SLA template
document.

E-SLARepository- GetTemplate

public XmlDocument GetTemplate(string templateId)

Description Given the name of an SLA Template as templateID, the method
GetTemplate() retrieves the document and returns is as
XmlDocument

E-SLARepository- storeContract

public string StoreContract (string contractPath, bool overwrite)

Description The StoreContract() method accepts a path to a local file
(contractPath) and a parameter ‘overwrite’ that specifies if the
method is allowed to overwrite existing SLA Contract with the same
name. Currently the name is used to identify the SLA Contract
document.

E-SLARepository- GetContract

public XmlDocument GetContract (string contractId)

Description Given the name of an SLA Contract as ContractID, the method
GetContract () retrieves the document and returns is as
XmlDocument

2.2.3.3. Involved technologies

SLA Repository has been developed using regular Windows ASP.net Web service using C# as
implementation language and it will represent a simple interface to a file system.

It is implemented using:

© Akogrimo consortium page 34 of 45

 Windows Server 2003 Enterprise Edition

 WSE 2.0 SP3

 .Net Framework 1.1

2.3. BP enactment

2.3.1. WorkFlow Registry

2.3.1.1. Objectives

The workflow Registry is the component in charge of storing implementation files of published
workflows. Such files will be stored in some relational database, MySQL for instance, along with
annotations necessary for semantically identifying workflows. A unique key will identify each
workflow and its semantic annotations. Semantic annotations will be stored either as a secondary
database table or as files written in semantic languages such as OWL-S.

The Workflow Registry contains BPEL templates that correspond to the Business Processes. In
addition the Workflow Registry contains what we call “Process Deployment Descriptor”. This
additional file is related to the workflow template(s) and it contains the name of the abstract
services. The abstract services will be substituted with concrete services by the Workflow
Manager. In this way the Workflow Manager component should not parse the entire BPEL
script.

At this stage, the Workflow Registry will be based on MySQL. It will be exposed as a web service
that offers methods to upload/retrieve templates. The web service will be implemented in Java.

For the first phase, no semantic will be included. This means that no OWL-S use is foreseen. The
template search will be just based on simple keywords.

2.3.1.2. Functionality

The Table 9 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name

Table 9 - WF Registry service methods

WF- Registry

Storing WF templates

Description This group of methods allows to store and retrieve WF templates
from the repository.

© Akogrimo consortium page 35 of 45

WF- Registry

E-BPE-WFRegistry- Store

workflowID Store(wfTemplateFile, annotations[])

Description It returns a workflow identifier assigned by database upon success.
The parameter is the workflow implementation file and the
associated semantic annotation array.

E-BPE-WFRegistry- Get

WFTemplateFile Get(workflowID)

Description It returns the workflow implementation file upon success. The
parameter is the workflow identifier eventually returned by the
searchService request sent to the GrSDS.

E-BPE-WFRegistry-Update

Update(workflowID, annotations[], values)

Description It returns success or failure. The parameters are the workflow
identifier, the semantic annotations to be updated and their new
values

E-BPE-WFRegistry-

Remove(workflowID)

Description It returns success or failure. This function removes the specified
workflow from the database. The parameter is the workflow
identifier.

2.3.1.3. Involved technologies

Involved technologies:

 MySQL

 Basilar Web Service specifications (SOAP, WSDL)

 Java

 Linux Ubuntu

2.3.2. WorkFlow engine

2.3.2.1. Objectives

The Workflow Engine is the component of the Business Process Enactor in charge of enacting
specific BPEL processes submitted by the Workflow Manager component. The Workflow

© Akogrimo consortium page 36 of 45

Engine should and will support execution of BPEL processes and calling of services with a
WSDL description.

The Workflow Engine will be exposed to external entities as a normal web-service to which
invocation of methods will be possible. Methods will include those for starting and canceling a
business process, those for inspecting and retrieving I/O and status information of a workflow.

2.3.2.2. Functionality

The Table 10 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 10 - WF engine methods

WF- engine

Workflow instances management

Description This group of methods allows to manage the workflow instances
living inside the WF engine

E-BPE-WFEngine-deployBpr

processID deployBpr(bpelFile)

Description This method is used for submitting a workflow to the engine for
enactment. It is semantically equivalent to the method
“workflowRef Submit(wfTemplateFile)“ described in section
3.2.2.4.3 of deliverable D441-GASSlayerArchitecture

E-BPE- BPEngine-resumeProcess

resumeProcess (processID)

Description This method is used for asking the engine to start the enactment of
a submitted workflow. It is semantically equivalent to the method
“Start(workflowRef)“ described in section 3.2.2.4.3 of deliverable
D441-GASSlayerArchitecture

E-BPE-BPEngine-terminateProcess

terminateProcess (processID)

© Akogrimo consortium page 37 of 45

WF- engine

Description This method is used for asking the engine to totally cancel the
enactment of a submitted workflow. It is semantically equivalent to
the method “Cancel(workflowRef)“ described in section 3.2.2.4.3
of deliverable D441-GASSlayerArchitecture

E-BPE-BPEngine-process_list

process_list getProcessList()

Description This method is used for asking the engine the list of processes
already submitted. Note that the resulting list includes all deployed
processes, not only those actually executing.

E-BPE-BPEngine-getProcessState

process_state getProcessState(processID)

Description This method is used for asking state information about a
workflow. It is semantically equivalent to the method “wf_state
GetWFState(workflowRef)“ described in section 3.2.2.4.3 of
deliverable D441-GASSlayerArchitecture

E-BPE-BPEngine-getVariable

process_variable getVariable(processID, name)

Description This method is used for asking value and state of a specific variable
of a specific workflow. It is semantically equivalent to the method
“wf_variable InspectVar(worfklowRef)“ described in section
3.2.2.4.3 of deliverable D441-GASSlayerArchitecture

Business process logic related methods

Description This group will include all the methods that are strictly related to
the business process logic. Of course, they will be different
depending on the business process design itself, then we are not
going to list here, because they are application specific. In the
specific case of the eHealth scenario we will have just one method
startFlow.

2.3.2.3. Involved technologies

The workflow engine will be interpreted by the ActiveBPEL engine. This is an opensource
implementation of a parser and engine for enactment of BPEL processes. As of now,
specification 1.1 of BPEL is fully supported. The ActiveBPEL engine has been installed on a
linux machine running the Ubuntu Linux distribution. It is installed as a servlet for Tomcat with
Apache as http server.

© Akogrimo consortium page 38 of 45

ActiveBPEL engine is delivered as a standalone solution in which an axis servlet is also included
(no external installation is necessary) and for which both a WSDL interface and a programming
Java API are provided (the above mentioned methods are directly taken from this engine’s wsdl
interface).

Involved technologies:

 Apache: any version should be OK as long as Tomcat works fine.

 Tomcat: 5.0.28 (be sure to define the $CATALINA_HOME env variable).

 Axis: 1.2.1 but not necessary. ActiveBpel deploys all necessary jar to Tomcat into
$CATALINA_HOME/shared/lib (make sure to add the jars contained in this directory to
your CLASSPATH)

 JDK: 1.4.2_09-b05 (don't use 1.5.0! I had many problems with it). Remember to define the
$JAVA_HOME env variable and to add $JAVA_HOME/jre/lib/*.jar to your CLASSPATH.

 Ant: 1.6.5 (important, prior versions makes use of web services impossible

2.3.3. WorkFlow Manager

2.3.3.1. Objectives

This is a component of the Business Process Enactment service (the other components being the
Enactment Engine (EE), the Monitoring Daemon (MD) and the Workflow Registry (WR)). Its
purpose is to transform workflow templates into workflows that can be carried out by the Workflow
Engine; part of this transformation includes service instantiation and registration for context
changes (with the Context Manager) and SLA violations (with SLA Enforcement). It should also
receive context/SLA notifications from the MD and (possibly) interrupt or redirect the current
workflow. A Workflow Manager (WFM) is created (by an OpVO Manager, or by another
Workflow Manager); thus each instance of the WFM manages a single workflow. (More strictly, it
manages a single instance of a workflow template; this may generate multiple workflows.)

At this stage, the WF manager will implement just a limited set of functionalities, in particular
related to the management of context change and the business process deployment.

Any kind of control will not be available.

2.3.3.2. Functionality

The Table 11 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 11 - WF manager service methods

WF- Manager

© Akogrimo consortium page 39 of 45

WF- Manager

Workflow instantiation

Description It includes a group of methods that allows to set up the
environment to manage the workflow during its execution.

E-BPE-WFM-Create

Boolean CreateWFManager(WFTemplate)

Description Create a new Workflow Manager to handle a workflow template
(supplied as parameter). (Note: creation of multiple instances
implies that this feature should be provided by a “WFM Factory”
service, though this will be virtual in the first phase.)

E- BPE-WFM-Start

Boolian CreateWFManager(WFTemplate, EPR)

Description Instruction to a WF engine to deploy and instantiate a workflow to
start processing its template. In this phase all the setup actions will
be performed (e.g. subscription of monitoring daemon to context
changes)

2.3.3.3. Involved technologies

Involved technologies:

 Java

 GT4 core

 WS-Notification

2.3.4. Monitoring Daemon

2.3.4.1. Objectives

This is a component of the Business Process Enactment service (the other components being the
Workflow Manager (FWM), the Enactment Engine (EE) and the Workflow Registry (WR)). Its
purpose is to provide a web service interface that the Context Manager and SLA Enforcement
can use to notify BP Enactment about context changes or SLA violations. It may perform some
processing on the received notifications (such as further filtering and (in the longer term) concept
mapping), before passing them to the WFM for decisions/ action.

2.3.4.2. Functionality

The Table 11 provides a list of the available methods on each service. The methods have been
grouped in macro categories.

Each method will be identified with a summary notation:

© Akogrimo consortium page 40 of 45

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name

Table 12 - Monitoring Daemon service methods

Monitoring Daemon

MD Administration

Description It includes a group of methods that allows to administrate the MD

E-BPE-MD-Create

EndpointReferenceType Create()

Description Create a new Monitoring Daemon. We expect this to be invoked
by a WFM, so that each WFM has (to all intents and purposes) a
dedicated MD (Note: creation of multiple instances implies that
this feature should be provided by a “MD Factory” service, though
this will be virtual in the first phase.)

E- BPE-MD-GetContext

Public GetContext(userID)

Description To be used by a client to query the last known context for a user
ID.

2.3.4.3. Involved technologies

Involved technologies:

 Java

 GT4 core

 WS-Notification

2.4. Application specific services

2.4.1. Objectives

The application specific services include a selected set of services from the eHealth domain that
will be the building block to execute the preliminary eHealth scenario. These services are: ECG
Data Generator, ECG Data Visualizer, ECG Data Analyzer and Medical Data Logger.

© Akogrimo consortium page 41 of 45

Of course their implementation is in a preliminary stage and the aim is to verify:

 If the available infrastructure is able to support their execution and

 the envisioned working of architectural middleware components in the context of an eHealth
environment.

In the following sections we are going to provide a brief description of each service and the
related methods.

2.4.1.1. Functionality

The Table 13 provides a list of the available methods on each service. The methods have been
grouped in macro categories one for each service.

Each method will be identified with a summary notation:

E-X-Y-Z

E = External interface

X = Service/group name

Y = Subservice of X (if applicable)

Z = Method name
Table 13 – Application Specific services methods

Application Specific Services

ECG_Data_Generator

Description This service functions as a data generator for a patient. It simulates
the heart beat of the patient every second based on several
parameters (ECG sampling frequency, heart rate mean, etc). The
generated ECG data is periodically stored locally in a different file
every five seconds. Right after having a new file, a notification is
sent to the workflow to transfer the file to the medical data logger
and finally to the ECG data analyzer to be analyzed. In the
following the list of methods that it provides

generateData generateData(String patientName)

This method is used to generate the heart beat of the given patient
based on a default parameter value. The generated heart beat is
buffered locally.

patientName: a string indicating the name of the patient

stopDataGeneration stopDataGeneration(String patientName)

This method stops the generation of the ECG data for the given
patient.

patientName: a string denoting the name of the patient.

MedicalDataLogger

© Akogrimo consortium page 42 of 45

Application Specific Services

Description This service is used to wrap the generated ECG data in a standard
format. The data is copied to the Medical Data Logger by the Data
Manager from the ECG Data Generator. The wrapped data is
stored temporarily before being sent to the Data Manager.

wrapData String resultAbsolutePath wrapData(String
sourceAbsolutePath)

This method wraps the data from the ECG Data generator in a
standard format.

sourceAbsolutePath: The absolute path of the ECG data, which
resides in the ECG Data Generator’s location.

resultAbsolutePath: The absolute path of the wrapped ECG data,
which resides in the Medical Data Logger’s location.

EcgDataAnalyzer

Description This service is used to analyze the heart beat of a patient and
predict whether the patient will have a probability to get a heart
attack. In case the patient will get a heart attack, the
EcgDataAnalyzer sends a notification to the workflow engine to
start the heart attack handling process. Furthermore it starts
forwarding the current data to a cardiologist (when there is a heart
attack) or a big display (when the context changes).

analyzeData analyzeData (String patientName)

This method is used to analyze the ECG data of the patient to find
out whether the patient will suffer a heart attack. When analyzeData
method is invoked, a thread is created to perform the analysis of
the ECG data for the given patient. It is continuously running in
the background and invokes the workflow to start the heart attack
handling process in case a heart attack symptom is detected.

patientName: a string which is the name of the patient.

registerForwardData String ack registerForwardData(String targetName)

This method forwards the current data to the cardiologist (when
there is a heart attack) or a big display (when the context changes)
by invoking the data forwarding process.

ack: is a string informing whether the data transfer to the target
destination (such as cardiologist or a big display) is success or fail.

EcgDataVisualizer

© Akogrimo consortium page 43 of 45

Application Specific Services

Description This service visualizes the ECG data of a patient in a detail or a
coarse manner. It can be used by the cardiologist, patient, or clerk
to look into the actual status of the heart beat of the patient.

visualizeSimpleData visualizeSimpleData(String patientName)

This method visualizes the ECG data of the given patient in a
coarse manner due to the limitation of the display.

patientName: a string which indicates the name of the patient.

visualizeDetailData visualizeDetailData(String patientName)

This method visualizes the ECG data in detail.

patientName: a string indicating the name of the patient.

2.4.1.2. Involved technologies

Involved technologies:

 Java

 GT4

 Ubuntu

© Akogrimo consortium page 44 of 45

3. Conclusions
The goal of this firs prototype has been to have preliminary feedbacks about some technological
aspects that constitute an innovative approach introduced by Akogrimo but, at the same time,
they can be an issue that could arise problems to achieve the final objectives.

The focus of this implementation has been on the following main points:

 Identification of possible integration and interoperability issues: in Akogrimo we have
planned to use different hosting platform (Microsoft and Linux) running Web Service and
WS-Resource implemented on top of different frameworks (based on Java or C#). The
integration results of the first prototype show as the solution of interoperability and
interaction issues in such environment is not so simple as expected using standard
specifications and protocols. We have derived an important lesson learnt from this
preliminary prototype because we have identified and solved some common problems in
order to achieve communication between GT4 and WSRF.NET based platform. We would
underline as the main of these problems are related to minor differences in the standard
formats used to exchange information (e.g. SOAP header contents, WSDL, XSD,…), then
the main effort has been spent in the identification of the issues but not in the solution
implementation. The gained experience constitutes a solid basis and this topic can be
considered in an advanced status, otherwise the solution of this kind of issues is a pre-
requirement for the following implementation phase.

 Authentication from Network to Grid layer: one of the most relevant point of Akogrimo
is that network is not there to be used by the grid service requestor without considering the
involvement of this use. Then as first step we have focused on how to use a grid service
integrating network and grid level authentication. The prototype has been useful as proof of
concept with respect to the use of the A4C and SAML server to store and authenticate
incoming request both to Network and Grid layer. In particular, with respect to the GASS
layer the future developments will require the full adoption of WS specification in order to
manage authentication token.

 Proof of concepts related to context changes notification: the context status awareness is
a very important objective in Akogrimo then it is clear that this prototype had to provide
preliminary feedback in relation to the feasibility of context information transfer from the
lower layer to the GASS layer. Of course the prototype provides limited capabilities (e.g.
limited number of available context types, limited number of context changes management
capabilities,…) but it proofs the feasibility of Akogrimo approach. Other work needs to be
done in order to extent the current status at the aim of managing more complex context
change situations.

 Proof of concepts related to business process adaptation depending on the context
changes: this is the most challenging objective and it is strictly related to the previous one.
Also in this case, the prototype shows the integration between the notification of context
changes and the consequent modification of workflow execution depending on the value of
the context. In this first version we have tested the behaviour in a specific case (i.e. finding
out the presence of a big display to provide a detailed data visualization) but we have to
improve this capability in order to be able to manage:

 Adaptation in case of faults

 Lack of agreed QoS

 Several kind of context changes

© Akogrimo consortium page 45 of 45

Furthermore at this stage the adaptation is managed inside the workflow script but in the
future work it will be directly managed by the “intelligent” component of the BP enactment
subsystem, that is the WorkFlow manager.

